1
|
Hernandez CC, Gimenez LE, Cone RD. Automated Patch Clamp Recordings of GPCR-Gated Ion Channels: Targeting the MC4-R/Kir7.1 Potassium Channel Complex. Methods Mol Biol 2024; 2796:229-248. [PMID: 38856905 DOI: 10.1007/978-1-0716-3818-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor-channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor-ion channel interactions.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
3
|
Liu Z, Hruby VJ. MC4R biased signalling and the conformational basis of biological function selections. J Cell Mol Med 2022; 26:4125-4136. [PMID: 35818295 PMCID: PMC9344818 DOI: 10.1111/jcmm.17441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
The MC4R, a GPCR, has long been a major target for obesity treatment. As the most well‐studied melanocortin receptor subtype, the evolutionary knowledge pushes the drug development and structure–activity relationship (SAR) moving forward. The past decades have witnessed the evolution of scientists' view on GPCRs gradually from the control of a single canonical signalling pathway via a bilateral ‘active‐inactive’ model to a multi‐state alternative model where the ligands' binding affects the selection of the downstream signalling. This evolution brings the concept of biased signalling and the beginning of the next generation of peptide drug development, with the aim of turning from receptor subtype specificity to signalling pathway selectivity. The determination of the value structures of the MC4R revealed insights into the working mechanism of MC4R activation upon binding of agonists. However, new challenge has risen as we seek to unravel the mystery of MC4R signalling selection. Thus, more biased agonists and ligands with representative biological functions are needed to solve the rest of the puzzle.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
5
|
Wilson EA, Sun H, Cui Z, Jahnke MT, Pandey M, Metzger P, Gavrilova O, Chen M, Weinstein LS. G qα/G 11α deficiency in dorsomedial hypothalamus leads to obesity resulting from decreased energy expenditure and impaired sympathetic nerve activity. Am J Physiol Endocrinol Metab 2021; 320:E270-E280. [PMID: 33166186 PMCID: PMC8260363 DOI: 10.1152/ajpendo.00059.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The G-protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of adeno-associated virus (AAV)-Cre-green fluorescent protein (GFP) into the DMH of Gqαflox/flox:G11α-/- mice. Compared with control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22°C), DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT uncoupling protein 1 (Ucp1) gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6°C for 5 h) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30°C). Thus our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.NEW & NOTEWORTHY This paper demonstrates that signaling within the dorsomedial hypothalamus via the G proteins Gqα and G11α, which couple cell surface receptors to the stimulation of phospholipase C, is critical for regulation of energy expenditure, thermoregulation by brown adipose tissue and the induction of white adipose tissue browning.
Collapse
Affiliation(s)
- Eric A Wilson
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Hui Sun
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Zhenzhong Cui
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Marshal T Jahnke
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Peter Metzger
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| |
Collapse
|
6
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
7
|
Yang Z, Liang XF, Li GL, Tao YX. Biased signaling in fish melanocortin-4 receptors (MC4Rs): Divergent pharmacology of four ligands on spotted scat (Scatophagus argus) and grass carp (Ctenopharyngodon idella) MC4Rs. Mol Cell Endocrinol 2020; 515:110929. [PMID: 32615281 DOI: 10.1016/j.mce.2020.110929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
The melanocortin-4 receptor (MC4R) plays a critical role in the regulation of energy homeostasis in both mammals and fish. Several fish MC4Rs recently characterized have high constitutive activities, potentially associated with food intake and growth rate. In the present study, we systematically investigated the effects of four human MC4R (hMC4R) antagonists, including agouti-related peptide (AgRP), Ipsen 5i, ML00253764, and MCL0020, on the cAMP and ERK1/2 signaling of two fish MC4Rs: spotted scat (Scatophagus argus) MC4R (saMC4R) and grass carp (Ctenopharyngodon idella) MC4R (ciMC4R), with hMC4R as a control. We showed that both saMC4R and ciMC4R were constitutively active with significantly increased basal cAMP levels. AgRP acted as an inverse agonist in cAMP signaling pathway in both fish MC4Rs whereas MCL0020 functioned as an inverse agonist for ciMC4R but a weak neutral antagonist for saMC4R. Ipsen 5i and MCL0020 behaved as neutral allosteric modulators in the cAMP signaling of fish MC4Rs. The saMC4R and ciMC4R had similar basal pERK1/2 levels as hMC4R and the pERK1/2 levels of the two fish MC4Rs were significantly increased upon stimulation with all four ligands. In summary, our studies demonstrated the existence of biased signaling in fish MC4R. We also showed dramatic pharmacological differences of human and fish MC4Rs with synthetic ligands. Our data provided novel insights and led to a better understanding of fish MC4R pharmacology.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, United States
| | - Xu-Fang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei, 430070, China
| | - Guang-Li Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, United States.
| |
Collapse
|
8
|
Sharma S, Thibodeau S, Lytton J. Signal pathway analysis of selected obesity-associated melanocortin-4 receptor class V mutants. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165835. [PMID: 32423884 DOI: 10.1016/j.bbadis.2020.165835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/18/2020] [Accepted: 05/06/2020] [Indexed: 01/30/2023]
Abstract
Mutations in the melanocortin-4 receptor (MC4R) in humans are the single most common cause of rare monogenic 1severe obesity, and polymorphisms in this gene are also associated with obesity in the general population. The MC4R is a G-protein coupled receptor, and in vitro analysis suggests that MC4R can signal through several different G-protein subtypes. In vivo studies show complex outcomes, with different G-proteins in different cells responsible for different physiological responses linked to obesity. There is an emerging consensus that Gαq-linked signals in the paraventricular nucleus of the hypothalamus are essential for normal satiety and the control of feeding behavior. Many MC4R mutations have been analyzed for the molecular defect underlying their association with obesity, which has revealed a group - referred to as class V mutants - with no measurable change in receptor function. However, Gαq-linked signaling leading to Ca2+ release has only been examined for a few MC4R mutations. In this study, we have examined seven MC4R class V mutants, as well as two other well-characterized signal-defective mutants as controls, with respect to G-protein signaling coupled to cAMP production, mitogen-activated protein kinase (MAPK) activation, and Ca2+ release. These data confirm, with one exception (E308K), the expected pattern of cAMP and MAPK signaling for wild type and mutant MC4R. Our results also demonstrate normal MSH-induced Ca2+ signals for wild type as well as all the class V mutants, but not the signal-defective controls. Thus, the means by which class V MC4R mutations lead to obesity remains an open question.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Stephanie Thibodeau
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Jonathan Lytton
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
9
|
Human nonvisual opsin 3 regulates pigmentation of epidermal melanocytes through functional interaction with melanocortin 1 receptor. Proc Natl Acad Sci U S A 2019; 116:11508-11517. [PMID: 31097585 DOI: 10.1073/pnas.1902825116] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Opsins form a family of light-activated, retinal-dependent, G protein-coupled receptors (GPCRs) that serve a multitude of visual and nonvisual functions. Opsin 3 (OPN3 or encephalopsin), initially identified in the brain, remains one of the few members of the mammalian opsin family with unknown function and ambiguous light absorption properties. We recently discovered that OPN3 is highly expressed in human epidermal melanocytes (HEMs)-the skin cells that produce melanin. The melanin pigment is a critical defense against ultraviolet radiation (UVR), and its production is mediated by the Gαs-coupled melanocortin 1 receptor (MC1R). The physiological function and light sensitivity of OPN3 in melanocytes are yet to be determined. Here, we show that in HEMs, OPN3 acts as a negative regulator of melanin production by modulating the signaling of MC1R. OPN3 negatively regulates the cyclic adenosine monophosphate (cAMP) response evoked by MC1R via activation of the Gαi subunit of G proteins, thus decreasing cellular melanin levels. In addition to their functional relationship, OPN3 and MC1R colocalize at both the plasma membrane and in intracellular structures, and can form a physical complex. Remarkably, OPN3 can bind retinal, but does not mediate light-induced signaling in melanocytes. Our results identify a function for OPN3 in the regulation of the melanogenic pathway in epidermal melanocytes; we have revealed a light-independent function for the poorly characterized OPN3 and a pathway that greatly expands our understanding of melanocyte and skin physiology.
