1
|
Grummt M, Hafermann L, Claussen L, Herrmann C, Wolfarth B. Rating of Perceived Exertion: A Large Cross-Sectional Study Defining Intensity Levels for Individual Physical Activity Recommendations. SPORTS MEDICINE - OPEN 2024; 10:71. [PMID: 38856875 PMCID: PMC11164849 DOI: 10.1186/s40798-024-00729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Physical inactivity is a growing risk factor worldwide, therefore getting people into sports is necessary. When prescribing physical activity, it is essential to recommend the correct training intensities. Cardiopulmonary exercise testing (CPX) enables precise determination of individuals' training intensities but is unavailable for a broad population. Therefore, the Borg scale allows individuals to assess perceived exertion and set their intensity easily and cost-efficiently. In order to transfer CPX to rating of perceived exertion (RPE), previous studies investigated RPE on specific physiological anchors, e.g. blood lactate (bLa) concentrations, but representativeness for a broad population is questionable. Some contradictory findings regarding individual factors influencing RPE occur, whereas univariable analysis has been performed so far. Moreover, a multivariable understanding of individual factors influencing RPE is missing. This study aims to determine RPE values at the individual anaerobic threshold (LT2) and defined bLa concentrations in a large cohort and to evaluate individual factors influencing RPE with multivariable analysis. METHODS CPX with bicycle or treadmill ergometer of 6311 participants were analyzed in this cross-sectional study. RPE values at bLa concentrations 2 mmol/l, 3 mmol/l, 4 mmol/l, and LT2 (first rise in bLa over baseline + 1.5 mmol/l) were estimated by spline interpolation. Multivariable cumulative ordinal regression models were performed to assess the influence of sex, age, type of ergometry, VO2max, and duration of exercise testing on RPE. RESULTS Median values [interquartile range (IQR)] of the total population were RPE 13 [11; 14] at 2 mmol/l, RPE 15 [13; 16] at 3 mmol/l, RPE 16 [15; 17] at 4 mmol/l, and RPE 15 [14; 16] at LT2. Main influence of individual factors on RPE were seen especially at 2 mmol/l: male sex (odds ratio (OR) [95%-CI]: 0.65 [0.587; 0.719]), treadmill ergometry (OR 0.754 [0.641; 0.886]), number of stages (OR 1.345 [1.300; 1.394]), age (OR 1.015 [1.012; 1.018]), and VO2max (OR 1.023 [1.015; 1.030]). Number of stages was the only identified influencing factor on RPE at all lactate concentrations/LT2 (3 mmol/l: OR 1.290 [1.244; 1.336]; 4 mmol/l: OR 1.229 [1.187; 1.274]; LT2: OR 1.155 [1.115; 1.197]). CONCLUSION Our results suggest RPE ≤ 11 for light intensity, RPE 12-14 for moderate intensity, and RPE 15-17 for vigorous intensity, which slightly differs from the current American College of Sports Medicine (ACSM) recommendations. Additionally, we propose an RPE of 15 delineating heavy and severe intensity domain. Age, sex, type of ergometry, duration of exercise, and cardiopulmonary fitness should be considered when recommending individualized intensities with RPE, primarily at lower intensities. Therefore, this study can be used as a new guideline for prescribing individual RPE values in the clinical practice, predominantly for endurance type exercise.
Collapse
Affiliation(s)
- Maximilian Grummt
- Department of Sports Medicine, Charité - Universitätsmedizin Berlin, Philippstr. 13 Haus 11, 10115, Berlin, Germany.
| | - Lorena Hafermann
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Claussen
- Institute of Sports Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolin Herrmann
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, Charité - Universitätsmedizin Berlin, Philippstr. 13 Haus 11, 10115, Berlin, Germany
- Institute of Sports Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Apurba G. Investigation of outcome measures and anomalous lower extremity in osteoarthritis patients with Jumpstart nutrition® supplementation. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:1-27. [PMID: 38463924 PMCID: PMC10921115 DOI: 10.22088/cjim.15.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 03/12/2024]
Abstract
Background Osteoarthritis (OA) is characterized by cartilage and synovial inflammation as well as anomalous lower extremity leading to joint pain, and impairment in lifestyle and epidemic of obesity. This study aimed to use the Jumpstart Nutrition® supplement (JNS) for achieving symmetry of aberrant lower extremity and improving the outcome measures in the management of OA. Methods This week-twelve registry included 108 patients treated with JNS mainly comprised of calcium, phosphorus, magnesium, vitamin-K2, coenzyme-Q10, vitamin-C, boswellic acids, and curcumin mixed with soy and whey proteins (experimental group) and 72 were treated with symptomatic slow-acting drugs (control group) for chronic OA confirmed with radiological images. The outcome measures (Visual analogue scale, Western Ontario and McMaster Universities Osteoarthritis Index, Knee-injury Osteoarthritis Outcomes Scale, and Body mass index), and anomalous lower extremity included bilateral: knee gaps between biceps femoris-short head and surface of the bed, diameters of muscles at the calf, the thigh, 4cm above and below the patella, angles of straight leg raising, knee- flexion and-extension in supine were evaluated with appropriate protocol at week-0 and at week-12 for both the groups. Results After week-12, risk ratios of studied lower extremity, and mean ±standard deviation of all outcome measures were significantly improved (p<0.0001), and Kellgren-Lawrence scale (KLS) was upgraded to ≥2 in experimental group compared to control. Conclusions This registry study indicates that JNS can be used to achieve symmetry of studied lower extremity and to improve the outcome measures safely as an effective management of OA patients confirmed with radiological images correlated with KLS.
Collapse
Affiliation(s)
- Ganguly Apurba
- Department of Biochemistry, Techno India University, Salt Lake, Kolkata, India
| |
Collapse
|
3
|
Zhao M, Xiao M, Tan Q, Lyu J, Lu F. The effect of aerobic exercise on oxidative stress in patients with chronic kidney disease: a systematic review and meta-analysis with trial sequential analysis. Ren Fail 2023; 45:2252093. [PMID: 37753870 PMCID: PMC10538458 DOI: 10.1080/0886022x.2023.2252093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate how aerobic exercise affects oxidative stress (OS) in patients with chronic kidney disease (CKD). METHODS Retrieval dates range from the date the database was established to 19 July 2023, without languages being restricted. A meta-analysis and sensitivity analysis were conducted using RevMan 5.3 and Stata 16.0. RESULTS The meta-analysis showed that, compared to usual activity or no exercise, aerobic exercise significantly reduced the oxidative markers malondialdehyde (MDA) (mean differences (MD) - 0.96 (95% CI -1.33, - 0.59); p < 0.00001), advanced oxidation protein product (AOPP) (MD - 3.49 (95% CI - 5.05, - 1.93); p < 0.00001), F2-isoprostanes (F2-iso) (MD - 11.02 (95% CI - 17.79, - 4.25); p = 0.001). Aerobic exercise also increased the antioxidant marker superoxide dismutase (SOD) in CKD patients (standardized mean differences (SMD) 1.30 (95% CI 0.56, 2.04); p = 0.0005). Subgroup analysis showed a significant increase in glutathione peroxidase (GPX) in patients aged ≥60 years (SMD 2.11 (95% CI 1.69, 2.54); p < 0.00001). The change in total antioxidant capacity (TAC) after aerobic exercise was insignificant in patients with CKD. The trial sequential analysis supported aerobic exercise's effectiveness in improving MDA, SOD, AOPP, and F2-iso in patients with CKD. CONCLUSION The results of this review suggest that aerobic exercise improves OS indicators (MDA, SOD, AOPP, and F2-iso) in CKD patients compared to conventional treatment or no exercise and that the effects on GPX and TAC indicators need further confirmation. For better validation of benefits and exploration of the best aerobic exercise regimen to improve OS status with CKD, further studies with high methodological quality and large sample sizes are needed.
