1
|
Qi H, Xuan Q, Liu P, An Y, Huang W, Miao S, Wang Q, Liu Z, Wang R. Deep Learning Radiomics Features of Mediastinal Fat and Pulmonary Nodules on Lung CT Images Distinguish Benignancy and Malignancy. Biomedicines 2024; 12:1865. [PMID: 39200329 PMCID: PMC11352131 DOI: 10.3390/biomedicines12081865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the relationship between mediastinal fat and pulmonary nodule status, aiming to develop a deep learning-based radiomics model for diagnosing benign and malignant pulmonary nodules. We proposed a combined model using CT images of both pulmonary nodules and the fat around the chest (mediastinal fat). Patients from three centers were divided into training, validation, internal testing, and external testing sets. Quantitative radiomics and deep learning features from CT images served as predictive factors. A logistic regression model was used to combine data from both pulmonary nodules and mediastinal adipose regions, and personalized nomograms were created to evaluate the predictive performance. The model incorporating mediastinal fat outperformed the nodule-only model, with C-indexes of 0.917 (training), 0.903 (internal testing), 0.942 (external testing set 1), and 0.880 (external testing set 2). The inclusion of mediastinal fat significantly improved predictive performance (NRI = 0.243, p < 0.05). A decision curve analysis indicated that incorporating mediastinal fat features provided greater patient benefits. Mediastinal fat offered complementary information for distinguishing benign from malignant nodules, enhancing the diagnostic capability of this deep learning-based radiomics model. This model demonstrated strong diagnostic ability for benign and malignant pulmonary nodules, providing a more accurate and beneficial approach for patient care.
Collapse
Affiliation(s)
- Hongzhuo Qi
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Qifan Xuan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Pingping Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| | - Yunfei An
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Wenjuan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| | - Shidi Miao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Qiujun Wang
- Department of General Practice, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China;
| | - Zengyao Liu
- Department of Interventional Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150086, China;
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| |
Collapse
|
2
|
Kaster N, Khan R, Ahmad I, Zhigerbayevich KN, Seisembay I, Nurbolat A, Hamitovna SK, Mirambekovna OK, Bekbolatovna MA, Amangaliyev TG, Bolatbek A, Yeginbaevich TZ, Ahmad S, Linsen Z, Baibolsynovna BA. RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation. Anim Biosci 2024; 37:929-943. [PMID: 37946430 PMCID: PMC11065710 DOI: 10.5713/ab.23.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. METHODS The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. RESULTS The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their downregulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. CONCLUSION Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.
Collapse
Affiliation(s)
- Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Kazhgaliyev Nurlybay Zhigerbayevich
- Candidate of Sciences in Agriculture, Researcher of Scientific and Production Centre for Animal Husbandry and Veterinary Limited Liability Partnership, Astana 010000,
Kazakhstan
| | - Imbay Seisembay
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Akhmetbekov Nurbolat
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Shaikenova Kymbat Hamitovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Omarova Karlygash Mirambekovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | | | | | - Ateikhan Bolatbek
- Faculty of Agricultural Sciences, Toraighyrov University, Pavlodar 140000,
Kazakhstan
| | | | - Shakoor Ahmad
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | | |
Collapse
|
3
|
Lv YQ, Dhlamini Q, Chen C, Li X, Bellusci S, Zhang JS. FGF10 and Lipofibroblasts in Lung Homeostasis and Disease: Insights Gained From the Adipocytes. Front Cell Dev Biol 2021; 9:645400. [PMID: 34124037 PMCID: PMC8189177 DOI: 10.3389/fcell.2021.645400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Adipocytes not only function as energy depots but also secrete numerous adipokines that regulate multiple metabolic processes, including lipid homeostasis. Dysregulation of lipid homeostasis, which often leads to adipocyte hypertrophy and/or ectopic lipid deposition in non-adipocyte cells such as muscle and liver, is linked to the development of insulin resistance. Similarly, an altered secretion profile of adipokines or imbalance between calorie intake and energy expenditure is associated with obesity, among other related metabolic disorders. In lungs, lipid-laden adipocyte-like cells known as lipofibroblasts share numerous developmental and functional similarities with adipocytes, and similarly influence alveolar lipid homeostasis by facilitating pulmonary surfactant production. Unsurprisingly, disruption in alveolar lipid homeostasis may propagate several chronic inflammatory disorders of the lung. Given the numerous similarities between the two cell types, dissecting the molecular mechanisms underlying adipocyte development and function will offer valuable insights that may be applied to, at least, some aspects of lipofibroblast biology in normal and diseased lungs. FGF10, a major ligand for FGFR2b, is a multifunctional growth factor that is indispensable for several biological processes, including development of various organs and tissues such as the lung and WAT. Moreover, accumulating evidence strongly implicates FGF10 in several key aspects of adipogenesis as well as lipofibroblast formation and maintenance, and as a potential player in adipocyte metabolism. This review summarizes our current understanding of the role of FGF10 in adipocytes, while attempting to derive insights on the existing literature and extrapolate the knowledge to pulmonary lipofibroblasts.