Collapse
|
10
|
Panossian A, Seo EJ, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:257-284. [PMID: 30466987 DOI: 10.1016/j.phymed.2018.09.204] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Adaptogens are natural compounds or plant extracts that increase adaptability and survival of organisms under stress. Adaptogens stimulate cellular and organismal defense systems by activating intracellular and extracellular signaling pathways and expression of stress-activated proteins and neuropeptides. The effects adaptogens on mediators of adaptive stress response and longevity signaling pathways have been reported, but their stress-protective mechanisms are still not fully understood. AIM OF THE STUDY The aim of this study was to identify key molecular mechanisms of adaptogenic plants traditionally used to treat stress and aging-related disorders, i.e., Rhodiola rosea, Eleutherococcus senticosus, Withania somnifera, Rhaponticum carthamoides, and Bryonia alba. MATERIALS AND METHODS To investigate the underlying molecular mechanisms of adaptogens, we conducted RNA sequencing to profile gene expression alterations in T98G neuroglia cells upon treatment of adaptogens and analyzed the relevance of deregulated genes to adaptive stress-response signaling pathways using in silico pathway analysis software. RESULTS AND DISCUSSION At least 88 of the 3516 genes regulated by adaptogens were closely associated with adaptive stress response and adaptive stress-response signaling pathways (ASRSPs), including neuronal signaling related to corticotropin-releasing hormone, cAMP-mediated, protein kinase A, and CREB; pathways related to signaling involving CXCR4, melatonin, nitric oxide synthase, GP6, Gαs, MAPK, neuroinflammation, neuropathic pain, opioids, renin-angiotensin, AMPK, calcium, and synapses; and pathways associated with dendritic cell maturation and G-coupled protein receptor-mediated nutrient sensing in enteroendocrine cells. All samples tested showed significant effects on the expression of genes encoding neurohormones CRH, GNRH, UCN, G-protein-coupled and other transmembrane receptors TLR9, PRLR, CHRNE, GP1BA, PLXNA4, a ligand-dependent nuclear receptor RORA, transmembrane channels, transcription regulators FOS, FOXO6, SCX, STAT5A, ZFPM2, ZNF396, ZNF467, protein kinases MAPK10, MAPK13, MERTK, FLT1, PRKCH, ROS1, TTN), phosphatases PTPRD, PTPRR, peptidases, metabolic enzymes, a chaperone (HSPA6), and other proteins, all of which modulate numerous life processes, playing key roles in several canonical pathways involved in defense response and regulation of homeostasis in organisms. It is for the first time we report that the molecular mechanism of actions of melatonin and plant adaptogens are alike, all adaptogens tested activated the melatonin signaling pathway by acting through two G-protein-coupled membrane receptors MT1 and MT2 and upregulation of the ligand-specific nuclear receptor RORA, which plays a role in intellectual disability, neurological disorders, retinopathy, hypertension, dyslipidemia, and cancer, which are common in aging. Furthermore, melatonin activated adaptive signaling pathways and upregulated expression of UCN, GNRH1, TLR9, GP1BA, PLXNA4, CHRM4, GPR19, VIPR2, RORA, STAT5A, ZFPM2, ZNF396, FLT1, MAPK10, MERTK, PRKCH, and TTN, which were commonly regulated by all adaptogens tested. We conclude that melatonin is an adaptation hormone playing an important role in regulation of homeostasis. Adaptogens presumably worked as eustressors ("stress-vaccines") to activate the cellular adaptive system by inducing the expression of ASRSPs, which then reciprocally protected cells from damage caused by distress. Functional investigation by interactive pathways analysis demonstrated that adaptogens activated ASRSPs associated with stress-induced and aging-related disorders such as chronic inflammation, cardiovascular health, neurodegenerative cognitive impairment, metabolic disorders, and cancer. CONCLUSION This study has elucidated the genome-wide effects of several adaptogenic herbal extracts in brain cells culture. These data highlight the consistent activation of ASRSPs by adaptogens in T98G neuroglia cells. The extracts affected many genes playing key roles in modulation of adaptive homeostasis, indicating their ability to modify gene expression to prevent stress-induced and aging-related disorders. Overall, this study provides a comprehensive look at the molecular mechanisms by which adaptogens exerts stress-protective effects.
Collapse
Affiliation(s)
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
11
|
Nakamura K, Nakamura Y. Hunger and Satiety Signaling: Modeling Two Hypothalamomedullary Pathways for Energy Homeostasis. Bioessays 2018; 40:e1700252. [DOI: 10.1002/bies.201700252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative PhysiologyNagoya University Graduate School of MedicineNagoya466‐8550Japan
- PRESTOJapan Science and Technology AgencyKawaguchiSaitama332‐0012Japan
| | - Yoshiko Nakamura
- Department of Integrative PhysiologyNagoya University Graduate School of MedicineNagoya466‐8550Japan
| |
Collapse
|
12
|
Lensing CJ, Freeman KT, Schnell SM, Speth RC, Zarth AT, Haskell-Luevano C. Developing a Biased Unmatched Bivalent Ligand (BUmBL) Design Strategy to Target the GPCR Homodimer Allosteric Signaling (cAMP over β-Arrestin 2 Recruitment) Within the Melanocortin Receptors. J Med Chem 2018; 62:144-158. [PMID: 29669202 DOI: 10.1021/acs.jmedchem.8b00238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the functional relevance of G protein-coupled receptor (GPCR) homodimerization has been limited by the insufficient tools to assess asymmetric signaling occurring within dimers comprised of the same receptor type. We present unmatched bivalent ligands (UmBLs) to study the asymmetric function of melanocortin homodimers. UmBLs contain one agonist and one antagonist pharmacophore designed to target a melanocortin homodimer such that one receptor is occupied by an agonist and the other receptor by an antagonist pharmacophore. First-in-class biased UmBLs (BUmBLs) targeting the human melanocortin-4 receptor (hMC4R) were discovered. The BUmBLs displayed biased agonism by potently stimulating cAMP signaling (EC50 ∼ 2-6 nM) but minimally activating the β-arrestin recruitment pathway (≤55% maximum signal at 10 μM). To our knowledge, we report the first single-compound strategy to pharmacologically target melanocortin receptor allosteric signaling that occurs between homodimers that can be applied straightforwardly in vitro and in vivo to other GPCR systems.
Collapse
Affiliation(s)
- Cody J Lensing
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States
| | - Robert C Speth
- College of Pharmacy , Nova Southeastern University , Fort Lauderdale , Florida 33328-2018 , United States.,Department of Pharmacology and Physiology , Georgetown University , Washington, D.C. 20057 , United States
| | - Adam T Zarth
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States.,Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE, 2-210 CCRB , Minneapolis , Minnesota 55455 , United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
13
|
Nepomuceno D, Kuei C, Dvorak C, Lovenberg T, Liu C, Bonaventure P. Re-evaluation of Adrenocorticotropic Hormone and Melanocyte Stimulating Hormone Activation of GPR139 in Vitro. Front Pharmacol 2018; 9:157. [PMID: 29599718 PMCID: PMC5863515 DOI: 10.3389/fphar.2018.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
It is now well established that GPR139, a G-protein coupled receptor exclusively expressed in the brain and pituitary, is activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) via Gαq-coupling. The in vitro affinity and potency values of L-Trp and L-Phe are within the physiological concentration ranges of L-Trp and L-Phe. A recent paper suggests that adrenocorticotropic hormone (ACTH), α and β melanocyte stimulating hormones (α-MSH and β-MSH) and derivatives α-MSH1-9/α-MSH1-10 can also activate GPR139 in vitro. We tested this hypothesis using guanosine 5′-O-(3-[35S]thio)-triphosphate binding (GTPγS), calcium mobilization and [3H]JNJ-63533054 radioligand binding assays. In the GTPγS binding assay, α-MSH, α-MSH1-9/α-MSH1-10, and β-MSH had no effect on [35S]GTPγS incorporation in cell membranes expressing GPR139 up to 30 μM in contrast to the concentration dependent activation produced by L-Trp, JNJ-63533054, and TC-09311 (two small molecule GPR139 agonists). ACTH slightly decreased the basal level of [35S]GTPγS incorporation at 30 μM. In the GPR139 radioligand binding assay, a moderate displacement of [3H]JNJ-63533054 binding by ACTH and β-MSH was observed at 30 μM (40 and 30%, respectively); α-MSH, α-MSH1-9/α-MSH1-10 did not displace any specific binding at 30 μM. In three different host cell lines stably expressing GPR139, α-MSH, and β-MSH did not stimulate calcium mobilization in contrast to L-Trp, JNJ-63533054, and TC-09311. ACTH, α-MSH1-9/α-MSH1-10 only weakly stimulated calcium mobilization at 30 μM (<50% of EC100). We then co-transfected GPR139 with the three melanocortin (MC) receptors (MC3R, MC4R, and MC5R) to test the hypothesis that ACTH, α-MSH, and β-MSH might stimulate calcium mobilization through a MCR/GPR139 interaction. All three MC peptides stimulated calcium response in cells co-transfected with GPR139 and MC3R, MC4R, or MC5R. The MC peptides did not stimulate calcium response in cells expressing MC3R or MC5R alone consistent with the Gs signaling transduction pathway of these receptors. In agreement with the previously reported multiple signaling pathways of MC4R, including Gq transduction pathway, the MC peptides produced a calcium response in cells expressing MC4R alone. Together, our findings do not support that GPR139 is activated by ACTH, α-MSH, and β-MSH at physiologically relevant concentration but we did unravel an in vitro interaction between GPR139 and the MCRs.