Collapse
Affiliation(s)
- Mengjie Zhao
- Graduate School of Beijing University of Chinese Medicine, Beijing, P.R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
| | - Mengli Xiao
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
| | - Qin Tan
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
| | - Jian Lyu
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
| | - Fang Lu
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, P.R. China
| |
Collapse
|
4
|
Cooper ID, Kyriakidou Y, Petagine L, Edwards K, Elliott BT. Bio-Hacking Better Health-Leveraging Metabolic Biochemistry to Maximise Healthspan. Antioxidants (Basel) 2023; 12:1749. [PMID: 37760052 PMCID: PMC10525476 DOI: 10.3390/antiox12091749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In the pursuit of longevity and healthspan, we are challenged with first overcoming chronic diseases of ageing: cardiovascular disease, hypertension, cancer, dementias, type 2 diabetes mellitus. These are hyperinsulinaemia diseases presented in different tissue types. Hyperinsulinaemia reduces endogenous antioxidants, via increased consumption and reduced synthesis. Hyperinsulinaemia enforces glucose fuelling, consuming 4 NAD+ to produce 2 acetyl moieties; beta-oxidation, ketolysis and acetoacetate consume 2, 1 and 0, respectively. This decreases sirtuin, PARPs and oxidative management capacity, leaving reactive oxygen species to diffuse to the cytosol, upregulating aerobic glycolysis, NF-kB and cell division signalling. Also, oxidising cardiolipin, reducing oxidative phosphorylation (OXPHOS) and apoptosis ability; driving a tumourigenic phenotype. Over time, increasing senescent/pathological cell populations occurs, increasing morbidity and mortality. Beta-hydroxybutyrate, an antioxidant, metabolite and signalling molecule, increases synthesis of antioxidants via preserving NAD+ availability and enhancing OXPHOS capacity. Fasting and ketogenic diets increase ketogenesis concurrently decreasing insulin secretion and demand; hyperinsulinaemia inhibits ketogenesis. Lifestyles that maintain lower insulin levels decrease antioxidant catabolism, additionally increasing their synthesis, improving oxidative stress management and mitochondrial function and, subsequently, producing healthier cells. This supports tissue and organ health, leading to a better healthspan, the first challenge that must be overcome in the pursuit of youthful longevity.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (K.E.); (B.T.E.)
| | | | | | | | | |
Collapse
|
5
|
Apurba G, Sudip B. Biomonitoring the skeletal muscle metabolic dysfunction in knee osteoarthritis in older adults: Is Jumpstart Nutrition® Supplementation effective? CASPIAN JOURNAL OF INTERNAL MEDICINE 2023; 14:590-606. [PMID: 38024172 PMCID: PMC10646351 DOI: 10.22088/cjim.14.43.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 10/15/2022] [Indexed: 12/01/2023]
Abstract
Background This study aimed to investigate the efficacy of Jumpstart Nutrition® dietary supplement (JNDS) for enhancing the skeletal muscle metabolism and function of older adults with knee osteoarthritis (KOA) by evaluating the biomarkers of aberrant levels of serum tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), C-reactive protein (CRP), creatine kinase-muscle (CK-MM), and aldolase-A (Aldo-A). Methods This twelve-week registry included 54 patients treated with JNDS mainly comprised of calcium, phosphorus, vitamin-K2, coenzyme-Q10, boswellic acid, and curcumin mixed with soy and whey protein (experimental group) and 51 patients treated with symptomatic slow-acting drugs for osteoarthritis (SYSADOA) (control group) for KOA confirmed with radiological images. At week 0 and week 12 for both the groups evaluated, the non-fasting serum levels of TNF-α, IL-10, CRP, CK-MM, and Aldo-A by using appropriate kits. Results At week-twelve, the respective values of area under the ROC curves of the studied biomarkers for pooled experimental cohorts were 0.928, 0.907, 0.908, 0.927, and 0.988 having the significance of accuracy (R-square):66.28%, 47.25%, 70.39%, 65.13%, and 68.00%, indicating a satisfactory treatment policy, their mean± SD, and risk ratio, all exhibited highly significant differences (p<0.0001) and KOA-gradation was upgraded between≥2 and ≥3 from≥4 as per the Kellgren-Lawrence scale compared to the control. Fewer patients had to use emergency medications (p<0.05). Conclusions Results suggest that JNDS may be effectively used to strengthen the skeletal muscle metabolism and function of elderly patients with KOA confirmed with the stabilization of studied biomarkers as an alternative to the treatment of SYSAD correlated with ROC curves and the Kellgren-Lawrence scale.
Collapse
Affiliation(s)
- Ganguly Apurba
- Department of Biochemistry, Techno India University, Salt Lake, Kolkata, India
| | - Banerjee Sudip
- Department of Biochemistry, Techno India University, Salt Lake, Kolkata, India
| |
Collapse
|
6
|
Pathak SJ, Zhou Z, Steffen D, Tran T, Ad Y, Ramsey JJ, Rutkowsky JM, Baar K. 2-month ketogenic diet preferentially alters skeletal muscle and augments cognitive function in middle aged female mice. Aging Cell 2022; 21:e13706. [PMID: 36148631 PMCID: PMC9577944 DOI: 10.1111/acel.13706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
The effect of a ketogenic diet (KD) on middle aged female mice is poorly understood as most of this work have been conducted in young female mice or diseased models. We have previously shown that an isocaloric KD started at middle age in male mice results in enhanced mitochondrial mass and function after 2 months on diet and improved cognitive behavior after being on diet for 14 months when compared with their control diet (CD) fed counterparts. Here, we aimed to investigate the effect of an isocaloric 2-month KD or CD on healthy 14-month-old female mice. At 16 months of age cognitive behavior tests were performed and then serum, skeletal muscle, cortex, and hippocampal tissues were collected for biochemical analysis. Two months on a KD resulted in enhanced cognitive behavior associated with anxiety, memory, and willingness to explore. The improved neurocognitive function was associated with increased PGC1α protein in the gastrocnemius (GTN) muscle and nuclear fraction. The KD resulted in a tissue specific increase in mitochondrial mass and kynurenine aminotransferase (KAT) levels in the GTN and soleus muscles, with a corresponding decrease in kynurenine and increase in kynurenic acid levels in serum. With KAT proteins being responsible for converting kynurenine into kynurenic acid, which is unable to cross the blood brain barrier and be turned into quinolinic acid-a potent neurotoxin, this study provides a potential mechanism of crosstalk between muscle and brain in mice on a KD that may contribute to improved cognitive function in middle-aged female mice.
