1
|
Gao Z, Zhang W, Jiang S, Qiao H, Xiong Y, Jin S, Fu H. Genome-wide association and transcriptomic analysis and the identification of growth-related genes in Macrobrachium nipponense. BMC Genomics 2024; 25:1182. [PMID: 39639210 PMCID: PMC11619169 DOI: 10.1186/s12864-024-11105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Macrobrachium nipponense is a commercially important freshwater species of prawn that is widely distributed across Asian countries. In order to investigate the molecular mechanisms of growth in M. nipponense, and to provide a foundation for molecular breeding, we used genome-wide association analysis (GWAS) and transcriptomic analysis to screen polymorphisms and genes related to growth traits. We recorded the growth traits of 100 adult M. nipponense at the same growth stage, and each individual genotype was evaluated by whole genome resequencing. GWAS of growth traits detected 12 growth-related single-nucleotide polymorphisms (SNPs) and eight growth-related genes from 49 chromosomes. Of the 100 individuals, we sampled muscle tissue from a total of 18 female and male M. nipponense exhibiting large differences in growth rate for RNA-seq. Transcriptome analysis revealed a total of 27,996 unigenes; of these, 33 and 60 differentially expressed genes were identified from males and females, respectively. Of these, 12 genes associated with energy metabolism and cytoskeletal pathways were identified as growth-related genes. Notably, genes from the actin family and the ubiquitin C-terminal hydrolase 2 (UCH2) gene were identified by both GWAS and transcriptomic analysis. Two growth-related SNPs, S40_12327385 and S40_12327391, were found to be mapped to the ACTB gene. The ACTA1 gene, also from the actin family, was up-regulated in fast-growing males and females, while the ACT57B was down-regulated. In addition, the growth associated SNP S7_35313774 was located in the UCH2 gene; transcriptomics analysis revealed that the UCH2 gene was up-regulated in female individuals exhibiting high growth rates. Overall, our results provided a set of markers and candidate genes related to the growth of M. nipponense. These findings could facilitate the breeding management of this species and help us to further understand the genetic mechanisms of growth in crustaceans.
Collapse
Affiliation(s)
- Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
2
|
Ludwik KA, Opitz R, Jyrch S, Megges M, Weiner J, Beule D, Kühnen P, Stachelscheid H. Generation of iPSC lines with SLC16A2:G401R or SLC16A2 knock out. Stem Cell Res 2023; 73:103256. [PMID: 38006677 DOI: 10.1016/j.scr.2023.103256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
The X-linked Allan-Herndon-Dudley syndrome (AHDS) is characterized by severely impaired psychomotor development and is caused by mutations in the SLC16A2 gene encoding the thyroid hormone transporter MCT8 (monocarboxylate transporter 8). By targeting exon 3 of SLC16A2 using CRISPR/Cas9 with single-stranded oligodeoxynucleotides as homology-directed repair templates, we introduced the AHDS patient missense variant G401R and a novel knock-out deletion variant (F400Sfs*17) into the male healthy donor hiPSC line BIHi001-B. We successfully generated cerebral organoids from these genome-edited lines, demonstrating the utility of the novel lines for modelling the effects of MCT8-deficency on human neurodevelopment.
Collapse
Affiliation(s)
- Katarzyna Anna Ludwik
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit pluripotent Stem Cells and Organoids, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sabine Jyrch
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Matthias Megges
- Department of Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - January Weiner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Charitéplatz 1, 10117 Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Kühnen
- Department of Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Harald Stachelscheid
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit pluripotent Stem Cells and Organoids, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
3
|
Thomas J, Sairoz, Jose A, Poojari VG, Shetty S, K SP, Prabhu R V K, Rao M. Role and Clinical Significance of Monocarboxylate Transporter 8 (MCT8) During Pregnancy. Reprod Sci 2023; 30:1758-1769. [PMID: 36595209 PMCID: PMC10229697 DOI: 10.1007/s43032-022-01162-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
The review aims to summarize the available research focusing on the importance of monocarboxylate transporter (MCT8) in thyroid hormone trafficking across the placenta and fetal development. A systematic search was carried out in PubMed; studies available in English related to "monocarboxylate transporter", "adverse pregnancy", "fetal development," and "thyroid hormone" were identified and assessed. The references within the resulting articles were manually searched. MCT8 is a highly active and selective thyroid hormone transporter that facilitates the cellular uptake of triiodothyronine (T3), thyroxine (T4), reverse triiodothyronine (rT3), and diiodothyronine (T2) in different tissues. MCT8 is expressed in the placenta from the first trimester onwards, allowing the transport of thyroid hormone from mother to fetus. Mutations in MCT8 cause an X-linked disorder known as Allan-Herndon-Dudley syndrome (AHDS), characterized by severe psychomotor impairment and peripheral thyrotoxicosis. Hence, any maternal thyroid dysfunction may cause severe consequences for the fetus and newborn. Further research regarding MCT8 gene expression, polymorphic variation, and adverse pregnancy outcomes must be done to establish that MCT8 is a novel prognostic marker for the early detection of pregnancy-related complications.
Collapse
Affiliation(s)
- Jinsu Thomas
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sairoz
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anmi Jose
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vidyashree G Poojari
- Department of Reproductive Medicine and Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnananda Prabhu R V
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Silva N, Campinho MA. In a zebrafish biomedical model of human Allan-Herndon-Dudley syndrome impaired MTH signaling leads to decreased neural cell diversity. Front Endocrinol (Lausanne) 2023; 14:1157685. [PMID: 37214246 PMCID: PMC10194031 DOI: 10.3389/fendo.2023.1157685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Background Maternally derived thyroid hormone (T3) is a fundamental factor for vertebrate neurodevelopment. In humans, mutations on the thyroid hormones (TH) exclusive transporter monocarboxylic acid transporter 8 (MCT8) lead to the Allan-Herndon-Dudley syndrome (AHDS). Patients with AHDS present severe underdevelopment of the central nervous system, with profound cognitive and locomotor consequences. Functional impairment of zebrafish T3 exclusive membrane transporter Mct8 phenocopies many symptoms observed in patients with AHDS, thus providing an outstanding animal model to study this human condition. In addition, it was previously shown in the zebrafish mct8 KD model that maternal T3 (MTH) acts as an integrator of different key developmental pathways during zebrafish development. Methods Using a zebrafish Mct8 knockdown model, with consequent inhibition of maternal thyroid hormones (MTH) uptake to the target cells, we analyzed genes modulated by MTH by qPCR in a temporal series from the start of segmentation through hatching. Survival (TUNEL) and proliferation (PH3) of neural progenitor cells (dla, her2) were determined, and the cellular distribution of neural MTH-target genes in the spinal cord during development was characterized. In addition, in-vivo live imaging was performed to access NOTCH overexpression action on cell division in this AHDS model. We determined the developmental time window when MTH is required for appropriate CNS development in the zebrafish; MTH is not involved in neuroectoderm specification but is fundamental in the early stages of neurogenesis by promoting the maintenance of specific neural progenitor populations. MTH signaling is required for developing different neural cell types and maintaining spinal cord cytoarchitecture, and modulation of NOTCH signaling in a non-autonomous cell manner is involved in this process. Discussion The findings show that MTH allows the enrichment of neural progenitor pools, regulating the cell diversity output observed by the end of embryogenesis and that Mct8 impairment restricts CNS development. This work contributes to the understanding of the cellular mechanisms underlying human AHDS.
Collapse
Affiliation(s)
- Nádia Silva
- Centre for Marine Sciences of the University of the Algarve, Faro, Portugal
- Algarve Biomedical Center-Research Institute, University of the Algarve, Faro, Portugal
| | - Marco António Campinho
- Centre for Marine Sciences of the University of the Algarve, Faro, Portugal
- Algarve Biomedical Center-Research Institute, University of the Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of the Algarve, Faro, Portugal
| |
Collapse
|
5
|
Sterner ZR, Jabrah A, Shaidani NI, Horb ME, Dockery R, Paul B, Buchholz DR. Development and metamorphosis in frogs deficient in the thyroid hormone transporter MCT8. Gen Comp Endocrinol 2023; 331:114179. [PMID: 36427548 PMCID: PMC9771991 DOI: 10.1016/j.ygcen.2022.114179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Precisely regulated thyroid hormone (TH) signaling within tissues during frog metamorphosis gives rise to the organism-wide coordination of developmental events among organs required for survival. This TH signaling is controlled by multiple cellular mechanisms, including TH transport across the plasma membrane. A highly specific TH transporter has been identified, namely monocarboxylate transporter 8 (MCT8), which facilitates uptake and efflux of TH and is differentially and dynamically expressed among tissues during metamorphosis. We hypothesized that loss of MCT8 would alter tissue sensitivity to TH and affect the timing of tissue transformation. To address this, we used CRISPR/Cas9 to introduce frameshift mutations inslc16a2, the gene encoding MCT8, inXenopus laevis. We produced homozygous mutant tadpoles with a 29-bp mutation in the l-chromosome and a 20-bp mutation in the S-chromosome. We found that MCT8 mutants survive metamorphosis with normal growth and development of external morphology throughout the larval period. Consistent with this result, the expression of the pituitary hormone regulating TH plasma levels (tshb) was similar among genotypes as was TH response gene expression in brain at metamorphic climax. Further, delayed initiation of limb outgrowth during natural metamorphosis and reduced hindlimb and tail TH sensitivity were not observed in MCT8 mutants. In sum, we did not observe an effect on TH-dependent development in MCT8 mutants, suggesting compensatory TH transport occurs in tadpole tissues, as seen in most tissues in all model organisms examined.