Collapse
Affiliation(s)
- Diane Nepomuceno
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Chester Kuei
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Curt Dvorak
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | | - Changlu Liu
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | |
Collapse
|
14
|
Melanocortins, Melanocortin Receptors and Multiple Sclerosis. Brain Sci 2017; 7:brainsci7080104. [PMID: 28805746 PMCID: PMC5575624 DOI: 10.3390/brainsci7080104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
The melanocortins and their receptors have been extensively investigated for their roles in the hypothalamo-pituitary-adrenal axis, but to a lesser extent in immune cells and in the nervous system outside the hypothalamic axis. This review discusses corticosteroid dependent and independent effects of melanocortins on the peripheral immune system, central nervous system (CNS) effects mediated through neuronal regulation of immune system function, and direct effects on endogenous cells in the CNS. We have focused on the expression and function of melanocortin receptors in oligodendroglia (OL), the myelin producing cells of the CNS, with the goal of identifying new therapeutic approaches to decrease CNS damage in multiple sclerosis as well as to promote repair. It is clear that melanocortin signaling through their receptors in the CNS has potential for neuroprotection and repair in diseases like MS. Effects of melanocortins on the immune system by direct effects on the circulating cells (lymphocytes and monocytes) and by signaling through CNS cells in regions lacking a mature blood brain barrier are clear. However, additional studies are needed to develop highly effective MCR targeted therapies that directly affect endogenous cells of the CNS, particularly OL, their progenitors and neurons.
Collapse
|
15
|
Yang LK, Tao YX. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2486-2495. [PMID: 28433713 DOI: 10.1016/j.bbadis.2017.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
The global prevalence of obesity highlights the importance of understanding on regulation of energy homeostasis. The central melanocortin system is an important intersection connecting the neural pathways controlling satiety and energy expenditure to regulate energy homeostasis by sensing and integrating the signals of external stimuli. In this system, neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy homeostasis. Recently, multiple intracellular signaling pathways and biased signaling at neural MCRs have been discovered, providing new insights into neural MCR signaling. This review attempts to summarize biased signaling including biased receptor mutants (both naturally occurring and lab-generated) and biased ligands at neural MCRs, and to provide a better understanding of obesity pathogenesis and new therapeutic implications for obesity treatment.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
16
|
Huang H, Wang W, Tao YX. Pharmacological chaperones for the misfolded melanocortin-4 receptor associated with human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2496-2507. [PMID: 28284973 DOI: 10.1016/j.bbadis.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
The melanocortin-4 receptor (MC4R) plays a vital role in regulating energy homeostasis. Mutations in the MC4R cause early-onset severe obesity. The majority of loss of function MC4R mutants are retained intracellularly, many of which are not terminally misfolded and can be stabilized and targeted to the plasma membrane by different chaperones. Some of the mutants might be functional once coaxed to the cell surface. Molecular chaperones and chemical chaperones correct the misfolding of some mutant MC4Rs. However, their therapeutic application is very limited due to their non-specific mechanism of action and, for chemical chaperone, high dosage needed to be effective. Several pharmacological chaperones have been identified for the MC4R and Ipsen 5i and Ipsen 17 are the most potent and efficacious. Here we provide a comprehensive review on how different approaches have been applied to rescue misfolded MC4R mutants. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Hui Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Wei Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
17
|
Agosti F, Cordisco Gonzalez S, Martinez Damonte V, Tolosa MJ, Di Siervi N, Schioth HB, Davio C, Perello M, Raingo J. Melanocortin 4 receptor constitutive activity inhibits L-type voltage-gated calcium channels in neurons. Neuroscience 2017; 346:102-112. [PMID: 28093215 DOI: 10.1016/j.neuroscience.2017.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (CaV2.2) are inhibited by MC4R agonist-dependent activation, while the CaV subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect CaV, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, CaV1.2/1.3) and neurotransmitter release (N- and P/Q-type, CaV2.2 and CaV2.1). We found that MC4R constitutive activity inhibits specifically CaV1.2/1.3 and CaV2.1 subtypes of CaV. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through Gs and Gi/o pathways to impact on different CaV subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes CaV inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.
Collapse
Affiliation(s)
- F Agosti
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - S Cordisco Gonzalez
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - V Martinez Damonte
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - M J Tolosa
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - N Di Siervi
- Instituto de Investigaciones Farmacológicas, ININFA, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - H B Schioth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - C Davio
- Instituto de Investigaciones Farmacológicas, ININFA, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - M Perello
- Neurophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - J Raingo
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| |
Collapse
|
18
|
Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression. Sci Rep 2016; 6:32776. [PMID: 27612207 PMCID: PMC5017209 DOI: 10.1038/srep32776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/15/2016] [Indexed: 01/16/2023] Open
Abstract
Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor.
Collapse
|
19
|
Xiong Q, Chai J, Chen M, Tao YX. Identification and pharmacological analyses of eight naturally occurring caprine melanocortin-1 receptor mutations in three different goat breeds. Gen Comp Endocrinol 2016; 235:1-10. [PMID: 27229376 DOI: 10.1016/j.ygcen.2016.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022]
Abstract
The melanocortin-1 receptor (MC1R) belongs to the family of seven transmembrane G protein-coupled receptors and plays a central role in animal coat color. We have sequenced the full coding region of 954bp of the MC1R gene in 72 goats of three breeds with different coat colors and identified five missense mutations (K226E, F250V, G255D, V265I, and C267W) and one silent mutation (A61A), among which two haplotypes with complete linkage disequilibrium (A61A and F250V, G255D and V265I) were found. We performed detailed functional studies on the six single and two double mutations in transiently transfected HEK293T cells. We found that none of the mutants had decreased cell surface expression. However, all the mutants except A61A had decreased constitutive activities in the cAMP pathway. Five mutations (F250V, G255D, G267W, A61A/F250V, G255D/V265I) exhibited significant defects in ligand binding and consequent agonist-induced cAMP signaling and ERK1/2 activation. Additionally, K226E, with normal ligand binding affinity and cAMP signaling, showed a significant defect in ERK1/2 activation, exhibiting biased signaling. Co-expression studies showed that the five defective mutants did not affect wild-type MC1R signaling, hence they were not dominant negative. In summary, we provided detailed data of these goat MC1R mutations leading to a better understanding of the role of MC1R mutation and coat color in goats.
Collapse
Affiliation(s)
- Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430070, China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, United States
| | - Jin Chai
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, United States; Ministry of Agriculture Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430070, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, United States.
| |
Collapse
|
20
|
Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 2016; 19:206-19. [PMID: 26814590 DOI: 10.1038/nn.4202] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022]
Abstract
The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis.
