1
|
Shahid A, Santos SG, Lin C, Huang Y. Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development. Biomedicines 2024; 12:563. [PMID: 38540176 PMCID: PMC10967781 DOI: 10.3390/biomedicines12030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a significant global health concern, with lung cancer consistently leading as one of the most common malignancies. Genetic aberrations involving receptor tyrosine kinases (RTKs) are known to be associated with cancer initiation and development, but RTK involvement in smoking-associated lung cancer cases is not well understood. The Insulin-like Growth Factor 1 Receptor (IGF-1R) is a receptor that plays a critical role in lung cancer development. Its signaling pathway affects the growth and survival of cancer cells, and high expression is linked to poor prognosis and resistance to treatment. Several reports have shown that by activating IGF-1R, tobacco smoke-related carcinogens promote lung cancer and chemotherapy resistance. However, the relationship between IGF-1R and cancer is complex and can vary depending on the type of cancer. Ongoing investigations are focused on developing therapeutic strategies to target IGF-1R and overcome chemotherapy resistance. Overall, this review explores the intricate connections between tobacco smoke-specific carcinogens and the IGF-1R pathway in lung carcinogenesis. This review further highlights the challenges in using IGF-1R inhibitors as targeted therapy for lung cancer due to structural similarities with insulin receptors. Overcoming these obstacles may require a comprehensive approach combining IGF-1R inhibition with other selective agents for successful cancer treatment.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Shaira Gail Santos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Carol Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
2
|
Van der Eecken H, Joniau S, Berghen C, Rans K, De Meerleer G. The Use of Soy Isoflavones in the Treatment of Prostate Cancer: A Focus on the Cellular Effects. Nutrients 2023; 15:4856. [PMID: 38068715 PMCID: PMC10708402 DOI: 10.3390/nu15234856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
A possible link between diet and cancer has long been considered, with growing interest in phytochemicals. Soy isoflavones have been associated with a reduced risk of prostate cancer in Asian populations. Of the soy isoflavones, genistein and daidzein, in particular, have been studied, but recently, equol as a derivative has gained interest because it is more biologically potent. Different mechanisms of action have already been studied for the different isoflavones in multiple conditions, such as breast, gastrointestinal, and urogenital cancers. Many of these mechanisms of action could also be demonstrated in the prostate, both in vitro and in vivo. This review focuses on the known mechanisms of action at the cellular level and compares them between genistein, daidzein, and equol. These include androgen- and estrogen-mediated pathways, regulation of the cell cycle and cell proliferation, apoptosis, angiogenesis, and metastasis. In addition, antioxidant and anti-inflammatory effects and epigenetics are addressed.
Collapse
Affiliation(s)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Charlien Berghen
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| | - Kato Rans
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| |
Collapse
|
3
|
Qi D, Wang W, Zhang Y, Zhang T. MiR-99b regulates cerebral ischemia neuronal injury through targeting IGF1R. Panminerva Med 2023; 65:30-36. [PMID: 32343508 DOI: 10.23736/s0031-0808.20.03920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Recently, microRNA-99b (miR-99b) shows diverse functions in different human disease. However, further studies about the potential effect of miR-99b in cerebral ischemia injury still need to be done. METHODS The expressions of miR-99b and IGF1R were detected via RT-qPCR assay. Western blot assay was applied to measure the protein expression of Caspase-3, Bax and Bcl-2. MTT assay was used to observe cell viability of SH-SY5Y cells. The association of miR-99b and IGF1R was testified by dual luciferase assay. And human SH-SY5Y cells were treated with the oxygen-glucose deprivation/reperfusion (OGD/R) to mimic CIR injury. RESULTS The expression of miR-99b was increased in the OGD/R model. And upregulation of miR-99b promoted cell viability and inhibited apoptosis induced by OGD/R. Moreover, IGF1R was confirmed as a direct target gene of miR-99b. The expression of IGF1R was obviously decreased under OGD/R conditions. CONCLUSIONS MiR-99b promoted the viability and suppressed apoptosis of SH-SY5Y cells under OGD/R conditions through targeting IGF1R.
Collapse
Affiliation(s)
- Dengbin Qi
- Department of Neurology, Affiliated Hospital of Jining Medical University, YanZhou Branch, Jining, China
| | - Wei Wang
- Disinfection Supply Center, Qingdao Municipal Hospital, Qingdao, China
| | - Ying Zhang
- Department of Internal Medicine, Binzhou People's Hospital, Binzhou, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China -
| |
Collapse
|
4
|
Di Girolamo D, Tajbakhsh S. Pathological features of tissues and cell populations during cancer cachexia. CELL REGENERATION 2022; 11:15. [PMID: 35441960 PMCID: PMC9021355 DOI: 10.1186/s13619-022-00108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Cancers remain among the most devastating diseases in the human population in spite of considerable advances in limiting their impact on lifespan and healthspan. The multifactorial nature of cancers, as well as the number of tissues and organs that are affected, have exposed a considerable diversity in mechanistic features that are reflected in the wide array of therapeutic strategies that have been adopted. Cachexia is manifested in a number of diseases ranging from cancers to diabetes and ageing. In the context of cancers, a majority of patients experience cachexia and succumb to death due to the indirect effects of tumorigenesis that drain the energy reserves of different organs. Considerable information is available on the pathophysiological features of cancer cachexia, however limited knowledge has been acquired on the resident stem cell populations, and their function in the context of these diseases. Here we review current knowledge on cancer cachexia and focus on how tissues and their resident stem and progenitor cell populations are individually affected.
Collapse
|
5
|
Liu Y, Yu S, Xu T, Bodenko V, Orlova A, Oroujeni M, Rinne SS, Tolmachev V, Vorobyeva A, Gräslund T. Preclinical Evaluation of a New Format of 68Ga- and 111In-Labeled Affibody Molecule Z IGF-1R:4551 for the Visualization of IGF-1R Expression in Malignant Tumors Using PET and SPECT. Pharmaceutics 2022; 14:pharmaceutics14071475. [PMID: 35890370 PMCID: PMC9320461 DOI: 10.3390/pharmaceutics14071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
The Insulin-like growth factor-1 receptor (IGF-1R) is a molecular target for several monoclonal antibodies undergoing clinical evaluation as anticancer therapeutics. The non-invasive detection of IGF-1R expression in tumors might enable stratification of patients for specific treatment and improve the outcome of both clinical trials and routine treatment. The affibody molecule ZIGF-1R:4551 binds specifically to IGF-1R with subnanomolar affinity. The goal of this study was to evaluate the 68Ga and 111In-labeled affibody construct NODAGA-(HE)3-ZIGF-1R:4551 for the imaging of IGF-1R expression, using PET and SPECT. The labeling was efficient and provided stable coupling of both radionuclides. The two imaging probes, [68Ga]Ga-NODAGA-(HE)3-ZIGF-1R:4551 and [111In]In-NODAGA-(HE)3-ZIGF-1R:4551, demonstrated specific binding to IGF-1R-expressing human cancer cell lines in vitro and to IGF-1R-expressing xenografts in mice. Preclinical PET and SPECT/CT imaging demonstrated visualization of IGF-1R-expressing xenografts already one hour after injection. The tumor-to-blood ratios at 3 h after injection were 7.8 ± 0.2 and 8.0 ± 0.6 for [68Ga]Ga-NODAGA-(HE)3-ZIGF-1R:4551 and [111In]In-NODAGA-(HE)3-ZIGF-1R:4551, respectively. In conclusion, a molecular design of the ZIGF-1R:4551 affibody molecule, including placement of a (HE)3-tag on the N-terminus and site-specific coupling of a NODAGA chelator on the C-terminus, provides a tracer with improved imaging properties for visualization of IGF-1R in malignant tumors, using PET and SPECT.
Collapse
Affiliation(s)
- Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, 75237 Uppsala, Sweden; (Y.L.); (T.X.); (M.O.); (A.V.)
| | - Shengze Yu
- Department of Protein Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden;
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 75237 Uppsala, Sweden; (Y.L.); (T.X.); (M.O.); (A.V.)
| | - Vitalina Bodenko
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (V.B.); (A.O.)
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (V.B.); (A.O.)
- Department of Medicinal Chemistry, Uppsala University, 75123 Uppsala, Sweden;
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 75237 Uppsala, Sweden; (Y.L.); (T.X.); (M.O.); (A.V.)
- Affibody AB, 17165 Solna, Sweden
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 75123 Uppsala, Sweden;
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75237 Uppsala, Sweden; (Y.L.); (T.X.); (M.O.); (A.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (V.B.); (A.O.)
- Correspondence: (V.T.); (T.G.); Tel.: +46-704-250782 (V.T.); +46-8790-9627 (T.G.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 75237 Uppsala, Sweden; (Y.L.); (T.X.); (M.O.); (A.V.)
