1
|
Helfenberger KE, Castillo AF, Mele PG, Fiore A, Herrera L, Finocchietto P, Podestá EJ, Poderoso C. Angiotensin II stimulation promotes mitochondrial fusion as a novel mechanism involved in protein kinase compartmentalization and cholesterol transport in human adrenocortical cells. J Steroid Biochem Mol Biol 2019; 192:105413. [PMID: 31202858 DOI: 10.1016/j.jsbmb.2019.105413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/10/2019] [Accepted: 06/13/2019] [Indexed: 01/22/2023]
Abstract
In steroid-producing cells, cholesterol transport from the outer to the inner mitochondrial membrane is the first and rate-limiting step for the synthesis of all steroid hormones. Cholesterol can be transported into mitochondria by specific mitochondrial protein carriers like the steroidogenic acute regulatory protein (StAR). StAR is phosphorylated by mitochondrial ERK in a cAMP-dependent transduction pathway to achieve maximal steroid production. Mitochondria are highly dynamic organelles that undergo replication, mitophagy and morphology changes, all processes allowed by mitochondrial fusion and fission, known as mitochondrial dynamics. Mitofusin (Mfn) 1 and 2 are GTPases involved in the regulation of fusion, while dynamin-related protein 1 (Drp1) is the major regulator of mitochondrial fission. Despite the role of mitochondrial dynamics in neurological and endocrine disorders, little is known about fusion/fission in steroidogenic tissues. In this context, the present work aimed to study the role of angiotensin II (Ang II) in protein subcellular compartmentalization, mitochondrial dynamics and the involvement of this process in the regulation of aldosterone synthesis. We demonstrate here that Ang II stimulation promoted the recruitment and activation of PKCε, ERK and its upstream kinase MEK to the mitochondria, all of them essential for steroid synthesis. Moreover, Ang II prompted a shift from punctate to tubular/elongated (fusion) mitochondrial shape, in line with the observation of hormone-dependent upregulation of Mfn2 levels. Concomitantly, mitochondrial Drp1 was diminished, driving mitochondria toward fusion. Moreover, Mfn2 expression is required for StAR, ERK and MEK mitochondrial localization and ultimately for aldosterone synthesis. Collectively, this study provides fresh insights into the importance of hormonal regulation in mitochondrial dynamics as a novel mechanism involved in aldosterone production.
Collapse
Affiliation(s)
- Katia E Helfenberger
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Ana F Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Pablo G Mele
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Ana Fiore
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Lucía Herrera
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Paola Finocchietto
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas "José de San Martín", Laboratorio del Metabolismo del Oxígeno, Av. Córdoba 2351, C1121ABJ, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Ciudad de Buenos Aires, Argentina
| | - Ernesto J Podestá
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Neuman I, Cooke M, Lemiña NA, Kazanietz MG, Cornejo Maciel F. 5-oxo-ETE activates migration of H295R adrenocortical cells via MAPK and PKC pathways. Prostaglandins Other Lipid Mediat 2019; 144:106346. [PMID: 31301403 DOI: 10.1016/j.prostaglandins.2019.106346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
The OXE receptor is a GPCR activated by eicosanoids produced by the action of 5-lipoxygenase. We previously found that this membrane receptor participates in the regulation of cAMP-dependent and -independent steroidogenesis in human H295R adrenocortical carcinoma cells. In this study we analyzed the effects of the OXE receptor physiological activator 5-oxo-ETE on the growth and migration of H259R cells. While 5-oxo-ETE did not affect the growth of H295R cells, overexpression of OXE receptor caused an increase in cell proliferation, which was further increased by 5-oxo-ETE and blocked by 5-lipoxygenase inhibition. 5-oxo-ETE increased the migratory capacity of H295R cells in wound healing assays, but it did not induce the production of metalloproteases MMP-1, MMP-2, MMP-9 and MMP-10. The pro-migratory effect of 5-oxo-ETE was reduced by pharmacological inhibition of the MEK/ERK1/2, p38 and PKC pathways. 5-oxo-ETE caused significant activation of ERK and p38. ERK activation by the eicosanoid was reduced by the "pan" PKC inhibitor GF109203X but not by the classical PKC inhibitor Gö6976, suggesting the involvement of novel PKCs in this effect. Although H295R cells display detectable phosphorylation of Ser299 in PKCδ, a readout for the activation of this novel PKC, treatment with 5-oxo-ETE per se was unable to induce additional PKCδ activation. Our results revealed signaling effectors activated by 5-oxo-ETE in H295R cells and may have significant implications for our understanding of OXE receptor in adrenocortical cell pathophysiology.