Collapse
|
21
|
Yang Z, Tao YX. Biased signaling initiated by agouti-related peptide through human melanocortin-3 and -4 receptors. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1485-94. [PMID: 27208795 DOI: 10.1016/j.bbadis.2016.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/01/2023]
Abstract
The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have been increasingly recognized as important regulators of energy homeostasis. The orexigenic agouti-related peptide (AgRP), initially identified as an endogenous antagonist for both neural MCRs, has been suggested to be a biased agonist of MC4R independent of its antagonizing effects. In the present study, we sought to determine the potential of AgRP to regulate the activation of intracellular kinases, including extracellular signal-regulated kinase 1 and 2 (ERK1/2), AKT and AMP-activated protein kinase (AMPK), through neural MCRs. We showed that AgRP acted as a biased agonist in human MC3R (hMC3R), decreasing cAMP activity of constitutively active mutant (F347A) hMC3R but stimulating ERK1/2 activation in both wide type and F347A hMC3Rs. AgRP-stimulated ERK1/2 phosphorylation through MC3R was abolished by protein kinase A (PKA) inhibitor H-89 but not Rp-cAMPS, whereas AgRP-initiated ERK1/2 activation through MC4R was inhibited by phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002. Both NDP-MSH and AgRP treatment induced significant AKT phosphorylation in GT1-7 cells but not in MC3R- or MC4R-transfected HEK293T cells. The phosphorylated AMPK levels in both GT1-7 cells and HERK293T cells transfected with neural MCRs were significantly decreased upon stimulation with NDP-MSH but not with AgRP. In summary, we provided novel data for AgRP-initiated multiple intracellular signaling pathways, demonstrating biased agonism of AgRP in both neural MCRs, leading to a better understanding of neural MCR pharmacology.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Agouti-Related Protein/metabolism
- Amino Acid Substitution
- Central Nervous System/metabolism
- Cyclic AMP/metabolism
- HEK293 Cells
- Humans
- Kinetics
- Ligands
- MAP Kinase Signaling System
- Mutagenesis, Site-Directed
- Peptide Fragments/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Zhao Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
22
|
Shi Z, Ji K, Yang S, Zhang J, Yao J, Dong C, Fan R. Biological characteristics of mouse skin melanocytes. Tissue Cell 2016; 48:114-20. [DOI: 10.1016/j.tice.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/04/2016] [Indexed: 01/28/2023]
|
23
|
Ramírez D, Saba J, Carniglia L, Durand D, Lasaga M, Caruso C. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus. Mol Cell Endocrinol 2015; 411:28-37. [PMID: 25892444 DOI: 10.1016/j.mce.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023]
Abstract
Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus.
Collapse
Affiliation(s)
- D Ramírez
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - J Saba
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - L Carniglia
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - D Durand
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - M Lasaga
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - C Caruso
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Modi ME, Inoue K, Barrett CE, Kittelberger KA, Smith DG, Landgraf R, Young LJ. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole. Neuropsychopharmacology 2015; 40:1856-65. [PMID: 25652247 PMCID: PMC4839509 DOI: 10.1038/npp.2015.35] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 12/21/2022]
Abstract
The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system.
Collapse
Affiliation(s)
- Meera E Modi
- Center Translational Social Neuroscience, Silvio O Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Neuroscience Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Kiyoshi Inoue
- Center Translational Social Neuroscience, Silvio O Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Catherine E Barrett
- Center Translational Social Neuroscience, Silvio O Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kara A Kittelberger
- Center Translational Social Neuroscience, Silvio O Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Daniel G Smith
- Neuroscience Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Autism Speaks, Boston, MA, USA
| | | | - Larry J Young
- Center Translational Social Neuroscience, Silvio O Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
25
|
Jackson DS, Ramachandrappa S, Clark AJ, Chan LF. Melanocortin receptor accessory proteins in adrenal disease and obesity. Front Neurosci 2015; 9:213. [PMID: 26113808 PMCID: PMC4461818 DOI: 10.3389/fnins.2015.00213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/28/2015] [Indexed: 12/02/2022] Open
Abstract
Melanocortin receptor accessory proteins (MRAPs) are regulators of the melanocortin receptor family. MRAP is an essential accessory factor for the functional expression of the MC2R/ACTH receptor. The importance of MRAP in adrenal gland physiology is demonstrated by the clinical condition familial glucocorticoid deficiency type 2. The role of its paralog melanocortin-2-receptor accessory protein 2 (MRAP2), which is predominantly expressed in the hypothalamus including the paraventricular nucleus, has recently been linked to mammalian obesity. Whole body deletion and targeted brain specific deletion of the Mrap2 gene result in severe obesity in mice. Interestingly, Mrap2 complete knockout (KO) mice have increased body weight without detectable changes to food intake or energy expenditure. Rare heterozygous variants of MRAP2 have been found in humans with severe, early-onset obesity. In vitro data have shown that Mrap2 interaction with the melanocortin-4-receptor (Mc4r) affects receptor signaling. However, the mechanism by which Mrap2 regulates body weight in vivo is not fully understood and differences between the phenotypes of Mrap2 and Mc4r KO mice may point toward Mc4r independent mechanisms.
Collapse
Affiliation(s)
- David S Jackson
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Shwetha Ramachandrappa
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Adrian J Clark
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| |
Collapse
|
26
|
Asraf H, Amsterdam A, Ben-Menahem D. Modulation of the steroidogenic related activity according to the design of single-chain bovine FSH analogs. Gen Comp Endocrinol 2015; 216:171-81. [PMID: 25863346 DOI: 10.1016/j.ygcen.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/22/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
Single-chain (SC) gonadotropins have been genetically engineered to increase the repertoire of analogs for potential use in humans and domestic animals. The major aim of the current study was to examine the steroidogenic related activity of SC FSH analogs carrying structural differences. To address this issue, we designed and expressed three SC bovine FSH analogs in CHO cells: (i) FSHβα in which the tethered subunit domains are linked in tandem; (ii) FSHβCTPα that contains the carboxy terminal peptide (CTP) of the human choriogonadotropin (hCG) β subunit as a spacer, and (iii) FSHβboCTPα in which the linker is derived from a CTP-like sequence (boCTP) decoded from the bovine LHβ DNA. The data suggested that the secretion efficiency of these variants from the transfected cells was unaffected by the presence or absence of the CTP linker, N-glycans were attached to the analogs and the hCGβ-CTP domain in the FSHβCTPα variant was O-glycosylated. In a rat immortalized granulosa cell bioassay the potency of the three variants towards progesterone secretion varied. In immature mice, the analogs increased the ovary weight and induced StAR, Cyp11a (P450scc), Cyp17 (P450c17) and Cyp19 (P450aromatase) transcripts. However, the dose dependence and amplitude of these transcript levels differed in response to FSHβα, FSHβboCTPα and FSHβCTPα. Collectively, these data suggest that the design of the FSH analog can modulate the bioactivity in vitro and in vivo. A systematic analysis of receptor activation with ligands carrying structural differences may identify new regulatory factor/s involved in the pleiotropic FSH activity.
Collapse
Affiliation(s)
- Hila Asraf
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abraham Amsterdam
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Ben-Menahem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
27
|
Tao YX. Constitutive activity in melanocortin-4 receptor: biased signaling of inverse agonists. ADVANCES IN PHARMACOLOGY 2015; 70:135-54. [PMID: 24931195 DOI: 10.1016/b978-0-12-417197-8.00005-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a critical regulator of energy homeostasis, including both energy intake and energy expenditure. It mediates the actions of a number of hormones on energy balance. The endogenous ligands for MC4R include peptide agonists derived from processing of proopiomelanocortin and the antagonist Agouti-related peptide (AgRP). Wild-type MC4R has some basal (constitutive) activity. Naturally occurring and laboratory-generated mutations have been identified, which results in either increased or decreased basal activities. Impaired basal signaling has been suggested to be a cause of dysregulated energy homeostasis and early-onset obesity, although several constitutively active mutations have also been identified from obese patients. AgRP and several small-molecule antagonists have been shown to be inverse agonists in the Gs-cAMP pathway. However, in the extracellular signal-regulated kinase (ERK) 1/2 pathway, we showed that these inverse agonists are potent agonists, demonstrating convincingly that they are biased ligands. We also showed that some mutations that do not cause constitutive activation in the Gs-cAMP pathway cause constitutive activation in the ERK1/2 pathway, suggesting that they are biased receptors. The physiological and potential pathophysiological relevance of the biased constitutive signaling in MC4R and therapeutic potential remain to be investigated.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
28
|
Abstract
The melanocortin 3 receptor (MC3R) regulates several physiological functions, including feed efficiency, nutrient partitioning, fasting response, natriuresis, and immune reactions. Naturally occurring mutations in the MC3R gene have been shown to be associated with increased adiposity and lung diseases such as tuberculosis and cystic fibrosis. The DRY motif at the cytoplasmic end of transmembrane domain 3 (TM3) and the second intracellular loop 2 (ICL2) are known to be important for receptor function in several G protein-coupled receptors (GPCRs). To gain a better understanding of the functions of this domain in MC3R, we performed alanine-scanning mutagenesis on 18 residues. We showed that alanine mutation of 11 residues reduced the maximal binding and maximal cAMP production stimulated by agonists. Mutation of two residues did not change maximal binding but resulted in impaired signaling in the Gs-cAMP pathway. Mutation of five residues impaired signaling in the ERK1/2 pathway. We have also shown that alanine mutants of seven residues that were defective in the cAMP pathway were not defective in the ERK1/2 pathway, demonstrating biased signaling. In summary, we demonstrated that the cytoplasmic end of TM3 and the ICL2 were critical for MC3R function. We also reported for the first time biased signaling in MC3R.