Collapse
Affiliation(s)
- Zachary R Sterner
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Ayah Jabrah
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, United States
| | - Marko E Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, United States
| | - Rejenae Dockery
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
6
|
Effects of iodine excess on serum thyrotropin-releasing hormone levels and type 2 deiodinase in the hypothalamus of Wistar rats. Br J Nutr 2022; 127:1631-1638. [PMID: 34250878 DOI: 10.1017/s0007114521002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iodine is an important element in thyroid hormone biosynthesis. Thyroid function is regulated by the hypothalamic-pituitary-thyroid axis. Excessive iodine leads to elevated thyroid-stimulating hormone (TSH) levels, but the mechanism is not yet clear. Type 2 deiodinase (Dio2) is a Se-containing protease that plays a vital role in thyroid function. The purpose of this study was to explore the role of hypothalamus Dio2 in regulating TSH increase caused by excessive iodine and to determine the effects of iodine excess on thyrotropin-releasing hormone (TRH) levels. Male Wistar rats were randomised into five groups and administered different iodine dosages (folds of physiological dose): normal iodine, 3-fold iodine, 6-fold iodine, 10-fold iodine and 50-fold iodine. Rats were euthanised at 4, 8, 12 or 24 weeks after iodine administration. Serum TRH, TSH, total thyroxine (TT4) and total triiodothyronine (TT3) were determined. Hypothalamus tissues were frozen and sectioned to evaluate the expression of Dio2, Dio2 activity and monocarboxylate transporter 8 (MCT8). Prolonged high iodine intake significantly increased TSH expression (P < 0·05) but did not affect TT3 and TT4 levels. Prolonged high iodine intake decreased serum TRH levels in the hypothalamus (P < 0·05). Dio2 expression and activity in the hypothalamus exhibited an increasing trend compared at each time point with increasing iodine intake (P < 0·05). Hypothalamic MCT8 expression was increased in rats with prolonged high iodine intake (P < 0·05). These results indicate that iodine excess affects the levels of Dio2, TRH and MCT8 in the hypothalamus.
Collapse
|
7
|
Beheshti R, Aprile J, Lee C. Allan-Herndon-Dudley Syndrome: A Novel Pathogenic Variant of the SLC16A2 gene. Cureus 2022; 14:e21771. [PMID: 35251841 PMCID: PMC8890594 DOI: 10.7759/cureus.21771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/05/2022] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a rare disorder characterized by thyroid irregularities, neurological issues, and developmental delay. In this article, we reported a patient with AHDS who presented with severe developmental delay and failure to thrive in the setting of thyroid irregularities. The patient had missense mutations in the SLC16A2 gene, which codes for monocarboxylate transporter 8 (MCT8). We identified two single-nucleotide variants, including guanine to alanine substitution at position +1 of intron 5 (IVS5+1 G>A) and guanine to alanine substitution at position 1400 of intron 1 (c.1400G>A). This variant has not been previously reported as pathogenic in a patient diagnosed with AHDS, as missense and in-frame single amino-acid deletions have not generally been associated with severe neurodevelopment sequela. We review the clinical and laboratory findings of this rare condition. We will discuss the value of early recognition and diagnosis based on promising clinical trials to treat the neurological and developmental sequela associated with AHDS.
Collapse
|
8
|
Wolff TM, Veil C, Dietrich JW, Müller MA. Mathematical modeling and simulation of thyroid homeostasis: Implications for the Allan-Herndon-Dudley syndrome. Front Endocrinol (Lausanne) 2022; 13:882788. [PMID: 36568087 PMCID: PMC9772020 DOI: 10.3389/fendo.2022.882788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION A mathematical model of the pituitary-thyroid feedback loop is extended to deepen the understanding of the Allan-Herndon-Dudley syndrome (AHDS). The AHDS is characterized by unusual thyroid hormone concentrations and a mutation in the SLC16A2 gene encoding for the monocarboxylate transporter 8 (MCT8). This mutation leads to a loss of thyroid hormone transport activity. One hypothesis to explain the unusual hormone concentrations of AHDS patients is that due to the loss of thyroid hormone transport activity, thyroxine (T 4) is partially retained in thyroid cells. METHODS This hypothesis is investigated by extending a mathematical model of the pituitary-thyroid feedback loop to include a model of the net effects of membrane transporters such that the thyroid hormone transport activity can be considered. A nonlinear modeling approach based on the Michaelis-Menten kinetics and its linear approximation are employed to consider the membrane transporters. The unknown parameters are estimated through a constrained parameter optimization. RESULTS In dynamic simulations, damaged membrane transporters result in a retention of T 4 in thyroid cells and ultimately in the unusual hormone concentrations of AHDS patients. The Michaelis-Menten modeling approach and its linear approximation lead to similar results. DISCUSSION The results support the hypothesis that a partial retention of T 4 in thyroid cells represents one mechanism responsible for the unusual hormone concentrations of AHDS patients. Moreover, our results suggest that the retention of T 4 in thyroid cells could be the main reason for the unusual hormone concentrations of AHDS patients.
Collapse
Affiliation(s)
- Tobias M. Wolff
- Institute of Automatic Control, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Tobias M. Wolff,
| | - Carina Veil
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Diabetes Centre Bochum-Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, Germany
- Ruhr Center for RareDiseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| | - Matthias A. Müller
- Institute of Automatic Control, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
9
|
Graffunder AS, Paisdzior S, Opitz R, Renko K, Kühnen P, Biebermann H. Design and Characterization of a Fluorescent Reporter Enabling Live-cell Monitoring of MCT8 Expression. Exp Clin Endocrinol Diabetes 2021; 130:134-140. [PMID: 34352913 DOI: 10.1055/a-1522-8535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The monocarboxylate transporter 8 (MCT8) is a specific thyroid hormone transporter and plays an essential role in fetal development. Inactivating mutations in the MCT8 encoding gene SLC16A2 (solute carrier family 16, member 2) lead to the Allan-Herndon-Dudley syndrome, a condition presenting with severe endocrinological and neurological phenotypes. However, the cellular distribution pattern and dynamic expression profile are still not well known for early human neural development. OBJECTIVE Development and characterization of fluorescent MCT8 reporters that would permit live-cell monitoring of MCT8 protein expression in vitro in human induced pluripotent stem cell (hiPSC)-derived cell culture models. METHODS A tetracysteine (TC) motif was introduced into the human MCT8 sequence at four different positions as binding sites for fluorescent biarsenical dyes. Human Embryonic Kidney 293 cells were transfected and stained with fluorescein-arsenical hairpin-binder (FlAsH). Counterstaining with specific MCT8 antibody was performed. Triiodothyronine (T3) uptake was indirectly measured with a T3 responsive luciferase-based reporter gene assay in Madin-Darby Canine Kidney 1 cells for functional characterization. RESULTS FlAsH staining and antibody counterstaining of all four constructs showed cell membrane expression of all MCT8 constructs. The construct with the tag after the first start codon demonstrated comparable T3 uptake to the MCT8 wildtype. CONCLUSION Our data indicate that introduction of a TC-tag directly after the first start codon generates a MCT8 reporter with suitable characteristics for live-cell monitoring of MCT8 expression. One promising future application will be generation of stable hiPSC MCT8 reporter lines to characterize MCT8 expression patterns during in vitro neuronal development.
