1
|
Feng K, Su J, Sun L, Guo Y, Peng X. Molecular characterization and expression analysis of thyroid hormone receptors in protogynous rice field eel, Monopterus albus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:845-855. [PMID: 38855856 DOI: 10.1002/jez.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/24/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
Thyroid hormones (THs) play important roles in growth, development, morphogenesis, reproduction, and so on. They are mainly meditated by binding to thyroid hormone receptors (TRs) in vertebrates. As important members of the nuclear receptor superfamily, TRs and their ligands are involved in many biological processes. To investigate the potential roles of TRs in the gonadal differentiation and sex change, we cloned and characterized the TRs genes in protogynous rice field eel (Monopterus albus). In this study, three types of TRs were obtained, which were TRαA, TRαB and TRβ, encoding preproproteins of 336-, 409- and 415-amino acids, respectively. Multiple alignments of the three putative TRs protein sequences showed they had a higher similarity. Tissue expression analysis showed that TRαA mainly expressed in the gonad, while TRαB and TRβ in the brain. During female-to-male sex reversal, the expression levels of all the three TRs showed a similar trend of increase followed by a decrease in the gonad. Intraperitoneal injection of triiodothyronine (T3) stimulated the expression of TRαA and TRαB, while it had no significant change on the expression of TRβ in the ovary. Gonadotropin-releasing hormone analogue (GnRHa) injection also significantly upregulated the expression levels of TRαA and TRαB after 6 h, while it had no significant effect on TRβ. These results demonstrated that TRs were involved in the gonadal differentiation and sex reversal, and TRα may play more important roles than TRβ in reproduction by the regulation of GnRHa in rice field eel.
Collapse
Affiliation(s)
- Ke Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Jialin Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Lei Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Ying Guo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Xiwen Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
3
|
Campinho MA. Teleost Metamorphosis: The Role of Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:383. [PMID: 31258515 PMCID: PMC6587363 DOI: 10.3389/fendo.2019.00383] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
In most teleosts, metamorphosis encompasses a dramatic post-natal developmental process where the free-swimming larvae undergo a series of morphological, cellular and physiological changes that enable the larvae to become a fully formed, albeit sexually immature, juvenile fish. In all teleosts studied to date thyroid hormones (TH) drive metamorphosis, being the necessary and sufficient factors behind this developmental transition. During metamorphosis, negative regulation of thyrotropin by thyroxine (T4) is relaxed allowing higher whole-body levels of T4 that enable specific responses at the tissue/cellular level. Higher local thyroid cellular signaling leads to cell-specific responses that bring about localized developmental events. TH orchestrate in a spatial-temporal manner all local developmental changes so that in the end a fully functional organism arises. In bilateral teleost species, the most evident metamorphic morphological change underlies a transition to a more streamlined body. In the pleuronectiform lineage (flatfishes), these metamorphic morphological changes are more dramatic. The most evident is the migration of one eye to the opposite side of the head and the symmetric pelagic larva development into an asymmetric benthic juvenile. This transition encompasses a dramatic loss of the embryonic derived dorsal-ventral and left-right axis. The embryonic dorsal-ventral axis becomes the left-right axis, whereas the embryonic left-right axis becomes, irrespectively, the dorsal-ventral axis of the juvenile animal. This event is an unparalleled morphological change in vertebrate development and a remarkable display of the capacity of TH-signaling in shaping adaptation and evolution in teleosts. Notwithstanding all this knowledge, there are still fundamental questions in teleost metamorphosis left unanswered: how the central regulation of metamorphosis is achieved and the neuroendocrine network involved is unclear; the detailed cellular and molecular events that give rise to the developmental processes occurring during teleost metamorphosis are still mostly unknown. Also in flatfish, comparatively little is still known about the developmental processes behind asymmetric development. This review summarizes the current knowledge on teleost metamorphosis and explores the gaps that still need to be challenged.
Collapse
|
4
|
Lazcano I, Orozco A. Revisiting available knowledge on teleostean thyroid hormone receptors. Gen Comp Endocrinol 2018; 265:128-132. [PMID: 29574147 DOI: 10.1016/j.ygcen.2018.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 11/25/2022]
Abstract
Teleosts are the most numerous class of living vertebrates. They exhibit great diversity in terms of morphology, developmental strategies, ecology and adaptation. In spite of this diversity, teleosts conserve similarities at molecular, cellular and endocrine levels. In the context of thyroidal systems, and as in the rest of vertebrates, thyroid hormones in fish regulate development, growth and metabolism by actively entering the nucleus and interacting with thyroid hormone receptors, the final sensors of this endocrine signal, to regulate gene expression. In general terms, vertebrates express the functional thyroid hormone receptors alpha and beta, encoded by two distinct genes (thra and thrb, respectively). However, different species of teleosts express thyroid hormone receptor isoforms with particular structural characteristics that confer singular functional traits to these receptors. For example, teleosts contain two thra genes and in some species also two thrb; some of the expressed isoforms can bind alternative ligands. Also, some identified isoforms contain deletions or large insertions that have not been described in other vertebrates and that have not yet been functionally characterized. As in amphibians, the regulation of some of these teleost isoforms coincides with the climax of metamorphosis and/or life transitions during development and growth. In this review, we aimed to gain further insights into thyroid signaling from a comparative perspective by proposing a systematic nomenclature for teleost thyroid hormone receptor isoforms and summarize their particular functional features when the information was available.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico
| | - Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico.
