1
|
Götz V, Qiao S, Das D, Wartenberg P, Wyatt A, Wahl V, Gamayun I, Alasmi S, Fecher-Trost C, Meyer MR, Rad R, Kaltenbacher T, Kattler K, Lipp P, Becherer U, Mollard P, Candlish M, Boehm U. Ovulation is triggered by a cyclical modulation of gonadotropes into a hyperexcitable state. Cell Rep 2023; 42:112543. [PMID: 37224016 DOI: 10.1016/j.celrep.2023.112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Gonadotropes in the anterior pituitary gland are essential for fertility and provide a functional link between the brain and the gonads. To trigger ovulation, gonadotrope cells release massive amounts of luteinizing hormone (LH). The mechanism underlying this remains unclear. Here, we utilize a mouse model expressing a genetically encoded Ca2+ indicator exclusively in gonadotropes to dissect this mechanism in intact pituitaries. We demonstrate that female gonadotropes exclusively exhibit a state of hyperexcitability during the LH surge, resulting in spontaneous [Ca2+]i transients in these cells, which persist in the absence of any in vivo hormonal signals. L-type Ca2+ channels and transient receptor potential channel A1 (TRPA1) together with intracellular reactive oxygen species (ROS) levels ensure this state of hyperexcitability. Consistent with this, virus-assisted triple knockout of Trpa1 and L-type Ca2+ subunits in gonadotropes leads to vaginal closure in cycling females. Our data provide insight into molecular mechanisms required for ovulation and reproductive success in mammals.
Collapse
Affiliation(s)
- Viktoria Götz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Sen Qiao
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Debajyoti Das
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Philipp Wartenberg
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Amanda Wyatt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Vanessa Wahl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Igor Gamayun
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Samer Alasmi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Claudia Fecher-Trost
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Markus R Meyer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich 80333, Germany
| | - Thorsten Kaltenbacher
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich 80333, Germany
| | - Kathrin Kattler
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken 66123, Germany
| | - Peter Lipp
- Molecular Cell Biology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Ute Becherer
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University School of Medicine, Homburg 66421, Germany
| | - Patrice Mollard
- IGF, CNRS, INSERM, University of Montpellier, Montpellier 34090, France
| | - Michael Candlish
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Ulrich Boehm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany.
| |
Collapse
|
2
|
Abdulslam Abdullah A, Ahmed M, Oladokun A, Ibrahim NA, Adam SN. Serum leptin level in Sudanese women with unexplained infertility and its relationship with some reproductive hormones. World J Biol Chem 2022; 13:83-94. [PMID: 36482982 PMCID: PMC9724080 DOI: 10.4331/wjbc.v13.i5.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The excessive concentration of leptin has negative effects on all aspects of female reproduction. Despite this established relationship, the exact role of leptin in women’s fertility is not clear enough and needs more clarification.
AIM To evaluate the serum leptin levels in Sudanese women and to ascertain the relationship between serum leptin levels and unexplained infertility (UI).
METHODS A matched (age and body mass index) case-control study was conducted from March 2021 to February 2022. The study samples were 210 women with UI and 190 fertile women of reproductive age who were attending the maternity hospitals and fertility clinics in Khartoum state Sudan. The serum concentration of leptin and other serum biomarkers were determined using enzyme-linked immunosorbent assays.
RESULTS The results showed that there was a highly statistically significant difference between the two groups (P < 0.001) for all examined eight biomarkers. Whereby, leptin, luteinizing hormone (LH)/follicular stimulating hormone (FSH) ratio, prolactin hormone (PRL) and testosterone (T) were significantly higher in the UI group compared with the control group. In contrast, FSH and estradiol (E2)/T ratio were significantly lower in the UI group than in the control group and the effect size test for the difference between the two groups was very large (effect size > 0.80), for leptin level, LH/FSH ratio, PRL level, and E2/T ratio, and large (effect size 0.50- ≤ 0.80) for FSH and T.