Collapse
Affiliation(s)
- Adina Sophie Graffunder
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| | - Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Peter Kühnen
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| |
Collapse
|
10
|
Iwayama H, Tanaka T, Aoyama K, Moroto M, Adachi S, Fujisawa Y, Matsuura H, Takano K, Mizuno H, Okumura A. Regional Difference in Myelination in Monocarboxylate Transporter 8 Deficiency: Case Reports and Literature Review of Cases in Japan. Front Neurol 2021; 12:657820. [PMID: 34335438 PMCID: PMC8319638 DOI: 10.3389/fneur.2021.657820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Monocarboxylate transporter 8 (MCT8) is a thyroid hormone transmembrane transporter protein. MCT8 deficiency induces severe X-linked psychomotor retardation. Previous reports have documented delayed myelination in the central white matter (WM) in these patients; however, the regional pattern of myelination has not been fully elucidated. Here, we describe the regional evaluation of myelination in four patients with MCT8 deficiency. We also reviewed the myelination status of previously reported Japanese patients with MCT8 deficiency based on magnetic resonance imaging (MRI). Case Reports: Four patients were genetically diagnosed with MCT8 deficiency at the age of 4–9 months. In infancy, MRI signal of myelination was observed mainly in the cerebellar WM, posterior limb of internal capsule, and the optic radiation. There was progression of myelination with increase in age. Discussion: We identified 36 patients with MCT8 deficiency from 25 families reported from Japan. The available MRI images were obtained at the age of <2 years in 13 patients, between 2 and 4 years in six patients, between 4 and 6 years in three patients, and at ≥6 years in eight patients. Cerebellar WM, posterior limb of internal capsule, and optic radiation showed MRI signal of myelination by the age of 2 years, followed by centrum semiovale and corpus callosum by the age of 4 years. Most regions except for deep anterior WM showed MRI signal of myelination at the age of 6 years. Conclusion: The sequential pattern of myelination in patients with MCT8 deficiency was largely similar to that in normal children; however, delayed myelination of the deep anterior WM was a remarkable finding. Further studies are required to characterize the imaging features of patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Hideyuki Iwayama
- Department of Pediatrics, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Tatsushi Tanaka
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kohei Aoyama
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Masaharu Moroto
- Department of Pediatrics, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Shinsuke Adachi
- Department of Pediatrics, Fukuchiyama City Hospital, Fukuchiyama, Japan.,Adachi Pediatric Clinic, Fukuchiyama, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroki Matsuura
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Kyoko Takano
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Haruo Mizuno
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akihisa Okumura
- Department of Pediatrics, School of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
11
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
12
|
MCT8 deficiency in a patient with a novel frameshift variant in the SLC16A2 gene. Hum Genome Var 2021; 8:10. [PMID: 33594047 PMCID: PMC7886859 DOI: 10.1038/s41439-021-00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/26/2020] [Accepted: 01/14/2021] [Indexed: 11/26/2022] Open
Abstract
MCT8 deficiency is an X-linked recessive disorder. We report the case of a 2-year-old Japanese boy with MCT8 deficiency caused by a novel frameshift variant, NM_006517.5(SLC16A2_v001):c.966dup [p.(Ile323Hisfs*57)]. He presented no head control and spoke no meaningful words, indicating severe developmental delay. Although missense or in-frame mutations of SLC16A2 are usually related to milder phenotypes and later-onset pyramidal signs, loss-of-function mutations are expected to cause severe clinical symptoms.
Collapse
|
13
|
Abstract
The development of thyroid hormone (TH) analogues was prompted by the attempt to exploit the effects of TH on lipid metabolism, avoiding cardiac thyrotoxicosis. Analysis of the relative distribution of the α and β subtypes of nuclear TH receptors (TRα and TRβ) showed that TRα and TRβ are responsible for cardiac and metabolic responses, respectively. Therefore, analogues with TRβ selectivity were developed, and four different compounds have been used in clinical trials: GC-1 (sobetirome), KB-2115 (eprotirome), MB07344/VK2809, and MGL-3196 (resmetirom). Each of these compounds was able to reduce low-density lipoprotein cholesterol, but a phase 3 trial with eprotirome was interrupted because of a significant increase in liver enzymes and the contemporary report of cartilage side effects in animals. As a consequence, the other projects were terminated as well. However, in recent years, TRβ agonists have raised new interest for the treatment of nonalcoholic fatty liver disease (NAFLD). After obtaining excellent results in experimental models, clinical trials have been started with MGL-3196 and VK2809, and the initial reports are encouraging. Sobetirome turned out to be effective also in experimental models of demyelinating disease. Aside TRβ agonists, TH analogues include some TH metabolites that are biologically active on their own, and their synthetic analogues. 3,5,3'-triiodothyroacetic acid has already found clinical use in the treatment of some cases of TH resistance due to TRβ mutations, and interesting results have recently been reported in patients with the Allan-Herndon-Dudley syndrome, a rare disease caused by mutations in the TH transporter MCT8. 3,5-diiodothyronine (T2) has been used with success in rat models of dyslipidemia and NAFLD, but the outcome of a clinical trial with a synthetic T2 analogue was disappointing. 3-iodothyronamine (T1AM) is the last entry in the group of active TH metabolites. Promising results have been obtained in animal models of neurological injury induced by β-amyloid or by convulsive agents, but no clinical data are available so far.
Collapse
Affiliation(s)
- Riccardo Zucchi
- Department of Pathology, University of Pisa, Pisa, Italy
- Address correspondence to: Riccardo Zucchi, MD, PhD, Department of Pathology, University of Pisa, Via Roma 55, Pisa 56126, Italy
| |
Collapse
|
14
|
Ritter MJ, Amano I, Hollenberg AN. Thyroid Hormone Signaling and the Liver. Hepatology 2020; 72:742-752. [PMID: 32343421 DOI: 10.1002/hep.31296] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (TH) plays a critical role in maintaining metabolic homeostasis throughout life. It is well known that the liver and thyroid are intimately linked, with TH playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Indeed, patients with hypothyroidism have abnormal lipid panels with higher levels of low-density lipoprotein levels, triglycerides (triacylglycerol; TAG), and apolipoprotein B levels. Even in euthyroid patients, lower serum-free thyroxine levels are associated with higher total cholesterol levels, LDL, and TAG levels. In addition to abnormal serum lipids, the risk of nonalcoholic fatty liver disease (NAFLD) increases with lower free thyroxine levels. As free thyroxine rises, the risk of NAFLD is reduced. This has led to numerous animal studies and clinical trials investigating TH analogs and TH receptor agonists as potential therapies for NAFLD and hyperlipidemia. Thus, TH plays an important role in maintaining hepatic homeostasis, and this continues to be an important area of study. A review of TH action and TH actions on the liver will be presented here.
Collapse
Affiliation(s)
- Megan J Ritter
- Division of Endocrinology, Weill Cornell Medicine, New York, NY
| | - Izuki Amano
- Division of Endocrinology, Weill Cornell Medicine, New York, NY.,Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | |
Collapse
|
15
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Remerand G, Boespflug-Tanguy O, Tonduti D, Touraine R, Rodriguez D, Curie A, Perreton N, Des Portes V, Sarret C. Expanding the phenotypic spectrum of Allan-Herndon-Dudley syndrome in patients with SLC16A2 mutations. Dev Med Child Neurol 2019; 61:1439-1447. [PMID: 31410843 DOI: 10.1111/dmcn.14332] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2019] [Indexed: 01/01/2023]
Abstract
The aim of the study was to redefine the phenotype of Allan-Herndon-Dudley syndrome (AHDS), which is caused by mutations in the SLC16A2 gene that encodes the brain transporter of thyroid hormones. Clinical phenotypes, brain imaging, thyroid hormone profiles, and genetic data were compared to the existing literature. Twenty-four males aged 11 months to 29 years had a mutation in SLC16A2, including 12 novel mutations and five previously described mutations. Sixteen patients presented with profound developmental delay, three had severe intellectual disability with poor language and walking with an aid, four had moderate intellectual disability with language and walking abilities, and one had mild intellectual disability with hypotonia. Overall, eight had learned to walk, all had hypotonia, 17 had spasticity, 18 had dystonia, 12 had choreoathetosis, 19 had hypomyelination, and 10 had brain atrophy. Kyphoscoliosis (n=12), seizures (n=7), and pneumopathies (n=5) were the most severe complications. This study extends the phenotypic spectrum of AHDS to a mild intellectual disability with hypotonia. Developmental delay, hypotonia, hypomyelination, and thyroid hormone profile help to diagnose patients. Clinical course depends on initial severity, with stable acquisition after infancy; this may be adversely affected by neuro-orthopaedic, pulmonary, and epileptic complications. WHAT THIS PAPER ADDS: Mild intellectual disability is associated with SLC16A2 mutations. A thyroid hormone profile with a free T3 /T4 ratio higher than 0.75 can help diagnose patients. Patients with SLC16A2 mutations present a broad spectrum of neurological phenotypes that are also observed in other hypomyelinating disorders. Axial hypotonia is a consistent feature of Allan-Herndon-Dudley syndrome and leads to specific complications.
Collapse
Affiliation(s)
- Ganaelle Remerand
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Pôle Femme et Enfant, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Centre de Référence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Service de Neurologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France.,NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Paris, France
| | - Davide Tonduti
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Unit of Child Neurology, V. Buzzi Children's Hospital, Milan, Italy
| | - Renaud Touraine
- Service de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Diana Rodriguez
- Sorbonne Université, GRC no. 19, Pathologies Congénitales du Cervelet-LeucoDystrophies, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France.,Centre de Référence Neurogénétique, Service de Neurologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Aurore Curie
- Centre de Référence des Déficiences Intellectuelles de Cause Rare, Service de Neurologie Pédiatrique, Centre Hospitalier Universitaire de Lyon, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Nathalie Perreton
- CIC 1407Inserm, Centre Hospitalo-Universitaire de Lyon, Lyon, France
| | - Vincent Des Portes
- Centre de Référence des Déficiences Intellectuelles de Cause Rare, Service de Neurologie Pédiatrique, Centre Hospitalier Universitaire de Lyon, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Pôle Femme et Enfant, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,IGCNC, Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
| | | |
Collapse
|
17
|
Braun D, Reuter U, Schweizer U. Modeling the Biochemical Phenotype of MCT8 Mutations In Vitro: Resolving a Troubling Inconsistency. Endocrinology 2019; 160:1536-1546. [PMID: 31127274 DOI: 10.1210/en.2019-00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a severe genetic disease caused by mutations in the monocarboxylate transporter 8 (MCT8) gene. MCT8 mediates transport of thyroid hormones in and out of cells, which is thought to play a pivotal role for embryonic and postnatal development of the human brain. Disconcertingly, MCT8R271H leads to a severe form of AHDS but shows residual transport activity when expressed in several types of cultured cells. Here we try to determine the mechanism behind the transport function of MCT8R271H found in overexpressing cell systems. Mutations of Arg271 were introduced into human MCT8 and stably transfected into Madin-Darby canine kidney cells and the human-derived cell line JEG1. Radioactive thyroid hormone-uptake experiments were performed to analyze the pH-dependent effect of the mutation on transport activity. Arg271His transports thyroid hormones in and out of cells in a pH-dependent manner. Its transport activity increases below pH 7.3 and is clearly diminished at physiological pH. The Michaelis constant of the mutant is unaltered, whereas the maximum velocity is reduced. The expression of Arg271His in JEG1 cells leads to an almost nonfunctional transporter at physiological pH replicating the human phenotype for this mutant in vitro and demonstrates, again, that mutant MCT8 activity depends on cellular background. The protonation of His271 at acidic pH restores activity of the mutant protein, which is not active in its deprotonated form at physiological pH. Thus, experimental parameters must be controlled carefully when modeling MCT8 deficiency in cells.