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden;
- Correspondence: (V.T.); (T.G.); Tel.: +46-704-250782 (V.T.); +46-8790-9627 (T.G.)
| |
Collapse
|
6
|
G MS, Swetha M, Keerthana CK, Rayginia TP, Anto RJ. Cancer Chemoprevention: A Strategic Approach Using Phytochemicals. Front Pharmacol 2022; 12:809308. [PMID: 35095521 PMCID: PMC8793885 DOI: 10.3389/fphar.2021.809308] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer chemoprevention approaches are aimed at preventing, delaying, or suppressing tumor incidence using synthetic or natural bioactive agents. Mechanistically, chemopreventive agents also aid in mitigating cancer development, either by impeding DNA damage or by blocking the division of premalignant cells with DNA damage. Several pre-clinical studies have substantiated the benefits of using various dietary components as chemopreventives in cancer therapy. The incessant rise in the number of cancer cases globally is an issue of major concern. The excessive toxicity and chemoresistance associated with conventional chemotherapies decrease the success rates of the existent chemotherapeutic regimen, which warrants the need for an efficient and safer alternative therapeutic approach. In this scenario, chemopreventive agents have been proven to be successful in protecting the high-risk populations from cancer, which further validates chemoprevention strategy as rational and promising. Clinical studies have shown the effectiveness of this approach in managing cancers of different origins. Phytochemicals, which constitute an appreciable proportion of currently used chemotherapeutic drugs, have been tested for their chemopreventive efficacy. This review primarily aims to highlight the efficacy of phytochemicals, currently being investigated globally as chemopreventives. The clinical relevance of chemoprevention, with special emphasis on the phytochemicals, curcumin, resveratrol, tryptanthrin, kaempferol, gingerol, emodin, quercetin genistein and epigallocatechingallate, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity, forms the crux of this review. The majority of these phytochemicals are polyphenols and flavanoids. We have analyzed how the key molecular targets of these chemopreventives potentially counteract the key drivers of chemoresistance, causing minimum toxicity to the body. An overview of the underlying mechanism of action of these phytochemicals in regulating the key players of cancer progression and tumor suppression is discussed in this review. A summary of the clinical trials on the important phytochemicals that emerge as chemopreventives is also incorporated. We elaborate on the pre-clinical and clinical observations, pharmacokinetics, mechanism of action, and molecular targets of some of these natural products. To summarize, the scope of this review comprises of the current status, limitations, and future directions of cancer chemoprevention, emphasizing the potency of phytochemicals as effective chemopreventives.
Collapse
Affiliation(s)
- Mohan Shankar G
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - C K Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Tennyson P Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
7
|
Zangoue M, Zangouei AS, Mojarrad M, Moghbeli M. MicroRNAs as the critical regulators of protein kinases in prostate and bladder cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00190-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Bladder cancer (BCa) and prostate cancer (PCa) are frequent urothelial and genital malignancies with a high ratio of morbidity and mortality which are more common among males. Since BCa and PCa cases are mainly diagnosed in advanced stages with clinical complications, it is required to introduce the efficient early detection markers. Protein kinases are critical factors involved in various cellular processes such as cell growth, motility, differentiation, and metabolism. Deregulation of protein kinases can be frequently observed through the neoplastic transformation and tumor progression. Therefore, kinases are required to be regulated via different genetic and epigenetic processes. MicroRNAs (miRNAs) are among the critical factors involved in epigenetic regulation of protein kinases. Since miRNAs are noninvasive and more stable factors in serum and tissues compared with mRNAs, they can be used as efficient diagnostic markers for the early detection of PCa and BCa.
Main body
In present review, we have summarized all of the reported miRNAs that have been associated with regulation of protein kinases in bladder and prostate cancers.
Conclusions
For the first time, this review highlights the miRNAs as critical factors in regulation of protein kinases during prostate and bladder cancers which paves the way of introducing a noninvasive kinase-specific panel of miRNAs for the early detection of these malignancies. It was observed that the class VIII receptors of tyrosine kinases and non-receptor tyrosine kinases were the most frequent targets for the miRNAs in bladder and prostate cancers, respectively.
Collapse
|
8
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
9
|
Zhang Z, Lei B, Chai W, Liu R, Li T. Increased expression of insulin-like growth factor-1 receptor predicts poor prognosis in patients with hepatocellular carcinoma. Medicine (Baltimore) 2019; 98:e17680. [PMID: 31689787 PMCID: PMC6946458 DOI: 10.1097/md.0000000000017680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal disease worldwide. In this study, we sought to explore the expression of insulin-like growth factor-1 receptor (IGF-1R) and its prognostic value in HCC.The expressions of IGF-1R mRNA and protein were estimated using quantitative real-time polymerase chain reaction and immunohistochemistry assays, respectively. The association between IGF-1R expression and clinicopathologic characteristic of patients with HCC was analyzed through Chi-squared test. Kaplan-Meier analysis and multivariate Cox analysis were performed to analyze prognostic value of IGF-1R in HCC.The IGF-1R was significantly upregulated in HCC tissues at both mRNA and protein levels compared with adjacent normal ones (P < .01). Its expression was associated with tumor node metastasis stage (P = .037) and lymph node metastasis (P = .027) of patients with HCC. Patients with HCC with high expression of IGF-1R had worse overall survival than those with low expression. IGF-1R might be a potential prognostic biomarker for HCC (hazard ratio [HR] = 1.912, 95% confidence interval [CI]: 1.023-3.572, P = .042).The IGF-1R expression level is upregulated in HCC tissues and may act as a prognostic biomarker for the disease.
Collapse
Affiliation(s)
| | - Bao Lei
- First Department of General Surgery
| | - Wei Chai
- First Department of General Surgery
| | | | - Tiejun Li
- Department of Teaching, Cangzhou Central Hospital, Hebei, China
| |
Collapse
|
10
|
Nam RK, Benatar T, Wallis CJD, Kobylecky E, Amemiya Y, Sherman C, Seth A. MicroRNA-139 is a predictor of prostate cancer recurrence and inhibits growth and migration of prostate cancer cells through cell cycle arrest and targeting IGF1R and AXL. Prostate 2019; 79:1422-1438. [PMID: 31269290 DOI: 10.1002/pros.23871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND We previously identified a panel of five microRNAs (miRNAs) associated with biochemical recurrence and metastasis following prostatectomy from prostate cancer patients using next-generation sequencing-based whole miRNome sequencing and quantitative polymerase chain reaction-based validation analysis. In this study, we examined the mechanism of action of miR-139-5p, one of the downregulated miRNAs identified in the panel. METHODS Using a cohort of 585 patients treated with radical prostatectomy, we examined the prognostic significance of miR-139 (dichotomized around the median) using the Kaplan-Meier method and Cox proportional hazard models. We validated these results using The Cancer Genome Atlas (TCGA) data. We created cell lines that overexpressed miR-139 to confirm its targets as well as examine pathways through which miR-139 may function using cell-based assays. RESULTS Low miR-139 expression was significantly associated with a variety of prognostic factors in prostate cancer, including Gleason score, pathologic stage, margin positivity, and lymph node status. MiR-139 expression was associated with prognosis: the cumulative incidence of biochemical recurrence and metastasis were significantly lower among patients with high miR-139 expression (P = .0004 and .038, respectively). Validation in the TCGA data set showed a significant association between dichotomized miR-139 expression and biochemical recurrence (odds ratio, 0.52; 95% confidence interval, 0.33-0.82). Overexpression of miR-139 in prostate cancer cells led to a significant reduction in cell proliferation and migration compared with control cells, with cells arrested in G2 of cell cycle. IGF1R and AXL were identified as potential targets of miR-139 based on multiple miRNA-binding sites in 3'-untranslated regions of both the genes and their association with prostate cancer growth pathways. Luciferase assays verified AXL and IGF1R as direct targets of miR-139. Furthermore, immunoblotting of prostate cancer cells demonstrated IGF1R and AXL protein expression were inhibited by miR-139 treatment, which was reversed by the addition of miR-139 antagomir. Examination of the molecular mechanism of growth inhibition by miR-139 revealed the downregulation of activated AKT and cyclin D1, with upregulation of the CDK inhibitor p21. CONCLUSIONS miR-139 is associated with improved prognosis in patients with localized prostate cancer, which may be mediated through downregulation of IGF1R and/or AXL and associated signaling pathway components.
Collapse
Affiliation(s)
- Robert K Nam
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tania Benatar
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Christopher J D Wallis
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Kobylecky
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yutaka Amemiya
- Genomics Core Facility, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christopher Sherman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Arun Seth
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Genomics Core Facility, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget 2018; 8:1814-1844. [PMID: 27661006 PMCID: PMC5352101 DOI: 10.18632/oncotarget.12123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
12
|
NDGA-P21, a novel derivative of nordihydroguaiaretic acid, inhibits glioma cell proliferation and stemness. J Transl Med 2017; 97:1180-1187. [PMID: 28504686 DOI: 10.1038/labinvest.2017.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/04/2017] [Accepted: 03/21/2017] [Indexed: 01/01/2023] Open
Abstract
Nordihydroguaiaretic acid (NDGA) and its synthetic chiral analog dl-nordihydroguaiaretic acid (Nordy) show collective benefits in anti-tumor, and defending against viral and bacterial infections. Here, we synthetized a new derivative-NDGA-P21 based on NDGA structure. Regardless of the structural similarity, NDGA-P21 exhibited stronger capability in suppression of glioblastoma (GBM) cell growth as compared to Nordy. Mechanically, NDGA-P21 is able to arrest cell cycle of GBM cells in G0/G1 phase, and to block cell proliferation sequentially. It is important to note that NDGA-P21 is able to impair the stemness of glioma stem-like cells (GSLCs) via measurement of colony formation and sphere formation. Taken together, the novel NDGA-based compound NDGA-P21 exhibits potential therty -20 apeutic implications through inhibiting proliferation of glioma cells and self-renewal capability of GSLCs.