| |
Collapse
|
5
|
Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol 2018; 237:R19-R34. [PMID: 29440347 PMCID: PMC5843491 DOI: 10.1530/joe-17-0708] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1, TRβ1 and other subtypes, are members of the nuclear receptor superfamily that mediate the action of thyroid hormone signaling in numerous tissues to regulate important physiological and developmental processes. Their most well-characterized role is as ligand-dependent transcription factors; TRs bind thyroid hormone response elements in the presence or absence of thyroid hormone to facilitate the expression of target genes. Although primarily residing in the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. We have identified multiple nuclear localization signals and nuclear export signals within TRα1 and TRβ1 that interact with importins and exportins, respectively, to mediate translocation across the nuclear envelope. More recently, enigmatic cytoplasmic functions have been ascribed to other TR subtypes, expanding the diversity of the cellular response to thyroid hormone. By integrating data on localization signal motifs, this review provides an overview of the complex interplay between TR's dynamic transport pathways and thyroid hormone signaling activities. We examine the variation in TR subtype response to thyroid hormone signaling, and what is currently known about regulation of the variety of tissue-specific localization patterns, including targeting to the nucleus, the mitochondria and the inner surface of the plasma membrane.
Collapse
Affiliation(s)
| | - Vincent R Roggero
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| | - Lizabeth A Allison
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
6
|
Alves RN, Sundell KS, Anjos L, Sundh H, Harboe T, Norberg B, Power DM. Structural and functional maturation of skin during metamorphosis in the Atlantic halibut (Hippoglossus hippoglossus). Cell Tissue Res 2018; 372:469-492. [PMID: 29464365 DOI: 10.1007/s00441-018-2794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/15/2018] [Indexed: 11/29/2022]
Abstract
To establish if the developmental changes in the primary barrier and osmoregulatory capacity of Atlantic halibut skin are modified during metamorphosis, histological, histochemical, gene expression and electrophysiological measurements were made. The morphology of the ocular and abocular skin started to diverge during the metamorphic climax and ocular skin appeared thicker and more stratified. Neutral mucins were the main glycoproteins produced by the goblet cells in skin during metamorphosis. Moreover, the number of goblet cells producing neutral mucins increased during metamorphosis and asymmetry in their abundance was observed between ocular and abocular skin. The increase in goblet cell number and their asymmetric abundance in skin was concomitant with the period that thyroid hormones (THs) increase and suggests that they may be under the control of these hormones. Several mucin transcripts were identified in metamorphosing halibut transcriptomes and Muc18 and Muc5AC were characteristic of the body skin. Na+, K+-ATPase positive (NKA) cells were observed in skin of all metamorphic stages but their number significantly decreased with the onset of metamorphosis. No asymmetry was observed between ocular and abocular skin in NKA cells. The morphological changes observed were linked to modified skin barrier function as revealed by modifications in its electrophysiological properties. However, the maturation of the skin functional characteristics preceded structural maturation and occurred at stage 8 prior to the metamorphic climax. Treatment of Atlantic halibut with the THs disrupter methimazole (MMI) affected the number of goblet cells producing neutral mucins and the NKA cells. The present study reveals that the asymmetric development of the skin in Atlantic halibut is TH sensitive and is associated with metamorphosis and that this barrier's functional properties mature earlier and are independent of metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group (CEIB), CCMAR, CIMAR Laboratório Associado, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kristina S Sundell
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology Group (CEIB), CCMAR, CIMAR Laboratório Associado, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Henrik Sundh
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
| | - Torstein Harboe
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group (CEIB), CCMAR, CIMAR Laboratório Associado, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
7
|
Abstract
As one of the most basal living vertebrates, lampreys represent an excellent model system to study the evolution of thyroid hormone (TH) signaling. The lamprey hypothalamic-pituitary-thyroid and reproductive axes overlap functionally. Lampreys have 3 gonadotropin-releasing hormones and a single glycoprotein hormone from the hypothalamus and pituitary, respectively, that regulate both the reproductive and thyroid axes. TH synthesis in larval lampreys takes place in an endostyle that transforms into typical vertebrate thyroid tissue during metamorphosis; both the endostyle and follicular tissue have all the typical TH synthetic components found in other vertebrates. Furthermore, lampreys also have the vertebrate suite of peripheral regulators including TH distributor proteins (THDPs), deiodinases and TH receptors (TRs). Although at the molecular level the components of the lamprey thyroid system are ancestral to other vertebrates, their functions have been largely conserved. TH signaling as it relates to lamprey metamorphosis represents a particularly interesting phenomenon. Unlike other metamorphosing vertebrates, lamprey THs increase throughout the larval period, peak prior to metamorphosis and decline rapidly at the onset of metamorphosis; patterns of deiodinase activity are consistent with these increases and declines. Moreover, goitrogens (which suppress TH levels) initiate precocious metamorphosis, and exogenous TH treatment blocks goitrogen-induced metamorphosis and disrupts natural metamorphosis. Despite this clear physiological difference, TH action via TRs is consistent with higher vertebrates. Based on observations that TRs are upregulated in a tissue-specific fashion during morphogenesis and the finding that lamprey TRs upregulate genes via THs in a fashion similar to higher vertebrates, we propose the following hypothesis for further testing. THs have a dual role in lampreys where high TH levels promote larval feeding and growth and then at the onset of metamorphosis TH levels decrease rapidly; at this time the relatively low TH levels function via TRs in a fashion similar to that of other metamorphosing vertebrates.