Collapse
Affiliation(s)
- Yu-Qing Lv
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qhaweni Dhlamini
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Cardio-Pulmonary Institute, Institute of Lung Health and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020; 11:354. [PMID: 32372975 PMCID: PMC7186430 DOI: 10.3389/fphys.2020.00354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic diseases, such as diabetes, obesity, and fatty liver disease, have now reached epidemic proportions. Receptor tyrosine kinases (RTKs) are a family of cell surface receptors responding to growth factors, hormones, and cytokines to mediate a diverse set of fundamental cellular and metabolic signaling pathways. These ligands signal by endocrine, paracrine, or autocrine means in peripheral organs and in the central nervous system to control cellular and tissue-specific metabolic processes. Interestingly, the expression of many RTKs and their ligands are controlled by changes in metabolic demand, for example, during starvation, feeding, or obesity. In addition, studies of RTKs and their ligands in regulating energy homeostasis have revealed unexpected diversity in the mechanisms of action and their specific metabolic functions. Our current understanding of the molecular, biochemical and genetic control of energy homeostasis by the endocrine RTK ligands insulin, FGF21 and FGF19 are now relatively well understood. In addition to these classical endocrine signals, non-endocrine ligands can govern local energy regulation, and the intriguing crosstalk between the RTK family and the TGFβ receptor family demonstrates a signaling network that diversifies metabolic process between tissues. Thus, there is a need to increase our molecular and mechanistic understanding of signal diversification of RTK actions in metabolic disease. Here we review the known and emerging molecular mechanisms of RTK signaling that regulate systemic glucose and lipid metabolism, as well as highlighting unexpected roles of non-classical RTK ligands that crosstalk with other receptor pathways.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Zewen Jiang
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
5
|
Dianat-Moghadam H, Teimoori-Toolabi L. Implications of Fibroblast Growth Factors (FGFs) in Cancer: From Prognostic to Therapeutic Applications. Curr Drug Targets 2019; 20:852-870. [DOI: 10.2174/1389450120666190112145409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factors (FGFs) are pleiotropic molecules exerting autocrine, intracrine
and paracrine functions via activating four tyrosine kinase FGF receptors (FGFR), which further trigger
a variety of cellular processes including angiogenesis, evasion from apoptosis, bone formation,
embryogenesis, wound repair and homeostasis. Four major mechanisms including angiogenesis, inflammation,
cell proliferation, and metastasis are active in FGF/FGFR-driven tumors. Furthermore,
gain-of-function or loss-of-function in FGFRs1-4 which is due to amplification, fusions, mutations,
and changes in tumor–stromal cells interactions, is associated with the development and progression
of cancer. Although, the developed small molecule or antibodies targeting FGFR signaling offer immense
potential for cancer therapy, emergence of drug resistance, activation of compensatory pathways
and systemic toxicity of modulators are bottlenecks in clinical application of anti-FGFRs. In this
review, we present FGF/FGFR structure and the mechanisms of its function, as well as cross-talks
with other nodes and/or signaling pathways. We describe deregulation of FGF/FGFR-related mechanisms
in human disease and tumor progression leading to the presentation of emerging therapeutic approaches,
resistance to FGFR targeting, and clinical potentials of individual FGF family in several
human cancers. Additionally, the underlying biological mechanisms of FGF/FGFR signaling, besides
several attempts to develop predictive biomarkers and combination therapies for different cancers
have been explored.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Xu Q, Lin S, Wang Y, Zhu J, Lin Y. Fibroblast growth factor 10 (FGF10) promotes the adipogenesis of intramuscular preadipocytes in goat. Mol Biol Rep 2018; 45:1881-1888. [PMID: 30250994 DOI: 10.1007/s11033-018-4334-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is an adipokine that is found to participate in the regulation of adipogenesis. However, its function remains to be elucidated in intramuscular fat (IMF) deposition of goat. The purpose of this study was to explore the role of FGF10 in goat IMF deposition. Here, we investigated the expression of FGF10 in goat intramuscular adipocytes inducing 0, 2, 4, 6 and 8 days. Effect of FGF10 on adipogenesis was investigated by gaining and losing function of FGF10 in vitro. And then, we examined several lipid metabolism-related genes, including peroxisome proliferator activated receptor γ (PPARγ), sterol regulatory element binding protein 1 (SREBP1), preadipocyte factor-1 (Pref-1), CCAAT/enhancer binding protein-α (C/EBPα) and CCAAT/enhancer binding protein-β (C/EBPβ), as well as, Krüppel-like factor (KLF) family. We found that the sharp expression of FGF10 appeared at 2 days. Overexpression of FGF10 mediated by adenovirus promotes lipid accumulation, accompanied by up-regulating of LPL and C/EBPα with the down-regulating of C/EBPβ. Conversely, the expression of LPL, C/EBPα and SREBP1 was significantly decreased by the siRNAs of FGF10. Meanwhile, we showed that FGF10 regulated the expression of many KLFs members and interacted synergistically or antagonistically with them. Thus, our results demonstrated a key role of FGF10 as a positively factor in the regulation of adipogenic differentiation of intramuscular preadipocyte in goat.