Collapse
|
13
|
Breen KJ, O'Neill A, Murphy L, Fan Y, Boyce S, Fitzgerald N, Dorris E, Brady L, Finn SP, Hayes BD, Treacy A, Barrett C, Aziz MA, Kay EW, Fitzpatrick JM, Watson RWG. Investigating the role of the IGF axis as a predictor of biochemical recurrence in prostate cancer patients post-surgery. Prostate 2017; 77:1288-1300. [PMID: 28726241 DOI: 10.1002/pros.23389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Between 20% and 35% of prostate cancer (PCa) patients who undergo treatment with curative intent (ie, surgery or radiation therapy) for localized disease will experience biochemical recurrence (BCR). Alterations in the insulin-like growth factor (IGF) axis and PTEN expression have been implicated in the development and progression of several human tumors including PCa. We examined the expression of the insulin receptor (INSR), IGF-1 receptor (IGF-1R), PTEN, and AKT in radical prostatectomy tissue of patients who developed BCR post-surgery. METHODS Tissue microarrays (TMA) of 130 patients post-radical prostatectomy (65 = BCR, 65 = non-BCR) were stained by immunohistochemistry for INSR, IGF-1R, PTEN, and AKT using optimized antibody protocols. INSR, IGF1-R, PTEN, and AKT expression between benign and cancerous tissue, and different Gleason grades was assessed. Kaplan-Meier survival curves were used to examine the relationship between proteins expression and BCR. RESULTS INSR (P < 0.001), IGF-1R (P < 0.001), and AKT (P < 0.05) expression was significantly increased and PTEN (P < 0.001) was significantly decreased in cancerous versus benign tissue. There was no significant difference in INSR, IGF-1R, or AKT expression in the cancerous tissue of non-BCR versus BCR patients (P = 0.149, P = 0.990, P = 0.399, respectively). There was a significant decrease in PTEN expression in the malignant tissue of BCR versus non-BCR patients (P = 0.011). Combinational analysis of the tissue proteins identified a combination of decreased PTEN and increased AKT or increased INSR was associated with worst outcome. We found that in each case, our hypothesized worst group was most likely to experience BCR and this was significant for combinations of PTEN+INSR and PTEN+AKT but not PTEN+IGF-1R (P = 0.023, P = 0.028, P = 0.078, respectively). CONCLUSIONS Low PTEN is associated with BCR and this association is strongly modified by high INSR and high AKT expression. Measurement of these proteins could help inform appropriate patient selection for postoperative adjuvant therapy and prevent BCR.
Collapse
Affiliation(s)
- Kieran J Breen
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Amanda O'Neill
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa Murphy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Yue Fan
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Susie Boyce
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- UCD School of Mathematical Sciences, Dublin, Ireland
| | - Noel Fitzgerald
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Emma Dorris
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Lauren Brady
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Brian D Hayes
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Ann Treacy
- Department of Histopathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ciara Barrett
- Department of Histopathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Mardiana Abdul Aziz
- Department of Histopathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elaine W Kay
- Department of Pathology, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - John M Fitzpatrick
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - R William G Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
14
|
Recouvreux MV, Wu JB, Gao AC, Zonis S, Chesnokova V, Bhowmick N, Chung LW, Melmed S. Androgen Receptor Regulation of Local Growth Hormone in Prostate Cancer Cells. Endocrinology 2017; 158:2255-2268. [PMID: 28444169 PMCID: PMC5505214 DOI: 10.1210/en.2016-1939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) growth is mainly driven by androgen receptor (AR), and tumors that initially respond to androgen deprivation therapy (ADT) or AR inhibition usually relapse into a more aggressive, castration-resistant PCa (CRPC) stage. Circulating growth hormone (GH) has a permissive role in PCa development in animal models and in human PCa xenograft growth. As GH and GH receptor (GHR) are both expressed in PCa cells, we assessed whether prostatic GH production is linked to AR activity and whether GH contributes to the castration-resistant phenotype. Using online datasets, we found that GH is highly expressed in human CRPC. We observed increased GH expression in castration-resistant C4-2 compared with castration-sensitive LNCaP cells as well as in enzalutamide (MDV3100)-resistant (MDVR) C4-2B (C4-2B MDVR) cells compared with parental C4-2B. We describe a negative regulation of locally produced GH by androgens/AR in PCa cells following treatment with AR agonists (R1881) and antagonists (enzalutamide, bicalutamide). We also show that GH enhances invasive behavior of CRPC 22Rv1 cells, as reflected by increased migration, invasion, and anchorage-independent growth, as well as expression of matrix metalloproteases. Moreover, GH induces expression of the AR splice variant 7, which correlates with antiandrogen resistance, and also induces insulinlike growth factor 1, which is implicated in PCa progression and ligand-independent AR activation. In contrast, blockade of GH action with the GHR antagonist pegvisomant reverses these effects both in vitro and in vivo. GH induction following ADT or AR inhibition may contribute to CRPC progression by bypassing androgen growth requirements.
Collapse
Affiliation(s)
| | - J. Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, 99202
| | - Allen C. Gao
- Department of Urology, University of California at Davis, Sacramento, California, 95817
| | - Svetlana Zonis
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Vera Chesnokova
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Neil Bhowmick
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Leland W. Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Shlomo Melmed
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| |
Collapse
|
15
|
Solingapuram Sai KK, Prabhakaran J, Sattiraju A, Mann JJ, Mintz A, Kumar JD. Radiosynthesis and evaluation of IGF1R PET ligand [ 11 C]GSK1838705A. Bioorg Med Chem Lett 2017; 27:2895-2897. [DOI: 10.1016/j.bmcl.2017.04.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
|
16
|
Anderson PM, Bielack SS, Gorlick RG, Skubitz K, Daw NC, Herzog CE, Monge OR, Lassaletta A, Boldrini E, Pápai Z, Rubino J, Pathiraja K, Hille DA, Ayers M, Yao S, Nebozhyn M, Lu B, Mauro D. A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer 2016; 63:1761-70. [PMID: 27362300 PMCID: PMC5129487 DOI: 10.1002/pbc.26087] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Robatumumab (19D12; MK-7454 otherwise known as SCH717454) is a fully human antibody that binds to and inhibits insulin-like growth factor receptor-1 (IGF-1R). This multiinstitutional study (P04720) determined the safety and clinical efficacy of robatumumab in three separate patient groups with resectable osteosarcoma metastases (Group 1), unresectable osteosarcoma metastases (Group 2), and Ewing sarcoma metastases (Group 3). PROCEDURE Robatumumab infusions were administered every 2 weeks and were well tolerated with minimal toxicity. Centrally reviewed response data were available for 144 patients. RESULTS Low disease burden was important for osteosarcoma response: three of 31 patients had complete response or partial response (PR) by Response Evaluation Criteria in Solid Tumors (RECIST) in resectable patients (Group 1) versus zero of 29 in unresectable patients (Group 2); median overall survival was 20 months in Group 1 versus 8.2 months in Group 2. In centrally reviewed patients with Ewing sarcoma with PET-CT data (N = 84/115), there were six PR, 23 stable disease, and 55 progression of disease by RECIST at 2 months. Patients with Ewing sarcoma had a median overall survival of 6.9 months. However, responding patients with Ewing sarcoma were allowed to continue on treatment after study closure. A minority of patients with metastatic Ewing sarcoma showed clinical responses and have remained healthy after receiving 25-115 doses of robatumumab with remissions of >4 years duration (N = 6). CONCLUSIONS These findings show that although the IGF-1R remains an attractive treatment target, additional research is needed to identify responders and/or means to achieve durable remissions in order to successfully exploit IGF-1R signal blockade in Ewing sarcoma (clinicaltrials.gov: NCT00617890).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Brian Lu
- Merck & Co., IncKenilworthNew Jersey
| | | |
Collapse
|
17
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
18
|
Nurwidya F, Andarini S, Takahashi F, Syahruddin E, Takahashi K. Implications of Insulin-like Growth Factor 1 Receptor Activation in Lung Cancer. Malays J Med Sci 2016; 23:9-21. [PMID: 27418865 PMCID: PMC4934714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) has been intensively investigated in many preclinical studies using cell lines and animal models, and the results have provided important knowledge to help improve the understanding of cancer biology. IGF1R is highly expressed in patients with lung cancer, and high levels of circulating insulin-like growth factor 1 (IGF1), the main ligand for IGF1R, increases the risk of developing lung malignancy in the future. Several phase I clinical trials have supported the potential use of an IGF1R-targeted strategy for cancer, including lung cancer. However, the negative results from phase III studies need further attention, especially in selecting patients with specific molecular signatures, who will gain benefits from IGF1R inhibitors with minimal side effects. This review will discuss the basic concept of IGF1R in lung cancer biology, such as epithelial-mesenchymal transition (EMT) induction and cancer stem cell (CSC) maintenance, and also the clinical implications of IGF1R for lung cancer patients, such as prognostic value and cancer therapy resistance.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
19
|
ERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents. Oncotarget 2016; 6:16611-22. [PMID: 25906745 PMCID: PMC4599293 DOI: 10.18632/oncotarget.3425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/23/2015] [Indexed: 01/11/2023] Open
Abstract
Identifying patients who may benefit from targeted therapy is an urgent clinical issue in prostate cancer (PCa). We investigated the molecular relationship between TMPRSS2-ERG (T2E) fusion gene and insulin-like growth factor receptor (IGF-1R) to optimize the use of IGF-1R inhibitors. IGF-1R was analyzed in cell lines and in radical prostatectomy specimens in relation to T2E status. ERG binding to IGF-1R promoter was evaluated by chromatin immunoprecipitation (ChIP). Sensitivity to anti-IGF-1R agents was evaluated alone or in combination with anti-androgen abiraterone acetate in vitro at basal levels or upon ERG modulation. IGF-1R analysis performed in PCa cells or clinical samples showed that T2E expression correlated with higher IGF-1R expression at mRNA and protein levels. Genetic modulation of ERG directly affected IGF-1R protein levels in vitro. ChIP analysis showed that ERG binds IGF-1R promoter and that promoter occupancy is higher in T2E-positive cells. IGF-1R inhibition was more effective in cell lines expressing the fusion gene and combination of IGF-1R inhibitors with abiraterone acetate produced synergistic effects in T2E-expressing cells. Here, we provide the rationale for use of T2E fusion gene to select PCa patients for anti-IGF-1R treatments. The combination of anti-IGF-1R-HAbs with an anti-androgen therapy is strongly advocated for patients expressing T2E.