Collapse
Affiliation(s)
- Suraj J. Pathak
- Department of Neurobiology, Physiology and BehaviorUniversity of CaliforniaDavisCaliforniaUSA
| | - Zeyu Zhou
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Danielle Steffen
- Department of Neurobiology, Physiology and BehaviorUniversity of CaliforniaDavisCaliforniaUSA
| | - Tommy Tran
- Department of Neurobiology, Physiology and BehaviorUniversity of CaliforniaDavisCaliforniaUSA
| | - Yael Ad
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Keith Baar
- Department of Neurobiology, Physiology and BehaviorUniversity of CaliforniaDavisCaliforniaUSA,Department of Physiology and Membrane Biology, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
7
|
Hettige P, Tahir U, Nishikawa KC, Gage MJ. Transcriptomic profiles of muscular dystrophy with myositis (mdm) in extensor digitorum longus, psoas, and soleus muscles from mice. BMC Genomics 2022; 23:657. [PMID: 36115951 PMCID: PMC9482285 DOI: 10.1186/s12864-022-08873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
Background Titinopathies are inherited muscular diseases triggered by genetic mutations in the titin gene. Muscular dystrophy with myositis (mdm) is one such disease caused by a LINE repeat insertion, leading to exon skipping and an 83-amino acid residue deletion in the N2A-PEVK region of mouse titin. This region has been implicated in a number of titin—titin ligand interactions, hence are important for myocyte signaling and health. Mice with this mdm mutation develop a severe and progressive muscle degeneration. The range of phenotypic differences observed in mdm mice shows that the deletion of this region induces a cascade of transcriptional changes extending to numerous signaling pathways affected by the titin filament. Previous research has focused on correlating phenotypic differences with muscle function in mdm mice. These studies have provided understanding of the downstream physiological effects resulting from the mdm mutation but only provide insights on processes that can be physiologically observed and measured. We used differential gene expression (DGE) to compare the transcriptomes of extensor digitorum longus (EDL), psoas and soleus muscles from wild-type and mdm mice to develop a deeper understand of these tissue-specific responses. Results The overall expression pattern observed shows a well-differentiated transcriptional signature in mdm muscles compared to wild type. Muscle-specific clusters observed within the mdm transcriptome highlight the level of variability of each muscle to the deletion. Differential gene expression and weighted gene co-expression network analysis showed a strong directional response in oxidative respiration-associated mitochondrial genes, which aligns with the poor shivering and non-shivering thermogenesis previously observed. Sln, which is a marker associated with shivering and non-shivering thermogenesis, showed the strongest expression change in fast-fibered muscles. No drastic changes in MYH expression levels were reported, which indicated an absence of major fiber-type switching events. Overall expression shifts in MYH isoforms, MARPs, and extracellular matrix associated genes demonstrated the transcriptional complexity associated with mdm mutation. The expression alterations in mitochondrial respiration and metabolism related genes in the mdm muscle dominated over other transcriptomic changes, and likely account for the late stage cellular responses in the mdm muscles. Conclusions We were able to demonstrate that the complex nature of mdm mutation extends beyond a simple rearrangement in titin gene. EDL, psoas and soleus exemplify unique response modes observed in skeletal muscles with mdm mutation. Our data also raises the possibility that failure to maintain proper energy homeostasis in mdm muscles may contribute to the pathogenesis of the degenerative phenotype in mdm mice. Understanding the full disease-causing molecular cascade is difficult using bulk RNA sequencing techniques due to intricate nature of the disease. The development of the mdm phenotype is temporally and spatially regulated, hence future studies should focus on single fiber level investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08873-2.
Collapse
|
8
|
Li JM, Yang FH, Chao MW, Tseng CY. Swimming exercise prevents hippocampal dendritic spine changes and memory loss caused by aging: An application of a new semi-automated spine analysis software. Mol Cell Neurosci 2022; 121:103755. [PMID: 35850447 DOI: 10.1016/j.mcn.2022.103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic spines are small, ratchet-like protrusions on neuronal dendrites that form synapses for receiving neuronal messages. Dendritic spine morphology is associated with synapse function. If neurons degrade or are damaged, the spine morphology of neurons changes. Given that most commercially available spine analysis software is expensive and complex, this study investigated a semi-automated spine analysis software, CTSpine, and used previously published data to verify the accuracy of the analysis results of this software. We also applied CTSpine to understand whether aging causes alterations in the hippocampal spine morphology and whether physical exercise can impede dendritic spine changes in 20 male Sprague Dawley rats. The spines of pyramidal cells in the hippocampal Cornu Ammonis 1 (CA1) region in the aging group were more enriched in filopodium type pattern than those in the control group, whereas the spines of the exercised aging group showed a similar pattern to that of the control. No significant changes were observed in neuronal dendritic spines in other hippocampal regions. However, long-term hippocampal memory was considerably decreased in the aging group, which was reversed to some extent in the exercised aging group. CTSpine, a self-developed semi-automatic spine analysis software, showed results similar to those noted in published data and can be effectively applied to the study of dendritic patterns, including neurodevelopment and disease.
Collapse
Affiliation(s)
- Jun-Ming Li
- Psychiatry Department, Taoyuan Armed Forces General Hospital, No. 168, Zhongxing Rd., Longtan Dist, Taoyuan City 32551, Taiwan.
| | - Fu-Hua Yang
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli District, Taoyuan 320, Taiwan.
| | - Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli District, Taoyuan 320, Taiwan.
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli District, Taoyuan 320, Taiwan.
| |
Collapse
|
9
|
Lopuszanska-Dawid M, Kołodziej H, Lipowicz A, Szklarska A. Age, Education, and Stress Affect Ageing Males' Symptoms More than Lifestyle Does: The Wroclaw Male Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095044. [PMID: 35564437 PMCID: PMC9105921 DOI: 10.3390/ijerph19095044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
An increasing number of subjects are affected by health problems related to the advanced involutional processes. It is extremely important to identify the determinants of the rate of occurrence of physiological, psychological, and social manifestations of aging. The aim was to determine how factors such as lifestyle, level of education, or severity of stressful life events indicate the appearance of aging symptoms in adult men. The material consisted of data of ethnically homogeneous group of 355 men (32−87 years), invited to the study as a part of the Wroclaw Male Study research project. The analyzed features included (1) socioeconomic status: age, educational level, marital status, and having children; (2) elements of lifestyle: alcohol drinking, cigarette smoking, and physical activity; (3) major and most important stressful life events—the Social Readjustment Rating Scale; (4) symptoms related to male aging—the Aging Males’ Symptoms. The backward stepwise regression models, the Kruskal−Wallis test, and multiple comparisons of mean ranks were used. Noncentrality parameter δ (delta), two-tailed critical values of the test, and test power with α = 0.05 were calculated. Among the analyzed variables, age was most strongly associated with the intensity of almost all groups of andropausal symptoms in men (p = 0.0001), followed by the level of education (p = 0.0001) and the intensity of stressful life events (p = 0.0108). Selected lifestyle elements turned out to be much less important (p > 0.01). Preventive actions aimed at slowing down the intensification of involutional processes, including teaching strategies for coping with stressful life events, should be implemented in groups of men with specific risk factors from an early age.
Collapse
Affiliation(s)
- Monika Lopuszanska-Dawid
- Department of Human Biology, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-834-04-31
| | - Halina Kołodziej
- Department of Anthropology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wroclaw, Poland; (H.K.); (A.L.)
| | - Anna Lipowicz
- Department of Anthropology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wroclaw, Poland; (H.K.); (A.L.)
| | - Alicja Szklarska
- Polish Academy of Sciences, Palace of Culture and Science, Defilad Square 1, 00-901 Warsaw, Poland;
| |
Collapse
|
10
|
Ye Y, Lin H, Wan M, Qiu P, Xia R, He J, Tao J, Chen L, Zheng G. The Effects of Aerobic Exercise on Oxidative Stress in Older Adults: A Systematic Review and Meta-Analysis. Front Physiol 2021; 12:701151. [PMID: 34675813 PMCID: PMC8523805 DOI: 10.3389/fphys.2021.701151] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/08/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Oxidative stress (OS) plays an important role in the progression of many aging-related diseases. Exercises can delay this kind of progress, but aerobic exercise is the most commonly used type of training among older adults; therefore, its influence needs to be further verified. Methods: A literature search was conducted in eight electronic databases, including Cochrane, EMBASE, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), Wanfang Date, and SinoMed from their inception to April 2020. Methodological quality was assessed using Cochrane RoB tool v2.0 for individual studies, and RevMan 5.3 software was used to perform the meta-analysis. Results: The meta-analysis included 20 studies, involving 1,170 older adults. The results showed that regular aerobic exercise could reduce blood oxidant markers, including malondialdehyde (MDA; SMD=−1.80, 95% CI −2.46 to −1.14, p<0.001) and lipid peroxide (LPO; SMD=−1.12, 95% CI −2.03 to −0.22, p=0.02), and increase the levels of antioxidant factors, such as nitric oxide (NO; SMD=0.89, 95% CI 0.37–1.41, p<0.001), superoxide dismutase (SOD; SMD=0.63, 95% CI 0.25–1.01, p=0.001), and total antioxidant capacity (TAC; SMD=1.22, 95% CI 0.45–1.98, p=0.002), with clear statistical significance. It may also improve the levels of other OS markers, such as 8-OHdG, 8-isoPGF2, VE, and reduced glutathione/oxidized glutathione (GSH/GSSG). Conclusion: Regular aerobic exercise may have a positive effect on the OS levels of older adults by reducing some oxidant markers and increasing antioxidant marker levels.