Collapse
Affiliation(s)
- Qing Xu
- School of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Sen Lin
- School of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Yong Wang
- School of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Jiangjiang Zhu
- School of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Yaqiu Lin
- School of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Neuropilin 1 Mediates Keratinocyte Growth Factor Signaling in Adipose-Derived Stem Cells: Potential Involvement in Adipogenesis. Stem Cells Int 2018. [PMID: 29535768 PMCID: PMC5845512 DOI: 10.1155/2018/1075156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adipogenesis is regulated by a complex network of molecules, including fibroblast growth factors. Keratinocyte growth factor (KGF) has been previously reported to promote proliferation on rat preadipocytes, although the expression of its specific receptor, FGFR2-IIIb/KGFR, is not actually detected in mesenchymal cells. Here, we demonstrate that human adipose-derived stem cells (ASCs) show increased expression of KGF during adipogenic differentiation, especially in the early steps. Moreover, KGF is able to induce transient activation of ERK and p38 MAPK pathways in these cells. Furthermore, KGF promotes ASC differentiation and supports the activation of differentiation pathways, such as those of PI3K/Akt and the retinoblastoma protein (Rb). Notably, we observed only a low amount of FGFR2-IIIb in ASCs, which seems not to be responsible for KGF activity. Here, we demonstrate for the first time that Neuropilin 1 (NRP1), a transmembrane glycoprotein expressed in ASCs acting as a coreceptor for some growth factors, is responsible for KGF-dependent pathway activation in these cells. Our study contributes to clarify the molecular bases of human adipogenesis, demonstrating a role of KGF in the early steps of this process, and points out a role of NRP1 as a previously unknown mediator of KGF action in ASCs.
Collapse
|
8
|
El Agha E, Moiseenko A, Kheirollahi V, De Langhe S, Crnkovic S, Kwapiszewska G, Szibor M, Kosanovic D, Schwind F, Schermuly RT, Henneke I, MacKenzie B, Quantius J, Herold S, Ntokou A, Ahlbrecht K, Braun T, Morty RE, Günther A, Seeger W, Bellusci S. Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis. Cell Stem Cell 2017; 20:261-273.e3. [PMID: 27867035 PMCID: PMC5291816 DOI: 10.1016/j.stem.2016.10.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 09/02/2016] [Accepted: 10/06/2016] [Indexed: 01/13/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Alena Moiseenko
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Vahid Kheirollahi
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Center for Medical Research, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Center for Medical Research, 8010 Graz, Austria
| | - Marten Szibor
- Institute of Biotechnology, FinMIT Cluster of Excellence, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Felix Schwind
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ingrid Henneke
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - BreAnne MacKenzie
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Jennifer Quantius
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Susanne Herold
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Aglaia Ntokou
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Katrin Ahlbrecht
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Rory E Morty
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y, Shao M, Gay DL, Ramos R, Hsi TC, Oh JW, Wang X, Ramirez A, Konopelski SE, Elzein A, Wang A, Supapannachart RJ, Lee HL, Lim CH, Nace A, Guo A, Treffeisen E, Andl T, Ramirez RN, Murad R, Offermanns S, Metzger D, Chambon P, Widgerow AD, Tuan TL, Mortazavi A, Gupta RK, Hamilton BA, Millar SE, Seale P, Pear WS, Lazar MA, Cotsarelis G. Regeneration of fat cells from myofibroblasts during wound healing. Science 2017; 355:748-752. [PMID: 28059714 DOI: 10.1126/science.aai8792] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Although regeneration through the reprogramming of one cell lineage to another occurs in fish and amphibians, it has not been observed in mammals. We discovered in the mouse that during wound healing, adipocytes regenerate from myofibroblasts, a cell type thought to be differentiated and nonadipogenic. Myofibroblast reprogramming required neogenic hair follicles, which triggered bone morphogenetic protein (BMP) signaling and then activation of adipocyte transcription factors expressed during development. Overexpression of the BMP antagonist Noggin in hair follicles or deletion of the BMP receptor in myofibroblasts prevented adipocyte formation. Adipocytes formed from human keloid fibroblasts either when treated with BMP or when placed with human hair follicles in vitro. Thus, we identify the myofibroblast as a plastic cell type that may be manipulated to treat scars in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yun Rose Li
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Priya H Dedhia
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Zheng
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Denise L Gay
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,INSERM U967, Commissariat à L'énergie Atomique et aux Énergies Alternatives, Institut de Radiobiologie Cellulaire et Moléculaire 92265 Fontenay-aux-Roses Cedex, France
| | - Raul Ramos
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Tsai-Ching Hsi
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Amanda Ramirez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Sara E Konopelski
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Arijh Elzein
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Anne Wang
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rarinthip June Supapannachart
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hye-Lim Lee
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Arben Nace
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy Guo
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elsa Treffeisen
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 328116, USA