Collapse
Affiliation(s)
- Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| |
Collapse
|
18
|
Islam MS, Namba N, Ohata Y, Fujiwara M, Nakano C, Takeyari S, Miyata K, Nakano Y, Yamamoto K, Nakayama H, Kitaoka T, Kubota T, Ozono K. Functional analysis of monocarboxylate transporter 8 mutations in Japanese Allan-Herndon-Dudley syndrome patients. Endocr J 2019; 66:19-29. [PMID: 30369548 DOI: 10.1507/endocrj.ej18-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates T3 uptake into cells. Mutations in MCT8 lead to Allan-Herndon-Dudley syndrome (AHDS), which is characterized by severe psychomotor retardation and abnormal thyroid hormone profile. Nine uncharacterized MCT8 mutations in Japanese patients with severe neurocognitive impairment and elevated serum T3 levels were studied regarding the transport of T3. Human MCT8 (hMCT8) function was studied in wild-type (WT) or mutant hMCT8-transfected human placental choriocarcinoma cells (JEG3) by visualizing the locations of the proteins in the cells, detecting specific proteins, and measuring T3 uptake. We identified 6 missense (p.Arg445Ser, p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, and p.Gly312Arg), 2 frameshift (p.Arg355Profs*64 and p.Tyr550Serfs*17), and 1 deletion (p.Pro561del) mutation(s) in the hMCT8 gene. All patients exhibited clinical characteristics of AHDS with high free T3, low-normal free T4, and normal-elevated TSH levels. All tested mutants were expressed at the protein level, except p.Arg355Profs*64 and p.Tyr550Serfs*17, which were truncated, and were inactive in T3 uptake, excluding p.Arg445Ser and p.Pro561del mutants, compared with WT-hMCT8. Immunocytochemistry revealed plasma membrane localization of p.Arg445Ser and p.Pro561del mutants similar with WT-hMCT8. The other mutants failed to localize in significant amount(s) in the plasma membrane and instead localized in the cytoplasm. These data indicate that p.Arg445Ser and p.Pro561del mutants preserve residual function, whereas p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, p.Gly312Arg, p.Arg355Profs*64, and p.Tyr550Serfs*17 mutants lack function. These findings suggest that the mutations in MCT8 cause loss of function by reducing protein expression, impairing trafficking of protein to plasma membrane, and disrupting substrate channel.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Chiho Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kei Miyata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The Japan Environment and Children's Study, Osaka Unit Center, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
19
|
Rurale G, Cicco ED, Dentice M, Salvatore D, Persani L, Marelli F, Luongo C. Thyroid Hormone Hyposensitivity: From Genotype to Phenotype and Back. Front Endocrinol (Lausanne) 2019; 10:912. [PMID: 32038483 PMCID: PMC6992580 DOI: 10.3389/fendo.2019.00912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
Thyroid hormone action defects (THADs) have been classically considered conditions of impaired sensitivity to thyroid hormone (TH). They were originally referring to alterations in TH receptor genes (THRA and THRB), but the discovery of genetic mutations and polymorphisms causing alterations in cell membrane transport (e.g., MCT8) and metabolism (e.g., SECISBP2, DIO2) led recently to a new and broader definition of TH hyposensitivity (THH), including not only THADs but all defects that could interfere with the activity of TH. Due to the different functions and tissue-specific expression of these genes, affected patients exhibit highly variable phenotypes. Some of them are characterized by a tissue hypothyroidism or well-recognizable alterations in the thyroid function tests (TFTs), whereas others display a combination of hypo- and hyperthyroid manifestations with normal or only subtle biochemical defects. The huge effort of basic research has greatly aided the comprehension of the molecular mechanisms underlying THADs, dissecting the morphological and functional alterations on target tissues, and defining the related-changes in the biochemical profile. In this review, we describe different pictures in which a specific alteration in the TFTs (TSH, T4, and T3 levels) is caused by defects in a specific gene. Altogether these findings can help clinicians to early recognize and diagnose THH and to perform a more precise genetic screening and therapeutic intervention. On the other hand, the identification of new genetic variants will allow the generation of cell-based and animal models to give novel insight into thyroid physiology and establish new therapeutic interventions.
Collapse
Affiliation(s)
- Giuditta Rurale
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Persani
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Marelli
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Federica Marelli
| | - Cristina Luongo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Abstract
Allan-Herndon-Dudley syndrome is a rare X-linked neurologic condition caused by mutations in monocarboxylate transporter 8 ( MCT8), which leads to deficient thyroid hormone transport. Typical features include severe cognitive impairment, truncal hypotonia, spastic paraplegia, weakness, and speech difficulties. Minimal literature exists describing the ocular findings in patients with Allan-Herndon-Dudley syndrome. We describe 4 male siblings affected with Allan-Herndon-Dudley syndrome with a novel nonsense mutation (Q90X) in the MCT8 protein. All affected siblings presented with classic findings of Allan-Herndon-Dudley syndrome, and each of the siblings also developed intermittent esotropia. This group of affected siblings represents the first consistent documentation of strabismus in Allan-Herndon-Dudley syndrome, suggesting a possible association between this clinical finding and the neurologic syndrome.
Collapse
Affiliation(s)
- Cole J Swiston
- 1 Gundersen Health System, Department of Ophthalmology, Lacrosse, WI, USA
| | - David L Nash
- 1 Gundersen Health System, Department of Ophthalmology, Lacrosse, WI, USA
| |
Collapse
|
21
|
|
22
|
Silva N, Louro B, Trindade M, Power DM, Campinho MA. Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis. Sci Rep 2017; 7:16657. [PMID: 29192226 PMCID: PMC5709499 DOI: 10.1038/s41598-017-16951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.
Collapse
Affiliation(s)
- Nadia Silva
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Bruno Louro
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Marco A Campinho
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
23
|
Meinig JM, Ferrara SJ, Banerji T, Banerji T, Sanford-Crane HS, Bourdette D, Scanlan TS. Targeting Fatty-Acid Amide Hydrolase with Prodrugs for CNS-Selective Therapy. ACS Chem Neurosci 2017; 8:2468-2476. [PMID: 28756656 PMCID: PMC6342467 DOI: 10.1021/acschemneuro.7b00239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) can be a substantial impediment to achieving therapeutic levels of drugs in the CNS. Certain chemical functionality such as the carboxylic acid is a general liability for BBB permeability preventing significant CNS distribution of a drug from a systemic dose. Here, we report a strategy for CNS-selective distribution of the carboxylic acid containing thyromimetic sobetirome using prodrugs targeted to fatty-acid amide hydrolase (FAAH), which is expressed in the brain. Two amide prodrugs of sobetirome were shown to be efficient substrates of FAAH with Vmax/KM values comparable to the natural endocannabinoid FAAH substrate anandamide. In mice, a systemic dose of sobetirome prodrug leads to a substantial ∼60-fold increase in brain distribution (Kp) of sobetirome compared to an equimolar systemic dose of the parent drug. The increased delivery of sobetirome to the brain from the prodrug was diminished by both pharmacological inhibition and genetic deletion of FAAH in vivo. The increased brain exposure of sobetirome arising from the prodrug corresponds to ∼30-fold increased potency in brain target engagement compared to the parent drug. These results suggest that FAAH-targeted prodrugs can considerably increase drug exposure to the CNS with a concomitant decrease in systemic drug levels generating a desirable distribution profile for CNS acting drugs.