Collapse
Affiliation(s)
- Hui Huang
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USA
| | - Ya-Xiong Tao
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USA
| |
Collapse
|
29
|
He S, Tao YX. Defect in MAPK signaling as a cause for monogenic obesity caused by inactivating mutations in the melanocortin-4 receptor gene. Int J Biol Sci 2014; 10:1128-37. [PMID: 25332687 PMCID: PMC4202029 DOI: 10.7150/ijbs.10359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is a Family A G protein-coupled receptor that plays an essential role in regulating energy homeostasis, including both energy intake and expenditure. Mutations leading to a reduced MC4R function confer a major gene effect for obesity. More than 170 distinct mutations have been identified in humans. In addition to the conventional Gs-stimulated cAMP pathway, the MC4R also activates MAPKs, especially ERK1/2. We also showed there is biased signaling in the two signaling pathways, with inverse agonists in the Gs-cAMP pathway acting as agonists for the ERK1/2 pathway. In the current study, we sought to determine whether defects in basal or agonist-induced ERK1/2 activation in MC4R mutants might potentially contribute to obesity pathogenesis in patients carrying these mutations. The constitutive and ligand-stimulated ERK1/2 activation were measured in wild type and 73 naturally occurring MC4R mutations. We showed that nineteen mutants had significantly decreased basal pERK1/2 level, and five Class V variants (where no functional defects have been identified previously), C40R, V50M, T112M, A154D and S295P, had impaired ligand-stimulated ERK1/2 activation. Our studies demonstrated for the first time that decreased basal or ligand-stimulated ERK1/2 signaling might contribute to obesity pathogenesis caused by mutations in the MC4R gene. We also observed biased signaling in 25 naturally occurring mutations in the Gs-cAMP and ERK1/2 pathways.
Collapse
Affiliation(s)
- Shan He
- 1. Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519, USA. ; 2. Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China
| | - Ya-Xiong Tao
- 1. Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519, USA
| |
Collapse
|
30
|
Sivertsen B, Holliday N, Madsen AN, Holst B. Functionally biased signalling properties of 7TM receptors - opportunities for drug development for the ghrelin receptor. Br J Pharmacol 2014; 170:1349-62. [PMID: 24032557 DOI: 10.1111/bph.12361] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/17/2013] [Accepted: 08/06/2013] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several different signalling pathways including Gαq , Gαi/o , Gα12/13 and arrestin recruitment. These multiple signalling pathways allow for functionally biased signalling, where one signalling pathway may be favoured over another either by selective ligands or through mutations in the receptor. In the present review, we have described how ligands and mutations in the 7TM receptor may bias the receptors to favour either one G-protein over another or to promote G-protein independent signalling pathways rather than G-protein-dependent pathways. For the ghrelin receptor, both agonist and inverse agonists have been demonstrated to signal more strongly through the Gαq -coupled pathway than the Gα12/13 -coupled pathway. Similarly a ligand that promotes Gαq coupling over Gαi coupling has been described and it has been suggested that several different active conformations of the receptor may exist dependent on the properties of the agonist. Importantly, ligands with such biased signalling properties may allow the development of drugs that selectively modulate only the therapeutically relevant physiological functions, thereby decreasing the risk of side effects. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- B Sivertsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
31
|
Li XF, Lytton J. An essential role for the K+-dependent Na+/Ca2+-exchanger, NCKX4, in melanocortin-4-receptor-dependent satiety. J Biol Chem 2014; 289:25445-59. [PMID: 25096581 DOI: 10.1074/jbc.m114.564450] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
K(+)-dependent Na(+)/Ca(2+)-exchangers are broadly expressed in various tissues, and particularly enriched in neurons of the brain. The distinct physiological roles for the different members of this Ca(2+) transporter family are, however, not well described. Here we show that gene-targeted mice lacking the K(+)-dependent Na(+)/Ca(2+)-exchanger, NCKX4 (gene slc24a4 or Nckx4), display a remarkable anorexia with severe hypophagia and weight loss. Feeding and satiety are coordinated centrally by melanocortin-4 receptors (MC4R) in neurons of the hypothalamic paraventricular nucleus (PVN). The hypophagic response of Nckx4 knock-out mice is accompanied by hyperactivation of neurons in the PVN, evidenced by high levels of c-Fos expression. The activation of PVN neurons in both fasted Nckx4 knock-out and glucose-injected wild-type animals is blocked by Ca(2+) removal and MC4R antagonists. In cultured hypothalamic neurons, melanocyte stimulating hormone induces an MC4R-dependent and sustained Ca(2+) signal, which requires phospholipase C activity and plasma membrane Ca(2+) entry. The Ca(2+) signal is enhanced in hypothalamic neurons from Nckx4 knock-out animals, and is depressed in cells in which NCKX4 is overexpressed. Finally, MC4R-dependent oxytocin expression in the PVN, a key essential step in satiety, is prevented by blocking phospholipase C activation or Ca(2+) entry. These findings highlight an essential, and to our knowledge previously unknown, role for Ca(2+) signaling in the MC4R pathway that leads to satiety, and a novel non-redundant role for NCKX4-mediated Ca(2+) extrusion in controlling MC4R signaling and feeding behavior. Together, these findings highlight a novel pathway that potentially could be exploited to develop much needed new therapeutics to tackle eating disorders and obesity.
Collapse
Affiliation(s)
- Xiao-Fang Li
- From the Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Jonathan Lytton
- From the Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
32
|
Girardet C, Begriche K, Ptitsyn A, Koza RA, Butler AA. Unravelling the mysterious roles of melanocortin-3 receptors in metabolic homeostasis and obesity using mouse genetics. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2014; 4:S37-44. [PMID: 27152165 DOI: 10.1038/ijosup.2014.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The central nervous melanocortin system maintains body mass and adiposity within a 'healthy' range by regulating satiety and metabolic homeostasis. Neural melanocortin-4 receptors (MC4R) modulate satiety signals and regulate autonomic outputs governing glucose and lipid metabolism in the periphery. The functions of melanocortin-3 receptors (MC3R) have been less well defined. We have observed that food anticipatory activity (FAA) is attenuated in Mc3r-/- mice housed in light:dark or constant dark conditions. Mc3r-/- mice subjected to the restricted feeding protocol that was used to induce FAA also developed insulin resistance, dyslipidaemia, impaired glucose tolerance and evidence of a cellular stress response in the liver. MC3Rs may thus function as modulators of oscillator systems that govern circadian rhythms, integrating signals from nutrient sensors to facilitate synchronizing peak foraging behaviour and metabolic efficiency with nutrient availability. To dissect the functions of MC3Rs expressed in hypothalamic and extra-hypothalamic structures, we inserted a 'lox-stop-lox' (TB) sequence into the Mc3r gene. Mc3r (TB/TB) mice recapitulate the phenotype reported for Mc3r-/- mice: increased adiposity, accelerated diet-induced obesity and attenuated FAA. The ventromedial hypothalamus exhibits high levels of Mc3r expression; however, restoring the expression of the LoxTB Mc3r allele in this nucleus did not restore FAA. However, a surprising outcome came from studies using Nestin-Cre to restore the expression of the LoxTB Mc3r allele in the nervous system. These data suggest that 'non-neural' MC3Rs have a role in the defence of body weight. Future studies examining the homeostatic functions of MC3Rs should therefore consider actions outside the central nervous system.