Collapse
Affiliation(s)
- Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Lori A Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
8
|
Alves RN, Cardoso JCR, Harboe T, Martins RST, Manchado M, Norberg B, Power DM. Duplication of Dio3 genes in teleost fish and their divergent expression in skin during flatfish metamorphosis. Gen Comp Endocrinol 2017; 246:279-293. [PMID: 28062304 DOI: 10.1016/j.ygcen.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Deiodinase 3 (Dio3) plays an essential role during early development in vertebrates by controlling tissue thyroid hormone (TH) availability. The Atlantic halibut (Hippoglossus hippoglossus) possesses duplicate dio3 genes (dio3a and dio3b). Expression analysis indicates that dio3b levels change in abocular skin during metamorphosis and this suggests that this enzyme is associated with the divergent development of larval skin to the juvenile phenotype. In larvae exposed to MMI, a chemical that inhibits TH production, expression of dio3b in ocular skin is significantly up-regulated suggesting that THs normally modulate this genes expression during this developmental event. The molecular basis for divergent dio3a and dio3b expression and responsiveness to MMI treatment is explained by the multiple conserved TREs in the proximal promoter region of teleost dio3b and their absence from the promoter of dio3a. We propose that the divergent expression of dio3 in ocular and abocular skin during halibut metamorphosis contributes to the asymmetric pigment development in response to THs.
Collapse
Affiliation(s)
- R N Alves
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - J C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - T Harboe
- Institute of Marine Research, Austevoll Research Station, Austevoll, Norway.
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - M Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | - B Norberg
- Institute of Marine Research, Austevoll Research Station, Austevoll, Norway.
| | - D M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
9
|
Yu J, Fu Y, Shi Z. Coordinated expression and regulation of deiodinases and thyroid hormone receptors during metamorphosis in the Japanese flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:321-336. [PMID: 27620185 DOI: 10.1007/s10695-016-0289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, thyroid hormone receptors (TRs) and deiodinases are essential for developmental events driven by the thyroid hormones (THs). However, the significance of deiodinases during the metamorphosis of the Japanese flounder (Paralichthys olivaceus) remains unclear. Moreover, regulation and response of the TRs and deiodinases to THs in this fish are poorly understood. Therefore, we detected the expression patterns of THs, deiodinases, and TRs in drug-treated larvae and untreated larvae of P. olivaceus by using enzyme-linked immunosorbent assay and quantitative real-time PCR during P. olivaceus metamorphosis. To further understand the roles of these elements, a rescue assay was performed. Our results show the importance of THs, TRs, and deiodinases in flatfish metamorphosis. Our results also confirm that D1 and D2 activate THs and D3 plays the opposite and complementary role. Moreover, we demonstrated that both TRα and TRβ have important but different roles during P. olivaceus metamorphosis.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| |
Collapse
|
10
|
Wei F, Chen J, Chen X, Bao B. Comparative analysis of the neurula transcriptomes of two species of flatfishes: Platichthys stellatus and Paralichthys olivaceus. Gene 2017; 596:147-153. [DOI: 10.1016/j.gene.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023]
|
11
|
Xu J, Ke Z, Xia J, He F, Bao B. Change of body height is regulated by thyroid hormone during metamorphosis in flatfishes and zebrafish. Gen Comp Endocrinol 2016; 236:9-16. [PMID: 27340040 DOI: 10.1016/j.ygcen.2016.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 11/15/2022]
Abstract
Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes.