Collapse
Affiliation(s)
- J. Matthew Meinig
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Skylar J. Ferrara
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Tania Banerji
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Tapasree Banerji
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Hannah S. Sanford-Crane
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Dennis Bourdette
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Thomas S. Scanlan
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
24
|
Groeneweg S, Lima de Souza EC, Meima ME, Peeters RP, Visser WE, Visser TJ. Outward-Open Model of Thyroid Hormone Transporter Monocarboxylate Transporter 8 Provides Novel Structural and Functional Insights. Endocrinology 2017; 158:3292-3306. [PMID: 28977587 DOI: 10.1210/en.2017-00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates cellular uptake and efflux of thyroid hormone (TH). Mutations in MCT8 result in severe intellectual and motor disability known as the Allan-Herndon-Dudley syndrome (AHDS). Previous studies have provided valuable insights into the putative mechanism of substrate binding in the inward-open conformation, required for TH efflux. The current study aims to delineate the mechanism of substrate binding in the outward-open conformation, required for TH uptake. Extensive chemical modification and site-directed mutagenesis studies were used to guide protein homology modeling of MCT8 in the outward-open conformation. Arg271 and Arg445 were modified by phenylglyoxal, which was partially prevented in the presence of substrate. Substrate docking in our outward-open model suggested an important role for His192 and Arg445 in substrate binding. Interestingly, mutations affecting these residues have been identified in patients who have AHDS. In addition, our outward-open model predicted the location of Phe189, Met227, Phe279, Gly282, Phe287, and Phe501 at the substrate-binding center, and their Ala substitution differentially affected the apparent Vmax and Km of T3 transport, with F189A, F279A, and F287A showing the highest impact. Thus, here we present an MCT8 homology model in the outward-open conformation, which supports the important role of His192 and Arg445 in substrate docking and identifies critical residues at the putative substrate-binding center. Our findings provide insights into MCT8 structure and function, which add to our understanding of the pathogenic mechanism of mutations found in patients who have AHDS and can be used to screen for novel substrates and inhibitors.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Elaine C Lima de Souza
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Roelfsema F, Boelen A, Kalsbeek A, Fliers E. Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab 2017; 31:487-503. [PMID: 29223283 DOI: 10.1016/j.beem.2017.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thyroid hormones are essential for growth, differentiation and metabolism during prenatal and postnatal life. The hypothalamus-pituitary-thyroid (HPT)-axis is optimized for these actions. Knowledge of this hormonal axis is derived from decades of experiments in animals and man, and more recently from spontaneous mutations in man and constructed mutations in mice. This review examines the HPT-axis in relation to 24 h TSH profiles in men in various physiological and pathophysiological conditions, including obesity, age, longevity, and primary as well as central hypothyroidism. Hormone rhythms can be analyzed by quantitative methods, e.g. operator-independent deconvolution, approximate entropy and fitting the 24-h component by Cosinor analysis or related procedures. These approaches have identified some of the regulatory components in (patho)physiological conditions.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section Endocrinology and Metabolic Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands.
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Hypothalamic Integration Mechanisms, 1105 BA Amsterdam, The Netherlands.
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands. e,
| |
Collapse
|
26
|
Uemura S, Mochizuki T, Kurosaka G, Hashimoto T, Masukawa Y, Abe F. Functional analysis of human aromatic amino acid transporter MCT10/TAT1 using the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2076-2085. [DOI: 10.1016/j.bbamem.2017.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
|
27
|
Protze J, Braun D, Hinz KM, Bayer-Kusch D, Schweizer U, Krause G. Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8. Cell Mol Life Sci 2017; 74:2299-2318. [PMID: 28132097 PMCID: PMC11107705 DOI: 10.1007/s00018-017-2461-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) mediates thyroid hormone (TH) transport across the plasma membrane in many cell types. In order to better understand its mechanism, we have generated three new MCT8 homology models based on sugar transporters XylE in the intracellular opened (PDB ID: 4aj4) and the extracellular partly occluded (PDB ID: 4gby) conformations as well as FucP (PDB ID: 3o7q) and GLUT3 (PDB ID: 4zwc) in the fully extracellular opened conformation. T3-docking studies from both sides revealed interactions with His192, His415, Arg445 and Asp498 as previously identified. Selected mutations revealed further transport-sensitive positions mainly at the discontinuous transmembrane helices TMH7 and 10. Lys418 is potentially involved in neutralising the charge of the TH substrate because it can be replaced by charged, but not by uncharged, amino acids. The side chain of Thr503 was hypothesised to stabilise a helix break at TMH10 that undergoes a prominent local shift during the transport cycle. A T503V mutation accordingly affected transport. The aromatic Tyr419, the polar Ser313 and Ser314 as well as the charged Glu422 and Glu423 lining the transport channel have been studied. Based on related sugar transporters, we suggest an alternating access mechanism for MCT8 involving a series of amino acid positions previously and newly identified as critical for transport.
Collapse
Affiliation(s)
- Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Katrin Manuela Hinz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dorothea Bayer-Kusch
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany.
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
28
|
Abstract
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) levels in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling.
Collapse
Affiliation(s)
- Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Novara F, Groeneweg S, Freri E, Estienne M, Reho P, Matricardi S, Castellotti B, Visser WE, Zuffardi O, Visser TJ. Clinical and Molecular Characteristics of SLC16A2 (MCT8) Mutations in Three Families with the Allan-Herndon-Dudley Syndrome. Hum Mutat 2017; 38:260-264. [PMID: 27805744 DOI: 10.1002/humu.23140] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/11/2022]
Abstract
Mutations in the thyroid hormone transporter SLC16A2 (MCT8) cause the Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and peripheral thyrotoxicosis. Here, we report three newly identified AHDS patients. Previously documented mutations were identified in probands 1 (p.R271H) and 2 (p.G564R), resulting in a severe clinical phenotype. A novel mutation (p.G564E) was identified in proband 3, affecting the same Gly564 residue, but resulting in a relatively mild clinical phenotype. Functional analysis in transiently transfected COS-1 and JEG-3 cells showed a near-complete inactivation of TH transport for p.G564R, whereas considerable cell-type-dependent residual transport activity was observed for p.G564E. Both mutants showed a strong decrease in protein expression levels, but differentially affected Vmax and Km values of T3 transport. Our findings illustrate that different mutations affecting the same residue may have a differential impact on SLC16A2 transporter function, which translates into differences in severity of the clinical phenotype.
Collapse
Affiliation(s)
- Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefan Groeneweg
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elena Freri
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Margherita Estienne
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Paolo Reho
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sara Matricardi
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy.,Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Barbara Castellotti
- SOSD Genetica delle Malattie Neurodegenerative e Metaboliche, U.O Patologia Clinica, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - W Edward Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Shimojima K, Maruyama K, Kikuchi M, Imai A, Inoue K, Yamamoto T. Novel SLC16A2 mutations in patients with Allan-Herndon-Dudley syndrome. Intractable Rare Dis Res 2016; 5:214-7. [PMID: 27672545 PMCID: PMC4995413 DOI: 10.5582/irdr.2016.01051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is an X-linked disorder caused by impaired thyroid hormone transporter. Patients with AHDS usually exhibit severe motor developmental delay, delayed myelination of the brain white matter, and elevated T3 levels in thyroid tests. Neurological examination of two patients with neurodevelopmental delay revealed generalized hypotonia, and not paresis, as the main neurological finding. Nystagmus and dyskinesia were not observed. Brain magnetic resonance imaging demonstrated delayed myelination in early childhood in both patients. Nevertheless, matured myelination was observed at 6 years of age in one patient. Although the key finding for AHDS is elevated free T3, one of the patients showed a normal T3 level in childhood, misleading the diagnosis of AHDS. Genetic analysis revealed two novel SLC16A2 mutations, p.(Gly122Val) and p.(Gly221Ser), confirming the AHDS diagnosis. These results indicate that AHDS diagnosis is sometimes challenging owing to clinical variability among patients.
Collapse
Affiliation(s)
- Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Koichi Maruyama
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Japan
| | - Masahiro Kikuchi
- Department of Pediatrics, Hitachi General Hospital, Hitachi, Japan
| | - Ayako Imai
- Department of Pediatrics, Hitachi General Hospital, Hitachi, Japan
| | - Ken Inoue
- National Institute of Neuroscience, National Center for Neurology and Psychiatry, Kodaira, Japan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
- Address correspondence to: Dr. Toshiyuki Yamamoto, Tokyo Women's Medical University Institute for Integrated Medical Sciences, 8-1 Kawada-cho, Shinjuku-ward, Tokyo 162-8666, Japan. E-mail:
| |
Collapse
|
31
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
32
|
Ono E, Ariga M, Oshima S, Hayakawa M, Imai M, Ochiai Y, Mochizuki H, Namba N, Ozono K, Miyata I. Three novel mutations of the MCT8 (SLC16A2) gene: individual and temporal variations of endocrinological and radiological features. Clin Pediatr Endocrinol 2016; 25:23-35. [PMID: 27212794 PMCID: PMC4860513 DOI: 10.1297/cpe.25.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/17/2015] [Indexed: 11/13/2022] Open
Abstract
We performed genetic analysis and clinical investigations for three patients with
suspected monocarboxylate transporter 8 (MCT8) deficiency. On genetic analysis of the
MCT8(SLC16A2) gene, novel mutations (c.1333C>A;
p.R445S, c.587G>A; p.G196E and c.1063_1064insCTACC; p.R355PfsX64) were identified in
each of three patients. Although thyroid function tests (TFTs) showed the typical pattern
of MCT8 deficiency at the time of genetic diagnosis in all patients, two patients
occasionally were euthyroid. A TRH test revealed low response, exaggerated response and
normal response of TSH, respectively. Endocrinological studies showed gonadotropin (Gn)
deficiency in two adult patients. On ultrasonography, goiter was detected in one patient.