Collapse
Affiliation(s)
- C Girardet
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| | - K Begriche
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| | - A Ptitsyn
- The Pennington Biomedical Research Center, Louisiana State University System , Baton Rouge, LA, USA
| | - R A Koza
- The Pennington Biomedical Research Center, Louisiana State University System , Baton Rouge, LA, USA
| | - A A Butler
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
33
|
Benjamins JA, Nedelkoska L, Lisak RP. Adrenocorticotropin hormone 1-39 promotes proliferation and differentiation of oligodendroglial progenitor cells and protects from excitotoxic and inflammation-related damage. J Neurosci Res 2014; 92:1243-51. [PMID: 24916309 DOI: 10.1002/jnr.23416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/20/2023]
Abstract
Oligodendroglia (OL) are highly susceptible to damage and, like neurons, are terminally differentiated. It is important to protect OL precursors (OPC) because they are reservoirs of differentiating cells capable of myelination following perinatal insult and remyelination in white matter diseases, including multiple sclerosis (MS). Patients with relapsing-remitting MS are commonly treated with high-dose corticosteroids (CS) when experiencing an exacerbation. Adrenocorticotropin hormone (ACTH), a primary component of another approved MS exacerbation treatment, is a melanocortin peptide that stimulates production of CS by the adrenals. Melanocortin receptors are also found in the central nervous system (CNS) and on immune cells. ACTH is produced within the CNS and may have CS-independent effects on glia. We found that ACTH 1-39 stimulated proliferation of OPC, and to a lesser extent astroglia (AS) and microglia (MG), in rat glial cultures. ACTH accelerated differentiation of PDGFRα(+) OPC to a later stage marked by galactolipid expression and caused greater expansion of OL myelin-like sheets compared with untreated cells. Protective effects of ACTH on OPC were assessed by treating cultures with selected toxic agents, with or without ACTH. At 200 nM, ACTH protected OPC from death induced by staurosporine, glutamate, NMDA, AMPA, kainate, quinolinic acid, H2 O2 , and slow NO release, but not against kynurenic acid or rapid NO release. These agents and ACTH were not toxic to AS or MG. Our findings indicate that ACTH 1-39 provides benefits by increasing the number of OPC, accelerating their development into mature OL, and reducing OPC death from toxic insults.
Collapse
Affiliation(s)
- Joyce A Benjamins
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan; Department of Immunology and Microbiology, Wayne State University School of Medicine Detroit, Michigan
| | | | | |
Collapse
|
34
|
Elter S, Raschle T, Arens S, Viegas A, Gelev V, Etzkorn M, Wagner G. The use of amphipols for NMR structural characterization of 7-TM proteins. J Membr Biol 2014; 247:957-64. [PMID: 24858950 DOI: 10.1007/s00232-014-9669-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
While amphipols have been proven useful for refolding of seven transmembrane helical (7-TM) proteins including G-protein-coupled receptors (GPCRs) and it could be shown that an amphipol environment is in principle suitable for NMR structural studies of the embedded protein, high-resolution NMR insights into amphipol refolded and isotopically labeled GPCRs are still very limited. Here we report on the recent progress toward NMR structural studies of the melanocortin-2 and -4 receptors, two class A GPCRs which so far have not been reported to be incorporated into an amphipol environment. Making use of the established 7-TM protein bacteriorhodopsin (BR) we initially tested and optimized amphipol refolding conditions. Most promising conditions were transferred to the refolding of the two melanocortin receptors. Analytical-scale refolding experiments on the melanocortin-2 receptor show very similar behavior to the results obtained on BR. Using cell-free protein expression we could generate sufficient amounts of isotopically labeled bacteriorhodopsin as well as melanocortin-2 and -4 receptors for an initial NMR analysis. Upscaling of the amphipol refolding protocol to protein amounts needed for NMR structural studies was, however, not straightforward and impeded detailed NMR insights for the two GPCRs. While well-resolved and dispersed NMR spectra could only be obtained for bacteriorhodopsin, a comparison of NMR data recorded on the melanocortin-4 receptor in SDS and in an amphipol environment indicates that amphipol refolding induces larger structural modifications in the receptor.
Collapse
Affiliation(s)
- Shantha Elter
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Caruso V, Lagerström MC, Olszewski PK, Fredriksson R, Schiöth HB. Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci 2014; 15:98-110. [PMID: 24588018 DOI: 10.1038/nrn3657] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.
Collapse
|
36
|
Qu H, Li J, Chen W, Li Y, Jiang Q, Jiang H, Huo J, Zhao Z, Liu B, Zhang Q. Differential expression of the melanocortin-4 receptor in male and female C57BL/6J mice. Mol Biol Rep 2014; 41:3245-56. [DOI: 10.1007/s11033-014-3187-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023]
|
37
|
Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 2013; 79:887-902. [PMID: 24012003 DOI: 10.1016/j.neuron.2013.06.036] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 02/07/2023]
Abstract
Soluble amyloid-β oligomers (Aβo) trigger Alzheimer's disease (AD) pathophysiology and bind with high affinity to cellular prion protein (PrP(C)). At the postsynaptic density (PSD), extracellular Aβo bound to lipid-anchored PrP(C) activates intracellular Fyn kinase to disrupt synapses. Here, we screened transmembrane PSD proteins heterologously for the ability to couple Aβo-PrP(C) with Fyn. Only coexpression of the metabotropic glutamate receptor, mGluR5, allowed PrP(C)-bound Aβo to activate Fyn. PrP(C) and mGluR5 interact physically, and cytoplasmic Fyn forms a complex with mGluR5. Aβo-PrP(C) generates mGluR5-mediated increases of intracellular calcium in Xenopus oocytes and in neurons, and the latter is also driven by human AD brain extracts. In addition, signaling by Aβo-PrP(C)-mGluR5 complexes mediates eEF2 phosphorylation and dendritic spine loss. For mice expressing familial AD transgenes, mGluR5 antagonism reverses deficits in learning, memory, and synapse density. Thus, Aβo-PrP(C) complexes at the neuronal surface activate mGluR5 to disrupt neuronal function.
Collapse
Affiliation(s)
- Ji Won Um
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neurobiology, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Coll AP. “Are melanocortin receptors constitutively active in vivo?”. Eur J Pharmacol 2013; 719:202-207. [DOI: 10.1016/j.ejphar.2013.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
39
|
Mul JD, Spruijt BM, Brakkee JH, Adan RAH. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents. Eur J Pharmacol 2013; 719:192-201. [PMID: 23872405 DOI: 10.1016/j.ejphar.2013.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 02/04/2023]
Abstract
Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced.
Collapse
Affiliation(s)
- Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, 2170 East Galbraith Road, 45237 Cincinnati, Ohio, USA.
| | - Berry M Spruijt
- Department of Biology, Faculty of Beta Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan H Brakkee
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Roger A H Adan
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
40
|
Mo XL, Tao YX. Activation of MAPK by inverse agonists in six naturally occurring constitutively active mutant human melanocortin-4 receptors. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1939-48. [PMID: 23791567 DOI: 10.1016/j.bbadis.2013.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 01/14/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor that plays an essential role in regulating energy homeostasis. Defects in MC4R are the most common monogenic form of obesity, with about 170 distinct mutations identified in human. In addition to the conventional Gs-stimulated adenylyl cyclase pathway, it has been recently demonstrated that MC4R also activates mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 (ERK1/2). Herein, we investigated the potential of four MC4R ligands that are inverse agonists at the Gs-cAMP signaling pathway, including agouti-related peptide (AgRP), MCL0020, Ipsen 5i and ML00253764, to regulate ERK1/2 activation (pERK1/2) in wild type and six naturally occurring constitutively active mutant (CAM) MC4Rs. We showed that these four inverse agonists acted as agonists for the ERK1/2 signaling cascade in wild type and CAM MC4Rs. Three mutants (P230L, L250Q and F280L) had significantly increased pERK1/2 level upon stimulation with all four inverse agonists, with maximal induction ranging from 1.6 to 4.2-fold. D146N had significantly increased pERK1/2 level upon stimulation with AgRP, MCL0020 or ML00253764, but not Ipsen 5i. The pERK1/2 levels of H76R and S127L were significantly increased only upon stimulation with AgRP or MCL0020. In summary, our studies demonstrated for the first time that MC4R inverse agonists at the Gs-cAMP pathway could serve as agonists in the MAPK pathway. These results suggested that there were multiple activation states of MC4R with ligand-specific and/or mutant-specific conformations capable of differentially coupling the MC4R to distinct signaling pathways.