Collapse
|
20
|
Devin JL, Bolam KA, Jenkins DG, Skinner TL. The Influence of Exercise on the Insulin-like Growth Factor Axis in Oncology: Physiological Basis, Current, and Future Perspectives. Cancer Epidemiol Biomarkers Prev 2015; 25:239-49. [PMID: 26677213 DOI: 10.1158/1055-9965.epi-15-0406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/24/2015] [Indexed: 01/02/2023] Open
Abstract
Exercise and physical activity have been shown to reduce the risk of many common cancers and strongly influence tumor biology. A cause-effect mechanism explaining this relationship is dependent on cellular pathways that can influence tumor growth and are exercise responsive. The insulin-like growth factor (IGF) axis is reported to promote the development and progression of carcinomas through cellular signaling in cancerous tissues. This review summarizes the physiologic basis of the role of the IGF axis in oncology and the influence of exercise on this process. We examined the effects of exercise prescription on the IGF axis in cancer survivors by evaluating the current scope of the literature. The current research demonstrates a remarkable heterogeneity and inconsistency in the responses of the IGF axis to exercise in breast, prostate, and colorectal cancer survivors. Finally, this review presents an in-depth exploration of the physiologic basis and mechanistic underpinnings of the seemingly disparate relationship between exercise and the IGF axis in oncology. Although there is currently insufficient evidence to categorize the effects of exercise prescription on the IGF axis in cancer survivors, the inconsistency of results suggests a multifaceted relationship, the complexities of which are considered in this review.
Collapse
Affiliation(s)
- James L Devin
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Kate A Bolam
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia. The Swedish School of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Stockholm, Sweden
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Shih JW, Wang LY, Hung CL, Kung HJ, Hsieh CL. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism. Int J Mol Sci 2015; 16:28943-78. [PMID: 26690121 PMCID: PMC4691085 DOI: 10.3390/ijms161226138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.
Collapse
Affiliation(s)
- Jing-Wen Shih
- Integrated Translational Lab, The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| | - Hsing-Jien Kung
- Integrated Translational Lab, The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
22
|
Wang X, Huang Y, Christie A, Bowden M, Lee GSM, Kantoff PW, Sweeney CJ. Cabozantinib Inhibits Abiraterone's Upregulation of IGFIR Phosphorylation and Enhances Its Anti-Prostate Cancer Activity. Clin Cancer Res 2015; 21:5578-87. [PMID: 26289068 DOI: 10.1158/1078-0432.ccr-15-0824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/10/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Abiraterone improves the overall survival of men with metastatic castration-resistant prostate cancer. However, de novo or adaptive resistance to abiraterone limits its activity. Rational combinations of drugs with different mechanisms of action that overcome resistance mechanisms may improve the efficacy of therapy. To that end, we studied the molecular and phenotypic effects of the combination of cabozantinib plus abiraterone. EXPERIMENTAL DESIGN Three prostate cancer cell lines were used to interrogate the in vitro molecular and antiproliferative effects of the single agents and combination of cabozantinib and abiraterone. The in vivo impact of the combination was assessed using the LAPC4-CR xenograft mouse model. RESULTS In vitro proliferation studies demonstrated single-agent doses between 2 μmol/L and 10 μmol/L for abiraterone and cabozantinib inhibit prostate cancer cell proliferation in a dose-dependent manner, and the anticancer activity of abiraterone is enhanced when combined with cabozantinib. In vivo LAPC4-CR xenograft mouse studies also showed that cabozantinib can improve the antitumor activity of abiraterone. Cabozantinib, a multiple receptor tyrosine kinase inhibitor, enhances the ability of abiraterone to inhibit AR activity in a cell line-dependent manner. In addition, our cell line studies demonstrate abiraterone-stimulated insulin-like growth factor I receptor (IGFIR) phosphorylation with downstream activation of MEK1/2 and ERK1/2, and that this potential adaptive resistance mechanism was inhibited by cabozantinib. CONCLUSIONS Cabozantinib can enhance the efficacy of abiraterone by blocking multiple compensatory survival mechanisms, including IGFIR activation, and supports the assessment of the combination in a clinical trial.
Collapse
Affiliation(s)
- Xiaodong Wang
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ying Huang
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amanda Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Michaela Bowden
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gwo-Shu Mary Lee
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Philip W Kantoff
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Christopher J Sweeney
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
23
|
Heidegger I, Massoner P, Sampson N, Klocker H. The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer. Cancer Lett 2015; 367:113-21. [PMID: 26231734 DOI: 10.1016/j.canlet.2015.07.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer death in males. In recent years, several new targeting agents have been introduced for the treatment of advanced stages of the disease. However, development of resistance limits the efficacy of new drugs and there is a further need to develop additional novel treatment approaches. One of the most investigated targets in cancer research is the insulin-like growth factor (IGF) axis, whose receptors are overexpressed in several cancer entities including PCa. In preclinical studies in PCa, targeting of the IGF axis receptors showed promising anti-tumor effects. Currently available data on clinical studies do not meet the expectations for this new treatment approach. In this review we provide a summary of preclinical and clinical studies on the IGF axis in PCa including treatment with monoclonal antibodies and tyrosine kinase inhibitors. Moreover, we summarize preliminary results from ongoing studies and discuss limitations and side effects of the substances used. We also address the role of the IGF axis in the biomarkers setting including IGF-binding proteins and genetic variants.
Collapse
Affiliation(s)
- Isabel Heidegger
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Petra Massoner
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Natalie Sampson
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
24
|
PET imaging of insulin-like growth factor type 1 receptor expression with a 64Cu-labeled Affibody molecule. Amino Acids 2015; 47:1409-19. [PMID: 25854877 DOI: 10.1007/s00726-015-1975-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/29/2015] [Indexed: 12/16/2022]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) serves as an attractive target for cancer molecular imaging and therapy. Previous single photon emission computerized tomography (SPECT) studies showed that the IGF-1R-targeting Affibody molecules (99m)Tc-ZIGF1R:4551-GGGC, [(99m)Tc(CO)3](+)-(HE)3-ZIGF1R:4551 and (111)In-DOTA-ZIGF1R:4551 can discriminate between high and low IGF-1R-expression tumors and have the potential for patient selection for IGF-1R-targeted therapy. Compared with SPECT, positron emission tomography (PET) may improve imaging of IGF-1R-expression, because of its high sensitivity, high spatial resolution, strong quantification ability. The aim of the present study was to develop the (64)Cu-labeled NOTA-conjugated Affibody molecule ZIGF-1R:4:40 as a PET probe for imaging of IGF-1R-positive tumor. An Affibody analogue (Ac-Cys-ZIGF-1R:4:40) binding to IGF-1R was site-specifically conjugated with NOTA and labeled with (64)Cu. Binding affinity and specificity of (64)Cu-NOTA-ZIGF-1R:4:40 to IGF-1R were evaluated using human glioblastoma U87MG cells. Small-animal PET, biodistribution, and metabolic stability studies were conducted on mice bearing U87MG xenografts after the injection of (64)Cu-NOTA-ZIGF-1R:4:40 with or without co-injection of unlabeled Affibody proteins. The radiosynthesis of (64)Cu-NOTA-ZIGF-1R:4:40 was completed successfully within 60 min with a decay-corrected yield of 75 %. (64)Cu-NOTA-ZIGF-1R:4:40 bound to IGF-1R with low nanomolar affinity (K D = 28.55 ± 3.95 nM) in U87MG cells. (64)Cu-NOTA-ZIGF-1R:4:40 also displayed excellent in vitro and in vivo stability. In vivo biodistribution and PET studies demonstrated targeting of U87MG gliomas xenografts was IGF-1R specific. The tumor uptake was 5.08 ± 1.07 %ID/g, and the tumor to muscle ratio was 11.89 ± 2.16 at 24 h after injection. Small animal PET imaging studies revealed that (64)Cu-NOTA-ZIGF-1R:4:40 could clearly identify U87MG tumors with good contrast at 1-24 h after injection. This study demonstrates that (64)Cu-NOTA-ZIGF-1R:4:40 is a promising PET probe for imaging IGF-1R positive tumor.
Collapse
|
25
|
Wu J, Yu E. Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy. Cancer Metastasis Rev 2015; 33:607-17. [PMID: 24414227 DOI: 10.1007/s10555-013-9482-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in men and is the second leading cause of cancer-related deaths in men each year. Androgen deprivation therapy is and has been the gold standard of care for advanced or metastatic prostate cancer for decades. While this treatment strategy initially shows benefit, eventually tumors recur as castration-resistant prostate cancer for which there are limited treatment options with only modest survival benefit. Upregulation of the insulin-like growth factor receptor type I (IGF-IR) signaling axis has been shown to drive the survival of prostate cancer cells in many studies. As many IGF-IR blockades have been developed, few have been tested preclinically and even fewer have entered clinical trials for prostate cancer therapy. In this review, we will update the most recent preclinical and clinical studies of IGF-IR therapy for prostate cancer. We will also discuss the challenges for IGF-IR targeted therapies to achieve clinical benefit for prostate cancer.
Collapse
Affiliation(s)
- Jennifer Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
26
|
Liu Q, Xu Z, Mao S, Chen W, Zeng R, Zhou S, Liu J. Effect of hypoxia on hypoxia inducible factor-1α, insulin-like growth factor I and vascular endothelial growth factor expression in hepatocellular carcinoma HepG2 cells. Oncol Lett 2015; 9:1142-1148. [PMID: 25663870 PMCID: PMC4315007 DOI: 10.3892/ol.2015.2879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
Hypoxic microenvironments and angiogenesis have been a focus of tumor research in previous years. The aim of the the present study was to create a hypoxic model and observe the effect of hypoxia on the expression of hypoxia inducible factor-1α (HIF-1α), insulin-like growth factor I (IGF-1) and vascular endothelial growth factor expression. The hypoxia model was generated using cobalt chloride (CoCl2) and an MTT assay was used to observe the influence of hypoxia on HepG2 cells. Reverse transcription-polymerase chain reaction, western blotting, ELISA and confocal immunofluorescence microscopy were used to detect the expression of HIF-1α, IGF-1 and VEGF in HepG2 cells, in which hypoxia was induced by various concentrations of CoCl2 and for various incubation times. The cell viability worsened with increasing concentrations of CoCl2. The expression of HIF-1α and IGF-1R was observed in hypoxic HepG2 cells, with the exception of HIF-1α mRNA. The expression of IGF-1R and VEGF mRNA and protein was correlated with the concentration of CoCl2 and the time that hypoxia was induced for. The expression of HIF-1α mRNA and protein was positively correlated with the expression of the VEGF mRNA and protein in a dose- and time-dependent manner under hypoxic conditions. Using immunofluorescence, it was observed that IGF-1R and HIF-1α were secreted from the hypoxic HepG2 cells. It was concluded that hypoxia induces the accumulation of IGF-1R and HIF-1α mRNA and protein, which regulates the expression of VEGF mRNA and protein in hypoxic HepG2 cells.