Interestingly, pituitary magnetic resonance imaging (MRI) demonstrated atrophy and
thinness of the pituitary gland in two patients. Our findings suggest that thyroid status
in patients with MCT8 deficiency varies with time of examination, and repeated TFTs are
necessary for patients suspected of MCT8 deficiency before genetic analysis. In addition,
it is noteworthy that some variations were observed on the TRH test and ultrasonography of
the thyroid gland in the present study. Morphological abnormality of the pituitary gland
may be found in some patients, while Gn deficiency should be considered as one of the
complications.
Collapse
Affiliation(s)
- Erina Ono
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Masamichi Ariga
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Sakiko Oshima
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Mika Hayakawa
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Masayuki Imai
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Yukikatsu Ochiai
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Hiroshi Mochizuki
- Department of Endocrinology and Metabolism, Saitama Children's Medical Center, Saitama, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ichiro Miyata
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Braun D, Schweizer U. Efficient Activation of Pathogenic ΔPhe501 Mutation in Monocarboxylate Transporter 8 by Chemical and Pharmacological Chaperones. Endocrinology 2015; 156:4720-30. [PMID: 26368820 DOI: 10.1210/en.2015-1393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) is a thyroid hormone transmembrane transporter expressed in many cell types, including neurons. Mutations that inactivate transport activity of MCT8 cause severe X-linked psychomotor retardation in male patients, a syndrome originally described as the Allan-Herndon-Dudley syndrome. Treatment options currently explored the focus on finding thyroid hormone-like compounds that bypass MCT8 and enter cells through different transporters. Because MCT8 is a multipass transmembrane protein, some pathogenic mutations affect membrane trafficking while potentially retaining some transporter activity. We explore here the effects of chemical and pharmacological chaperones on the expression and transport activity of the MCT8 mutant ΔPhe501. Dimethylsulfoxide, 4-phenylbutyric acid as well as its sodium salt, and the isoflavone genistein increase T3 uptake into MDCK1 cells stably transfected with mutant MCT8-ΔPhe501. We show that ΔPhe501 represents a temperature-sensitive mutant protein that is stabilized by the proteasome inhibitor MG132. 4-Phenylbutyrate has been used to stabilize ΔPhe508 mutant cystic fibrosis transmembrane conductance regulator protein and is in clinical use in patients with urea cycle defects. Genistein is enriched in soy and available as a nutritional supplement. It is effective in stabilizing MCT8-ΔPhe501 at 100 nM concentration. Expression of the L471P mutant is increased in response to phenylbutyrate, but T3 uptake activity is not induced, supporting the notion that the chaperone specifically increases membrane expression. Our findings suggest that certain pathogenic MCT8 mutants may be responsive to (co-)treatment with readily available compounds, which increase endogenous protein function.
Collapse
Affiliation(s)
- Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| |
Collapse
|
34
|
Matheus MG, Lehman RK, Bonilha L, Holden KR. Redefining the Pediatric Phenotype of X-Linked Monocarboxylate Transporter 8 (MCT8) Deficiency: Implications for Diagnosis and Therapies. J Child Neurol 2015; 30:1664-8. [PMID: 25900139 DOI: 10.1177/0883073815578524] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
X-linked monocarboxylate transporter 8 (MCT8) deficiency results from a loss-of-function mutation in the monocarboxylate transporter 8 gene, located on chromosome Xq13.2 (Allan-Herndon-Dudley syndrome). Affected boys present early in life with neurodevelopment delays but have pleasant dispositions and commonly have elevated serum triiodothyronine. They also have marked axial hypotonia and quadriparesis but surprisingly little spasticity early in their disease course. They do, however, have subtle involuntary movements, most often dystonia. The combination of hypotonia and dystonia presents a neurorehabilitation challenge and explains why spasticity-directed therapies have commonly produced suboptimal responses. Our aim was to better define the spectrum of motor disability and to elucidate the neuroanatomic basis of the motor impairments seen in MCT8 deficiency using clinical observation and brain magnetic resonance imaging (MRI) in a cohort of 6 affected pediatric patients. Our findings identified potential imaging biomarkers and suggest that rehabilitation efforts targeting dystonia may be more beneficial than those targeting spasticity in the prepubertal pediatric MCT8 deficiency population.
Collapse
Affiliation(s)
- Maria Gisele Matheus
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca K Lehman
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Kenton R Holden
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA Department of Neurology, Medical University of South Carolina, Charleston, SC, USA Greenwood Genetic Center, Greenwood, SC, USA
| |
Collapse
|
35
|
Armour CM, Kersseboom S, Yoon G, Visser TJ. Further Insights into the Allan-Herndon-Dudley Syndrome: Clinical and Functional Characterization of a Novel MCT8 Mutation. PLoS One 2015; 10:e0139343. [PMID: 26426690 PMCID: PMC4591285 DOI: 10.1371/journal.pone.0139343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Background Mutations in the thyroid hormone (TH) transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization. Methods Proband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter. Results The proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F) was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells. Conclusions We describe a novel MCT8 mutation (S290F) in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction.
Collapse
Affiliation(s)
- Christine M. Armour
- Regional Genetics Program, Children’s Hospital of Eastern Ontario, and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Simone Kersseboom
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Grace Yoon
- Department of Paediatrics, Divisions of Neurology and Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Kersseboom S, Horn S, Visser WE, Chen J, Friesema ECH, Vaurs-Barrière C, Peeters RP, Heuer H, Visser TJ. In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol 2015; 28:1961-70. [PMID: 25389909 DOI: 10.1210/me.2014-1135] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Monocarboxylate transporter 8 (MCT8) transports thyroid hormone (TH) across the plasma membrane. Mutations in MCT8 result in the Allan-Herndon-Dudley syndrome, comprising severe psychomotor retardation and elevated serum T3 levels. Because the neurological symptoms are most likely caused by a lack of TH transport into the central nervous system, the administration of a TH analog that does not require MCT8 for cellular uptake may represent a therapeutic strategy. Here, we investigated the therapeutic potential of the biologically active T3 metabolite Triac (TA3) by studying TA3 transport, metabolism, and action both in vitro and in vivo. Incubation of SH-SY5Y neuroblastoma cells and MO3.13 oligodendrocytes with labeled substrates showed a time-dependent uptake of T3 and TA3. In intact SH-SY5Y cells, both T3 and TA3 were degraded by endogenous type 3 deiodinase, and they influenced gene expression to a similar extent. Fibroblasts from MCT8 patients showed an impaired T3 uptake compared with controls, whereas TA3 uptake was similar in patient and control fibroblasts. In transfected cells, TA3 did not show significant transport by MCT8. Most importantly, treatment of athyroid Pax8-knockout mice and Mct8/Oatp1c1-double knockout mice between postnatal days 1 and 12 with TA3 restored T3-dependent neural differentiation in the cerebral and cerebellar cortex, indicating that TA3 can replace T3 in promoting brain development. In conclusion, we demonstrated uptake of TA3 in neuronal cells and in fibroblasts of MCT8 patients and similar gene responses to T3 and TA3. This indicates that TA3 bypasses MCT8 and may be used to improve the neural status of MCT8 patients.
Collapse
Affiliation(s)
- Simone Kersseboom
- Department of Internal Medicine (S.K., W.E.V., E.C.H.F., R.P.P., T.J.V.) and Rotterdam Thyroid Center (S.K., W.E.V., R.P.P., T.J.V.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Leibniz Institute for Age Research/Fritz Lipmann Institute (S.H., J.C., H.H.), Jena, Germany; Inserm (C.V.-B.), Unité Mixte de Recherche (UMR) 1103, and Centre National de la Recherche Scientifique (C.V.-B.), UMR6293, F-63001 Clermont-Ferrand, France; Clermont Université (C.V.-B.), Université d'Auvergne, Laboratoire GReD, BP 10448, F-63000 Clermont-Ferrand, France; and Leibniz Research Institute for Environmental Medicine (J.C., H.H.), Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jayarama-Naidu R, Johannes J, Meyer F, Wirth EK, Schomburg L, Köhrle J, Renko K. A Nonradioactive Uptake Assay for Rapid Analysis of Thyroid Hormone Transporter Function. Endocrinology 2015; 156:2739-45. [PMID: 25910050 DOI: 10.1210/en.2015-1016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones (TH) are actively taken up into target cells via TH-transmembrane transporters (THTT). Their activity and expression patterns define a layer of endocrine regulation that is poorly understood. Therefore, THTT are potential targets for interfering agents (endocrine disruptors) as well as for pharmacological interventions. Inactivating mutations have been identified as the underlying cause of heritable diseases (monocarboxylate transporter 8-associated Allan-Herndon-Dudley syndrome) and might also define a class of subclinical TH insensitivity. As a basic tool to solve questions regarding THTT substrate specificity, activation or inactivation by compounds and functional changes from mutations, uptake assays with radiolabeled tracers are standard. Due to the need for radioactive isotopes, this technique is limited to screening of labelled substrates and disadvantageous regarding handling, setup, and regulatory issues. To overcome these hurdles, we developed an uptake assay protocol using nonradioactive ligands. In brief, uptake of nonradioactive iodine-containing substrate molecules was monitored via Sandell-Kolthoff reaction. The novel assay was designed to the common microtiter plate layout. As a prove-of-principle, we measured TH uptake by monocarboxylate transporter 8-transfected MDCK1 cells. Titrations with bromosulphthalein as an example for inhibitor screening setups and a side-by-side comparison with the radioactive method prove this assay to be reliable, sensitive, and convenient. Furthermore, the method was applicable on primary murine astrocytes, which enables high-throughput screening studies on in vitro model systems with physiological transporter regulation. Due to its design, it is applicable for high-throughput screening of modulatory compounds, but it is also a safe, inexpensive and an easily accessible method for functional testing of THTT in basic science.