| | - Ricardo N Ramirez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rabi Murad
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67404, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Institut d'Etudes Avancées de l'Université de Strasbourg, Collège de France, Illkirch 67404, France
| | - Alan D Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, Irvine, CA 92868, USA
| | - Tai-Lan Tuan
- The Saban Research Institute of Children's Hospital Los Angeles and Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A Hamilton
- Departments of Medicine and Cellular and Molecular Medicine, Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah E Millar
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George Cotsarelis
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease. Cytokine Growth Factor Rev 2015; 28:63-9. [PMID: 26559461 DOI: 10.1016/j.cytogfr.2015.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022]
Abstract
The FGF family comprises 22 members with diverse functions in development and health. FGF10 specifically activates FGFR2b in a paracrine manner with heparan sulfate as a co-factor. FGF10and FGFR2b are preferentially expressed in the mesenchyme and epithelium, respectively. FGF10 is a mesenchymal signaling molecule in the epithelium. FGF10 knockout mice die shortly after birth due to the complete absence of lungs as well as fore- and hindlimbs. FGF10 is also essential for the development of multiple organs. The phenotypes of Fgf10 knockout mice are very similar to those of FGFR2b knockout mice, indicating that FGF10 acts as a ligand that is specific to FGFR2b in mouse multi-organ development. FGF10 also plays roles in epithelial-mesenchymal transition, the repair of tissue injury, and embryonic stem cell differentiation. In humans, FGF10 loss-of-function mutations result in inherited diseases including aplasia of lacrimal and salivary gland, lacrimo-auriculo-dento-digital syndrome, and chronic obstructive pulmonary disease. FGF10 is also involved in the oncogenicity of pancreatic and breast cancers. Single nucleotide polymorphisms in FGF10 are also potential risk factors for limb deficiencies, cleft lip and palate, and extreme myopia. These findings indicate that FGF10 is a crucial paracrine signal from the mesenchyme to epithelium for development, health, and disease.
Collapse
|
11
|
Al Alam D, El Agha E, Sakurai R, Kheirollahi V, Moiseenko A, Danopoulos S, Shrestha A, Schmoldt C, Quantius J, Herold S, Chao CM, Tiozzo C, De Langhe S, Plikus MV, Thornton M, Grubbs B, Minoo P, Rehan VK, Bellusci S. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development. Development 2015; 142:4139-50. [PMID: 26511927 DOI: 10.1242/dev.109173] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/15/2015] [Indexed: 01/18/2023]
Abstract
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development.
Collapse
Affiliation(s)
- Denise Al Alam
- Department of Surgery, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Elie El Agha
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Reiko Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA 90502, USA
| | - Vahid Kheirollahi
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Alena Moiseenko
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Soula Danopoulos
- Department of Surgery, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Amit Shrestha
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Carole Schmoldt
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Jennifer Quantius
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Susanne Herold
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Cho-Ming Chao
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90033, USA
| | - Parviz Minoo
- Division of Neonatal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Virender K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA 90502, USA
| | - Saverio Bellusci
- Department of Surgery, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
12
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
13
|
Abstract
The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT and the presence of BAT in humans and its relevance.
Collapse
Affiliation(s)
- Maria-Jesus Obregon
- Department of Molecular Physiopathology, Instituto de Investigaciones Biomedicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid Madrid, Spain
| |
Collapse
|
14
|
SRSF10 regulates alternative splicing and is required for adipocyte differentiation. Mol Cell Biol 2014; 34:2198-207. [PMID: 24710272 DOI: 10.1128/mcb.01674-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During adipocyte differentiation, significant alternative splicing changes occur in association with the adipogenic process. However, little is known about roles played by splicing factors in this process. We observed that mice deficient for the splicing factor SRSF10 exhibit severely impaired development of subcutaneous white adipose tissue (WAT) as a result of defects in adipogenic differentiation. To identify splicing events responsible for this, transcriptome sequencing (RNA-seq) analysis was performed using embryonic fibroblast cells. Several SRSF10-affected splicing events that are implicated in adipogenesis have been identified. Notably, lipin1, known as an important regulator during adipogenesis, was further investigated. While lipin1β is mainly involved in lipogenesis, its alternatively spliced isoform lipin1α, generated through the skipping of exon 7, is primarily required for initial adipocyte differentiation. Skipping of exon 7 is controlled by an SRSF10-regulated cis element located in the constitutive exon 8. The activity of this element depends on the binding of SRSF10 and correlates with the relative abundance of lipin1α mRNA. A series of experiments demonstrated that SRSF10 controls the production of lipin1α and thus promotes adipocyte differentiation. Indeed, lipin1α expression could rescue SRSF10-mediated adipogenic defects. Taken together, our results identify SRSF10 as an essential regulator for adipocyte differentiation and also provide new insights into splicing control by SRSF10 in lipin1 pre-mRNA splicing.