Collapse
Affiliation(s)
- Qiang Liu
- Department of General Surgery, The 175th Hospital of PLA (Affiliated Dongnan Hospital of Xiamen University), Zhangzhou, Fujian 363000, P.R. China
| | - Zheng Xu
- Department of General Surgery, The 175th Hospital of PLA (Affiliated Dongnan Hospital of Xiamen University), Zhangzhou, Fujian 363000, P.R. China
| | - Shunbao Mao
- Department of General Surgery, The 175th Hospital of PLA (Affiliated Dongnan Hospital of Xiamen University), Zhangzhou, Fujian 363000, P.R. China
| | - Wenyou Chen
- Department of General Surgery, The 175th Hospital of PLA (Affiliated Dongnan Hospital of Xiamen University), Zhangzhou, Fujian 363000, P.R. China
| | - Rongyao Zeng
- Department of General Surgery, The 175th Hospital of PLA (Affiliated Dongnan Hospital of Xiamen University), Zhangzhou, Fujian 363000, P.R. China
| | - Song Zhou
- Department of General Surgery, The 175th Hospital of PLA (Affiliated Dongnan Hospital of Xiamen University), Zhangzhou, Fujian 363000, P.R. China
| | - Jing Liu
- Department of General Surgery, The 175th Hospital of PLA (Affiliated Dongnan Hospital of Xiamen University), Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
27
|
Wang Z, Lu P, Liang Z, Zhang Z, Shi W, Cai X, Chen C. Increased insulin-like growth factor 1 receptor (IGF1R) expression in small cell lung cancer and the effect of inhibition of IGF1R expression by RNAi on growth of human small cell lung cancer NCI-H446 cell. Growth Factors 2015; 33:337-46. [PMID: 26430715 DOI: 10.3109/08977194.2015.1088533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R) is a tyrosine kinase receptor implicated in tumourigenesis that may be an attractive target for anti-cancer treatment. In this study, the expression and clinical significance of IGF1R were investigated in serum and lung cancer tissues from small cell lung cancinoma (SCLC). We also compared the effect of IGF1R up-regulation and IGF1R inhibition on viability and apoptosis of NCI-H446 cells. We found the concentration of IGF1R in blood serum was significantly increased and positive IGF1R protein in cancer tissue was more prevalent in SCLC. A statistically significant correlation among IGF1R-positve tumors, lymph node metastasis and local invasion was discussed. Furthermore, IGF1R overexpression lead to an increase of cell survival and suppressed cell apoptosis, IGF1R silencing mediated by RNAi abrogate this response of NCI-H446 cells. Our results further demonstrated that the effects of these treatments may be assigned to the effective inhibition of lung cancer cells from Akt/P27(Kip1) pathway in IGF-1R signaling. These features may have important implications for future anti-IGF1R therapeutic approaches.
Collapse
Affiliation(s)
- Zhigang Wang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Pingfang Lu
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Zhu Liang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Zhanfei Zhang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Weicheng Shi
- b Guangdong General Hospital of Armed Police Forces , Guangzhou , Guangdong , China
| | - Xiaobi Cai
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Chunyuan Chen
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| |
Collapse
|
28
|
Abdel-Rahman O. Insulin-like growth factor pathway aberrations and gastric cancer; evaluation of prognostic significance and assessment of therapeutic potentials. Med Oncol 2014; 32:431. [PMID: 25487446 DOI: 10.1007/s12032-014-0431-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/04/2023]
Abstract
Gastric cancer is a major cause of treatment-related mortality and morbidity worldwide, it ranks as the fourth most common cause of cancer-related death in males and fifth most common cause of cancer-related death in women. The prognosis of advanced cases with gastric cancer looks poor with the majority dying within 1 year of diagnosis of metastatic disease. Thus, intensive search for new innovative treatments has been a major focus of current oncology research. Insulin-like growth factor (IGF) pathway has been evaluated extensively in preclinical settings of gastric cancer. Initially, a number of studies have shown a potential role for aberrant tissue expression of IGFR-related markers in the process of gastric carcinogenesis, and a number of other studies have shown a clear association between IGFR expression and aggressive histopathological subtypes. However, clinical introduction of IGFR inhibitors into gastric cancer treatment has been delayed compared to other solid tumors. This review provides concise evaluation of prognostic significance of IGF pathway-related markers in gastric cancer with assessment of potential therapeutic strategies.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| |
Collapse
|
29
|
Aberrant allele-switch imprinting of a novel IGF1R intragenic antisense non-coding RNA in breast cancers. Eur J Cancer 2014; 51:260-70. [PMID: 25465188 DOI: 10.1016/j.ejca.2014.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor type I receptor (IGF1R) is frequently dysregulated in breast cancers, yet the molecular mechanisms are unknown. A novel intragenic long non-coding RNA (lncRNA) IRAIN within the IGF1R locus has been recently identified in haematopoietic malignancies using RNA-guided chromatin conformation capture (R3C). In breast cancer tissues, we found that IRAIN lncRNA was transcribed from an intronic promoter in an antisense direction as compared to the IGF1R coding mRNA. Unlike the IGF1R coding RNA, this non-coding RNA was imprinted, with monoallelic expression from the paternal allele. In breast cancer tissues that were informative for single nucleotide polymorphism (SNP) rs8034564, there was an imbalanced expression of the two parental alleles, where the 'G' genotype was favorably imprinted over the 'A' genotype. In breast cancer patients, IRAIN was aberrantly imprinted in both tumours and peripheral blood leucocytes, exhibiting a pattern of allele-switch: the allele expressed in normal tissues was inactivated and the normally imprinted allele was expressed. Epigenetic analysis revealed that there was extensive DNA demethylation of CpG islands in the gene promoter. These data identify IRAIN lncRNA as a novel imprinted gene that is aberrantly regulated in breast cancer.
Collapse
|
30
|
Maslova K, Kyriakakis E, Pfaff D, Frachet A, Frismantiene A, Bubendorf L, Ruiz C, Vlajnic T, Erne P, Resink TJ, Philippova M. EGFR and IGF-1R in regulation of prostate cancer cell phenotype and polarity: opposing functions and modulation by T-cadherin. FASEB J 2014; 29:494-507. [PMID: 25381040 DOI: 10.1096/fj.14-249367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
T-cadherin is an atypical glycosylphosphatidylinsoitol-anchored member of the cadherin superfamily of adhesion molecules. We found that T-cadherin overexpression in malignant (DU145) and benign (BPH-1) prostatic epithelial cell lines or silencing in the BPH-1 cell line, respectively, promoted or inhibited migration and spheroid invasion in collagen I gel and Matrigel. T-cadherin-dependent effects were associated with changes in cell phenotype: overexpression caused cell dissemination and loss of polarity evaluated by relative positioning of the Golgi/nuclei in cell groups, whereas silencing caused formation of compact polarized epithelial-like clusters. Epidermal growth factor receptor (EGFR) and IGF factor-1 receptor (IGF-1R) were identified as mediators of T-cadherin effects. These receptors per se had opposing influences on cell phenotype. EGFR activation with EGF or IGF-1R inhibition with NVP-AEW541 promoted dissemination, invasion, and polarity loss. Conversely, inhibition of EGFR with gefitinib or activation of IGF-1R with IGF-1 rescued epithelial morphology and decreased invasion. T-cadherin silencing enhanced both EGFR and IGF-1R phosphorylation, yet converted cells to the morphology typical for activated IGF-1R. T-cadherin effects were sensitive to modulation of EGFR or IGF-1R activity, suggesting direct involvement of both receptors. We conclude that T-cadherin regulates prostate cancer cell behavior by tuning the balance in EGFR/IGF-1R activity and enhancing the impact of IGF-1R.
Collapse
Affiliation(s)
- Kseniya Maslova
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Emmanouil Kyriakakis
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Dennis Pfaff
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Audrey Frachet
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Agne Frismantiene
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Lukas Bubendorf
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Christian Ruiz
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Tatjana Vlajnic
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Paul Erne
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Thérèse J Resink
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Maria Philippova
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| |
Collapse
|
31
|
Ibuki N, Ghaffari M, Reuveni H, Pandey M, Fazli L, Azuma H, Gleave ME, Levitzki A, Cox ME. The tyrphostin NT157 suppresses insulin receptor substrates and augments therapeutic response of prostate cancer. Mol Cancer Ther 2014; 13:2827-39. [PMID: 25267499 DOI: 10.1158/1535-7163.mct-13-0842] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor (IGF) signaling is associated with castrate-resistant prostate cancer (CRPC) progression. Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from IGF1 receptor (IGF1R), insulin receptor, and other oncoproteins. This study demonstrates that IRS1/2 expression is increased in prostate cancer, and persists in CRPC. Furthermore, this study assesses the anticancer activity of NT157, a small molecule tyrphostin targeting IRS proteins, using androgen-responsive (LNCaP) and -independent (PC3) prostate cancer cells in vitro and in vivo. NT157 treatment resulted in dose-dependent inhibition of IGF1R activation, suppression of IRS protein expression, inhibition of IGF1-induced AKT activation, but increased ERK activation in NT157-treated cells in vitro. These effects were correlated with decreased proliferation and increasing apoptosis of LNCaP cells and increasing G2-M arrest in PC3 cells. NT157 also suppressed androgen-responsive growth, delayed CRPC progression of LNCaP xenografts, and suppressed PC3 tumor growth alone and in combination with docetaxel. This study reports the first preclinical proof-of-principle data that this novel small molecule tyrosine kinase inhibitor suppresses IRS1/2 expression, delays CRPC progression, and suppresses growth of CRPC tumors in vitro and in vivo. Demonstration that IRS expression can be increased in response to a variety of stressors that may lead to resistance or reduced effect of the therapies indicate that NT157-mediated IRS1/2 downregulation is a novel therapeutic approach for management of advanced prostate cancer.