Collapse
Affiliation(s)
- Juan Xu
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Zhonghe Ke
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Jianhong Xia
- Shanghai Science & Technology Museum, Shanghai 200127, China
| | - Fang He
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Baolong Bao
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
12
|
Alves RN, Gomes AS, Stueber K, Tine M, Thorne MAS, Smáradóttir H, Reinhard R, Clark MS, Rønnestad I, Power DM. The transcriptome of metamorphosing flatfish. BMC Genomics 2016; 17:413. [PMID: 27233904 PMCID: PMC4884423 DOI: 10.1186/s12864-016-2699-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. Metamorphosis in vertebrates is driven by thyroid hormones (THs), but how they orchestrate the cellular, morphological and functional modifications associated with maturation to juvenile/adult states in flatfish is an enigma. Since THs act via thyroid receptors that are ligand activated transcription factors, we hypothesized that the maturation of tissues during metamorphosis should be preceded by significant modifications in the transcriptome. Targeting the unique metamorphosis of flatfish and taking advantage of the large size of Atlantic halibut (Hippoglossus hippoglossus) larvae, we determined the molecular basis of TH action using RNA sequencing. RESULTS De novo assembly of sequences for larval head, skin and gastrointestinal tract (GI-tract) yielded 90,676, 65,530 and 38,426 contigs, respectively. More than 57 % of the assembled sequences were successfully annotated using a multi-step Blast approach. A unique set of biological processes and candidate genes were identified specifically associated with changes in morphology and function of the head, skin and GI-tract. Transcriptome dynamics during metamorphosis were mapped with SOLiD sequencing of whole larvae and revealed greater than 8,000 differentially expressed (DE) genes significantly (p < 0.05) up- or down-regulated in comparison with the juvenile stage. Candidate transcripts quantified by SOLiD and qPCR analysis were significantly (r = 0.843; p < 0.05) correlated. The majority (98 %) of DE genes during metamorphosis were not TH-responsive. TH-responsive transcripts clustered into 6 groups based on their expression pattern during metamorphosis and the majority of the 145 DE TH-responsive genes were down-regulated. CONCLUSIONS A transcriptome resource has been generated for metamorphosing Atlantic halibut and over 8,000 DE transcripts per stage were identified. Unique sets of biological processes and candidate genes were associated with changes in the head, skin and GI-tract during metamorphosis. A small proportion of DE transcripts were TH-responsive, suggesting that they trigger gene networks, signalling cascades and transcription factors, leading to the overt changes in tissue occurring during metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana S Gomes
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Kurt Stueber
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Mbaye Tine
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany.,Current address: Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Richard Reinhard
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
13
|
Zhang WT, Liu K, Xiang JS, Zhang LY, Liu WJ, Dong ZD, Li YZ, Li HL, Chen SL, Wang N. Molecular cloning, expression of, and regulation by thyroid-hormone receptor α A in the half-smooth tongue sole Cynoglossus semilaevis during metamorphosis. JOURNAL OF FISH BIOLOGY 2016; 88:1693-1707. [PMID: 26953104 DOI: 10.1111/jfb.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
To elucidate the effect of thyroid hormone receptor α A (thraa) on metamorphosis, the full length cDNA of half-smooth tongue sole Cynoglossus semilaevis was cloned. The relative gene transcript level of thraa at different development stages was quantified using real-time PCR. Transcription of thraa increased and declined rapidly during metamorphosis. Hyperthyroidism was induced in juveniles and larvae with exposure to T3 and T4, and hypothyroidism with thiourea (TU), 2-mercapto-1-methylimidazole (MMI). thraa mRNA was higher in fish treated for 6 days with MMI than in untreated controls, although inhibited larvae did not complete metamorphosis. The addition of exogenous T4 reversed this effect in the MMI-treated group, but not in the TU-treated group. In situ hybridization revealed progressive tail end of body growth and change during developmental stages, with corresponding changes in thraa expression. This process may be induced by thyroid hormones with thraa as a major mediator. The morphological changes of tip of the tail may be associated with the development of lateral swimming.
Collapse
Affiliation(s)
- W T Zhang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - K Liu
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Shanghai Ocean University, Yangpu, Shanghai 201306, China
| | - J S Xiang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Shanghai Ocean University, Yangpu, Shanghai 201306, China
| | - L Y Zhang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - W J Liu
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Shanghai Ocean University, Yangpu, Shanghai 201306, China
| | - Z D Dong
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- School of Marine life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Y Z Li
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
| | - H L Li
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
| | - S L Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
| | - N Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
| |
Collapse
|
14
|
Gomes AS, Alves RN, Rønnestad I, Power DM. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis. Gen Comp Endocrinol 2015; 220:2-12. [PMID: 24975541 DOI: 10.1016/j.ygcen.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified.
Collapse
Affiliation(s)
- A S Gomes
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - R N Alves
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - I Rønnestad
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - D M Power
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
15
|
Orozco A, Navarrete-Ramírez P, Olvera A, García-G C. 3,5-Diiodothyronine (T2) is on a role. A new hormone in search of recognition. Gen Comp Endocrinol 2014; 203:174-80. [PMID: 24602963 DOI: 10.1016/j.ygcen.2014.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Thyroid hormone (TH) actions are mediated by triiodothyronine (T3), which acts by binding to the TH receptors (TRs). Since TH exert pleiotropic effects, interest has grown in identifying other possible bioactive thyronines that could explain their diversity of functions. Accordingly, 3,5-diiodothyronine (T2) has been shown to be bioactive. In mammals, T2 regulates mRNA expression of several T3-regulated genes, but doses up to 100-fold greater than those of T3 were required to generate comparable effects. In teleosts, T2 and T3 regulate gene expression in vivo with equivalent potency. Furthermore, in vivo and in vitro studies support the notion that T2 binds to and activates a specific, long TRβ1 isoform that contains a nine amino acid insert at the beginning of the ligand binding domain, whereas T3 can interact also with a different TRβ1 isoform that lacks this insert. Similarly, T2 and T3 differentially regulate long- and short-TRβ1 expression, respectively, strongly suggesting a different signaling pathway for each hormone, at least in the species that express both receptors. In vivo, T2 effectively triggers a burst of body growth in tilapia by interacting with the long TRβ1 isoform, supporting the notion that T2 is physiologically relevant in this species. Current knowledge of T2 effects and action mechanisms lead us to propose that there is an extra level in the thyroid hormone signaling cascade, and that T2 is produced and regulated specifically for this purpose.