Collapse
|
15
|
Ohta H, Itoh N. Roles of FGFs as Adipokines in Adipose Tissue Development, Remodeling, and Metabolism. Front Endocrinol (Lausanne) 2014; 5:18. [PMID: 24605108 PMCID: PMC3932445 DOI: 10.3389/fendo.2014.00018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
White and brown adipose tissues (BATs), which store and burn lipids, respectively, play critical roles in energy homeostasis. Fibroblast growth factors (FGFs) are signaling proteins with diverse functions in development, metabolism, and neural function. Among 22 FGFs, FGF1, FGF10, and FGF21 play roles as adipokines, adipocyte-secreted proteins, in the development and function of white and BATs. FGF1 is a critical transducer in white adipose tissue (WAT) remodeling. The peroxisome proliferator-activated receptor γ-FGF1 axis is critical for energy homeostasis. FGF10 is essential for embryonic white adipocyte development. FGF21 activates BAT in response to cold exposure. FGF21 also stimulates the accumulation of brown-like cells in WAT during cold exposure and is an upstream effector of adiponectin, which controls systemic energy metabolism. These findings provide new insights into the roles of FGF signaling in white and BATs and potential therapeutic strategies for metabolic disorders.
Collapse
Affiliation(s)
- Hiroya Ohta
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
- *Correspondence: Nobuyuki Itoh, Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Yoshida-shimiadachi, Sakyo, Kyoto 606-8501, Japan e-mail:
| |
Collapse
|
16
|
Sugimoto K, Yoshida S, Mashio Y, Toyota N, Xing Y, Xu H, Fujita Y, Huang Z, Touma M, Wu Q. Role of FGF10 on tumorigenesis by MS-K. Genes Cells 2013; 19:112-25. [DOI: 10.1111/gtc.12118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/18/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Kenkichi Sugimoto
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Suzuka Yoshida
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yuka Mashio
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Naoka Toyota
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yanjiang Xing
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Henan Xu
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yuki Fujita
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Zhijun Huang
- School of Life Science and Biotechnology; Harbin Institute of Technology; Harbin 150001 China
| | - Maki Touma
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Qiong Wu
- School of Life Science and Biotechnology; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
17
|
Wu Y, Gao H, Li H, Tabara Y, Nakatochi M, Chiu YF, Park EJ, Wen W, Adair LS, Borja JB, Cai Q, Chang YC, Chen P, Croteau-Chonka DC, Fogarty MP, Gan W, He CT, Hsiung CA, Hwu CM, Ichihara S, Igase M, Jo J, Kato N, Kawamoto R, Kuzawa CW, Lee JJM, Liu J, Lu L, McDade TW, Osawa H, Sheu WHH, Teo Y, Vadlamudi S, Van Dam RM, Wang Y, Xiang YB, Yamamoto K, Ye X, Young TL, Zheng W, Zhu J, Shu XO, Shin C, Jee SH, Chuang LM, Miki T, Yokota M, Lin X, Mohlke KL, Tai ES. A meta-analysis of genome-wide association studies for adiponectin levels in East Asians identifies a novel locus near WDR11-FGFR2. Hum Mol Genet 2013; 23:1108-19. [PMID: 24105470 DOI: 10.1093/hmg/ddt488] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood levels of adiponectin, an adipocyte-secreted protein correlated with metabolic and cardiovascular risks, are highly heritable. Genome-wide association (GWA) studies for adiponectin levels have identified 14 loci harboring variants associated with blood levels of adiponectin. To identify novel adiponectin-associated loci, particularly those of importance in East Asians, we conducted a meta-analysis of GWA studies for adiponectin in 7827 individuals, followed by two stages of replications in 4298 and 5954 additional individuals. We identified a novel adiponectin-associated locus on chromosome 10 near WDR11-FGFR2 (P = 3.0 × 10(-14)) and provided suggestive evidence for a locus on chromosome 12 near OR8S1-LALBA (P = 1.2 × 10(-7)). Of the adiponectin-associated loci previously described, we confirmed the association at CDH13 (P = 6.8 × 10(-165)), ADIPOQ (P = 1.8 × 10(-22)), PEPD (P = 3.6 × 10(-12)), CMIP (P = 2.1 × 10(-10)), ZNF664 (P = 2.3 × 10(-7)) and GPR109A (P = 7.4 × 10(-6)). Conditional analysis at ADIPOQ revealed a second signal with suggestive evidence of association only after conditioning on the lead SNP (Pinitial = 0.020; Pconditional = 7.0 × 10(-7)). We further confirmed the independence of two pairs of closely located loci (<2 Mb) on chromosome 16 at CMIP and CDH13, and on chromosome 12 at GPR109A and ZNF664. In addition, the newly identified signal near WDR11-FGFR2 exhibited evidence of association with triglycerides (P = 3.3 × 10(-4)), high density lipoprotein cholesterol (HDL-C, P = 4.9 × 10(-4)) and body mass index (BMI)-adjusted waist-hip ratio (P = 9.8 × 10(-3)). These findings improve our knowledge of the genetic basis of adiponectin variation, demonstrate the shared allelic architecture for adiponectin with lipids and central obesity and motivate further studies of underlying mechanisms.