Collapse
Affiliation(s)
- Yu Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huiying Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingyue Wan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pingting Qiu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianquan He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
11
|
Lu Z, Xu Y, Song Y, Bíró I, Gu Y. A Mixed Comparisons of Different Intensities and Types of Physical Exercise in Patients With Diseases Related to Oxidative Stress: A Systematic Review and Network Meta-Analysis. Front Physiol 2021; 12:700055. [PMID: 34421637 PMCID: PMC8375596 DOI: 10.3389/fphys.2021.700055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
The balance of oxidative and antioxidant systems is of great importance to the human body. Physical exercise, as one of the ways to improve physical health, seems to modulate this balance. However, different intensities and types of physical exercise have other effects on the treatment of unhealthy people. To understand the impact of exercise training on the oxidative and antioxidant systems of adults with oxidative stress-related disorders, a network meta-analysis was used to compare the mixed effects of different intensities and types of exercise training. This systematic review included all eligible RCTs from PubMed, Medline, Cochrane Library, and CINAHL. Eleven of the studies met the inclusion criteria (at study completion, n = 666 participants). Seven studies reported that the level of MDA decreased significantly after exercise (p < 0.05), and 3 studies reported that the level of SOD increased significantly after exercise (p < 0.05). In conclusion, long-term high-intensity aerobic training and Tai Chi or Yoga can effectively improve oxidative stress in unhealthy people. In addition, different types of diseases on the effect of exercise intervention seems to be other, diabetes and chronic kidney patients using moderate-intensity aerobic training or Tai chi and Yoga effect are better; Moderate-intensity aerobic training had a better impact on OS improvement in patients with irritable bowel syndrome and severe depression. However, more research is needed to determine the effects of different levels and types of physical activity on oxidative stress in unhealthy populations. Systematic Review Registration: PROSPERO identifier: CRD42021242025. https://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Zhenghui Lu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yining Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Doctoral School on Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - István Bíró
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Gumpp AM, Behnke A, Bach AM, Piller S, Boeck C, Rojas R, Kolassa IT. Mitochondrial bioenergetics in leukocytes and oxidative stress in blood serum of mild to moderately depressed women. Mitochondrion 2020; 58:14-23. [PMID: 33383159 DOI: 10.1016/j.mito.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Major depressive disorder (MDD) has been associated with lower mitochondrial energy production and higher oxidative stress. We investigated whether these alterations manifest in patients with current mild to moderate MDD severity. We observed no differences in mitochondrial respiration and density (i.e., citrate-synthase activity) in peripheral blood mononuclear cells and oxidative stress markers (i.e., 8-hydroxy-2'-deoxyguanosine, 8-isoprostane) in blood serum of 20 female MDD patients compared to 24 non-depressed women. Alterations in mitochondrial energy production and oxidative stress did not linearly depend on the current severity of MDD. However, biological alterations might rather manifest with higher MDD severity/chronicity and at higher age.
Collapse
Affiliation(s)
- Anja M Gumpp
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Alexander Behnke
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Alexandra M Bach
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Sophia Piller
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Christina Boeck
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Roberto Rojas
- University Psychotherapeutic Outpatient Clinic, Institute of Psychology and Education, Ulm University, Schaffnerstr. 3, DE-89073 Ulm, Germany.
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| |
Collapse
|
13
|
Wolff CA, Reid JJ, Musci RV, Linden MA, Konopka AR, Peelor FF, Miller BF, Hamilton KL, Bruns DR. Differential Effects of Rapamycin and Metformin in Combination With Rapamycin on Mechanisms of Proteostasis in Cultured Skeletal Myotubes. J Gerontol A Biol Sci Med Sci 2020; 75:32-39. [PMID: 30820523 DOI: 10.1093/gerona/glz058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/23/2019] [Indexed: 12/12/2022] Open
Abstract
mTOR inhibition extends life span in multiple organisms. In mice, when metformin treatment (Met) is added to the mTOR inhibitor rapamycin (Rap), median and maximal life span is extended to a greater degree than with Rap or Met alone. Treatments that extend life span often maintain proteostasis. However, it is less clear how individual tissues, such as skeletal muscle, maintain proteostasis with life span-extending treatments. In C2C12 myotubes, we used deuterium oxide (D2O) to directly measure two primary determinants of proteostasis, protein synthesis, and degradation rates, with Rap or Met+Rap treatments. We accounted for the independent effects of cell growth and loss, and isolated the contribution of autophagy and mitochondrial fission to obtain a comprehensive assessment of protein turnover. Compared with control, both Rap and Met+Rap treatments lowered mitochondrial protein synthesis rates (p < .001) and slowed cellular proliferation (p < .01). These changes resulted in greater activation of mechanisms promoting proteostasis for Rap, but not Met+Rap. Compared with control, both Rap and Met+Rap slowed protein breakdown. Autophagy and mitochondrial fission differentially influenced the proteostatic effects of Rap and Met+Rap in C2C12 myotubes. In conclusion, we demonstrate that Met+Rap did not increase protein turnover and that these treatments do not seem to promote proteostasis through increased autophagy.
Collapse
Affiliation(s)
- Christopher A Wolff
- Department of Health and Exercise Science, Colorado State University, Fort Collins
| | - Justin J Reid
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins
| | - Adam R Konopka
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins
| | | |
Collapse
|
14
|
Hahm JH, Jeong C, Lee W, Koo HJ, Kim S, Hwang D, Nam HG. A cellular surveillance and defense system that delays aging phenotypes in C. elegans. Aging (Albany NY) 2020; 12:8202-8220. [PMID: 32350153 PMCID: PMC7244029 DOI: 10.18632/aging.103134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/23/2020] [Indexed: 11/27/2022]
Abstract
Physiological stresses, such as pathogen infection, are detected by “cellular Surveillance Activated Detoxification and Defenses” (cSADD) systems that trigger host defense responses. Aging is associated with physiological stress, including impaired mitochondrial function. Here, we investigated whether an endogenous cSADD pathway is activated during aging in C. elegans. We provide evidence that the transcription factor ZIP-2, a well-known immune response effector in C. elegans, is activated in response to age-associated mitochondrial dysfunction. ZIP-2 mitigates multiple aging phenotypes, including mitochondrial disintegration and reduced motility of the pharynx and intestine. Importantly, our data suggest that ZIP-2 is activated during aging independently of bacterial infection and of the transcription factors ATFS-1 and CEBP-2. Thus, ZIP-2 is a key component of an endogenous pathway that delays aging phenotypes in C. elegans. Our data suggest that aging coopted a compensatory strategy for regulation of aging process as a guarded process rather than a simple passive deterioration process.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - ChoLong Jeong
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Wonhee Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea.,Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Hee Jung Koo
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Sunhee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Daehee Hwang
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea.,Department of New Biology, DGIST, Daegu 42988, Republic of Korea.,Present address: Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea.,Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
15
|
Quiroga C, Mancilla G, Oyarzun I, Tapia A, Caballero M, Gabrielli LA, Valladares-Ide D, del Campo A, Castro PF, Verdejo HE. Moderate Exercise in Spontaneously Hypertensive Rats Is Unable to Activate the Expression of Genes Linked to Mitochondrial Dynamics and Biogenesis in Cardiomyocytes. Front Endocrinol (Lausanne) 2020; 11:546. [PMID: 32973679 PMCID: PMC7466645 DOI: 10.3389/fendo.2020.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023] Open
Abstract