Collapse
Affiliation(s)
- Xiu-Lei Mo
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
41
|
Xu H, McElvain M, Fiorino M, Henkle B, Sherman L, Xu Y, Tominey E, Kelley K, Adlam M, Bürli R, Siu J, Wong M, Cee VJ. Predictability of Peripheral Lymphocyte Reduction of Novel S1P1 Agonists by In Vitro GPCR Signaling Profile. ACTA ACUST UNITED AC 2013; 18:997-1007. [DOI: 10.1177/1087057113488629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surrogate readouts of G-protein–coupled receptor signaling pathways using highly engineered systems are often employed in the drug discovery process. However, accumulating data have demonstrated the importance of selecting relevant biological activity rather than technically facile assays to support high-throughout screening and subsequent structure-activity relationship studies. Here we report a case study using sphingosine-1-phosphate receptor 1 (S1P1) as the model system to compare compound activity in six different in vitro assays with their ability to predict in vivo efficacy. S1P1 has long been validated as a therapeutic target for autoimmune diseases. In this article, in vivo and in vitro studies on 19 S1P1 agonists are reported. In vitro activities of these S1P1 agonists, together with S1P and FTY720p, on Ca2+ mobilization, adenylyl cyclase inhibition, extracellular signal-related kinase (ERK) phosphorylation, β-arrestin recruitment, and receptor internalization, were determined. The in vitro potency of these compounds was correlated with their ability to induce peripheral lymphocyte reduction. The results revealed that inhibition of adenylyl cyclase and induction of β-arrestin recruitment and receptor internalization are good indicators to predict in vivo efficacy, whereas induction of Ca2+ mobilization through Gqi/5 coupling and ERK phosphorylation is irrelevant. This study demonstrated the importance of identifying an appropriate in vitro assay to predict in vivo activity based on the biological relevance in the drug discovery setting.
Collapse
Affiliation(s)
- Han Xu
- Department of Molecular Structure and Characterization, Amgen, Inc., Thousand Oaks, CA, USA
| | - Michele McElvain
- Department of Molecular Structure and Characterization, Amgen, Inc., Thousand Oaks, CA, USA
| | - Mike Fiorino
- Department of Inflammation Research, Amgen, Inc., Thousand Oaks, CA, USA
| | - Brad Henkle
- Department of Inflammation Research, Amgen, Inc., Thousand Oaks, CA, USA
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lisa Sherman
- Department of Inflammation Research, Amgen, Inc., Thousand Oaks, CA, USA
| | - Yang Xu
- Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., Thousand Oaks, CA, USA
| | - Elizabeth Tominey
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Advanced Pain Care, Austin, TX, USA
| | - Keith Kelley
- Department of Clinical Immunology, Amgen, Inc., Thousand Oaks, CA, USA
| | - Matt Adlam
- Department of Inflammation Research, Amgen, Inc., Thousand Oaks, CA, USA
| | - Roland Bürli
- Department of Medicinal Chemistry Amgen, Inc., Thousand Oaks, CA, USA
- Neuroscience Innovative Medicines, MedImmune AKB, Cambridge, UK
| | - Jerry Siu
- Department of Inflammation Research, Amgen, Inc., Thousand Oaks, CA, USA
- Autoimmune Inflammatory Diseases, Biopharmaceutical Research Unit, Maalov, Denmark
| | - Min Wong
- Department of Inflammation Research, Amgen, Inc., Thousand Oaks, CA, USA
| | - Victor J. Cee
- Department of Medicinal Chemistry Amgen, Inc., Thousand Oaks, CA, USA
| |
Collapse
|
42
|
Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:482-94. [PMID: 23680515 DOI: 10.1016/j.bbadis.2013.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/16/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
Abstract
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
MESH Headings
- Animals
- Body Weight/genetics
- Cardiovascular Diseases/complications
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/pathology
- Mice
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
43
|
Carniglia L, Durand D, Caruso C, Lasaga M. Effect of NDP-α-MSH on PPAR-γ and -β expression and anti-inflammatory cytokine release in rat astrocytes and microglia. PLoS One 2013; 8:e57313. [PMID: 23468969 PMCID: PMC3582497 DOI: 10.1371/journal.pone.0057313] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/21/2013] [Indexed: 12/25/2022] Open
Abstract
Brain inflammation plays a central role in numerous brain pathologies. Microglia and astrocytes are the main effector cells that become activated when an inflammatory process takes place within the central nervous system. α-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with proven anti-inflammatory properties. It binds with highest affinity to the melanocortin receptor 4 (MC4R), which is present in astrocytes and upon activation triggers anti-inflammatory pathways. The aim of this research was to identify anti-inflammatory mediators that may participate in the immunomodulatory effects of melanocortins in glial cells. Since peroxisome proliferator-activated receptors (PPARs) have recently been implicated in the modulation of inflammation, we investigated the effect of an α-MSH analog, [Nle(4), D-Phe(7)]-α-MSH (NDP-α-MSH), on PPAR-β and PPAR-γ gene and protein expression in rat primary astrocytes and microglia. We initially demonstrated that rat primary microglia express MC4R and showed that treatment with NDP-α-MSH increases PPAR-γ protein levels and strongly decreases PPAR-β levels in both astrocytes and microglia. We also showed that extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated signaling is partially involved in these effects in a cell-specific fashion. Finally, we showed that NDP-α-MSH stimulates the release of the anti-inflammatory cytokines IL-10 and TGF-β from microglia and astrocytes, respectively. The presented data suggest a role for IL-10 and TGF-β in the protective action of melanocortins and a connection between MC4R pathway and that of the nuclear receptor PPAR-γ. This is the first report providing evidence that MC4R is expressed in rat primary microglia and that melanocortins modulate PPAR levels in glial cells. Our findings provide new insights into the mechanisms underlying the activation of glial MC4R and open perspectives for new therapeutic strategies for the treatment of inflammation-mediated brain diseases.
Collapse
Affiliation(s)
- Lila Carniglia
- Instituto de Investigaciones Biomédicas, School of Medicine, University of Buenos Aires – CONICET, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas, School of Medicine, University of Buenos Aires – CONICET, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas, School of Medicine, University of Buenos Aires – CONICET, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas, School of Medicine, University of Buenos Aires – CONICET, Buenos Aires, Argentina
| |
Collapse
|
44
|
Tanida M, Yamamoto N, Shibamoto T, Rahmouni K. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 2013; 8:e56660. [PMID: 23418591 PMCID: PMC3572050 DOI: 10.1371/journal.pone.0056660] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/13/2013] [Indexed: 11/19/2022] Open
Abstract
In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.
Collapse
Affiliation(s)
- Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | |
Collapse
|
45
|
Piechowski CL, Rediger A, Lagemann C, Mühlhaus J, Müller A, Pratzka J, Tarnow P, Grüters A, Krude H, Kleinau G, Biebermann H. Inhibition of melanocortin-4 receptor dimerization by substitutions in intracellular loop 2. J Mol Endocrinol 2013; 51:109-18. [PMID: 23674133 DOI: 10.1530/jme-13-0061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity is one of the most challenging global health problems. One key player in energy homeostasis is the melanocortin-4 receptor (MC4R), which is a family A G-protein-coupled receptor (GPCR). It has recently been shown that MC4R has the capacity to form homo- or heterodimers. Dimerization of GPCRs is of great importance for signaling regulation, with major pharmacological implications. Unfortunately, not enough is yet known about the detailed structural properties of MC4R dimers or the functional consequences of receptor dimerization. Our goal, therefore, was to explore specific properties related to MC4R dimerization. First, we aimed to induce the dissociation of dimers to monomers and to compare the functional parameters of wild-type and MC4R variants. To inhibit homodimerization, we designed MC4R chimeras with the cannabinoid-1 receptor, a receptor that does not interact with MC4R. Indeed, we identified several substitutions in the intracellular loop 2 (ICL2) and adjacent regions of transmembrane helix 3 (TMH3) and TMH4 that lead to partial dimer dissociation. Interestingly, the capacity for signaling activity was generally increased in these MC4R variants, although receptor expression remained unchanged. This increase in activity for dissociated receptors might indicate a link between receptor dimerization and signaling capacity. Moreover, dimer dissociation was also observed in a naturally occurring activating MC4R mutation in ICL2. Taken together, this study provides new information on the structural prerequisites for MC4R dimerization and identifies an approach to induce the dissociation of MC4R dimers. This might be useful for further investigation of pharmacological properties.