CONCLUSION This study reveals that leptin could be a potential biomarker for UI in Sudanese women and it may be useful for identifying women with a high risk of infertility.
Collapse
Affiliation(s)
- Abdullah Abdulslam Abdullah
- Department of Reproductive Health Sciences, Pan African University Life and Earth Sciences Institute, University of Ibadan, Ibadan 119, Oyo, Nigeria
- Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan 119, Oyo, Nigeria
- Department of Biomedical Sciences, Faculty of Veterinary Sciences, University of Gadarif, Gadarif 208, Sudan
| | - Musa Ahmed
- Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan 119, Oyo, Nigeria
- Department of Reproductive Health Sciences, Pan African University Life and Earth Sciences Institute, University of Ibadan, Ibadan 119, Oyo, Nigeria
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, AL-Salam University, Al-fula 120, West Kordofan, Sudan
| | - Adesina Oladokun
- Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan 119, Oyo, Nigeria
| | - Nasir Adam Ibrahim
- Department of Biology, Faculty of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia
- Department of Biochemistry and Physiology, Faculty of Veterinary Medicine, University of Al-butana, Ruffaa 210, Sudan
| | | |
Collapse
|
3
|
Touati H, Ouali-Hassenaoui S, Dekar-Madoui A, Benhafri N, Boumansour L, Challet E, Pévet P, Vuillez P. Osmoregulatory neurons clockwork is altered during metabolic disorder induced by high energy diet in the Sand rat Psammomys obesus. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Hanane Touati
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Bab Ezzouar, Algeria
| | - Saliha Ouali-Hassenaoui
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Bab Ezzouar, Algeria
| | - Aicha Dekar-Madoui
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Bab Ezzouar, Algeria
| | - Nadir Benhafri
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Bab Ezzouar, Algeria
| | - Lydia Boumansour
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Bab Ezzouar, Algeria
| | - Etienne Challet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France
| | - Patrick Vuillez
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Jiang P, Pan X, Zhang W, Dai Z, Lu W. Neuromodulatory effects of GnRH on the caudal neurosecretory Dahlgren cells in female olive flounder. Gen Comp Endocrinol 2021; 307:113754. [PMID: 33711313 DOI: 10.1016/j.ygcen.2021.113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 01/28/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is considered a key player in reproduction. The caudal neurosecretory system (CNSS) is a unique neurosecretory structure of fish that may be involved in osmoregulation, nutrition, reproduction, and stress-related responses. However, a direct effect of GnRH on Dahlgren cells remains underexplored. Here, we examined the electrophysiological response of Dahlgren cell population of the CNSS to GnRH analog LHRH-A2 and the transcription of related key genes of CNSS. We found that GnRH increased overall firing frequency and may be changed the firing pattern from silent to burst or phasic firing in a subpopulation of Dahlgren cells. The effect of GnRH on a subpopulation of Dahlgren cells firing activity was blocked by the GnRH receptor (GnRH-R) antagonist cetrorelix. A positive correlation was observed between the UII and GnRH-R mRNA levels in CNSS or gonadosomatic index (GSI) during the breeding season. These findings are the first demonstration of the ability of GnRH acts as a modulator within the CNSS and add to our understanding of the physiological role of the CNSS in reproduction and seasonal adaptation.