Hypertension (HTN) is a public health concern and a major preventable cause of cardiovascular disease (CVD). When uncontrolled, HTN may lead to adverse cardiac remodeling, left ventricular hypertrophy, and ultimately, heart failure. Regular aerobic exercise training exhibits blood pressure protective effects, improves myocardial function, and may reverse pathologic cardiac hypertrophy. These beneficial effects depend at least partially on improved mitochondrial function, decreased oxidative stress, endothelial dysfunction, and apoptotic cell death, which supports the general recommendation of moderate exercise in CVD patients. However, most of these mechanisms have been described on healthy individuals; the effect of moderate exercise on HTN subjects at a cellular level remain largely unknown. We hypothesized that hypertension in adult spontaneously hypertensive rats (SHRs) reduces the mitochondrial response to moderate exercise in the myocardium. Methods: Eight-month-old SHRs and their normotensive control-Wistar-Kyoto rats (WKYR)-were randomly assigned to moderate exercise on a treadmill five times per week with a running speed set at 10 m/min and 15° inclination. The duration of each session was 45 min with a relative intensity of 70-85% of the maximum O2 consumption for a total of 8 weeks. A control group of untrained animals was maintained in their cages with short sessions of 10 min at 10 m/min two times per week to maintain them accustomed to the treadmill. After completing the exercise protocol, we assessed maximum exercise capacity and echocardiographic parameters. Animals were euthanized, and heart and muscle tissue were harvested for protein determinations and gene expression analysis. Measurements were compared using a nonparametric ANOVA (Kruskal-Wallis), with post-hoc Dunn's test. Results: At baseline, SHR presented myocardial remodeling evidenced by left ventricular hypertrophy (interventricular septum 2.08 ± 0.07 vs. 1.62 ± 0.08 mm, p < 0.001), enlarged left atria (0.62 ± 0.1 mm vs. 0.52 ± 0.1, p = 0.04), and impaired diastolic function (E/A ratio 2.43 ± 0.1 vs. 1.56 ± 0.2) when compared to WKYR. Moderate exercise did not induce changes in ventricular remodeling but improved diastolic filling pattern (E/A ratio 2.43 ± 0.1 in untrained SHR vs. 1.89 ± 0.16 trained SHR, p < 0.01). Histological analysis revealed increased myocyte transversal section area, increased Myh7 (myosin heavy chain 7) expression, and collagen fiber accumulation in SHR-control hearts. While the exercise protocol did not modify cardiac size, there was a significant reduction of cardiomyocyte size in the SHR-exercise group. Conversely, titin expression increased only WYK-exercise animals but remained unchanged in the SHR-exercise group. Mitochondrial response to exercise also diverged between SHR and WYKR: while moderate exercise showed an apparent increase in mRNA levels of Ppargc1α, Opa1, Mfn2, Mff, and Drp1 in WYKR, mitochondrial dynamics proteins remained unchanged in response to exercise in SHR. This finding was further confirmed by decreased levels of MFN2 and OPA1 in SHR at baseline and increased OPA1 processing in response to exercise in heart. In summary, aerobic exercise improves diastolic parameters in SHR but fails to activate the cardiomyocyte mitochondrial adaptive response observed in healthy individuals. This finding may explain the discrepancies on the effect of exercise in clinical settings and evidence of the need to further refine our understanding of the molecular response to physical activity in HTN subjects.
Collapse
Affiliation(s)
- Clara Quiroga
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago, Chile
| | - Georthan Mancilla
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ingrid Oyarzun
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anita Tapia
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mia Caballero
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi A. Gabrielli
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago, Chile
| | | | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F. Castro
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago, Chile
| | - Hugo E. Verdejo
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago, Chile
- *Correspondence: Hugo E. Verdejo
| |
Collapse
|
16
|
Abstract
Sedentary behavior and physical inactivity are among the leading modifiable risk factors worldwide for cardiovascular disease and all-cause mortality. The promotion of physical activity and exercise training (ET) leading to improved levels of cardiorespiratory fitness is needed in all age groups, race, and ethnicities and both sexes to prevent many chronic diseases, especially cardiovascular disease. In this state-of-the-art review, we discuss the negative impact of sedentary behavior and physical inactivity, as well as the beneficial effects of physical activity /ET and cardiorespiratory fitness for the prevention of chronic noncommunicable diseases, including cardiovascular disease. We review the prognostic utility of cardiorespiratory fitness compared with obesity and the metabolic syndrome, as well as the increase of physical activity /ET for patients with heart failure as a therapeutic strategy, and ET dosing. Greater efforts at preventing sedentary behavior and physical inactivity while promoting physical activity, ET, and cardiorespiratory fitness are needed throughout the healthcare system worldwide and particularly in the United States in which the burden of cardiometabolic diseases remains extremely high.
Collapse
Affiliation(s)
- Carl J Lavie
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| | - Cemal Ozemek
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| | - Salvatore Carbone
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| | - Peter T Katzmarzyk
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| | - Steven N Blair
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| |
Collapse
|
17
|
Role of Jumpstart Nutrition®, a Dietary Supplement, to Ameliorate Calcium-to-Phosphorus Ratio and Parathyroid Hormone of Patients with Osteoarthritis. Med Sci (Basel) 2019; 7:medsci7120105. [PMID: 31766751 PMCID: PMC6950452 DOI: 10.3390/medsci7120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to use Jumpstart Nutrition® bone supplementing combination with vitamin-K2 and coenzyme-Q10 characterized by an innovative delivery system that improves bioavailability of calcium-to-phosphorus ratio (CPR) and parathyroid hormone (PTH) in the management of osteoarthritis (OA). This eight-week registry included 108 patients treated for symptomatic OA confirmed with radiological images. On top of that, 63 patients used Jumpstart Nutrition® supplement, mainly prepared with calcium, phosphorus, coenzyme-Q10, vitamin-K2, vitamin-D2, vitamin-C, folic acid, curcumin and boswellic acids. Rescue medication was also recommended. Patients’ pain and functional capacity through outcome measures—knee-injury osteoarthritis outcome scale (KOOS) and Karnofsky performance scale (KPS), biomarkers such as levels of CPR, PTH and 25-hydroxy-vitamin-D were evaluated for the groups with and without supplement using appropriate kits. After eight weeks, the levels of CPR and PTH were all significantly improved (p < 0.001), fewer subjects had to use rescue medication (p < 0.05) and variation of pain and functional capacity under KOOS and KPS (p < 0.05) of the patients in the supplement group compared to controls. This registry study indicates that Jumpstart Nutrition® can be used safely for effective management of OA patients for the amelioration of CPR, PTH and functional activities confirmed with biomarkers and radiological images correlated with the Kellgren-Lawrance scale.
Collapse
|
18
|
Vargas-Mendoza N, Morales-González Á, Madrigal-Santillán EO, Madrigal-Bujaidar E, Álvarez-González I, García-Melo LF, Anguiano-Robledo L, Fregoso-Aguilar T, Morales-Gonzalez JA. Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants (Basel) 2019; 8:antiox8060196. [PMID: 31242588 PMCID: PMC6617290 DOI: 10.3390/antiox8060196] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful nuclear transcription factor that coordinates an antioxidant cytoprotector system complex stimulated by the increase in inoxidative stress (OS). In the present manuscript, we conduct a review on the evidence that shows the effect different modalities of physical exercise exert on the antioxidant metabolic response directed by Nrf2. During physical exercise, the reactive oxygen species (ROS) are increased; therefore, if the endogenous and exogenous antioxidant defenses are unable to control the elevation of ROS, the resulting OS triggers the activation of the transcriptional factor Nrf2 to induce the antioxidant response. On a molecular basis related to physical exercise, hormesis maintenance (exercise preconditioning) and adaptative changes in training are supported by a growing body of evidence, which is important for detailing the health benefits that involve greater resistance to environmental aggressions, better tolerance to constant changes, and increasing the regenerative capacity of the cells in such a way that it may be used as a tool to support the prevention or treatment of diseases. This may have clinical implications for future investigations regarding physical exercise in terms of understanding adaptations in high-performance athletes but also as a therapeutic model in several diseases.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- México Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Col. Casco de Santo Tomás, CP 11340 Alcaldía Miguel Hidalgo, Mexico; (N.V.-M.); (E.O.M.-S.)
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, CP 07738 Ciudad de México, Mexico
- Correspondence: (A.M.-G.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (A.M.-G. & J.A.M.-G.)
| | - Eduardo Osiris Madrigal-Santillán
- México Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Col. Casco de Santo Tomás, CP 11340 Alcaldía Miguel Hidalgo, Mexico; (N.V.-M.); (E.O.M.-S.)
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. WilfridoMassieu. Col., Lindavista, 07738 Ciudad de México, Mexico; (E.M.-B.); (I.A.-G.); (L.F.G.-M.)