Collapse
Affiliation(s)
- Isabel Neuman
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; INBIOMED, Instituto de Investigaciones Biomédicas, UBA, CONICET, Buenos Aires, Argentina
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolás Agustín Lemiña
- INBIOMED, Instituto de Investigaciones Biomédicas, UBA, CONICET, Buenos Aires, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabiana Cornejo Maciel
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; INBIOMED, Instituto de Investigaciones Biomédicas, UBA, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Castillo AF, Orlando U, Helfenberger KE, Poderoso C, Podesta EJ. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol Cell Endocrinol 2015; 408:73-9. [PMID: 25540920 DOI: 10.1016/j.mce.2014.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/16/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.
Collapse
Affiliation(s)
- Ana F Castillo
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Ulises Orlando
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Katia E Helfenberger
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Cecilia Poderoso
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Ernesto J Podesta
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina.
| |
Collapse
|
4
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
5
|
Olala LO, Shapiro BA, Merchen TC, Wynn JJ, Bollag WB. Protein kinase C and Src family kinases mediate angiotensin II-induced protein kinase D activation and acute aldosterone production. Mol Cell Endocrinol 2014; 392:173-81. [PMID: 24859649 PMCID: PMC4120960 DOI: 10.1016/j.mce.2014.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/26/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022]
Abstract
Recent evidence has shown a role for the serine/threonine protein kinase D (PKD) in the regulation of acute aldosterone secretion upon angiotensin II (AngII) stimulation. However, the mechanism by which AngII activates PKD remains unclear. In this study, using both pharmacological and molecular approaches, we demonstrate that AngII-induced PKD activation is mediated by protein kinase C (PKC) and Src family kinases in primary bovine adrenal glomerulosa cells and leads to increased aldosterone production. The pan PKC inhibitor Ro 31-8220 and the Src family kinase inhibitors PP2 and Src-1 inhibited both PKD activation and acute aldosterone production. Additionally, like the dominant-negative serine-738/742-to-alanine PKD mutant that cannot be phosphorylated by PKC, the dominant-negative tyrosine-463-to-phenylalanine PKD mutant, which is not phosphorylatable by the Src/Abl pathway, inhibited acute AngII-induced aldosterone production. Taken together, our results demonstrate that AngII activates PKD via a mechanism involving Src family kinases and PKC, to underlie increased aldosterone production.
Collapse
Affiliation(s)
- Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Brian A Shapiro
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Todd C Merchen
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - James J Wynn
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States; Departments of Cell Biology and Anatomy, Medicine and Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
6
|
Coble JP, Johnson RF, Cassell MD, Johnson AK, Grobe JL, Sigmund CD. Activity of protein kinase C-α within the subfornical organ is necessary for fluid intake in response to brain angiotensin. Hypertension 2014; 64:141-8. [PMID: 24777977 DOI: 10.1161/hypertensionaha.114.03461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin-II production in the subfornical organ acting through angiotensin-II type-1 receptors is necessary for polydipsia, resulting from elevated renin-angiotensin system activity. Protein kinase C and mitogen-activated protein kinase pathways have been shown to mediate effects of angiotensin-II in the brain. We investigated mechanisms that mediate brain angiotensin-II-induced polydipsia. We used double-transgenic sRA mice, consisting of human renin controlled by the neuron-specific synapsin promoter crossed with human angiotensinogen controlled by its endogenous promoter, which results in brain-specific overexpression of angiotensin-II, particularly in the subfornical organ. We also used the deoxycorticosterone acetate-salt model of hypertension, which exhibits polydipsia. Inhibition of protein kinase C, but not extracellular signal-regulated kinases, protein kinase A, or vasopressin V₁A and V₂ receptors, corrected the elevated water intake of sRA mice. Using an isoform selective inhibitor and an adenovirus expressing dominant negative protein kinase C-α revealed that protein kinase C-α in the subfornical organ was necessary to mediate elevated fluid and sodium intake in sRA mice. Inhibition of protein kinase C activity also attenuated polydipsia in the deoxycorticosterone acetate-salt model. We provide evidence that inducing protein kinase C activity centrally is sufficient to induce water intake in water-replete wild-type mice, and that cell surface localization of protein kinase C-α can be induced in cultured cells from the subfornical organ. These experimental findings demonstrate a role for central protein kinase C activity in fluid balance, and further mechanistically demonstrate the importance of protein kinase C-α signaling in the subfornical organ in fluid intake stimulated by angiotensin-II in the brain.