Collapse
Affiliation(s)
- Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico.
| | - Pamela Navarrete-Ramírez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Aurora Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Carlota García-G
- Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel 200, Querétaro, Qro. 76017, Mexico
| |
Collapse
|
16
|
De Loof A, De Haes W, Janssen T, Schoofs L. The essence of insect metamorphosis and aging: electrical rewiring of cells driven by the principles of juvenile hormone-dependent Ca(2+)-homeostasis. Gen Comp Endocrinol 2014; 199:70-85. [PMID: 24480635 DOI: 10.1016/j.ygcen.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/22/2023]
Abstract
In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium.
| | - Wouter De Haes
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Tom Janssen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| |
Collapse
|
17
|
Gomes AS, Kamisaka Y, Harboe T, Power DM, Rønnestad I. Functional modifications associated with gastrointestinal tract organogenesis during metamorphosis in Atlantic halibut (Hippoglossus hippoglossus). BMC DEVELOPMENTAL BIOLOGY 2014; 14:11. [PMID: 24552353 PMCID: PMC3940299 DOI: 10.1186/1471-213x-14-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the gastrointestinal (GI-) tract occur. Here we present the functional ontogeny of the developing GI-tract from an integrative perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost stomach develop synchronously during metamorphosis. RESULTS Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and in vivo observations). In vivo pH analysis in the GI-tract lumen combined with quantitative PCR (qPCR) of α and β subunits of the gastric proton pump (H+/K+-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the stomach's role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models series of the GI-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of this event. Mechanical breakdown of food and transportation of chyme through the GI-tract was observed in vivo and resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions in the midgut decreased at metamorphic climax synchronously with establishment of the stomach's proteolytic capacity and its increased peristaltic activity. Putative osmoregulatory competence of the GI-tract, inferred by abundance of Na+/K+-ATPase α transcripts, was already established at the onset of exogenous feeding and was unmodified by metamorphosis. CONCLUSIONS The functional specialization of the GI-tract was not exclusive to metamorphosis, and its osmoregulatory capacity and reservoir function were established before first feeding. Nonetheless, acid production and the proteolytic capacity of the stomach coincided with metamorphic climax, and also marked the onset of the stomach's involvement in appetite regulation via ghrelin.
Collapse
Affiliation(s)
- Ana S Gomes
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| | - Yuko Kamisaka
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| | - Torstein Harboe
- Institute of Marine Research, Austevoll Aquaculture Research Station, NO-5392 Storebø, Norway
| | - Deborah M Power
- Comparative and Molecular Endocrinology Group, Centre for Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| |
Collapse
|
18
|
Molecular cloning and mRNA tissue expression of thyroid hormone receptors in yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta. Gene 2014; 536:232-7. [DOI: 10.1016/j.gene.2013.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022]
|
19
|
Navarrete-Ramírez P, Luna M, Valverde-R C, Orozco A. 3,5-di-iodothyronine stimulates tilapia growth through an alternate isoform of thyroid hormone receptor β1. J Mol Endocrinol 2014; 52:1-9. [PMID: 24031088 DOI: 10.1530/jme-13-0145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies in our laboratory have shown that in some teleosts, 3,5-di-iodothyronine (T2 or 3,5-T2) is as bioactive as 3,5,3'-tri-iodothyronine (T3) and that its effects are in part mediated by a TRβ1 (THRB) isoform that contains a 9-amino acid insert in its ligand-binding domain (long TRβ1 (L-TRβ1)), whereas T3 binds preferentially to a short TRβ1 (S-TRβ1) isoform that lacks this insert. To further understand the functional relevance of T2 bioactivity and its mechanism of action, we used in vivo and ex vivo (organotypic liver cultures) approaches and analyzed whether T3 and T2 differentially regulate the S-TRβ1 and L-TRβ1s during a physiological demand such as growth. In vivo, T3 and T2 treatment induced body weight gain in tilapia. The expression of L-TRβ1 and S-TRβ1 was specifically regulated by T2 and T3 respectively both in vivo and ex vivo. The TR antagonist 1-850 effectively blocked thyroid hormone-dependent gene expression; however, T3 or T2 reversed 1-850 effects only on S-TRβ1 or L-TRβ1 expression, respectively. Together, our results support the notion that both T3 and T2 participate in the growth process; however, their effects are mediated by different, specific TRβ1 isoforms.
Collapse
Affiliation(s)
- Pamela Navarrete-Ramírez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | | | | | | |
Collapse
|
20
|
Kawakami Y, Nomura K, Ohta H, Tanaka H. Characterization of thyroid hormone receptors during early development of the Japanese eel (Anguilla japonica). Gen Comp Endocrinol 2013; 194:300-10. [PMID: 24100168 DOI: 10.1016/j.ygcen.2013.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/25/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
Abstract
We studied the profiles of thyroid hormone receptors (TRs) in Japanese eels (Anguilla japonica) during development from hatched larvae to juveniles. Two TRαs (TRαA and TRαB) and one TRβ (TRβA) cDNA clones were generated by RACE. The TRαA, TRαB and TRβA cDNAs encoded 416, 407 and 397 amino acid proteins with much higher homologies to the Japanese conger eel (Conger myriaster) TRs than to other fish TRs. In a transiently transfected Japanese eel cell line, Hepa-E1, the TRs showed thyroid hormone (TH)-dependent activation of transcription from the TH-responsive promoter. Four TR cDNA clones, including TRβB reported in a previous study, were analyzed by real-time RT-PCR. The TR mRNA levels in hatched larvae were determined. The two TRβ mRNAs were present at low levels but there was a peak in the TRαs during the larval stage before metamorphosis. During metamorphosis, the two TRαs both exhibited peaks and expression of the two TRβs was higher than during the early growth stage. This expression pattern is similar to that of the Japanese conger eel. It is possible that thyroid hormones control the early development of Japanese eels and Japanese conger eels through TRs. This is the first analysis of the expression sequence of TRs during early larval stages of Anguilliformes.