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. WilfridoMassieu. Col., Lindavista, 07738 Ciudad de México, Mexico; (E.M.-B.); (I.A.-G.); (L.F.G.-M.)
| | - Luis Fernando García-Melo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. WilfridoMassieu. Col., Lindavista, 07738 Ciudad de México, Mexico; (E.M.-B.); (I.A.-G.); (L.F.G.-M.)
| | - Liliana Anguiano-Robledo
- Laboratorio de Farmacología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico;
| | - Tomás Fregoso-Aguilar
- Departamento de Fisiología, Laboratorio de Hormonas y Conducta, ENCB Campus Zacatenco, Instituto Politécnico Nacional, 07700 Ciudad de México, Mexico;
| | - José A. Morales-Gonzalez
- México Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Col. Casco de Santo Tomás, CP 11340 Alcaldía Miguel Hidalgo, Mexico; (N.V.-M.); (E.O.M.-S.)
- Correspondence: (A.M.-G.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (A.M.-G. & J.A.M.-G.)
| |
Collapse
|
19
|
Hosokawa M, Takeuchi A, Tanihata J, Iida K, Takeda S, Hagiwara M. Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy. iScience 2019; 13:229-242. [PMID: 30870781 PMCID: PMC6416966 DOI: 10.1016/j.isci.2019.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/27/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Growing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. How long-distance transcription is achieved is a fundamental question to be elucidated. In previous study, we had discovered that RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes >100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin, which is 2.26 Mbp in length. Sfpq knockout (KO) mice showed progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified energy metabolism pathway genes as SFPQ's targets. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. SFPQ is essential for long gene expression, including Dystrophin, in skeletal muscle Disruption of Sfpq caused severe muscle mass reduction and premature death SFPQ is required for metabolic pathway gene expression in skeletal muscle Loss of Sfpq decreased OXPHOS complexes and caused glycogen accumulation
Collapse
Affiliation(s)
- Motoyasu Hosokawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Akihide Takeuchi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan; Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kei Iida
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
20
|
Combination of Coenzyme Q 10 Intake and Moderate Physical Activity Counteracts Mitochondrial Dysfunctions in a SAMP8 Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8936251. [PMID: 30473743 PMCID: PMC6220380 DOI: 10.1155/2018/8936251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Aging skeletal muscles are characterized by a progressive decline in muscle mass and muscular strength. Such muscular dysfunctions are usually associated with structural and functional alterations of skeletal muscle mitochondria. The senescence-accelerated mouse-prone 8 (SAMP8) model, characterized by premature aging and high degree of oxidative stress, was used to investigate whether a combined intervention with mild physical exercise and ubiquinol supplementation was able to improve mitochondrial function and preserve skeletal muscle health during aging. 5-month-old SAMP8 mice, in a presarcopenia phase, have been randomly divided into 4 groups (n = 10): untreated controls and mice treated for two months with either physical exercise (0.5 km/h, on a 5% inclination, for 30 min, 5/7 days per week), ubiquinol 10 (500 mg/kg/day), or a combination of exercise and ubiquinol. Two months of physical exercise significantly increased mitochondrial damage in the muscles of exercised mice when compared to controls. On the contrary, ubiquinol and physical exercise combination significantly improved the overall status of the skeletal muscle, preserving mitochondrial ultrastructure and limiting mitochondrial depolarization induced by physical exercise alone. Accordingly, combination treatment while promoting mitochondrial biogenesis lowered autophagy and caspase 3-dependent apoptosis. In conclusion, the present study shows that ubiquinol supplementation counteracts the deleterious effects of physical exercise-derived ROS improving mitochondrial functionality in an oxidative stress model, such as SAMP8 in the presarcopenia phase.
Collapse
|
21
|
Galle FA, Martella D, Bresciani G. [Antioxidant and anti-inflammatory modulation of exercise during aging]. Rev Esp Geriatr Gerontol 2018; 53:279-284. [PMID: 29898833 DOI: 10.1016/j.regg.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Aging is characterised by a gradual loss of the functional reserve. This, along with the fostering of sedentary habits and the increase in risk factors, causes a deterioration of antioxidant defences and an increase of the circulatory levels of inflammatory and oxidative markers, boosting a low-rate chronic inflammation, defined as inflamm-aging. This phenomenon is present in the aetiopathology of chronic diseases, as well as in cognitive deterioration cases associated with aging. The objective of this review is to describe the modulation of antioxidant and anti-inflammatory effects of physical exercise of moderate intensity and volume in the elderly. Evidence of its effectiveness as a non-pharmacological resource is presented, which decreases some deleterious effects of aging. This is mainly due to its neuroprotective action, the increase in circulating anti-inflammatory markers, and the improvement of antioxidant defence derived from its practice.
Collapse
Affiliation(s)
- Fernando Alexis Galle
- Facultad de Ciencias de la Educación, Universidad San Sebastián, Puerto Montt, Chile; Universidad Autónoma de Chile, Chile
| | | | - Guilherme Bresciani
- Grupo de Investigación en Rendimiento Físico y Salud (IRyS), Escuela de Educación Física, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
22
|
Lettieri-Barbato D, Cannata SM, Casagrande V, Ciriolo MR, Aquilano K. Time-controlled fasting prevents aging-like mitochondrial changes induced by persistent dietary fat overload in skeletal muscle. PLoS One 2018; 13:e0195912. [PMID: 29742122 PMCID: PMC5942780 DOI: 10.1371/journal.pone.0195912] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/02/2018] [Indexed: 01/07/2023] Open
Abstract
A large body of evidence suggests that persistent dietary fat overload causes mitochondrial dysfunction and systemic metabolic gridlock. Mitochondrial and lipid metabolism in skeletal muscle (SkM) are severely affected upon persistent high fat diet (HFD) leading to premature tissue aging. Here, we designed weekly cycles of fasting (called as time-controlled fasting, TCF) and showed that they were effective in limiting mitochondrial damage and metabolic disturbances induced by HFD. Specifically, TCF was able to prevent the decline of adipose triglyceride lipase (Atgl), maintain efficient mitochondrial respiration in SkM as well as improve blood glucose and lipid profile. Atgl was found to be the mediator of such preventive effects as its downregulation or up-regulation in C2C12 myotubes triggers mitochondrial alteration or protects against the deleterious effects of high fat levels respectively. In conclusion, TCF could represent an effective strategy to limit mitochondrial impairment and metabolic inflexibility that are typically induced by modern western diets or during aging.
Collapse
Affiliation(s)
| | | | | | - Maria Rosa Ciriolo
- University of Rome Tor Vergata, Dept. Biology, Rome, Italy
- IRCCS San Raffaele La Pisana, Rome, Italy
| | - Katia Aquilano
- University of Rome Tor Vergata, Dept. Biology, Rome, Italy
- * E-mail: (KA); (DL)
| |
Collapse
|
23
|
Zampieri S, Mammucari C, Romanello V, Barberi L, Pietrangelo L, Fusella A, Mosole S, Gherardi G, Höfer C, Löfler S, Sarabon N, Cvecka J, Krenn M, Carraro U, Kern H, Protasi F, Musarò A, Sandri M, Rizzuto R. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics. Physiol Rep 2017; 4:4/24/e13005. [PMID: 28039397 PMCID: PMC5210373 DOI: 10.14814/phy2.13005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 01/04/2023] Open
Abstract
Age‐related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU‐dependent mitochondrial Ca2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70‐year‐old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU. Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES‐trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES‐dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial‐related proteins involved in Ca2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria‐related proteins as potential pharmacological targets to counteract age‐related muscle loss.