Collapse
Affiliation(s)
- Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Xinbei Pan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Zhiqi Dai
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
5
|
Bermeo K, Castro H, Arenas I, Garcia DE. AMPK mediates regulation of voltage-gated calcium channels by leptin in isolated neurons from arcuate nucleus. Am J Physiol Endocrinol Metab 2020; 319:E1112-E1120. [PMID: 33103452 DOI: 10.1152/ajpendo.00299.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal control of the energy homeostasis requires the arcuate nucleus of the hypothalamus. This structure integrates peripheral and central signals concerning the energy state of the body. It comprises two populations of neurons releasing anorexigenic and orexigenic peptides, among others. Both populations are regulated by leptin, an anorexigenic hormone, released by white adipose tissue. Voltage-gated calcium entry is critical to promote neurotransmitter and hormone release. It is already known that calcium channel current is inhibited by leptin in orexigenic neurons. However, fine-tuning details of calcium channel regulation in arcuate nucleus by leptin remain to be elucidated. This work aimed to investigate whether 5' adenosine monophosphate-activated protein kinase (AMPK) underlies the leptin-induced inhibition of calcium channels. By using patch-clamping methods, immunocytochemical, and biochemical reagents, we recorded calcium channel currents in orexigenic neuropeptide Y neurons of the arcuate nucleus of rats. Consistently, leptin inhibition of the calcium channel current was not only prevented by AMPK inhibition with Compound C but also hampered with 5-aminoimidazole-4-carboxamide ribonucleoside. Furthermore, leptin selectively inhibited L-type calcium channel current amplitude without major changes in voltage dependence or current kinetics. These results support for the first time the key role of AMPK in the maintenance and regulation of voltage-gated calcium channels. Together, they advance our understanding of the regulation of calcium channels in the central nervous system and emerging questions concerning food intake and energy balance.NEW & NOTEWORTHY Our results readily support the hypothesis that AMPK is responsible for the maintenance of the calcium current and mediates the fine-tuning modulation of the leptin response. The novelty of these results strengthens the critical role of AMPK in the general energy balance and homeostasis.
Collapse
Affiliation(s)
- K Bermeo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - H Castro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - I Arenas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - D E Garcia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
6
|
Nakamura S, Noda K, Miwa M, Minabe S, Hagiwara T, Hirasawa A, Matsuyama S, Moriyama R. Colocalization of GPR120 and anterior pituitary hormone-producing cells in female Japanese Black cattle. J Reprod Dev 2019; 66:135-141. [PMID: 31902805 PMCID: PMC7175391 DOI: 10.1262/jrd.2019-111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Negative energy balance in domestic animals suppresses their reproductive function. These animals commonly use long-chain fatty acids (LCFAs) from adipocytes as an energy source under
states of malnutrition. The G-protein coupled receptor, GPR120, is a specific receptor for LCFAs, but its role in reproductive function remains unknown in domestic animals. The purpose of
this study was to examine whether GPR120 is involved in the reproductive system of cattle. GPR120 mRNA expression was evaluated in brain, pituitary, and ovarian tissue
samples by RT-PCR. GPR120 gene expression was detected with high intensity only in the anterior pituitary sample, and GPR120-immunoreactive cells were found in the anterior
pituitary gland. Double immunohistochemistry of GPR120 in the anterior pituitary hormone-producing cells, such as gonadotropes, thyrotropes, lactotropes, somatotropes, and corticotropes, was
performed to clarify the distribution of GPR120 in the anterior pituitary gland of ovariectomized heifers. Luteinizing hormone β subunit (LHβ)- and follicle-stimulating hormone β subunit
(FSHβ)-immunoreactive cells demonstrated GPR120 immunoreactivity at 80.7% and 85.9%, respectively. Thyrotropes, lactotropes, somatotropes, and corticotropes coexpressed GPR120 at 21.1%,
5.4%, 13.6%, and 14.5%, respectively. In conclusion, the present study suggests that GPR120 in the anterior pituitary gland might mediate LCFA signaling to regulate gonadotrope functions,
such as hormone secretion or production, in cattle.