Collapse
Affiliation(s)
- Naokazu Ibuki
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada. Department of Urology, Osaka Medical College, Osaka, Japan
| | - Mazyar Ghaffari
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada. Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hadas Reuveni
- TyrNovo Ltd., Herzliya, Israel. Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Mitali Pandey
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Martin E Gleave
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander Levitzki
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Michael E Cox
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Sun J, Li W, Sun Y, Yu D, Wen X, Wang H, Cui J, Wang G, Hoffman AR, Hu JF. A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies. Nucleic Acids Res 2014; 42:9588-601. [PMID: 25092925 PMCID: PMC4150754 DOI: 10.1093/nar/gku549] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of the insulin-like growth factor type I receptor (IGF1R) has been implicated in the progression and therapeutic resistance of malignancies. In acute myeloid leukemia (AML) cells, IGF1R is one of the most abundantly phosphorylated receptor tyrosine kinases, promoting cell growth through the PI3K/Akt signaling pathway. However, little is known regarding the molecular mechanisms underlying IGF1R gene dysregulation in cancer. We discovered a novel intragenic long noncoding RNA (lncRNA) within the IGF1R locus, named IRAIN, which is transcribed in an antisense direction from an intronic promoter. The IRAIN lncRNA was expressed exclusively from the paternal allele, with the maternal counterpart being silenced. Using both reverse transcription-associated trap and chromatin conformation capture assays, we demonstrate that this lncRNA interacts with chromatin DNA and is involved in the formation of an intrachromosomal enhancer/promoter loop. Knockdown of IRAIN lncRNA with shRNA abolishes this intrachromosomal interaction. In addition, IRAIN was downregulated both in leukemia cell lines and in blood obtained from high-risk AML patients. These data identify IRAIN as a new imprinted lncRNA that is involved in long-range DNA interactions.
Collapse
Affiliation(s)
- Jingnan Sun
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Yunpeng Sun
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Dehai Yu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Wen
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Hong Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Guanjun Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
33
|
Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin Nutr 2014; 33:718-26. [DOI: 10.1016/j.clnu.2013.08.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/19/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022]
|
34
|
Ma W, Zhang T, Pan J, Shi N, Fan Q, Wang L, Lu SH. Assessment of insulin-like growth factor 1 receptor as an oncogene in esophageal squamous cell carcinoma and its potential implication in chemotherapy. Oncol Rep 2014; 32:1601-9. [PMID: 25175038 DOI: 10.3892/or.2014.3348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/27/2014] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor implicated in the pathogenesis of multiple cancers. After ligand binding, IGF-1R can initiate the activation of the PI3K/AKT/mTOR and Ras/Raf/MEK/MAPK pathways to modulate cell proliferation, survival, differentiation, motility, invasion and angiogenesis. IGF-1R is a prerequisite for tumor progression and is one of the most attractive targets for therapeutic interventions in several types of cancer. In the present study, we determined the expression of IGF-1R in an esophageal squamous cell carcinoma (ESCC) cohort, investigated the detailed function of IGF-1R and screened the potential application of IGF-1R in the clinic. We verified the higher expression of IGF-1R in ESCC tumor tissues as compared to adjacent normal tissues. We also found that high expression of IGF-1R was associated with advanced tumor progression. We used ESCC cell lines and a mouse xenograft model to detect the function of IGF-1R in vitro and in vivo. Our results suggest the oncogenic function of IGF-1R in regulating cell proliferation, clonogenesis, the cell cycle and apoptosis. In addition, we found that IGF-1R was associated with the response to standard chemotherapy drugs 5-FU and cisplatin in an ESCC cell line. More importantly, we confirmed that the serum concentration of IGF-1/IGFBP3 can be used for predicting response to chemotherapy, and increased serum levels of IGF-1 and IGFBP-3 are associated with significantly higher rates of tumor response. In the present study, we demonstrated that IGF-1R is an important oncogene in ESCC and can be used to detect the chemotherapeutic response.
Collapse
Affiliation(s)
- Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Ni Shi
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shih Hsin Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
35
|
Philippou A, Maridaki M, Pneumaticos S, Koutsilieris M. The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity. Mol Med 2014; 20:202-14. [PMID: 24637928 DOI: 10.2119/molmed.2014.00011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
The insulinlike growth factor-I (IGF-I) is an important factor which regulates a variety of cellular responses in multiple biological systems. The IGF1 gene comprises a highly conserved sequence and contains six exons, which give rise to heterogeneous mRNA transcripts by a combination of multiple transcription initiation sites and alternative splicing. These multiple transcripts code for different precursor IGF-I polypeptides, namely the IGF-IEa, IGF-IEb and IGF-IEc isoforms in humans, which also undergo posttranslational modifications, such as proteolytic processing and glycosylation. IGF-I actions are mediated through its binding to several cell-membrane receptors and the IGF-I domain responsible for the receptor binding is the bioactive mature IGF-I peptide, which is derived after the posttranslational cleavage of the pro-IGF-I isoforms and the removal of their carboxy-terminal E-peptides (that is, the Ea, Eb and Ec). Interestingly, differential biological activities have been reported for the different IGF-I isoforms, or for their E-peptides, implying that IGF-I peptides other than the IGF-I ligand also possess bioactivity and, thus, both common and unique or complementary pathways exist for the IGF-I isoforms to promote biological effects. The multiple peptides derived from IGF-I and the differential expression of its various transcripts in different conditions and pathologies appear to be compatible with the distinct cellular responses observed to the different IGF-I peptides and with the concept of a complex and possibly isoform-specific IGF-I bioactivity. This concept is discussed in the present review, in the context of the broad range of modifications that this growth factor undergoes which might regulate its mechanism(s) of action.
Collapse
Affiliation(s)
- Anastassios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Maridaki
- Department of Sports Medicine and Biology of Physical Activity, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros Pneumaticos
- Third Department of Orthopaedic Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Affiliation(s)
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
37
|
Lee H, Kim SR, Oh Y, Cho SH, Schleimer RP, Lee YC. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol 2014; 50:667-77. [PMID: 24219511 PMCID: PMC5455301 DOI: 10.1165/rcmb.2013-0397tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023] Open
Abstract
Insulin-like growth factor (IGF)-I has been recognized to play critical roles in the pathogenesis of asthma, whereas IGF-binding protein (IGFBP)-3 blocks crucial physiologic manifestations of asthma. IGF-I enhances subepithelial fibrosis, airway inflammation, airway hyperresponsiveness, and airway smooth muscle hyperplasia by interacting with various inflammatory mediators and complex signaling pathways, such as intercellular adhesion molecule-1, and the hypoxia-inducible factor/vascular endothelial growth factor axis. On the other hand, IGFBP-3 decreases airway inflammation and airway hyperresponsiveness through IGFBP-3 receptor-mediated activation of caspases, which subsequently inhibits NF-κB signaling pathway. It also inhibits the IGF-I/hypoxia-inducible factor/vascular endothelial growth factor axis via IGF-I-dependent and/or IGF-I-independent mechanisms. This Translational Review summarizes the role of IGF-I and IGFBP-3 in the context of allergic airway disease, and discusses the therapeutic potential of various strategies targeting the IGF-I and IGFBP-3 signaling pathways for the management of asthma.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - So Ri Kim
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia; and
| | - Seong Ho Cho
- Division of Allergy–Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Robert P. Schleimer
- Division of Allergy–Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Yong Chul Lee
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
38
|
Xu JW, Wang TX, You L, Zheng LF, Shu H, Zhang TP, Zhao YP. Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer. PLoS One 2014; 9:e92847. [PMID: 24667580 PMCID: PMC3965476 DOI: 10.1371/journal.pone.0092847] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
The expression levels and regulatory roles of miR-497 in pancreatic cancer are unclear. The clinical value of plasma insulin-like growth factor 1 receptor (IGF-1R) in pancreatic cancers has not been investigated. In the present study, we demonstrated that miR-497 was significantly downregulated in pancreatic cancer tissues. Upregulation of miR-497 in BxPC-3 and AsPC-1 pancreatic cancer cell lines inhibited proliferation, enhanced apoptosis, re-sensitized cells to gemcitabine and suppressed IGF-1R and p-AKT expression through direct downregulation of IGF-1R protein expression. Opposite effects were observed after downregulation of miR-497. Plasma IGF-1R levels in patients with pancreatic cancer increased significantly, compared with that in patients with chronic pancreatitis, other pancreatic tumors and pancreatic neuroendocrine tumors (P = 0.006, P = 0.018 and P = 0.004, respectively), and displayed potential values for distinguishing pancreatic lesions. However, the levels in pancreatic cancer patients were comparable to that in healthy volunteers (P = 0.095). The tumor locations and TNM stage were associated with plasma IGF-1R levels (P = 0.013 and P = 0.01, respectively). There was no significant difference of overall survival between high and low IGF-1R expression groups. In conclusion, we demonstrated that miR-497 attenuated the malignancy of pancreatic cancer cells and promoted sensitivity of cells to gemcitabine by directly downregulation of IGF-1R expression. Plasma IGF-1R displayed a potential value for distinguishing pancreatic lesions and could be a new biomarker for guiding TNM stage of pancreatic cancer.