Collapse
|
18
|
Saksena S, Priyamvada S, Kumar A, Akhtar M, Soni V, Anbazhagan AN, Alakkam A, Alrefai WA, Dudeja PK, Gill RK. Keratinocyte growth factor-2 stimulates P-glycoprotein expression and function in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2013; 304:G615-22. [PMID: 23328208 PMCID: PMC3602685 DOI: 10.1152/ajpgi.00445.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal P-glycoprotein (Pgp/multidrug resistance 1), encoded by the ATP-binding cassette B1 gene, is primarily involved in the transepithelial efflux of toxic metabolites and xenobiotics from the mucosa into the gut lumen. Reduced Pgp function and expression has been shown to be associated with intestinal inflammatory disorders. Keratinocyte growth factor-2 (KGF2) has emerged as a potential target for modulation of intestinal inflammation and maintenance of gut mucosal integrity. Whether KGF2 directly regulates Pgp in the human intestine is not known. Therefore, the present studies were undertaken to determine the modulation of Pgp by KGF2 using Caco-2 cells. Short-term treatment of Caco-2 cells with KGF2 (10 ng/ml, 1 h) increased Pgp activity (~2-fold, P < 0.05) as measured by verapamil-sensitive [(3)H]digoxin flux. This increase in Pgp function was associated with an increase in surface Pgp levels. The specific fibroblast growth factor receptor (FGFR) antagonist PD-161570 blocked the KGF2-mediated increase in Pgp activity. Inhibition of the mitogen-activated protein kinase (MAPK) pathway by PD-98059 attenuated the stimulatory effects of KGF2 on Pgp activity. Small-interfering RNA knockdown of Erk1/2 MAPK blocked the increase in surface Pgp levels by KGF2. Long-term treatment with KGF2 (10 ng/ml, 24 h) also significantly increased PgP activity, mRNA, protein expression, and promoter activity. The long-term effects of KGF2 on Pgp promoter activity were also blocked by the FGFR antagonist and mediated by the Erk1/2 MAPK pathway. In conclusion, our findings define the posttranslational and transcriptional mechanisms underlying stimulation of Pgp function and expression by KGF2 that may contribute to the beneficial effects of KGF2 in intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fang X, Bai C, Wang X. Potential clinical application of KGF-2 (FGF-10) for acute lung injury/acute respiratory distress syndrome. Expert Rev Clin Pharmacol 2012; 3:797-805. [PMID: 22111782 DOI: 10.1586/ecp.10.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an acute life-threatening form of hypoxemic respiratory failure with a high mortality rate, and there is still a great need for more effective therapies for such a severe and lethal disease. Dysfunction of endothelial and epithelial barriers is one of the most important mechanisms in hypoxia-associated ALI/ARDS. The acceleration of the epithelial repair process in the injured lung may provide an effective therapeutic target. KGF-2, a potent alveolar epithelial cell mitogen, plays an important role in organ morphogenesis and epithelial differentiation, and modulates a variety of mechanisms recognized to be important in alveolar repair and resolution in ALI/ARDS. Preclinical and clinical studies have suggested that KGF-2 may be the candidate of novel therapies for alveolar epithelial damage during ALI/ARDS.
Collapse
Affiliation(s)
- Xiaocong Fang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | | | | |
Collapse
|
20
|
Suwa A, Yoshino M, Yamazaki C, Naitou M, Fujikawa R, Matsumoto SI, Kurama T, Shimokawa T, Aramori I. RMI1 deficiency in mice protects from diet and genetic-induced obesity. FEBS J 2009; 277:677-86. [DOI: 10.1111/j.1742-4658.2009.07513.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Differentiation of human adipose-derived stem cells induced by recombinantly expressed fibroblast growth factor 10 in vitro and in vivo. In Vitro Cell Dev Biol Anim 2009; 46:60-71. [DOI: 10.1007/s11626-009-9240-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 09/30/2009] [Indexed: 12/14/2022]
|
22
|
Neudesin, an extracellular heme-binding protein, suppresses adipogenesis in 3T3-L1 cells via the MAPK cascade. Biochem Biophys Res Commun 2009; 381:75-80. [PMID: 19351598 DOI: 10.1016/j.bbrc.2009.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 11/21/2022]
Abstract
Adult mice abundantly express neudesin, an extracellular heme-binding protein with neurotrophic activity, in white adipose tissues. At the early stage of adipocyte differentiation during adipogenesis, however, the expression of neudesin decreased transiently. Neudesin-hemin significantly suppressed adipogenesis in 3T3-L1 cells. The knockdown of neudesin by RNA interference markedly promoted adipogenesis in 3T3-L1 cells and decreased MAPK activation during adipocyte differentiation. The addition or knockdown of neudesin affected the expression of C/EBPalpha and PPARgamma but not of C/EBPbeta. These findings suggest that neudesin plays a critical role in the early stage of adipocyte differentiation in which C/EBPbeta induces PPARgamma and C/EBPalpha expressions, by controlling the MAPK pathway.