Collapse
Affiliation(s)
- Yutaka Kawakami
- Nansei Station, National Research Institute of Aquaculture, Fisheries Research Agency, Minamiise 516-0193, Japan.
| | | | | | | |
Collapse
|
21
|
García-Cegarra A, Merlo MA, Ponce M, Portela-Bens S, Cross I, Manchado M, Rebordinos L. A preliminary genetic map in Solea senegalensis (Pleuronectiformes, Soleidae) using BAC-FISH and next-generation sequencing. Cytogenet Genome Res 2013; 141:227-40. [PMID: 24107490 DOI: 10.1159/000355001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This article presents the first physical mapping carried out in the Senegalese sole (Solea senegalensis), an important marine fish species of Southern Europe. Eight probes were designated to pick up genes of interest in aquaculture (candidate genes) from a bacterial artificial chromosome (BAC) library using a method of rapid screening based on a 4-dimension PCR. Seven known and 3 unknown clones were isolated and labeled. The 10 BAC clones were used as probes to map the karyotype of the species by fluorescence in situ hybridization (FISH). Nine out of the 10 clones were localized in only 1 chromosome pair, whereas the remaining one hybridized on 2 chromosome pairs. The 2-color FISH experiments showed colocation of 4 probes in 2 chromosome pairs. In addition, 2-color FISH was carried out both with 5S rDNA and the BAC containing the lysozyme gene published previously. This first genetic map of the Senegalese sole represents a starting point for future studies of the sole genome. In addition, 7 out of the 10 BAC clones were sequenced using next-generation sequencing, and bioinformatic characterization of the sequences was carried out. Hence the anchoring of the sequences to specific chromosomes or chromosome arms is now possible, leading to an initial scaffold of the Senegalese sole genome.
Collapse
Affiliation(s)
- A García-Cegarra
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales - CACYTMAR, Puerto Real, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Ferraresso S, Bonaldo A, Parma L, Cinotti S, Massi P, Bargelloni L, Gatta PP. Exploring the larval transcriptome of the common sole (Solea solea L.). BMC Genomics 2013; 14:315. [PMID: 23663263 PMCID: PMC3659078 DOI: 10.1186/1471-2164-14-315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The common sole (Solea solea) is a promising candidate for European aquaculture; however, the limited knowledge of the physiological mechanisms underlying larval development in this species has hampered the establishment of successful flatfish aquaculture. Although the fact that genomic tools and resources are available for some flatfish species, common sole genomics remains a mostly unexplored field. Here, we report, for the first time, the sequencing and characterisation of the transcriptome of S. solea and its application for the study of molecular mechanisms underlying physiological and morphological changes during larval-to-juvenile transition. RESULTS The S. solea transcriptome was generated from whole larvae and adult tissues using the Roche 454 platform. The assembly process produced a set of 22,223 Isotigs with an average size of 726 nt, 29 contigs and a total of 203,692 singletons. Of the assembled sequences, 75.2% were annotated with at least one known transcript/protein; these transcripts were then used to develop a custom oligo-DNA microarray. A total of 14,674 oligonucleotide probes (60 nt), representing 12,836 transcripts, were in situ synthesised onto the array using Agilent non-contact ink-jet technology. The microarray platform was used to investigate the gene expression profiles of sole larvae from hatching to the juvenile form. Genes involved in the ontogenesis of the visual system are up-regulated during the early stages of larval development, while muscle development and anaerobic energy pathways increase in expression over time. The gene expression profiles of key transcripts of the thyroid hormones (TH) cascade and the temporal regulation of the GH/IGF1 (growth hormone/insulin-like growth factor I) system suggest a pivotal role of these pathways in fish growth and initiation of metamorphosis. Pre-metamorphic larvae display a distinctive transcriptomic landscape compared to previous and later stages. Our findings highlighted the up-regulation of gene pathways involved in the development of the gastrointestinal system as well as biological processes related to folic acid and retinol metabolism. Additional evidence led to the formation of the hypothesis that molecular mechanisms of cell motility and ECM adhesion may play a role in tissue rearrangement during common sole metamorphosis. CONCLUSIONS Next-generation sequencing provided a good representation of the sole transcriptome, and the combination of different approaches led to the annotation of a high number of transcripts. The construction of a microarray platform for the characterisation of the larval sole transcriptome permitted the definition of the main processes involved in organogenesis and larval growth.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Teleosts are the largest and most diverse group of vertebrates, and many species undergo morphological, physiological, and behavioral transitions, "metamorphoses," as they progress between morphologically divergent life stages. The larval metamorphosis that generally occurs as teleosts mature from larva to juvenile involves the loss of embryo-specific features, the development of new adult features, major remodeling of different organ systems, and changes in physical proportions and overall phenotype. Yet, in contrast to anuran amphibians, for example, teleost metamorphosis can entail morphological change that is either sudden and profound, or relatively gradual and subtle. Here, we review the definition of metamorphosis in teleosts, the diversity of teleost metamorphic strategies and the transitions they involve, and what is known of their underlying endocrine and genetic bases. We suggest that teleost metamorphosis offers an outstanding opportunity for integrating our understanding of endocrine mechanisms, cellular processes of morphogenesis and differentiation, and the evolution of diverse morphologies and life histories.