Collapse
Affiliation(s)
- Jian-Wei Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Xiao Wang
- Department of Head and Neck Surgery, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Fang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Shu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tai-Ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Mahmoud AM, Yang W, Bosland MC. Soy isoflavones and prostate cancer: a review of molecular mechanisms. J Steroid Biochem Mol Biol 2014; 140:116-32. [PMID: 24373791 PMCID: PMC3962012 DOI: 10.1016/j.jsbmb.2013.12.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 02/08/2023]
Abstract
Soy isoflavones are dietary components for which an association has been demonstrated with reduced risk of prostate cancer (PCa) in Asian populations. However, the exact mechanism by which these isoflavones may prevent the development or progression of PCa is not completely understood. There are a growing number of animal and in vitro studies that have attempted to elucidate these mechanisms. The predominant and most biologically active isoflavones in soy products, genistein, daidzein, equol, and glycetin, inhibit prostate carcinogenesis in some animal models. Cell-based studies show that soy isoflavones regulate genes that control cell cycle and apoptosis. In this review, we discuss the literature relevant to the molecular events that may account for the benefit of soy isoflavones in PCa prevention or treatment. These reports show that although soy isoflavone-induced growth arrest and apoptosis of PCa cells are plausible mechanisms, other chemo protective mechanisms are also worthy of consideration. These possible mechanisms include antioxidant defense, DNA repair, inhibition of angiogenesis and metastasis, potentiation of radio- and chemotherapeutic agents, and antagonism of estrogen- and androgen-mediated signaling pathways. Moreover, other cells in the cancer milieu, such as the fibroblastic stromal cells, endothelial cells, and immune cells, may be targeted by soy isoflavones, which may contribute to soy-mediated prostate cancer prevention. In this review, these mechanisms are discussed along with considerations about the doses and the preclinical models that have been used.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Wancai Yang
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
40
|
de Bono JS, Piulats JM, Pandha HS, Petrylak DP, Saad F, Aparicio LMA, Sandhu SK, Fong P, Gillessen S, Hudes GR, Wang T, Scranton J, Pollak MN. Phase II randomized study of figitumumab plus docetaxel and docetaxel alone with crossover for metastatic castration-resistant prostate cancer. Clin Cancer Res 2014; 20:1925-34. [PMID: 24536060 DOI: 10.1158/1078-0432.ccr-13-1869] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Figitumumab is a human IgG2 monoclonal antibody targeting insulin-like growth factor 1 receptor (IGF-1R), with antitumor activity in prostate cancer. This phase II trial randomized chemotherapy-naïve men with progressing castration-resistant prostate cancer to receive figitumumab every 3 weeks with docetaxel/prednisone (Arm A) or docetaxel/prednisone alone (Arm B1). At progression on Arm B1, patients could cross over to the combination (Arm B2). EXPERIMENTAL DESIGN Prostate-specific antigen (PSA) response was the primary endpoint; response assessment on the two arms was noncomparative and tested separately; H0 = 0.45 versus HA = 0.60 (α = 0.05; β = 0.09) for Arm A; H0 = 0.05 versus HA = 0.20 (α = 0.05, β = 0.10) for Arm B2. A comparison of progression-free survival (PFS) on Arms A and B1 was planned. RESULTS A total of 204 patients were randomized and 199 treated (Arm A: 97; Arm B1: 102); 37 patients crossed over to Arm B2 (median number of cycles started: Arm A = 8; B1 = 8; B2 = 4). PSA responses occurred in 52% and 60% of Arms A and B1, respectively; the primary PSA response objective in Arm A was not met. Median PFS was 4.9 and 7.9 months, respectively (HR = 1.44; 95% confidence interval, 1.06-1.96). PSA response rate was 28% in Arm B2. The figitumumab combination appeared more toxic, with more treatment-related grade 3/4 adverse events (75% vs. 56%), particularly hyperglycemia, diarrhea, and asthenia, as well as treatment-related serious adverse events (41% vs. 15%), and all-causality grade 5 adverse events (18% vs. 8%). CONCLUSION IGF-1R targeting may merit further evaluation in this disease in selected populations, but combination with docetaxel is not recommended.
Collapse
Affiliation(s)
- Johann S de Bono
- Authors' Affiliations: Royal Marsden NHS Foundation Trust and The Institute of Cancer Research UK, Sutton; Institut Català d'Oncologia, L'Hospitalet, Barcelona; University of Surrey, Surrey, United Kingdom; Yale University Cancer Center, New Haven; Centre Hospitalier de l'Universite de Montreal, Montreal; A Coruña University Hospital, A Coruña, Spain; Kantonsspital St. Gallen, St. Gallen, Switzerland; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Pfizer Inc, Groton, Connecticut; and Lady Davis Institute for Medical Research, Jewish General Hospital and McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mousa SA, Lin HY, Tang HY, Hercbergs A, Luidens MK, Davis PJ. Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management. Angiogenesis 2014; 17:463-9. [PMID: 24458693 DOI: 10.1007/s10456-014-9418-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/14/2014] [Indexed: 11/30/2022]
Abstract
Acting via a cell surface receptor on integrin αvβ3, thyroid hormone is pro-angiogenic. Nongenomic mechanisms of actions of the hormone and hormone analogues at αvβ3 include modulation of activities of multiple vascular growth factor receptors and their ligands (vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, epidermal growth factor), as well as of angiogenic chemokines (CX3 family). Thyroid hormone also may increase activity of small molecules that support neovascularization (bradykinin, angiotensin II) and stimulate endothelial cell motility. Therapeutic angio-inhibition in the setting of cancer may be opposed by endogenous thyroid hormone, particularly when a single vascular growth factor is the treatment target. This may be a particular issue in management of aggressive or recurrent tumors. It is desirable to have access to chemotherapies that affect multiple steps in angiogenesis and to examine as alternatives in aggressive cancers the induction of subclinical hypothyroidism or use of antagonists of the αvβ3 thyroid hormone receptor that are under development.
Collapse
Affiliation(s)
- Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA,
| | | | | | | | | | | |
Collapse
|
42
|
Singh P, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 2013; 31:805. [PMID: 24338270 DOI: 10.1007/s12032-013-0805-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
Insulin and insulin-like growth factor (IGF) signaling system, commonly known for fine-tuning numerous biological processes, has lately made its mark as a much sought-after therapeutic targets for diabetes and cancer. These receptors make an attractive anticancer target owing to their overexpression in variety of cancer especially in prostate and breast cancer. Inhibitors of IGF signaling were subjected to clinical cancer trials with the main objective to confirm the effectiveness of these receptors as a therapeutic target. However, the results that these trials produced proved to be disappointing as the role played by the cross talk between IGF and insulin receptor (IR) signaling pathways at the receptor level or at downstream signaling level became more lucid. Therapeutic strategy for IGF-1R and IR inhibition mainly encompasses three main approaches namely receptor blockade with monoclonal antibodies, tyrosine kinase inhibition (ATP antagonist and non-ATP antagonist), and ligand neutralization via monoclonal antibodies targeted to ligand or recombinant IGF-binding proteins. Other drug-discovery approaches are employed to target IGF-1R, and IR includes antisense oligonucleotides and recombinant IGF-binding proteins. However, therapies with monoclonal antibodies and tyrosine kinase inhibition targeting the IGF-1R are not evidenced to be satisfactory as expected. Factors that are duly held responsible for the unsuccessfulness of these therapies include (a) the existence of the IR isoform A overexpressed on a variety of cancers, enhancing the mitogenic signals to the nucleus leading to the endorsement of cell growth, (b) IGF-1R and IR that form hybrid receptors sensitive to the stimulation of all three IGF axis ligands, and (c) IGF-1R and IR that also have the potential to form hybrid receptors with other tyrosine kinase to potentiate the cellular transformation, tumorigenesis, and tumor vascularization. This mini review is a concerted effort to explore and fathom the well-recognized roles of the IRA signaling system in human cancer phenotype and the main strategies that have been so far evaluated to target the IR and IGF-1R.
Collapse
Affiliation(s)
- Pushpendra Singh
- Centre for Biosciences, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151001, Punjab, India
| | | | | |
Collapse
|
43
|
Conteduca V, Zamarchi R, Rossi E, Condelli V, Troiani L, Aieta M. Circulating tumor cells: utopia or reality? Future Oncol 2013; 9:1337-52. [DOI: 10.2217/fon.13.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a ‘utopia’, but its actual utility remains among the fastest growing research fields in oncology.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Via Piero Maroncelli 40, 47014 Meldola (FC), Italy
| | | | - Elisabetta Rossi
- Department of Surgery, Oncology & Gastroenterology, Oncology Section, University of Padova, Italy
| | - Valentina Condelli
- Centro di Riferimento Oncologico della Basilicata IRCCS, Rionero in Vulture, Italy
| | - Laura Troiani
- Centro di Riferimento Oncologico della Basilicata IRCCS, Rionero in Vulture, Italy
| | - Michele Aieta
- Centro di Riferimento Oncologico della Basilicata IRCCS, Rionero in Vulture, Italy
| |
Collapse
|
44
|
Majo VJ, Arango V, Simpson NR, Prabhakaran J, Kassir SA, Underwood MD, Bakalian M, Canoll P, Mann JJ, Dileep Kumar JS. Synthesis and in vitro evaluation of [18F]BMS-754807: a potential PET ligand for IGF-1R. Bioorg Med Chem Lett 2013; 23:4191-4. [PMID: 23743281 PMCID: PMC4820059 DOI: 10.1016/j.bmcl.2013.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 12/13/2022]
Abstract
Radiosynthesis and in vitro evaluation of [(18)F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([(18)F]BMS-754807 or [(18)F]1) a specific IGF-1R inhibitor was performed. [(18)F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [(18)F]TBAF in DMSO at 170°C at high radiochemical purity and specific activity (1-2Ci/μmol, N=10). The proof of concept of IGF-IR imaging with [(18)F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [(18)F]1 can be a potential PET tracer for monitoring IGF-1R.