Collapse
|
23
|
Konishi M, Nakamura H, Miwa H, Chambon P, Ornitz DM, Itoh N. Role of Fgf receptor 2c in adipocyte hypertrophy in mesenteric white adipose tissue. Mol Cell Endocrinol 2008; 287:13-9. [PMID: 18396371 DOI: 10.1016/j.mce.2008.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 12/19/2007] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
Abstract
Fgf receptor 2c (Fgfr2c) was expressed in mature adipocytes of mouse white adipose tissue (WAT). To examine the role of Fgfr2c in mature adipocytes, we generated adipocyte-specific Fgfr2 knockout (Fgfr2 CKO) mice. The hypertrophy impairment of adipocytes in the mesenteric WAT but not in the subcutaneous WAT and decreased plasma free fatty acid (FFA) levels were observed in Fgfr2 CKO mice. Although the expression of genes involved in adipocyte differentiation and lipid metabolism in the mesenteric WAT was essentially unchanged, the expression of uncoupling protein 2 potentially involved in energy dissipation was significantly increased. Among potential Fgf ligands for Fgfr2c, Fgf9 was preferentially expressed in the mesenteric WAT. The present findings indicate that Fgfr2c potentially activated by Fgf9 plays a role in the adipocyte hypertrophy in the mesenteric WAT and FFA metabolism and/or energy dissipation in the mesenteric WAT might be involved in the hypertrophy impairment.
Collapse
Affiliation(s)
- Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Yoshida-Shimoadachi, Sakyo, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Parsa S, Ramasamy SK, De Langhe S, Gupte VV, Haigh JJ, Medina D, Bellusci S. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev Biol 2008; 317:121-31. [PMID: 18381212 DOI: 10.1016/j.ydbio.2008.02.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 01/31/2023]
Abstract
We previously demonstrated that Fibroblast Growth Factor 10 (FGF10) and its receptor FGFR2b play a key role in controlling the very early stages of mammary gland development during embryogenesis [Mailleux, A.A., Spencer-Dene, B., Dillon, C., Ndiaye, D., Savona-Baron, C., Itoh, N., Kato, S., Dickson, C., Thiery, J.P., and Bellusci, S. (2002). Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129, 53-60. Veltmaat, J. M., Relaix, F., Le, L.T., Kratochwil, K., Sala, F.G., van Veelen, W., Rice, R., Spencer-Dene, B., Mailleux, A.A., Rice, D.P., Thiery, J.P., and Bellusci, S. (2006). Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133, 2325-35.]. However, the role of FGFR2b signaling in postnatal mammary gland development is still elusive. We show that FGF10 is expressed at high level throughout the adipose tissue in the mammary gland of young virgin female mice whereas its main receptor FGFR2 is found mostly in the epithelium. Using a rtTA transactivator/tetracycline promoter approach allowing inducible and reversible attenuation of the FGFR2b signaling throughout the adult mouse, we are now reporting that FGFR2b signaling is also critical during postnatal mammary gland development. Ubiquitous attenuation of FGFR2b signaling in the postnatal mouse for 6 weeks starting immediately after birth is not lethal and leads to minor defects in the animal. Upon dissection of the mammary glands, a 40% reduction in size compared to the WT control is observed. Further examination shows a rudimentary mammary epithelial tree with completely absent terminal end buds (TEBs), compared to a well-branched structure observed in wild type. Transplantation of mammary gland explants into cleared fat pad of wild type mouse recipients indicates that the observed abnormal branching results from defective FGFR2b signaling in the epithelium. We also demonstrate that this rudimentary tree reforms TEBs and resumes branching upon removal of doxycycline suggesting that the regenerative capacities of the mammary epithelial progenitor cells were still functional despite long-term inactivation of the FGFR2b pathway. At the cellular level, upon FGFR2b attenuation, we show an increase in apoptosis associated with a decrease in the proliferation of the mammary luminal epithelium. We conclude that during puberty, there is a differential requirement for FGFR2b signaling in ductal vs. TEBs epithelium. FGFR2b signaling is crucial for the survival and proliferation of the mammary luminal epithelial cells, but does not affect the regenerative potential of the mammary epithelial progenitor cells.
Collapse
Affiliation(s)
- Sara Parsa
- Developmental Biology Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Thyroid hormones act as pleiotropic factors in many tissues during development, by regulating genes involved in differentiation. The adipose tissue, a target of thyroid hormones, is the main place for energy storage and acts as a regulator of energy balance, sending signals to keep metabolic control. Adipogenesis is a complex process that involves proliferation of preadipocytes and its differentiation into mature adipocytes. This process is regulated by several transcription factors (CCAAT/enhancer-binding proteins [C/EBPs], peroxisome proliferator-activated receptors [PPARs]) that act coordinately, activating adipocyte-specific genes that will provide the adipocytic phenotype. Thyroid hormones regulate many of those genes, markers of differentiation of adipocytes, those involved in lipogenesis, lipolysis, and thermogenesis in the brown adipose tissue (BAT). Triiodothyronine (T3) actions are achieved either directly through specific thyroid response elements (TREs), by regulating other key genes as PPARs, or through specific isoforms of the nuclear T3 receptors. The availability of T3 is regulated through the deiodinases D3, D2, and D1. D3 is activated by serum and mitogens during proliferation of preadipocytes, while D2 is linked to the differentiation program of adipocytes, through the C/EBPs that govern its functionality, providing the T3 required for thermogenesis and lipogenesis. The relationship between white adipose tissue (WAT) and BAT and the possible reactivation of WAT by activation of uncoupling protein-1 (UCP1) is discussed.