Collapse
Affiliation(s)
- Sho Nakamura
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, Ehime 794-8555, Japan
| | - Kohei Noda
- Laboratory of Environmental physiology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| | - Masafumi Miwa
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan
| | - Shiori Minabe
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Teruki Hagiwara
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Shuichi Matsuyama
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan.,Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental physiology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
7
|
Moriyama R, Iwamoto K, Hagiwara T, Yoshida S, Kato T, Kato Y. AMP-activated protein kinase activation reduces the transcriptional activity of the murine luteinizing hormone β-subunit gene. J Reprod Dev 2019; 66:97-104. [PMID: 31813919 PMCID: PMC7175385 DOI: 10.1262/jrd.2019-143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malnutrition is one of the factors that induces reproductive disorders. However, the underlying biological processes are unclear. AMP-activated protein kinase (AMPK) is an enzyme that plays crucial role as a cellular energy sensor. In the present study, we examined the effects of AMPK activation on the transcription of the murine gonadotropin subunit genes Cga, Lhb, and Fshb, and the gonadotropin-releasing hormone receptor Gnrh-r. Real-time PCR and transcription assay using LβT2 cells demonstrated that 5-amino-imidazole carboxamide riboside (AICAR), a cell-permeable AMP analog, repressed the expression of Lhb. Next, we examined deletion mutants of the upstream region of Lhb and found that the upstream regulatory region of Lhb (-2527 to -2198 b) was responsible for the repression by AICAR. Furthermore, putative transcription factors (SP1, STAT5a, and TEF) that might mediate transcriptional control of the Lhb repression induced by AICAR were identified. In addition, it was confirmed that both AICAR and a competitive inhibitor of glucose metabolism, 2-deoxy-D-glucose, induced AMPK phosphorylation in LβT2 cells. Therefore, the upstream region of Lhb is one of the target sites for glucoprivation inducing AMPK activation. In addition, AMPK plays a role in repressing Lhb expression through the distal -2527 to -2198 b region.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Koichi Iwamoto
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Teruki Hagiwara
- Laboratory of Molecular and Cellular Biology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan.,Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Takako Kato
- Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
8
|
Götz V, Qiao S, Beck A, Boehm U. Transient receptor potential (TRP) channel function in the reproductive axis. Cell Calcium 2017; 67:138-147. [DOI: 10.1016/j.ceca.2017.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
9
|
Domínguez-Mancera B, Barrientos-Morales M, Cervantes-Acosta P, Hernández-Beltrán A, Rodríguez-Andrade A, González-Ramírez R, Monjaraz E, Felix R. Leptin regulation of inward membrane currents, electrical activity and LH release in isolated bovine gonadotropes. Biochem Biophys Res Commun 2017; 491:53-58. [PMID: 28705737 DOI: 10.1016/j.bbrc.2017.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 01/16/2023]
Abstract
Leptin, a peptide hormone produced by adipocytes, is recognized as one of the signals involved in the onset of reproductive activity. The leptin receptor has been found in hypothalamic neurons and pituitary gonadotropes, suggesting that the hormone may act at both sites to stimulate the secretion of GnRH and consequently, FSH and LH. In response to a stimulus such as a hypothalamic secretagogue, gonadotropes respond with changes in electrical activity, intracellular Ca2+ and hormone release. The main aim of this report was to investigate whether leptin promotes a change in the electrical and secretory activities of bovine gonadotropes. After 48 h of treatment with leptin (10 nM) significant changes in the action potential properties were observed in gonadotropes, which included an increase in amplitude, time-to-pike and post-hyperpolarization, as well as a decrease in firing threshold. Likewise, leptin induced a significant (∼1.3-fold) up-regulation of voltage-gated Na+ channel current density, and a selective increase (∼2.1-fold) in Ca2+ current density through high voltage-activated channels. Consistent with this, leptin enhanced GnRH-induced secretion of LH measured by ELISA. We suggest that leptin enhances membrane expression of voltage-gated Na+ and Ca2+ channels, which results in a modulation of the action potential properties and an increase in hormone release from gonadotropes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eduardo Monjaraz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ricardo Felix
- Centre for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
10
|
Muroi Y, Ishii T. A novel neuropeptide Y neuronal pathway linking energy state and reproductive behavior. Neuropeptides 2016; 59:1-8. [PMID: 27659234 DOI: 10.1016/j.npep.2016.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023]
Abstract
Animals consume energy for reproduction, as well as survival. Excess or insufficient energy investment into reproduction, respectively, threatens the survival of parents or leads to the failure of reproduction. Management of energy consumption in reproduction is important, not only for the success of the process, but also for the survival of the parents. Reproductive behaviors, such as mating and parental behavior, are indispensable for achieving each event of reproduction including gametogamy, parturition, and lactation. Therefore, reproductive behavior is one of the important factors in managing energy consumption for reproduction. Orexigenic and anorexigenic molecules in the hypothalamus have been implicated in the regulation of reproductive functions. An orexigenic neuropeptide, neuropeptide Y (NPY), has been also implicated in the regulation of both reproduction and energy state of animals. In this review, we will first summarize the neuronal mechanism for regulating reproductive functions by orexigenic and anorexigenic molecules in the hypothalamus. Second, we will focus on the NPY neuronal pathways regulating reproductive behavior in the intra- and extra-hypothalamic brain areas. We will highlight the NPY neuronal pathway from the arcuate nucleus to the dorsal raphe nucleus as a novel extra-hypothalamic pathway for energy state-dependent regulation of reproductive behavior. Finally, we will propose a biological significance of the extra-hypothalamic NPY neuronal pathway, which plays an important role in the associative control of feeding and reproductive behaviors.