Collapse
Affiliation(s)
- Sandra Zampieri
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria .,Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | | | | | - Laura Barberi
- DAHFMO-Unit of Histology and Medical Embryology, IIM, Institute Pasteur Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Laura Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, CeSI-Met - Center for Research on Aging and Translational Medicine & DNICS University G. d'Annunzio, Chieti, Italy
| | - Aurora Fusella
- Department of Neuroscience, Imaging and Clinical Sciences, CeSI-Met - Center for Research on Aging and Translational Medicine & DNICS University G. d'Annunzio, Chieti, Italy
| | - Simone Mosole
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Christian Höfer
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Stefan Löfler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Nejc Sarabon
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Koper, Slovenia
| | - Jan Cvecka
- Faculty of Physical Education and Sport, Comenius University, Bratislava, Slovakia
| | - Matthias Krenn
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ugo Carraro
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.,IRCCS Fondazione Ospedale San Camillo, Venezia, Italy
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Feliciano Protasi
- Department of Neuroscience, Imaging and Clinical Sciences, CeSI-Met - Center for Research on Aging and Translational Medicine & DNICS University G. d'Annunzio, Chieti, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, IIM, Institute Pasteur Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | | |
Collapse
|
24
|
van Diemen MP, Berends CL, Akram N, Wezel J, Teeuwisse WM, Mik BG, Kan HE, Webb A, Beenakker JWM, Groeneveld GJ. Validation of a pharmacological model for mitochondrial dysfunction in healthy subjects using simvastatin: A randomized placebo-controlled proof-of-pharmacology study. Eur J Pharmacol 2017; 815:290-297. [DOI: 10.1016/j.ejphar.2017.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
|
25
|
Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 2017; 35:200-221. [PMID: 27702700 DOI: 10.1016/j.arr.2016.09.008] [Citation(s) in RCA: 458] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway.
Collapse
|
26
|
Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Age-related changes in skeletal muscle mitochondria: the role of exercise. Integr Med Res 2016; 5:182-186. [PMID: 28462116 PMCID: PMC5390452 DOI: 10.1016/j.imr.2016.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/08/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022] Open
Abstract
Aging is associated with mitochondrial dysfunction, which leads to a decline in cellular function and the development of age-related diseases. Reduced skeletal muscle mass with aging appears to promote a decrease in mitochondrial quality and quantity. Moreover, mitochondrial dysfunction adversely affects the quality and quantity of skeletal muscle. During aging, physical exercise can cause beneficial adaptations to cellular energy metabolism in skeletal muscle, including alterations to mitochondrial content, protein, and biogenesis. Here, we briefly summarize current findings on the association between the aging process and impairment of mitochondrial function, including mitochondrial biogenesis and reactive oxygen species in skeletal muscle. We also discuss the potential role of exercise in the improvement of aging-driven mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Inje University, Busan, Republic of Korea.,Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Inje University, Busan, Republic of Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Inje University, Busan, Republic of Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Inje University, Busan, Republic of Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Inje University, Busan, Republic of Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Inje University, Busan, Republic of Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| |
Collapse
|
27
|
|
28
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
29
|
Granic A, Jagger C, Davies K, Adamson A, Kirkwood T, Hill TR, Siervo M, Mathers JC, Sayer AA. Effect of Dietary Patterns on Muscle Strength and Physical Performance in the Very Old: Findings from the Newcastle 85+ Study. PLoS One 2016; 11:e0149699. [PMID: 26934360 PMCID: PMC4774908 DOI: 10.1371/journal.pone.0149699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Healthy diet has been associated with better muscle strength and physical performance in cross-sectional studies of older adults but the effect of dietary patterns (DP) on subsequent decline, particularly in the very old (aged 85+), has not been determined. OBJECTIVE We investigated the association between previously established DP and decline in muscle strength and physical performance in the very old. DESIGN 791 participants (61.8% women) from the Newcastle 85+ Study were followed-up for change in hand grip strength (HGS) and Timed Up-and Go (TUG) test over 5 years (four waves 1.5 years apart). Mixed models were used to determine the effects of DP on muscle strength and physical performance in the entire cohort and separately by sex. RESULTS Previously we have established three DP that varied in intake of red meats, potato, gravy and butter and differed with key health and social factors. HGS declined linearly by 1.59 kgF in men and 1.08 kgF in women (both p<0.001), and TUG slowed by 0.13 log10-transformed seconds (log10-s) in men and 0.11 log10-s in women per wave after adjusting for important covariates (both p<0.001), and also showed a nonlinear change (p<0.001). Men in DP1 ('High Red Meat') had worse overall HGS (β = -1.70, p = 0.05), but men in DP3 ('High Butter') had a steeper decline (β = -0.63, p = 0.05) than men in DP2 ('Low Meat'). Men in DP1 and women in DP3 also had overall slower TUG than those in DP2 (β = 0.08, p = 0.001 and β = 0.06, p = 0.01, respectively), but similar rate of decline after adjusting for sociodemographic, lifestyle, health, and functioning factors. The results for HGS and TUG were not affected by participants' cognitive status. CONCLUSIONS DP high in red meats, potato and gravy (DP1), or butter (DP3) may adversely affect muscle strength and physical performance in later life, independently of important covariates and cognitive status.
Collapse
Affiliation(s)
- Antoneta Granic
- Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, United Kingdom
- NIHR Newcastle Biomedical Research Centre in Ageing and Chronic Disease, and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle upon Tyne, United Kingdom
- Ageing, Geriatrics & Epidemiology, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Carol Jagger
- Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Karen Davies
- Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, United Kingdom
- NIHR Newcastle Biomedical Research Centre in Ageing and Chronic Disease, and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle upon Tyne, United Kingdom
- Ageing, Geriatrics & Epidemiology, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ashley Adamson
- Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, United Kingdom
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Kirkwood
- Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom R. Hill
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mario Siervo
- Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John C. Mathers
- Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan Aihie Sayer
- Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
- NIHR Newcastle Biomedical Research Centre in Ageing and Chronic Disease, and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle upon Tyne, United Kingdom
- Ageing, Geriatrics & Epidemiology, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- NIHR Collaboration for Leadership in Applied Health Research and Care: Wessex, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
30
|
Editors T. Muscle Decline in Aging and Neuromuscular Disorders - Mechanisms and Countermeasures: Terme Euganee, Padova (Italy), April 13-16, 2016. Eur J Transl Myol 2016; 26:5904. [PMID: 27054021 PMCID: PMC4821223 DOI: 10.4081/ejtm.2016.5904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Not available.
Collapse
|
31
|
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7239639. [PMID: 26823952 PMCID: PMC4707375 DOI: 10.1155/2016/7239639] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
Abstract
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Collapse
|
32
|
Joseph AM, Adhihetty PJ, Leeuwenburgh C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. J Physiol 2015; 594:5105-23. [PMID: 26503074 DOI: 10.1113/jp270659] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are negatively affected by ageing leading to their inability to adapt to higher levels of oxidative stress and this ultimately contributes to the systemic loss of muscle mass and function termed sarcopenia. Since mitochondria are central mediators of muscle health, they have become highly sought-after targets of physiological and pharmacological interventions. Exercise is the only known strategy to combat sarcopenia and this is largely mediated through improvements in mitochondrial plasticity. More recently a critical role for mitochondrial turnover in preserving muscle has been postulated. Specifically, cellular pathways responsible for the regulation of mitochondrial turnover including biogenesis, dynamics and autophagy may become dysregulated during ageing resulting in the reduced clearance and accumulation of damaged organelles within the cell. When mitochondrial quality is compromised and homeostasis is not re-established, myonuclear cell death is activated and muscle atrophy ensues. In contrast, acute and chronic exercise attenuates these deficits, restoring mitochondrial turnover and promoting a healthier mitochondrial pool that leads to the preservation of muscle. Additionally, the magnitude of these exercise-induced mitochondrial adaptations is currently debated with several studies reporting a lower adaptability of old muscle relative to young, but the processes responsible for this diminished training response are unclear. Based on these observations, understanding the molecular details of how advancing age and exercise influence mitochondria in older muscle will provide invaluable insight into the development of exercise protocols that will maximize beneficial adaptations in the elderly. This information will also be imperative for future research exploring pharmacological targets of mitochondrial plasticity.