Collapse
Affiliation(s)
- Sarah K. McMenamin
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - David M. Parichy
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
|
25
|
Molecular and cellular changes in skin and muscle during metamorphosis of Atlantic halibut (Hippoglossus hippoglossus) are accompanied by changes in deiodinases expression. Cell Tissue Res 2012; 350:333-46. [DOI: 10.1007/s00441-012-1473-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
26
|
Applebaum SL, Finn RN, Faulk CK, Joan Holt G, Scott Nunez B. Developmental expression, differential hormonal regulation and evolution of thyroid and glucocorticoid receptor variants in a marine acanthomorph teleost (Sciaenops ocellatus). Gen Comp Endocrinol 2012; 176:39-51. [PMID: 22226731 DOI: 10.1016/j.ygcen.2011.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Interactions between the thyroid hormone (TH) and corticosteroid (CS) hormone axes are suggested to regulate developmental processes in vertebrates with a larval phase. To investigate this hypothesis, we isolated three nuclear receptors from a larval acanthomorph teleost, the red drum (Sciaenops ocellatus), and established their orthologies as thraa, thrb-L and gra-L using phylogenomic and functional analyses. Functional characterization of the TH receptors in COS-1 cells revealed that Thraa and Thrb-L exhibit dose-dependent transactivation of a luciferase reporter in response to T3, while SoThraa is constitutively active at a low level in the absence of ligand. To test whether interactions between the TH and CS systems occur during development, we initially quantified the in vivo receptor transcript expression levels, and then examined their response to treatment with triiodothyronine (T3) or cortisol. We find that sothraa and sothrb-L are autoregulated in response to exogenous T3 only during early larval development. T3 did not affect sogra-L expression levels, nor did cortisol alter levels of sothraa or sothrb-L at any stage. While differential expression of the receptors in response to non-canonical ligand hormone was not observed under the conditions in this study, the correlation between sothraa and sogra-L transcript abundance during development suggests a coordinated function of the TH and CS systems. By comparing the findings in the present study to earlier investigations, we suggest that the up-regulation of thraa may be a specific feature of metamorphosis in acanthomorph teleosts.
Collapse
Affiliation(s)
- Scott L Applebaum
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Palermo FA, Mosconi G, Avella MA, Carnevali O, Verdenelli MC, Cecchini C, Polzonetti-Magni AM. Modulation of cortisol levels, endocannabinoid receptor 1A, proopiomelanocortin and thyroid hormone receptor alpha mRNA expressions by probiotics during sole (Solea solea) larval development. Gen Comp Endocrinol 2011; 171:293-300. [PMID: 21352826 DOI: 10.1016/j.ygcen.2011.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 02/03/2011] [Accepted: 02/16/2011] [Indexed: 11/17/2022]
Abstract
In the present study, we investigated whether the use of Enterococcus faecium IMC 511 as a probiotic can modulate neuroendocrine system responses during the larval rearing of Solea solea; to this end, the gene expression patterns of proopiomelanocortin (POMC), endocannabinoid receptor 1A (CB1A), and thyroid receptor alpha (TRα) were quantified, and whole-body cortisol levels were measured. Probiotic treatment up-regulated transcription of all selected genes and cortisol concentrations on day 10 post hatch (ph), while on day 30 ph experimental groups showed significantly lower levels of both POMC and CB1A compared to those of the control group. These changes were no longer evident on day 60 ph, when POMC, CB1A, TRα gene expression and cortisol titers were found to be similar in all experimental groups. Our results suggest that metabolic responses to probiotic treatment can be modulated through the activation of genes selected for functional interaction between the hypothalamic-pituitary-thyroid (HPT) axis and the melanocortin and the endocannabinoid systems. Furthermore, the observed (30 ph) down-regulation of both POMC and CB1A gene expression coupled with up-regulation of TRα mRΝΑ levels suggest the activation of a compensatory mechanism that promotes growth and development and perhaps modulates food intake.