Collapse
Affiliation(s)
- Yoshikage Muroi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
11
|
Gavello D, Carbone E, Carabelli V. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels (Austin) 2016; 10:282-96. [PMID: 27018500 DOI: 10.1080/19336950.2016.1164373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Leptin is produced by adipose tissue and identified as a "satiety signal," informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.
Collapse
Affiliation(s)
- Daniela Gavello
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Emilio Carbone
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Valentina Carabelli
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| |
Collapse
|
12
|
Moriyama R, Yamazaki T, Kato T, Kato Y. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. J Reprod Dev 2016; 62:195-9. [PMID: 26853521 PMCID: PMC4848577 DOI: 10.1262/jrd.2015-138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we assessed the effects of long-chain fatty acids (LCFAs) and the LCFA receptor agonist GW9508 on the
transcription of the gonadotropin subunit genes Cga, Lhb and
Fshb because LCFA receptor GPR120 was observed in mouse gonadotropes in our recent study. A
transcription assay using LβT2 cells demonstrated that LCFAs, oleic acid, α-linolenic acid, docosahexaenoic
acid and palmitate, repressed the expression of Cga, Lhb, and
Fshb at concentrations between 50 and 100 µM. On the other hand, treatment with 10 µM
unsaturated LCFAs, oleic acid, α-linolenic acid and docosahexaenoic acid, repressed only Fshb
expression, while the same dose of a saturated LCFA, palmitate, had no effect on the expression of
gonadotropin subunit genes. Furthermore, GW9508 did not affect promoter activity. Next, we examined deletion
mutants of the upstream region of Fshb and found that the upstream regulatory region (-2824
to -2343 bp) of Fshb was responsible for the notable repression by 10 µM unsaturated LCFAs.
Our results suggest that the upstream region of Fshb is susceptible to unsaturated LCFAs. In
addition, unsaturated LCFAs play a role in repressing Fshb expression through the distal
-2824 to -2343 bp region, which might be independent of the LCFA receptor GPR120 pathway.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kinki University, Osaka 577-8502, Japan
| | | | | | | |
Collapse
|
13
|
Celik O, Aydin S, Celik N, Yilmaz M. Peptides: Basic determinants of reproductive functions. Peptides 2015; 72:34-43. [PMID: 26074346 DOI: 10.1016/j.peptides.2015.05.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
Mammalian reproduction is a costly process in terms of energy consumption. The critical information regarding metabolic status is signaled to the hypothalamus mainly through peripheral peptides from the adipose tissue and gastrointestinal tract. Changes in energy stores produce fluctuations in leptin, insulin, ghrelin and glucose signals that feedback mainly to the hypothalamus to regulate metabolism and fertility. In near future, possible effects of the nutritional status on GnRH regulation can be evaluated by measuring serum or tissue levels of leptin and ghrelin in patiens suffering from infertility. The fact that leptin and ghrelin are antagonistic in their effects on GnRH neurons, their respective agonistic and antagonistic roles make them ideal candidates to use instead of GnRH agonist and antagonist. Similarly, kisspeptin expressing neurons are likely to mediate the well-established link between energy balance and reproductive functions. Exogenous kisspeptin can be used for physiological ovarian hyperstimulation for in-vitro fertilization. Moreover, kisspeptin antagonist therapy can be used for the treatment of postmenapousal women, precocious puberty, PCOS, endometriosis and uterine fibroids. In this review, we will analyze the central mechanisms involved in the integration of metabolic information and their contribution to the control of the reproductive function. Particular attention will be paid to summarize the participation of leptin, kisspeptin, ghrelin, NPY, orexin, urocortin, VIP, insulin, galanin, galanin like peptide, oxytocin, agouti gene-related peptide, and POMC neurons in this process and their possible interactions to contribute to the metabolic control of reproduction.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Department of Obstetrics and Gynecology, İzmir, Turkey
| | - Suleyman Aydin
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey.