Collapse
Affiliation(s)
- Roopa Jayarama-Naidu
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Jörg Johannes
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Franziska Meyer
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Eva Katrin Wirth
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| |
Collapse
|
38
|
Anık A, Kersseboom S, Demir K, Catlı G, Yiş U, Böber E, van Mullem A, van Herebeek REA, Hız S, Abacı A, Visser TJ. Psychomotor retardation caused by a defective thyroid hormone transporter: report of two families with different MCT8 mutations. Horm Res Paediatr 2015; 82:261-71. [PMID: 25247785 DOI: 10.1159/000365191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Monocarboxylate transporter 8 (MCT8) is essential for thyroid hormone (TH) transport in the brain. Mutations in MCT8 are associated with the Allan-Herndon-Dudley syndrome (AHDS), characterized by severe psychomotor retardation and altered serum thyroid parameters. Here we report two novel mutations in MCT8 and discuss the clinical findings. CASE REPORT AND RESULTS We describe 4 males with AHDS from two unrelated families varying in age from 1.5 to 11 years. All 4 patients presented with typical clinical signs of AHDS, including severe psychomotor retardation, axial hypotonia, lack of speech, diminished muscle mass, increased muscle tone, hyperreflexia, myopathic facies, high T3, low T4 and rT3, and normal/mildly elevated TSH levels. Comparison of patients at different ages suggests the progressive nature of AHDS. Genetic analyses identified a novel missense MCT8 mutation (p.G495A) in family 1 and a 2.8-kb deletion comprising exons 3 and 4 in family 2. Functional analysis of p.G495A revealed impaired TH transport varying from 20 to 85% depending on the cell context. CONCLUSION Here we report 4 AHDS patients in unrelated Turkish families harboring novel MCT8 mutations. Despite the widely different mutations, the clinical phenotypes are very similar and findings support the progressive nature of AHDS.
Collapse
Affiliation(s)
- Ahmet Anık
- Department of Pediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
García-de Teresa B, González-Del Angel A, Reyna-Fabián ME, Ruiz-Reyes MDLL, Calzada-León R, Pérez-Enríquez B, Alcántara-Ortigoza MA. Deletion of exon 1 of the SLC16A2 gene: a common occurrence in patients with Allan-Herndon-Dudley syndrome. Thyroid 2015; 25:361-7. [PMID: 25517855 DOI: 10.1089/thy.2014.0284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Allan-Herndon-Dudley syndrome (AHDS) is an X-linked type of mental retardation resulting from hindered thyroid hormone access to neurons. Clustered nonrecurrent deletions of SLC16A2 exon 1 have been described in three patients with AHDS. We report a fourth patient with such a deletion and discuss possible mechanisms leading to these rearrangements. CASE PRESENTATION A three-and-a-half-year-old male with clinical and biochemical AHDS phenotype and a history of normal neonatal screening for hypothyroidism underwent SLC16A2 molecular analysis. Unexpectedly, he showed skeletal signs of hypothyroidism. METHODS AND RESULTS The exons of the SLC16A2 (MCT8) gene and the sequences surrounding exon 1 were amplified using PCR. The patient had a 36-kb deletion affecting exon 1 of SLC16A2. The deletion junction was subjected to bioinformatic analyses, along with two other reported exon 1 deletion junctions, identifying possible sequence features and mechanisms responsible for such genomic rearrangements. DISCUSSION/CONCLUSION This patient had a classic AHDS phenotype with an unexpectedly large anterior fontanel and delayed bone age and dentition. Bioinformatic analyses suggested that exon 1 deletions in patients with AHDS are caused by microhomology-mediated replicative-based and nonhomologous end-joining mechanisms. Rearrangement susceptibility may be due to the size of intron 1 and the percentage of repeat sequences.
Collapse
Affiliation(s)
- Benilde García-de Teresa
- 1 Laboratorio de Biología Molecular, Departamento de Genética, Instituto Nacional de Pediatría , Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
40
|
Fischer J, Kleinau G, Müller A, Kühnen P, Zwanziger D, Kinne A, Rehders M, Moeller LC, Führer D, Grüters A, Krude H, Brix K, Biebermann H. Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. J Mol Endocrinol 2015; 54:39-50. [PMID: 25527620 DOI: 10.1530/jme-14-0272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The monocarboxylate transporter 8 (MCT8) is a member of the major facilitator superfamily (MFS). These membrane-spanning proteins facilitate translocation of a variety of substrates, MCT8 specifically transports iodothyronines. Mutations in MCT8 are the underlying cause of severe X-linked psychomotor retardation. At the molecular level, such mutations led to deficiencies in substrate translocation due to reduced cell-surface expression, impaired substrate binding, or decreased substrate translocation capabilities. However, the causal relationships between genotypes, molecular features of mutated MCT8, and patient characteristics have not yet been comprehensively deciphered. We investigated the relationship between pathogenic mutants of MCT8 and their capacity to form dimers (presumably oligomeric structures) as a potential regulatory parameter of the transport function of MCT8. Fourteen pathogenic variants of MCT8 were investigated in vitro with respect to their capacity to form oligomers. Particular mutations close to the substrate translocation channel (S194F, A224T, L434W, and R445C) were found to inhibit dimerization of MCT8. This finding is in contrast to those for other transporters or transmembrane proteins, in which substitutions predominantly at the outer-surface inhibit oligomerization. Moreover, specific mutations of MCT8 located in transmembrane helix 2 (del230F, V235M, and ins236V) increased the capacity of MCT8 variants to dimerize. We analyzed the localization of MCT8 dimers in a cellular context, demonstrating differences in MCT8 dimer formation and distribution. In summary, our results add a new link between the functions (substrate transport) and protein organization (dimerization) of MCT8, and might be of relevance for other members of the MFS. Finally, the findings are discussed in relationship to functional data combined with structural-mechanistical insights into MCT8.
Collapse
Affiliation(s)
- Jana Fischer
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Anne Müller
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Peter Kühnen
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Denise Zwanziger
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Anita Kinne
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Maren Rehders
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Lars C Moeller
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Dagmar Führer
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Annette Grüters
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Klaudia Brix
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| |
Collapse
|
41
|
Yamamoto T, Shimojima K, Umemura A, Uematsu M, Nakayama T, Inoue K. SLC16A2 mutations in two Japanese patients with Allan-Herndon-Dudley syndrome. Hum Genome Var 2014; 1:14010. [PMID: 27081503 PMCID: PMC4785542 DOI: 10.1038/hgv.2014.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 11/09/2022] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a neurodevelopmental disorder that manifests as intellectual disability and motor developmental delay. Thyroid hormone transporter dysfunction due to SLC16A2 mutation is the underlying cause of this disorder. We identified a novel (P537del) and a recurrent (A150V) SLC16A2 mutation in Japanese AHDS patients from two different families. A150V co-segregated with S33P. Both patients showed similar clinical features including severe neurological features and delayed myelination. Thyroid function showed a common finding of elevated T3 levels. No clear genotype-phenotype correlation was observed in patients with SLC16A2 alterations.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences , Tokyo, Japan
| | - Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences , Tokyo, Japan
| | - Ayako Umemura
- Department of Pediatrics, Central Hospital, Aichi Human Service Center , Kasugai, Japan
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine , Sendai, Japan
| | - Tojo Nakayama
- Department of Pediatrics, Tohoku University School of Medicine , Sendai, Japan
| | - Ken Inoue
- National Institute of Neuroscience, National Center for Neurology and Psychiatry , Kodaira, Japan
| |
Collapse
|
42
|
A diagnostic approach for cerebral palsy in the genomic era. Neuromolecular Med 2014; 16:821-44. [PMID: 25280894 DOI: 10.1007/s12017-014-8331-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
An ongoing challenge in children presenting with motor delay/impairment early in life is to identify neurogenetic disorders with a clinical phenotype, which can be misdiagnosed as cerebral palsy (CP). To help distinguish patients in these two groups, conventional magnetic resonance imaging of the brain has been of great benefit in "unmasking" many of these genetic etiologies and has provided important clues to differential diagnosis in others. Recent advances in molecular genetics such as chromosomal microarray and next-generation sequencing have further revolutionized the understanding of etiology by more precisely classifying these disorders with a molecular cause. In this paper, we present a review of neurogenetic disorders masquerading as cerebral palsy evaluated at one institution. We have included representative case examples children presenting with dyskinetic, spastic, and ataxic phenotypes, with the intent to highlight the time-honored approach of using clinical tools of history and examination to focus the subsequent etiologic search with advanced neuroimaging modalities and molecular genetic tools. A precise diagnosis of these masqueraders and their differentiation from CP is important in terms of therapy, prognosis, and family counseling. In summary, this review serves as a continued call to remain vigilant for current and other to-be-discovered neurogenetic masqueraders of cerebral palsy, thereby optimizing care for patients and their families.