Collapse
Affiliation(s)
- Maria-Jesus Obregon
- Instituto de Investigaciones Biomedicas, Centro mixto from Consejo Superior de Investigaciones Cientificas (CSIC), Universidad Autonoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
26
|
Shin M, Noji S, Neubüser A, Yasugi S. FGF10 is required for cell proliferation and gland formation in the stomach epithelium of the chicken embryo. Dev Biol 2006; 294:11-23. [PMID: 16616737 DOI: 10.1016/j.ydbio.2005.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 11/21/2005] [Accepted: 12/07/2005] [Indexed: 11/20/2022]
Abstract
The development of digestive organs in vertebrates involves active epithelial-mesenchymal interactions. In the chicken proventriculus (glandular stomach), the morphogenesis and cytodifferentiation of the epithelium are controlled by the inductive signaling factors that are secreted from the underlying mesenchyme. Previous studies have shown that Fgf10 is expressed in the developing chicken proventricular mesenchyme, whereas its receptors are present in the epithelium. In our present study, we show that FGF10 is an early mesenchymal signal that is critically associated with the developmental processes in the proventricular epithelium. Furthermore, virus-mediated Fgf10 overexpression in ovo results in a hypermorphic epithelial structure and an increase in epithelial cell number. In contrast, the overexpression of a secreted FGFR2b (sFGFR2b), an FGF10 antagonist, blocks cell proliferation and gland formation in the proventricular epithelium in ovo. This downregulation of proliferative activity was subsequently found to retard gland formation and also to delay differentiation of the epithelium. These results demonstrate that FGF10 signaling, mediated by FGFR1b and/or FGFR2b, is required for proliferation and gland formation in the epithelium in the developing chick embryo.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
27
|
Konishi M, Asaki T, Koike N, Miwa H, Miyake A, Itoh N. Role of Fgf10 in cell proliferation in white adipose tissue. Mol Cell Endocrinol 2006; 249:71-7. [PMID: 16513252 DOI: 10.1016/j.mce.2006.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/18/2006] [Accepted: 01/24/2006] [Indexed: 11/30/2022]
Abstract
The development of white adipose tissue (WAT) involves adipogenesis and cell proliferation. Although the adipogenesis has been well studied, the cell proliferation has not. Therefore, we examined the mechanism of the proliferation by analyzing Fgf10(-/-) mouse embryonic WAT, in which adipogenesis and proliferation were severely impaired. D-type cyclin expression and retinoblastoma family protein phosphorylation essential for cell proliferation were examined in WAT. Both cyclin D2 expression and p130 phosphorylation were impaired in the Fgf10(-/-) WAT. In mouse embryonic fibroblasts, Fgf10 stimulated cyclin D2 expression and p130 phosphorylation, which were inhibited by an inhibitor of the Ras/MAPK pathway. These results suggest that Fgf10 stimulates cell proliferation in WAT through the Ras/MAPK pathway followed by the cyclin D2-dependent phosphorylation of p130. In contrast, expression but not phosphorylation of pRb was impaired in the Fgf10(-/-) WAT. As pRb is essential for adipogenesis, Fgf10 might play a role in adipogenesis by inducing its expression.
Collapse
Affiliation(s)
- Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Lü J, Izvolsky KI, Qian J, Cardoso WV. Identification of FGF10 Targets in the Embryonic Lung Epithelium during Bud Morphogenesis. J Biol Chem 2005; 280:4834-41. [PMID: 15556938 DOI: 10.1074/jbc.m410714200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic studies implicate Fgf10-Fgfr2 signaling as a critical regulator of bud morphogenesis in the embryo. However, little is known about the transcriptional targets of Fgf10 during this process. Here we identified global changes in gene expression in lung epithelial explants undergoing FGF10-mediated budding in the absence of other growth factors and mesenchyme. Targets were confirmed by their localization at sites where endogenous Fgf10 signaling is active in embryonic lungs and by demonstrating their induction in intact lungs in response to local application of FGF10 protein. We show that the initial stages of budding are characterized by marked up-regulation of genes associated with cell rearrangement and cell migration, inflammatory process, and lipid metabolism but not cell proliferation. We also found that some genes implicated in tumor invasion and metastatic behavior are epithelial targets of Fgf10 in the lung and other developing organs that depend on Fgf10-Fgfr2 signaling to properly form. Our approach identifies Fgf10 targets that are common to multiple biological processes and provides insights into potential mechanisms by which Fgf signaling regulates epithelial cell behavior.
Collapse
Affiliation(s)
- Jining Lü
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|