Collapse
Affiliation(s)
- Jeffrey P Coble
- From the Departments of Pharmacology (J.P.C., J.L.G., C.D.S.), Psychology (R.F.J., A.K.J.), and Anatomy and Cell Biology (M.D.C.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Ralph F Johnson
- From the Departments of Pharmacology (J.P.C., J.L.G., C.D.S.), Psychology (R.F.J., A.K.J.), and Anatomy and Cell Biology (M.D.C.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Martin D Cassell
- From the Departments of Pharmacology (J.P.C., J.L.G., C.D.S.), Psychology (R.F.J., A.K.J.), and Anatomy and Cell Biology (M.D.C.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Alan Kim Johnson
- From the Departments of Pharmacology (J.P.C., J.L.G., C.D.S.), Psychology (R.F.J., A.K.J.), and Anatomy and Cell Biology (M.D.C.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Justin L Grobe
- From the Departments of Pharmacology (J.P.C., J.L.G., C.D.S.), Psychology (R.F.J., A.K.J.), and Anatomy and Cell Biology (M.D.C.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Curt D Sigmund
- From the Departments of Pharmacology (J.P.C., J.L.G., C.D.S.), Psychology (R.F.J., A.K.J.), and Anatomy and Cell Biology (M.D.C.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.
| |
Collapse
|
7
|
Hattangady N, Olala L, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol 2012; 350:151-62. [PMID: 21839803 PMCID: PMC3253327 DOI: 10.1016/j.mce.2011.07.034] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/11/2011] [Accepted: 07/17/2011] [Indexed: 11/28/2022]
Abstract
Aldosterone is the major mineralocorticoid synthesized by the adrenal and plays an important role in the regulation of systemic blood pressure through the absorption of sodium and water. Aldosterone production is regulated tightly by selective expression of aldosterone synthase (CYP11B2) in the adrenal outermost zone, the zona glomerulosa. Angiotensin II (Ang II), potassium (K(+)) and adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone secretion. Aldosterone production is regulated within minutes of stimulation (acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory (StAR) protein and over hours to days (chronically) by increased expression of the enzymes involved in the synthesis of aldosterone, particularly CYP11B2. Imbalance in any of these processes may lead to several disorders of aldosterone excess. In this review we attempt to summarize the key molecular events involved in the acute and chronic phases of aldosterone secretion.
Collapse
Affiliation(s)
- Namita Hattangady
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
| | - Lawrence Olala
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
| | - Wendy B. Bollag
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904
| | - William E. Rainey
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
- To whom correspondence should be addressed: William E. Rainey, Department of Physiology, Georgia Health Sciences University, 1120 15 Street, Augusta, GA 30912, , Tel: (706) 721-7665, Fax: (706) 721-7299
| |
Collapse
|
8
|
Szanda G, Halász E, Spät A. Protein kinases reduce mitochondrial Ca2+ uptake through an action on the outer mitochondrial membrane. Cell Calcium 2010; 48:168-75. [DOI: 10.1016/j.ceca.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 12/30/2022]
|
9
|
Yanes LL, Romero DG. Dihydrotestosterone stimulates aldosterone secretion by H295R human adrenocortical cells. Mol Cell Endocrinol 2009; 303:50-6. [PMID: 19428991 PMCID: PMC2681414 DOI: 10.1016/j.mce.2008.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/08/2008] [Accepted: 12/19/2008] [Indexed: 11/22/2022]
Abstract
Men exhibit a higher incidence of cardiovascular diseases than do women. The cardiovascular actions of sex steroids have been suggested as primary factors in mediating this sex difference. The mechanisms by which sex steroids, androgens and estrogens, mediate cardiovascular actions remain unclear. Excess aldosterone secretion has been associated with cardiovascular diseases. The hypothesis tested in this study was that at physiological concentrations, androgens stimulate and estradiol inhibits aldosterone secretion by human adrenal cells. In contrast to our hypothesis, physiological concentrations of sex steroids did not modify aldosterone secretion by H295R human adrenocortical cells. However, supraphysiological concentrations (300-1000 nM) of dihydrotestosterone (DHT) significantly stimulated basal and Angiotensin II-mediated aldosterone secretion. The stimulatory effect of DHT on aldosterone secretion was not blocked by the classical androgen receptor blocker flutamide. The stimulatory effect of DHT on aldosterone secretion was also independent of the intra-adrenal renin-angiotensin system since it was neither modified by treatment with the Angiotensin II receptor type 1 blocker losartan or the angiotensin converting enzyme inhibitor captopril. Inhibitors of the calmodulin/calmodulin-dependent protein kinase (CaMK) and protein kinase C intracellular signaling pathways abolished the DHT stimulatory effect on aldosterone secretion by H295R cells. In conclusion, physiological concentrations of sex steroids did not modify aldosterone secretion by human adrenal cells. However, supraphysiological concentrations of DHT-stimulated aldosterone secretion by human adrenal cells by the calmodulin/CaMK and protein kinase C intracellular signaling pathways but independently of the classical androgen receptor. Supraphysiological doses of androgen may promote cardiovascular diseases via stimulation of aldosterone secretion.