Collapse
Affiliation(s)
- Francesco Alessandro Palermo
- Centro Universitario di Ricerca per Sviluppo e Gestione delle Risorse dell'Ambiente Marino e Costiero (UNICRAM), Università degli Studi di Camerino, Lungomare A. Scipioni 6, I-63039 San Benedetto del Tronto (AP), Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Olivotto I, Di Stefano M, Rosetti S, Cossignani L, Pugnaloni A, Giantomassi F, Carnevali O. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: molecular and biochemical implications. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:207-18. [PMID: 21320627 DOI: 10.1016/j.cbpa.2011.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 12/21/2022]
Abstract
In fast growing organisms, like fish larvae, fatty acids provided through live prey are essential to satisfy high energy demand and are required to promote growth. Therefore, in recent decades, a great amount of research has been directed towards the development of lipid enrichment in order to improve larval fish survival and growth. However, in fish, the biochemical and molecular processes related to highly unsaturated fatty acid (HUFA) administration are still poorly understood. In the current study, the false percula clownfish, a short larval phase marine species, was used as an experimental model and the effects of a standard and a HUFAs-enriched diet were tested through a molecular, biochemical, ultrastructural and morphometric approach. Our results support the hypothesis that HUFA administration may improve larval development through the presence of better structured mitochondria, a higher synthesis of energy compounds and coenzymes with a central position in the metabolism, with respect to controls. This higher energy status was confirmed by better growth performance and a shorter larval phase in larvae fed with an enriched diet with respect to the control. This strategy of rapid growth and early energy storage may be considered positively adaptive and beneficial to the survival of this species.
Collapse
Affiliation(s)
- Ike Olivotto
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Campinho MA, Galay-Burgos M, Sweeney GE, Power DM. Coordination of deiodinase and thyroid hormone receptor expression during the larval to juvenile transition in sea bream (Sparus aurata, Linnaeus). Gen Comp Endocrinol 2010; 165:181-94. [PMID: 19549532 DOI: 10.1016/j.ygcen.2009.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/13/2022]
Abstract
To test the hypothesis that THs play an important role in the larval to juvenile transition in the marine teleost model, sea bream (Sparus auratus), key elements of the thyroid axis were analysed during development. Specific RT-PCR and Taqman quantitative RT-PCR were established and used to measure sea bream iodothyronine deiodinases and thyroid hormone receptor (TR) genes, respectively. Expression of deiodinases genes (D1 and D2) which encode enzymes producing T3, TRs and T4 levels start to increase at 20-30 days post-hatch (dph; beginning of metamorphosis), peak at about 45 dph (climax) and decline to early larval levels after 90-100 dph (end of metamorphosis) when fish are fully formed juveniles. The profile of these different TH elements during sea bream development is strikingly similar to that observed during the TH driven metamorphosis of flatfish and suggests that THs play an analogous role in the larval to juvenile transition in this species and probably also in other pelagic teleosts. However, the effect of T3 treatment on deiodinases and TR transcript abundance in sea bream is not as clear cut as in larval flatfish and tadpoles indicating divergence in the responsiveness of TH axis elements and highlighting the need for further studies of this axis during development of fish.
Collapse
Affiliation(s)
- Marco António Campinho
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
31
|
Isorna E, Obregon MJ, Calvo RM, Vázquez R, Pendón C, Falcón J, Muñoz-Cueto JA. Iodothyronine deiodinases and thyroid hormone receptors regulation during flatfish (Solea senegalensis) metamorphosis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:231-46. [DOI: 10.1002/jez.b.21285] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Manchado M, Infante C, Rebordinos L, Cañavate JP. Molecular characterization, gene expression and transcriptional regulation of thyroid hormone receptors in Senegalese sole. Gen Comp Endocrinol 2009; 160:139-47. [PMID: 19028494 DOI: 10.1016/j.ygcen.2008.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/13/2008] [Accepted: 11/01/2008] [Indexed: 11/21/2022]
Abstract
Thyroid hormones (THs) play a key role in larval development, growth and metamorphosis in flatfish. Their genomic effects are mediated by thyroid hormone receptors (TRs). In this study, cDNAs encoding for TRalphaA, TRalphaB, and TRbeta have been sequenced in Senegalese sole (Soleasenegalensis). Main domains and conserved motifs were identified. Also, a truncated TRalphaB isoform (referred to as TRalphaBtr) and a spliced TRbeta variant (referred to as TRbetav) were detected. A phylogenetic analysis grouped both TRalpha and TRbeta genes into two separate clusters with their fish and mammalian counterparts. Expression profiles during larval development and in juvenile tissues were analyzed using a real-time PCR approach. In juvenile fish, TRalphaA, TRalphaB, TRbetav, and TRbeta showed distinct transcript levels in tissues. During metamorphosis, only TRbetav and TRbeta modified their mRNA levels in a similar way to the T4 contents. To evaluate the possible regulation of TRs by their cognate ligand T4 during sole metamorphosis, larvae were exposed to the goitrogen thiourea (TU). TRbeta transcripts decreased significantly at 11 and 15 days after treatment. Moreover, adding exogenous T4 hormone to TU-treated larvae restored the steady-state levels or even increased TRbeta and TRbetav mRNAs with respect to the untreated control. Overall, these results demonstrate that TRbeta transcription is up-regulated by THs playing a major role during metamorphosis in Senegalese sole.
Collapse
Affiliation(s)
- Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | | | | | | |
Collapse
|
33
|
Power DM, Einarsdóttir IE, Pittman K, Sweeney GE, Hildahl J, Campinho MA, Silva N, Sæle Ø, Galay-Burgos M, Smáradóttir H, Björnsson BT. The Molecular and Endocrine Basis of Flatfish Metamorphosis. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325377] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|