| | - Nilufer Celik
- Behcet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Musa Yilmaz
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey
| |
Collapse
|
14
|
Gavello D, Vandael D, Gosso S, Carbone E, Carabelli V. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. J Physiol 2015; 593:4835-53. [PMID: 26282459 DOI: 10.1113/jp271078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect and, as such, exerts a relevant action on the adipo-adrenal axis. Leptin has a dual action on adrenal mouse chromaffin cells both at rest and during stimulation. At rest, the adipokine inhibits the spontaneous firing of most cells by enhancing the probability of BK channel opening through the phosphoinositide 3-kinase signalling cascade. This inhibitory effect is absent in db(-) /db(-) mice deprived of Ob receptors. During sustained stimulation, leptin preserves cell excitability by generating well-adapted action potential (AP) trains of lower frequency and broader width and increases catecholamine secretion by increasing the size of the ready-releasable pool and the rate of vesicle release. In conclusion, leptin dampens AP firing at rest but preserves AP firing and enhances catecholamine release during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release. ABSTRACT Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect. Besides being expressed in the hypothalamus and hippocampus, leptin receptors (ObRs) are also present in chromaffin cells of the adrenal medulla. In the present study, we report the effect of leptin on mouse chromaffin cell (MCC) functionality, focusing on cell excitability and catecholamine secretion. Acute application of leptin (1 nm) on spontaneously firing MCCs caused a slowly developing membrane hyperpolarization followed by complete blockade of action potential (AP) firing. This inhibitory effect at rest was abolished by the BK channel blocker paxilline (1 μm), suggesting the involvement of BK potassium channels. Single-channel recordings in 'perforated microvesicles' confirmed that leptin increased BK channel open probability without altering its unitary conductance. BK channel up-regulation was associated with the phosphoinositide 3-kinase (PI3K) signalling cascade because the PI3K specific inhibitor wortmannin (100 nm) fully prevented BK current increase. We also tested the effect of leptin on evoked AP firing and Ca(2+) -driven exocytosis. Although leptin preserves well-adapted AP trains of lower frequency, APs are broader and depolarization-evoked exocytosis is increased as a result of the larger size of the ready-releasable pool and higher frequency of vesicle release. The kinetics and quantal size of single secretory events remained unaltered. Leptin had no effect on firing and secretion in db(-) /db(-) mice lacking the ObR gene, confirming its specificity. In conclusion, leptin exhibits a dual action on MCC activity. It dampens AP firing at rest but preserves AP firing and increases catecholamine secretion during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - David Vandael
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy.,Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Sara Gosso
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Sánchez JC, Rivera RA, Muñoz LV. TRPV4 Channels in Human White Adipocytes: Electrophysiological Characterization and Regulation by Insulin. J Cell Physiol 2015; 231:954-63. [PMID: 26381274 DOI: 10.1002/jcp.25187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023]
Abstract
Intracellular calcium homeostasis in adipocytes is important for the regulation of several functions and is involved in pathological changes in obesity and other associated diseases. Transient Receptor Potential Vanilloid 4 (TRPV4) channels are an important route for calcium entry that operates in a variety of cells and intervenes in a number of functions. In this study, the expression and operation of TRPV4 channels in human cultured adipocytes was evaluated using RT-PCR, Western blotting, the whole-cell patch-clamp technique and fluorescence measurements to characterize these channels and determine intracellular calcium responses. Both the hypoosmolarity and 4alpha-phorbol-didecanoate (4αPDD), a specific TRPV4 agonist, induced a similar HC-067047-sensitive current, which was predominantly inward, and an intracellular Ca(2+) concentration increase, which was exclusively dependent on extracellular calcium, and membrane depolarization. The current had a reverse potential of +31 ± 6 mV and exhibited preferential permeability to Ca(2+) . Insulin, which regulates metabolic homeostasis in adipocytes, attenuated the TRPV4-mediated effects. These results confirm the function of TRPV4 in human cultured adipocytes and its regulation by insulin. J. Cell. Physiol. 231: 954-963, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julio C Sánchez
- Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Ricardo A Rivera
- Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Laura V Muñoz
- Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
16
|
TRPV4 channels activity in bovine articular chondrocytes: Regulation by obesity-associated mediators. Cell Calcium 2014; 56:493-503. [DOI: 10.1016/j.ceca.2014.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 01/22/2023]
|
17
|
Abstract
The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin-responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B, and dynorphin and these could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that agouti-related protein/neuropeptide Y neurons project onto GnRH and kisspeptin neurons, allowing for a crosstalk between food intake and reproduction. Finally, while puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. The mechanisms underlying leptin resistance in pregnancy have lagged; however, the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the following decade to shed new light on these complex and essential pathways.
Collapse
Affiliation(s)
- Farid F Chehab
- Department of Laboratory MedicineUniversity of California, San Francisco, San Francisco, California 94132, USA
| |
Collapse
|
18
|
Garrel G, Simon V, Denoyelle C, Ishaq M, Rouch C, Dairou J, Magnan C, Migrenne S, Cruciani-Guglielmacci C, Cohen-Tannoudji J. Unsaturated fatty acids disrupt Smad signaling in gonadotrope cells leading to inhibition of FSHβ gene expression. Endocrinology 2014; 155:592-604. [PMID: 24248462 DOI: 10.1210/en.2013-1833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproductive function is highly dependent on nutritional input. We recently provided evidence that the unsaturated ω6 fatty acid (FA), linoleic acid (linoleic), interferes with transcription and secretion of the gonadotropin LH, highlighting the existence of a lipid sensing in pituitary gonadotropes. Here, we show, using a combination of in vivo and in vitro models, that linoleic differentially regulates Lhb and Fshb expression. Central exposure of rats to linoleic over 7 days was associated with increase of Lhb but not Fshb transcript levels. Consistently, exposure of rat pituitary cells or LβT2 cells to linoleic increased Lhb, whereas it dramatically decreased Fshb transcript levels without affecting its stability. This effect was also induced by ω9 and ω3-polyunsaturated FA but not by saturated palmitic acid. Analysis of the underlying mechanisms in LβT2 cells using small interfering RNA revealed that early growth response protein 1 mediates linoleic stimulation of Lhb expression. Furthermore, we demonstrated that linoleic counteracts activin and bone morphogenetic protein-2 stimulation of Fshb expression. Using Western blotting and Smad-responsive reporter gene assays, linoleic was shown to decrease basal Smad2/3 phosphorylation levels as well as activin- and bone morphogenetic protein-2-dependent activation of Smad, uncovering a new FA-sensitive signaling cascade. Finally, the protein phosphatase magnesium-dependent 1A was shown to mediate linoleic inhibition of basal Smad phosphorylation and Fshb expression, identifying protein phosphatase magnesium-dependent 1A as a new target of FA in gonadotropes. Altogether, this study provides a novel mechanism by which FAs target gene expression and underlines the relevant role of pituitary gonadotropes in mediating the effects of nutritional FA on reproductive function.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Physiology of the Gonadotrope Axis (G.G., V.S., C.D., M.I., J.C.-T.), Nervous and Endocrine Regulation of Energy Homeostasis (C.R., C.M., S.M., C.C.-G.), and Molecular and Cellular Responses to Xenobiotics (J.D.), Université Paris-Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Equipe d'Accueil Conventionnée par le Centre National de la Recherche Scientifique 4413, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dupont J, Reverchon M, Bertoldo MJ, Froment P. Nutritional signals and reproduction. Mol Cell Endocrinol 2014; 382:527-537. [PMID: 24084162 DOI: 10.1016/j.mce.2013.09.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/17/2023]