Collapse
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | |
Collapse
|
10
|
Szekeres M, Turu G, Orient A, Szalai B, Süpeki K, Cserzo M, Várnai P, Hunyady L. Mechanisms of angiotensin II-mediated regulation of aldosterone synthase expression in H295R human adrenocortical and rat adrenal glomerulosa cells. Mol Cell Endocrinol 2009; 302:244-53. [PMID: 19418629 DOI: 10.1016/j.mce.2008.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In adrenal zona glomerulosa cells angiotensin II (Ang II) is a key regulator of steroidogenesis. Our purpose was to compare the mechanisms of Ang II-induced changes in the expression level of early transcription factors NR4A1 (NGFIB) and NR4A2 (Nurr1) genes, and the CYP11B2 gene encoding aldosterone synthase in H295R human adrenocortical tumor cells and in primary rat adrenal glomerulosa cells. Real-time PCR studies have demonstrated that Ang II increased the expression levels of NR4A1 and NR4A2 in H295R cells within 1 h after stimulation, which persisted up to 6 h; whereas in rat adrenal glomerulosa cells the kinetics of the expression of these genes were more rapid and transient. Ang II also induced prolonged nuclear translocation of Nurr1 and NGFIB proteins in both cell types. Studies using MEK inhibitor (PD98059, 20 microM), protein kinase C inhibitor (BIM1, 3 microM) and calmodulin kinase (CAMK) inhibitor (KN93, 10 microM) revealed that in rat adrenal glomerulosa cells CAMK-mediated mechanisms play a predominant role in the regulation of CYP11B2. In accordance with earlier findings, in H295R cells MEK inhibition increased the expression of NR4A1, NR4A2 and CYP11B2 genes, however, it decreased the Ang II-induced gene expression levels, suggesting that ERK activation has a role in control of expression of these genes. No such mechanism was detected in rat glomerulosa cells. Sar1-Ile4-Ile8-AngII, which can cause G protein-independent ERK activation, also stimulated the expression of CYP11B2 in H295R cells. These data suggest that the previously reported CAMK-mediated stimulation of early transcription factors NGFIB and Nurr1 has a predominant role in Ang II-induced CYP11B2 activation in rat adrenal glomerulosa cells, whereas in H295R cells ERK activation and G protein-independent mechanisms also contribute to this process.
Collapse
Affiliation(s)
- Mária Szekeres
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hayashi K. [Kidney disease: potential of anti-inflammatory approaches for drug therapy]. Nihon Yakurigaku Zasshi 2008; 132:89-95. [PMID: 18689957 DOI: 10.1254/fpj.132.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
12
|
Petiti JP, De Paul AL, Gutiérrez S, Palmeri CM, Mukdsi JH, Torres AI. Activation of PKC epsilon induces lactotroph proliferation through ERK1/2 in response to phorbol ester. Mol Cell Endocrinol 2008; 289:77-84. [PMID: 18534741 DOI: 10.1016/j.mce.2008.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/09/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
The aim of this investigation was to contribute to current knowledge about intracellular mechanisms that are involved in lactotroph cell proliferation, by evaluating the role of PKCalpha, PKCepsilon and extracellular-signal regulated kinase (ERK) 1/2 in response to phorbol 12-myristate13-acetate (PMA). In primary pituitary cultures, the activation of protein kinase C (PKC) by PMA for 15 min stimulated lactotroph proliferation; whereas a prolonged activation for 3-8h diminished this proliferative effect. The use of PMA for 15 min-activated PKCepsilon and ERK1/2, whereas incubation with PMA for 3 h induced PKCalpha activation and attenuated the PMA-triggered phosphorylation of ERK1/2. The following inhibitors: PKCs (bisindolylmaleimide I), PKCepsilon (epsilonV1 peptide) and ERK1/2 (PD98059) prevented the mitogenic activity induced by PMA for 15 min. Lactotroph cells stimulated with PMA for 15 min showed a translocation of PKCepsilon to membrane compartment and nucleus. These results thus establish that PKCepsilon plays an essential role in the lactotroph proliferation induced by PMA by triggering signals that involve ERK1/2 activation.
Collapse
Affiliation(s)
- Juan Pablo Petiti
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Enrique Barros, 5000 Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
13
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|