Collapse
Affiliation(s)
- Vattoly J. Majo
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
| | - Victoria Arango
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
- New York State Psychiatric Institute, NY, USA
| | | | - Jaya Prabhakaran
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
| | | | - Mark D. Underwood
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
- New York State Psychiatric Institute, NY, USA
| | | | - Peter Canoll
- Department of Pathology, College of Physicians and Surgeons, NY, USA
| | - J. John Mann
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
- New York State Psychiatric Institute, NY, USA
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - J. S. Dileep Kumar
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
- New York State Psychiatric Institute, NY, USA
| |
Collapse
|
45
|
Qi L, Toyoda H, Shankar V, Sakurai N, Amano K, Kihira K, Iwasa T, Deguchi T, Hori H, Azuma E, Gabazza EC, Komada Y. Heterogeneity of neuroblastoma cell lines in insulin-like growth factor 1 receptor/Akt pathway-mediated cell proliferative responses. Cancer Sci 2013; 104:1162-71. [PMID: 23710710 DOI: 10.1111/cas.12204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is critical for cancer cell proliferation; however, recent clinical anti-IGF-1R trials did not show clear clinical benefit in cancer therapy. We hypothesized that IGF-1R signaling-mediated proliferative response is heterogeneous in neuroblastoma (NB) cells, and analyzed the cell growth of 31 NB cell lines cultured in three different media, including Hybridoma-SFM medium (with insulin) and RPMI1640 with/without 10% FBS. Three growth patterns were found. In response to IGF and insulin, cell proliferation and Akt phosphorylation were upregulated in 13 cell lines, and suppressed by MK2206 (Akt inhibitor) and picropodophyllin (IGF-1R inhibitor). Interestingly, 3 of these 13 cell lines showed Akt self-phosphorylation and cell proliferation in RPMI1640; their proliferation was downregulated by anti-IGF-1 or anti-IGF-2 neutralizing antibody, suggesting the existence of an autocrine loop in the IGF-1R/Akt pathway. Eighteen NB cell lines did not proliferate in RPMI1640, even though Akt phosphorylation was upregulated by IGF and insulin. Based on the heterogeneous response of the IGF-1R/Akt pathway, the 31 NB cell lines could be classified into group 1 (autocrine IGF-mediated), group 2 (exogenous IGF-mediated) and group 3 (partially exogenous IGF-mediated) NB cell lines. In addition, group 3 NB cell lines were different from group 1 and 2, in terms of serum starvation-induced caspase 3 cleavage and picropodophyllin-induced G2/M arrest. These results indicate that the response of the IGF-1R/Akt pathway is an important determinant of the sensitivity to IGF-1R antagonists in NB. To our knowledge, this is the first report describing heterogeneity in the IGF-1R/Akt-mediated proliferation of NB cells.
Collapse
Affiliation(s)
- Lei Qi
- Department of Pediatrics and Developmental Science, Graduate School of Medicine, Mie University, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang R, Xu GL, Li Y, He LJ, Chen LM, Wang GB, Lin SY, Luo GY, Gao XY, Shan HB. The role of insulin-like growth factor 1 and its receptor in the formation and development of colorectal carcinoma. J Int Med Res 2013; 41:1228-35. [PMID: 23801064 DOI: 10.1177/0300060513487631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the role of insulin-like growth factor (IGF)-1 and its receptor (IGF1R) in the formation and development of colorectal carcinoma. METHODS Colorectal tissue and matching serum samples were collected from patients with adenomatous polyps or carcinoma and healthy control subjects. IGF1R mRNA levels were determined via quantitative real-time reverse transcription-polymerase chain reaction. Serum IGF1 was quantified using enzyme-linked immunosorbent assay. RESULTS Serum IGF1 concentrations and mucosal IGF1R mRNA levels were significantly higher in patients with adenomatous polyps (n = 24) or carcinoma (n = 13) compared with healthy control subjects (n = 13). There was a significant positive correlation between serum IGF1 and mucosal IGF1R mRNA in patients with adenomatous polyps. CONCLUSIONS High circulating IGF1 concentrations and mucosal IGF1R expression may play important roles in both the formation and development of colorectal carcinoma. IGF1 and its receptor may be activated before carcinogenesis, and may promote the growth and malignant transformation of adenomatous polyps. IGF1 and IGF1R may be useful biomarkers for evaluating the stage and risk of carcinogenesis.
Collapse
Affiliation(s)
- Rong Zhang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Numerous epidemiologic studies have implicated abdominal obesity as a major risk factor for insulin resistance, type 2 diabetes mellitus, cardiovascular disease, stroke, metabolic syndrome and its further expression, i.e., nonalcoholic fatty liver disease and death. Using novel models of visceral obesity, several studies have demonstrated that the relationship between visceral fat and longevity is causal, while the accrual of subcutaneous fat does not appear to play an important role in the etiology of disease risk. The need of reducing the visceral fat to improve survival, mainly taking into account the strict link between nonalcoholic fatty liver disease and the coronary artery disease is discussed.
Collapse
Affiliation(s)
- Carmine Finelli
- Center of Obesity and Eating Disorder, Stella Maris Mediterraneo Foundation Chiaromonte, Potenza, Italy
| | - Giovanni Tarantino
- Department of Clinical and Experimental Medicine, Federico II University Medical School of Naples, Naples, Italy.
| |
Collapse
|
48
|
Dean JP, Sprenger CC, Wan J, Haugk K, Ellis WJ, Lin DW, Corman JM, Dalkin BL, Mostaghel E, Nelson PS, Cohen P, Montgomery B, Plymate SR. Response of the insulin-like growth factor (IGF) system to IGF-IR inhibition and androgen deprivation in a neoadjuvant prostate cancer trial: effects of obesity and androgen deprivation. J Clin Endocrinol Metab 2013; 98:E820-8. [PMID: 23533230 PMCID: PMC4430583 DOI: 10.1210/jc.2012-3856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CONTEXT Prostate cancer patients at increased risk for relapse after prostatectomy were treated in a neoadjuvant study with androgen deprivation therapy (ADT) in combination with cixutumumab, an inhibitory fully human monoclonal antibody against IGF receptor 1 (IGF-IR). OBJECTIVE A clinical trial with prospective collection of serum and tissue was designed to test the potential clinical efficacy of neoadjuvant IGF-IR blockade combined with ADT in these patients. The effect of body mass index (BMI) on response of IGF-IR/insulin components to IGF-IR blockade was also examined. DESIGN Eligibility for the trial required the presence of high-risk prostate adenocarcinoma. Treatment consisted of bicalutamide, goserelin, and cixutumumab for 13 weeks before prostatectomy. Here we report on an analysis of serum samples from 29 enrolled patients. Changes in IGF and glucose homeostasis pathways were compared to control samples from patients in a concurrent clinical trial of neoadjuvant ADT alone. RESULTS Significant increases were seen in GH (P = .001), IGF-I (P < .0001), IGF-II (P = .003), IGF binding protein (IGFBP)-3 (P < .0001), C-peptide (P = .0038), and insulin (P = .05) compared to patients treated with ADT alone. IGFBP-1 levels were significantly lower in the cixutumumab plus ADT cohort (P = .001). No significant changes in blood glucose were evident. Patients with BMIs in the normal range had significantly higher GH (P < .05) and IGFBP-1 (P < 0.5) levels compared to overweight and obese patients. CONCLUSIONS Patients with IGF-IR blockade in combination with ADT demonstrated significant changes in IGF and glucose homeostasis pathway factors compared to patients receiving ADT alone. In the patients receiving combination therapy, patients with normal BMI had serum levels of glucose homeostasis components similar to individuals in the ADT-alone cohort, whereas patients with overweight and obese BMIs had serum levels that differed from the ADT cohort.
Collapse
|
49
|
Nakonechnaya AO, Jefferson HS, Chen X, Shewchuk BM. Differential effects of exogenous and autocrine growth hormone on LNCaP prostate cancer cell proliferation and survival. J Cell Biochem 2013; 114:1322-35. [DOI: 10.1002/jcb.24473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
|
50
|
Sun D, Layer R, Mueller AC, Cichewicz MA, Negishi M, Paschal BM, Dutta A. Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 2013; 33:1448-57. [PMID: 23503464 PMCID: PMC3915043 DOI: 10.1038/onc.2013.77] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/17/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022]
Abstract
The androgen receptor (AR) stimulates and represses gene expression to promote the initiation and progression of prostate cancer. Here, we report that androgen represses the miR-99a/let7c/125b-2 cluster through AR and anti-androgen drugs block the androgen-repression of the miRNA cluster. AR directly binds to the host gene of the miR-99a/let7c/125b-2 cluster, LINC00478. Expression of the cluster is repressed or activated by chromatin remodelers EZH2 or JMJD3 in the presence or absence of androgen, respectively. Bioinformatics analysis reveals a significant enrichment of targets of miR-99a, let-7c and miR-125b in androgen-induced gene sets, suggesting that downregulation of the miR-99a/let7c/125b-2 cluster by androgen protects many of their target mRNAs from degradation and indirectly assists in the gene induction. We validated the hypothesis with 12 potential targets of the miR-99a/let7c/125b-2 cluster induced by androgen: 9 out of the 12 mRNAs are downregulated by the microRNA cluster. To ascertain the biological significance of this hypothesis, we focused on IGF1R, a known prostate cancer growth factor that is induced by androgen and directly targeted by the miR-99a/let7c/125b-2 cluster. The androgen-induced cell proliferation is ameliorated to a similar extent as anti-androgen drugs by preventing the repression of the microRNAs or induction of IGF1R in androgen-dependent prostate cancer cells. Expression of a microRNA-resistant form of IGF1R protects these cells from inhibition by the miR-99a/let7c/125b-2 cluster. These results indicate that a thorough understanding of how androgen stimulates prostate cancer growth requires not only an understanding of genes directly induced/repressed by AR, but also of genes indirectly induced by AR through the repression of key microRNAs.
Collapse
Affiliation(s)
- D Sun
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - R Layer
- 1] Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA, USA [2] Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| | - A C Mueller
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - M A Cichewicz
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - M Negishi
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - B M Paschal
- 1] Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA, USA [2] Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - A Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| |
Collapse
|