Collapse
Affiliation(s)
- Carolin L Piechowski
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The melanocortin-4 receptor (MC4R) is a critical regulator of energy homeostasis and has emerged as a premier target for obesity treatment. Numerous mutations in transmembrane domain 6 (TM6) of MC4R resulting in functional alterations have been identified in obese patients. Several mutagenesis studies also provided some data suggesting the importance of this domain in receptor function. To gain a better understanding of the structure-function relationship of the receptor, we performed alanine-scanning mutagenesis in TM6 to determine the functions of side chains. Of the 31 residues, two were important for cell surface expression, five were indispensable for α-melanocyte-stimulating hormone (α-MSH) and β-MSH binding, and six were important for signaling in the Gs-cAMP-PKA pathway. H264A, targeted normally to the plasma membrane, was undetectable by competitive binding assay and severely defective in basal and stimulated cAMP production and ERK1/2 phosphorylation. Nine mutants had decreased basal cAMP signaling. Seven mutants were constitutively active in cAMP signaling and their basal activities could be inhibited by two MC4R inverse agonists, Ipsen 5i and ML00253764. Five mutants were also constitutively active in the MAPK pathway with enhanced basal ERK1/2 phosphorylation. In summary, our study provided comprehensive data on the structure-function relationship of the TM6 of MC4R. We identified residues that are important for cell surface expression, ligand binding, cAMP generation, and residues for maintaining the WT receptor in active conformation. We also reported constitutive activation of the MAPK pathway and biased signaling. These data will be useful for rationally designing MC4R agonists and antagonists for treatment of eating disorders.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Cyclic AMP/metabolism
- Humans
- Imidazoles/pharmacology
- Immunohistochemistry
- Microscopy, Confocal
- Mutagenesis, Site-Directed
- Protein Binding/genetics
- Protein Binding/physiology
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Hui Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USA
| | | |
Collapse
|
47
|
Chapman KL, Findlay JBC. The melanocortin 4 receptor: oligomer formation, interaction sites and functional significance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:535-42. [PMID: 23088915 DOI: 10.1016/j.bbamem.2012.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/14/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
This study involves the structural and functional properties of the recombinant melanocortin 4 receptor (MC(4)R) expressed in the HEK-293 cell line. Using co-immuno-purification approaches, the receptor appears to be an oligomer, which can be crosslinked through disulphide bonds involving a native cysteine residue (84) to give a dimeric species. This position is located near the cytosolic region of transmembrane segment 2 and it is suggested that this is an interacting interface between MC(4)R monomers. Using co-expression of the native protein and a C84A mutant, it appears that the receptor also forms higher order oligomers via alternative interfaces. Interestingly, disulphide crosslink formation does not occur if the receptor is uncoupled from its G-protein, even though the oligomeric state is preserved. This suggests that the conformational changes, which occur on activation, affect the TM2 interface. The pharmacology of the agonist, NDP-MSH, indicates that the MC(4)R retains high affinity for the ligand in the absence of the G-protein but occupancy for the ligand is increased. The data can be interpreted to suggest that the G-protein exerts a negative allosteric effect on the receptor. Co-expression of one receptor lacking the ability to signal with another, which cannot bind the agonist, restored ligand-dependent activation of the G-protein to situations in which neither receptor on its own could activate the G-protein. Such transactivation suggests meaningful cross talk between the receptor subunits in the oligomeric complex. These studies demonstrate further unique features of the MC(4)R.
Collapse
Affiliation(s)
- Kathryn L Chapman
- Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
48
|
Ersoy BA, Pardo L, Zhang S, Thompson DA, Millhauser G, Govaerts C, Vaisse C. Mechanism of N-terminal modulation of activity at the melanocortin-4 receptor GPCR. Nat Chem Biol 2012; 8:725-30. [PMID: 22729149 PMCID: PMC3657613 DOI: 10.1038/nchembio.1008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/14/2012] [Indexed: 01/29/2023]
Abstract
Most of our understanding of G protein-coupled receptor (GPCR) activation has been focused on the direct interaction between diffusible ligands and their seven-transmembrane domains. However, a number of these receptors depend on their extracellular N-terminal domain for ligand recognition and activation. To dissect the molecular interactions underlying both modes of activation at a single receptor, we used the unique properties of the melanocortin-4 receptor (MC4R), a GPCR that shows constitutive activity maintained by its N-terminal domain and is physiologically activated by the peptide α-melanocyte stimulating hormone (αMSH). We find that activation by the N-terminal domain and αMSH relies on different key residues in the transmembrane region. We also demonstrate that agouti-related protein, a physiological antagonist of MC4R, acts as an inverse agonist by inhibiting N terminus-mediated activation, leading to the speculation that a number of constitutively active orphan GPCRs could have physiological inverse agonists as sole regulators.
Collapse
Affiliation(s)
- Baran A Ersoy
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- The Diabetes Center, University of California–San Francisco, San Francisco, California, USA
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sumei Zhang
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- The Diabetes Center, University of California–San Francisco, San Francisco, California, USA
| | - Darren A Thompson
- Department of Chemistry and Biochemistry, University of California–Santa Cruz, Santa Cruz, California, USA
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California–Santa Cruz, Santa Cruz, California, USA
| | - Cedric Govaerts
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Christian Vaisse
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- The Diabetes Center, University of California–San Francisco, San Francisco, California, USA
| |
Collapse
|
49
|
Damm E, Buech TRH, Gudermann T, Breit A. Melanocortin-induced PKA activation inhibits AMPK activity via ERK-1/2 and LKB-1 in hypothalamic GT1-7 cells. Mol Endocrinol 2012; 26:643-54. [PMID: 22361823 DOI: 10.1210/me.2011-1218] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH)-induced activation of the melanocortin-4 receptor in hypothalamic neurons increases energy expenditure and inhibits food intake. Active hypothalamic AMP-activated protein kinase (AMPK) has recently been reported to enhance food intake, and in vivo experiments suggested that intrahypothalamic injection of melanocortins decreased food intake due to the inhibition of AMPK activity. However, it is not clear whether α-MSH affects AMPK via direct intracellular signaling cascades or if the release of paracrine factors is involved. Here, we used a murine, hypothalamic cell line (GT1-7 cells) and monitored AMPK phosphorylation at Thr(172), which has been suggested to increase AMPK activity. We found that α-MSH dephosphorylated AMPK at Thr(172) and consequently decreased phosphorylation of the established AMPK substrate acetyl-coenzyme A-carboxylase at Ser(79). Inhibitory effects of α-MSH on AMPK were blocked by specific inhibitors of protein kinase A (PKA) or ERK-1/2, pointing to an important role of both kinases in this process. Because α-MSH-induced activation of ERK-1/2 was blunted by PKA inhibitors, we propose that ERK-1/2 serves as a link between PKA and AMPK in GT1-7 cells. Furthermore, down-regulation of liver kinase B-1, but not inhibition of calcium-calmodulin-dependent kinase kinase-β or TGFβ-activated kinase-1 decreased basal phosphorylation of AMPK and its dephosphorylation induced by α-MSH. Thus, we propose that α-MSH inhibits AMPK activity via a linear pathway, including PKA, ERK-1/2, and liver kinase B-1 in GT1-7 cells. Given the importance of the melanocortin system in the formation of adipositas, detailed knowledge about this pathway might help to develop drugs targeting obesity.
Collapse
Affiliation(s)
- Ellen Damm
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität, Goethestrasse 33, 80336 München, Germany
| | | | | | | |
Collapse
|
50
|
Caruso C, Carniglia L, Durand D, Gonzalez PV, Scimonelli TN, Lasaga M. Melanocortin 4 receptor activation induces brain-derived neurotrophic factor expression in rat astrocytes through cyclic AMP-protein kinase A pathway. Mol Cell Endocrinol 2012; 348:47-54. [PMID: 21803120 DOI: 10.1016/j.mce.2011.07.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/28/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
Abstract
Melanocortin 4 receptors (MC4R) are mainly expressed in the brain. We previously showed that the anti-inflammatory action of α-melanocyte-stimulating hormone (α-MSH) in rat hypothalamus and in cultured astrocytes involved MC4R activation. However, MC4R mechanisms of action remain undetermined. Since brain-derived neurotrophic factor (BDNF) may be mediating MC4R hypothalamic anorexigenic actions, we determined melanocortin effects on BDNF expression in rat cultured astrocytes and certain mechanisms involved in MC4R signaling. α-MSH and its analogue NDP-MSH, induced production of cAMP in astrocytes. This effect was completely blocked by the MC4R antagonist, HS024. We found that NDP-MSH increased BDNF mRNA and protein levels in astrocytes. The effect of NDP-MSH on BDNF expression was abolished by the adenylate cyclase inhibitor SQ22536, and decreased by the PKA inhibitor Rp-cAMP. Since melanocortins are immunomodulators, we investigated their actions with bacterial lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulus. Although both α-MSH and LPS+IFN-γ increased cAMP responding element binding protein (CREB) activation, LPS+IFN-γ did not modify BDNF expression. On the other hand, α-MSH did not modify basal or LPS+IFN-γ-induced nuclear factor-κB activation. Our results show for the first time that MC4R activation in astrocytes induces BDNF expression through cAMP-PKA-CREB pathway without involving NF-κB.
Collapse
Affiliation(s)
- Carla Caruso
- Research Institute for Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|