Collapse
|
43
|
Kurian MA, Jungbluth H. Genetic disorders of thyroid metabolism and brain development. Dev Med Child Neurol 2014; 56:627-34. [PMID: 24665922 PMCID: PMC4231219 DOI: 10.1111/dmcn.12445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 01/28/2023]
Abstract
Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic 'brain-thyroid' disorders.
Collapse
Affiliation(s)
- Manju A Kurian
- Developmental Neurosciences, UCL-Institute of Child HealthLondon, UK,Department of Neurology, Great Ormond Street Hospital for ChildrenLondon, UK,Correspondence to Manju Kurian, Institute of Child Health, Level 1 CMGU Room 111, 30 Guilford Street, London WC1N 1EH, UK. E-mail:
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation TrustLondon, UK,Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College LondonLondon, UK,Clinical Neuroscience Division, Institute of Psychiatry, King's College LondonLondon, UK
| |
Collapse
|
44
|
Campinho MA, Saraiva J, Florindo C, Power DM. Maternal thyroid hormones are essential for neural development in zebrafish. Mol Endocrinol 2014; 28:1136-49. [PMID: 24877564 DOI: 10.1210/me.2014-1032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition.
Collapse
Affiliation(s)
- Marco A Campinho
- Comparative Endocrinology and Integrative Biology Group (M.A.C., J.S., D.M.P.), Centre of Marine Sciences, and Departamento de Ciências Biomédicas e Medicina and Centro de Biomedicina Molecular e Estrutural (C.F.), Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
45
|
Abstract
The description of two novel human defects in the last ten years has uncovered new aspects of thyroid hormone physiology with regard to cell-membrane transport and intracellular metabolism. Mutations in the X-linked monocarboxylate transporter 8 (MCT8) gene result in an invalidating neurodevelopmental phenotype in males and pathognomonic thyroid functions tests with high T3, low rT3, low or low normal T4, and normal or slightly high TSH. Recessive mutations in the selenocysteine insertion sequence binding protein 2 (SBP2) gene present a variable clinical phenotype depending on the severity of the defect and its consequences on the selenoprotein hierarchy. Most characteristic is the thyroid phenotype of low serum T3, high T4, high rT3, and slightly elevated TSH levels. Herein we review all known cases of MCT8 and SBP2 deficiency and describe each disease in terms of the clinical, biochemical, genetic, and therapeutic aspects.
Collapse
Affiliation(s)
- Jiao Fu
- Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland Avenue MC3090, Room M369, Chicago, IL 60637, USA; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China.
| | - Alexandra M Dumitrescu
- Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland Avenue MC3090, Room M369, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Faustino LC, Ortiga-Carvalho TM. Thyroid hormone role on cerebellar development and maintenance: a perspective based on transgenic mouse models. Front Endocrinol (Lausanne) 2014; 5:75. [PMID: 24904526 PMCID: PMC4033007 DOI: 10.3389/fendo.2014.00075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/02/2014] [Indexed: 01/15/2023] Open
Abstract
Cerebellum development is sensitive to thyroid hormone (TH) levels, as THs regulate neuronal migration, differentiation, and myelination. Most effects of THs are mediated by the thyroid hormone receptor (TR) isoforms TRβ1, TRβ2, and TRα1. Studies aimed at identifying TH target genes during cerebellum development have only achieved partial success, as some of these genes do not possess classical TH-responsive elements, and those that do are likely to be temporally and spatially regulated by THs. THs may also affect neurodevelopment by regulating transcription factors that control particular groups of genes. Furthermore, TH action can also be affected by TH transport, which is mediated mainly by monocarboxylate transporter family members. Studies involving transgenic animal models and genome-wide expression analyses have helped to address the unanswered questions regarding the role of TH in cerebellar development. Recently, a growing body of evidence has begun to clarify the molecular, cellular, and functional aspects of THs in the developing cerebellum. This review describes the current findings concerning the effects of THs on cerebellar development and maintenance as well as advances in the genetic animal models used in this field.
Collapse
Affiliation(s)
- Larissa C. Faustino
- Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania M. Ortiga-Carvalho
- Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Tania M. Ortiga-Carvalho, Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, s/n Cidade Universitária, Rio de Janeiro 21941-902, Brazil e-mail:
| |
Collapse
|
47
|
Persani L, Bonomi M. Uncertainties in endocrine substitution therapy for central endocrine insufficiencies: hypothyroidism. HANDBOOK OF CLINICAL NEUROLOGY 2014; 124:397-405. [PMID: 25248602 DOI: 10.1016/b978-0-444-59602-4.00027-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In patients with primary hypothyroidism (PH), L-T4 replacement therapy can safely be adjusted to the individual needs by testing serum thyrotropin (TSH) concentration exclusively. Central hypothyrodism (CeH) is a particular hypothyroid condition due to an insufficient stimulation by TSH of an otherwise normal thyroid gland. CeH is about 1000-fold rarer than PH and raises several challenges for clinicians, mainly because they cannot rely on the systematic use of the reflex TSH strategy for diagnosis or therapy monitoring. Therefore, L-T4 replacement in CeH should rely on the combined evaluation of several biochemical and clinical parameters in order to overcome the lack of accuracy of the single index. The management of CeH replacement is further complicated by the frequent combination with other pituitary deficiencies and their treatment.
Collapse
Affiliation(s)
- Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Division of Endocrine and Metabolic Diseases, San Luca Hospital, Istituto Auxologico Italiano, Milan, Italy.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Division of Endocrine and Metabolic Diseases, San Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
48
|
Yamamoto S, Okuhara K, Tonoki H, Iizuka S, Nihei N, Tajima T. A Novel Deletion Mutation of SLC16A2 Encoding Monocarboxylate Transporter (MCT) 8 in a 26-year-old Japanese Patient with Allan-Herndon-Dudley Syndrome. Clin Pediatr Endocrinol 2013. [PMID: 24170966 PMCID: PMC3809735 DOI: 10.1297/cpe.22.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Allan-Herndon-Dudley Syndrome (AHDS), an X linked condition, is characterized by congenital hypotonia that progresses to spasticity with severe psychomotor delays, in combination with altered thyroid hormone levels, in particular, high serum T3 levels. Recently, this disease was proved to be caused by mutations in SLC16A2 coding for the monocarboxylate thyroid hormone transporter 8 (MCT8). Here we describe a 26-year -old Japanese patient with AHDS who had deletion of exon 3 of SLC16A2.
Collapse
Affiliation(s)
- Sayaka Yamamoto
- Department of Pediatrics, Tenshi Hospital, Social Medical Corporation Bokoi, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Yamamoto S, Okuhara K, Tonoki H, Iizuka S, Nihei N, Tajima T. A Novel Deletion Mutation of SLC16A2 Encoding Monocarboxylate Transporter (MCT) 8 in a 26-year-old Japanese Patient with Allan-Herndon-Dudley Syndrome. Clin Pediatr Endocrinol 2013; 22:83-6. [PMID: 24170966 DOI: 10.1292/cpe.22.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/14/2013] [Indexed: 11/22/2022] Open
Abstract
Allan-Herndon-Dudley Syndrome (AHDS), an X linked condition, is characterized by congenital hypotonia that progresses to spasticity with severe psychomotor delays, in combination with altered thyroid hormone levels, in particular, high serum T3 levels. Recently, this disease was proved to be caused by mutations in SLC16A2 coding for the monocarboxylate thyroid hormone transporter 8 (MCT8). Here we describe a 26-year -old Japanese patient with AHDS who had deletion of exon 3 of SLC16A2.
Collapse
Affiliation(s)
- Sayaka Yamamoto
- Department of Pediatrics, Tenshi Hospital, Social Medical Corporation Bokoi, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Fu J, Refetoff S, Dumitrescu AM. Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr Opin Endocrinol Diabetes Obes 2013; 20:434-40. [PMID: 23974772 PMCID: PMC4061907 DOI: 10.1097/01.med.0000432531.03233.ad] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the most significant findings over the last year regarding human and animal models deficient in thyroid hormone cell-membrane transporters (THCMTs). Although several THCMTs have been modelled in genetically engineered mice, the only THCMT defect known in humans is that caused by mutations in the monocarboxylate transporter 8 (MCT8) gene. RECENT FINDINGS The importance of several amino acid residues has been assessed in vitro to further our understanding on the structure-function of the MCT8. The administration of the thyromimetic compound, diiodothyropropionic acid, has been tested in patients with MCT8 gene mutations, following studies of its use in mice. Another thyroid hormone analogue, 3,3',5,5'-tetraiodothyroacetic acid, was tested in Mct8-deficient mice. The phenotypes of L-type aminoacid transporter 2 and organic anion transporting polypeptide 1C1 deficiencies have been studied in mouse models. Mct8/organic anion transporting polypeptide 1C1 double knockout mice have been shown to manifest neurodevelopmental deficits. Zebrafish is emerging as another vertebrate model that may be useful to study the role of Mct8 in brain development. SUMMARY Studies on the pathogenesis and therapy of MCT8 deficiency are in progress, and new vertebrate models that are suitable to study the neurological consequences of the syndrome are being explored.
Collapse
Affiliation(s)
- Jiao Fu
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics and Genetics, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|