Abstract
There is extensive evidence that nutrition influences reproductive function in various mammalian species (agricultural animals, rodents and human). However, the mechanisms underlying the relationship between nutrition, energy metabolism and reproductive function are poorly understood. This review considers nutrient sensors as a molecular link between food molecules and consequences for female and male fertility. It focuses on the roles and the molecular mechanisms of some of the relevant hormones, such as insulin and adipokines, and of energy substrates (glucose, fatty acids and amino acids), in the gonadotropic axis (central nervous system and gonads). A greater understanding of the interactions between nutrition and fertility is required for both better management of the physiological processes and the development of new molecules to prevent or cure metabolic diseases and their consequences for fertility.
Collapse
Affiliation(s)
- Joëlle Dupont
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France.
| | - Maxime Reverchon
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | - Michael J Bertoldo
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | - Pascal Froment
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| |
Collapse
|
20
|
Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol 2013; 13:1-14. [DOI: 10.1016/j.repbio.2012.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/14/2023]
|
21
|
Garrel G, Simon V, Denoyelle C, Cruciani-Guglielmacci C, Migrenne S, Counis R, Magnan C, Cohen-Tannoudji J. Unsaturated fatty acids stimulate LH secretion via novel PKCepsilon and -theta in gonadotrope cells and inhibit GnRH-induced LH release. Endocrinology 2011; 152:3905-16. [PMID: 21862612 DOI: 10.1210/en.2011-1167] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity of pituitary gonadotrope cells, crucial for reproductive function, is regulated by numerous factors including signals related to nutritional status. In this work, we demonstrated, for the first time, that in vivo central exposure of rats to lipids intracarotid infusion of a heparinized triglyceride emulsion selectively increases the expression of pituitary LH subunit genes without any alteration of pituitary GnRH receptor and hypothalamic GnRH or Kiss-1 transcript levels. Furthermore, we showed that unsaturated fatty acids (UFA), oleate and linoleate, increase LH release in a dose-dependent manner as well as LHβ mRNA levels in both immortalized LβT2 gonadotrope cell line and rat primary cell cultures. In contrast, the saturated palmitate was ineffective. ACTH or TSH secretion was unaffected by UFA treatment. We demonstrated in LβT2 cells that linoleate effect is mediated neither by activation of membrane fatty acid (FA) receptors GPR40 or GPR120 although we characterized these receptors in LβT2 cells, nor through nuclear peroxisome proliferator-activated receptors. Furthermore, linoleate β-oxidation is not required for its action on LH secretion. In contrast, pharmacological inhibition of protein kinase C (PKC) or ERK pathways significantly prevented linoleate-stimulated LH release. Accordingly, linoleate was shown to activate novel PKC isoforms, PKCε and -θ, as well as ERK1/2 in LβT2 cells. Lastly, unsaturated, but not saturated, FA inhibited GnRH-induced LH secretion in LβT2 cells as well as in pituitary cell cultures. Altogether, these results suggest that the pituitary is a relevant site of FA action and that UFA may influence reproduction by directly interfering with basal and GnRH-dependent gonadotrope activity.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Equipe d'accueil conventionnée, Centre National de la Recherche Scientifique 4413, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|