Collapse
Affiliation(s)
- Anna-Maria Joseph
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, FL, 32611, USA.
| | - Peter J Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
33
|
Zhang W, Hou L, Wang T, Lu W, Tao Y, Chen W, Du X, Huang Y. The expression characteristics of mt-ND2 gene in chicken. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3787-92. [PMID: 26332376 DOI: 10.3109/19401736.2015.1079904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p < 0.05) and hepatic tissues (p < 0.05) at 42 d-old were affected by the type of dietary fats in 5% level, while not in abdominal fat tissues. The expression of mt-ND2 in hepatic tissues was down-regulated with chicken age (p < 0.01). The interactive effect of dietary fat types with chicken age (p < 0.05) was significant on mt-ND2 mRNA level. The study demonstrated that mt-ND2 gene was extensively expressed in tissues, and the expression was affected by dietary fat types and chicken age.
Collapse
Affiliation(s)
- Wenwen Zhang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Lingling Hou
- b Animal Science College, Sichuan Agricultural University , Ya'an, Sichuan China
| | - Ting Wang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Weiwei Lu
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Yafei Tao
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Wen Chen
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Xiaohui Du
- b Animal Science College, Sichuan Agricultural University , Ya'an, Sichuan China
| | - Yanqun Huang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| |
Collapse
|
34
|
Siervo M, Lara J, Celis-Morales C, Vacca M, Oggioni C, Battezzati A, Leone A, Tagliabue A, Spadafranca A, Bertoli S. Age-related changes in basal substrate oxidation and visceral adiposity and their association with metabolic syndrome. Eur J Nutr 2015; 55:1755-67. [PMID: 26233884 DOI: 10.1007/s00394-015-0993-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE Ageing is directly associated with visceral fat (VAT) deposition and decline of metabolically active cellular mass, which may determine age-related shifts in substrate oxidation and increased cardiometabolic risk. We tested whether VAT and fasting respiratory quotient (RQ, an index of macronutrient oxidation) changed with age and if they were associated with increased risk of metabolic syndrome (MetSyn). METHODS A total of 2819 adult participants (age range: 18-81 years; men/women: 894/1925) were included; we collected history, anthropometric measures, biochemistry, smoking habits, and physical activity. The body mass index range was 18.5-60.2 kg/m(2). Gas exchanges (VO2 and VCO2) were measured by indirect calorimetry in fasting conditions, and RQ was calculated. Body composition was measured by bioelectrical impedance. Abdominal subcutaneous fat and VAT were measured by ultrasonography. MetSyn was diagnosed using harmonised international criteria. Multivariate linear and logistic regression models were utilised. RESULTS VAT increased with age in both men (r = 0.31, p < 0.001) and women (r = 0.37, p < 0.001). Basal RQ was not significantly associated with age (p = 0.49) and VAT (p = 0.20); in addition, basal RQ was not a significant predictor of MetSyn (OR 3.31, 0.57-19.08, p = 0.27). VAT was the primary predictor of MetSyn risk in a fully adjusted logistic model (OR 4.25, 3.01-5.99, p < 0.001). CONCLUSIONS Visceral adiposity remains one of the most important risk factors for cardiometabolic risk and is a significant predictor of MetSyn. Post-absorptive substrate oxidation does not appear to play a significant role in age-related changes in body composition and cardiometabolic risk, except for a correlation with triglyceride concentration.
Collapse
Affiliation(s)
- Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK. .,MRC Human Nutrition Research, Fulbourn Road, Cambridge, CB1 9NL, UK.
| | - Jose Lara
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK
| | - Carlos Celis-Morales
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK
| | - Michele Vacca
- MRC Human Nutrition Research, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Clio Oggioni
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK
| | - Alberto Battezzati
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Sandro Botticelli, 21, 20133, Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Sandro Botticelli, 21, 20133, Milan, Italy
| | - Anna Tagliabue
- Human Nutrition and Eating Disorders Research Centre, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Bassi, 21, 27100, Pavia, Italy
| | - Angela Spadafranca
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Sandro Botticelli, 21, 20133, Milan, Italy
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Sandro Botticelli, 21, 20133, Milan, Italy
| |
Collapse
|
35
|
Santos CGM, Pimentel-Coelho PM, Budowle B, de Moura-Neto RS, Dornelas-Ribeiro M, Pompeu FAMS, Silva R. The heritable path of human physical performance: from single polymorphisms to the "next generation". Scand J Med Sci Sports 2015; 26:600-12. [PMID: 26147924 DOI: 10.1111/sms.12503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 12/22/2022]
Abstract
Human physical performance is a complex multifactorial trait. Historically, environmental factors (e.g., diet, training) alone have been unable to explain the basis of all prominent phenotypes for physical performance. Therefore, there has been an interest in the study of the contribution of genetic factors to the development of these phenotypes. Support for a genetic component is found with studies that shown that monozygotic twins were more similar than were dizygotic twins for many physiological traits. The evolution of molecular techniques and the ability to scan the entire human genome enabled association of several genetic polymorphisms with performance. However, some biases related to the selection of cohorts and inadequate definition of the study variables have complicated the already difficult task of studying such a large and polymorphic genome, often resulting in inconsistent results about the influence of candidate genes. This review aims to provide a critical overview of heritable genetic aspects. Novel molecular technologies, such as next-generation sequencing, are discussed and how they can contribute to improving understanding of the molecular basis for athletic performance. It is important to ensure that the large amount of data that can be generated using these tools will be used effectively by ensuring well-designed studies.
Collapse
Affiliation(s)
- C G M Santos
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P M Pimentel-Coelho
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - B Budowle
- Molecular and Medical Genetics, University of North Texas - Health and Science Center, Fort Worth, Texas, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - R S de Moura-Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Dornelas-Ribeiro
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil
| | - F A M S Pompeu
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cachexia and sarcopenia: mechanisms and potential targets for intervention. Curr Opin Pharmacol 2015; 22:100-6. [PMID: 25974750 DOI: 10.1016/j.coph.2015.04.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/03/2015] [Accepted: 04/12/2015] [Indexed: 12/13/2022]
Abstract
Cachexia is a multi-organ syndrome associated with cancer and other chronic diseases, characterized by body weight loss, muscle and adipose tissue wasting and inflammation, being often associated with anorexia. Skeletal muscle tissue represents more than 40% of body weight and seems to be one of the main tissues involved in the wasting that occurs during cachexia. Sarcopenia is a degenerative loss of skeletal muscle mass, quality, and strength associated with healthy ageing. The molecular mechanisms behind cachexia and sarcopenia share some common trends. Muscle wasting is the result of a combination of an imbalance between synthetic and degradative protein pathways together with increased myocyte apoptosis and decreased regenerative capacity. Oxidative pathways are also altered in skeletal muscle during muscle wasting and this seems to be a consequence of mitochondrial abnormalities that include altered morphology and function, decreased ATP synthesis and uncoupling. The aim of the present review is to analyse common molecular pathways between cachexia and sarcopenia in order to put forward potential targets for intervention.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| | | | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Conte M, Vasuri F, Bertaggia E, Armani A, Santoro A, Bellavista E, Degiovanni A, D'Errico-Grigioni A, Trisolino G, Capri M, Franchi MV, Narici MV, Sandri M, Franceschi C, Salvioli S. Differential expression of perilipin 2 and 5 in human skeletal muscle during aging and their association with atrophy-related genes. Biogerontology 2015; 16:329-40. [PMID: 25559404 DOI: 10.1007/s10522-014-9549-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/24/2014] [Indexed: 12/13/2022]
Abstract
Sarcopenia, the progressive loss of muscle mass and strength, is a phenomenon characterizing human aging whose etiology is still not clear. While there is increasing evidence for the influence of inter-muscular adipose tissue infiltration in the development of sarcopenia, much less is known about a possible role for intra-muscular triglycerides (IMTG). IMTG accumulate in form of lipid droplets decorated by proteins such as Perilipins (Plins). In skeletal muscle the most abundant are Plin2 and Plin5. In this study we compared the expression of these two Plins in Vastus lateralis muscle samples of subjects of different age, both healthy donors (HD) and patients with limited lower limb mobility (LLMI). These latter are characterized by a condition of chronic physical inactivity. Plin2 expression resulted higher in old age for both HD and LLMI patients, while Plin5 slightly decreased only in LLMI patients. Moreover, in these patients, only Plin2 was associated with the decrease of muscle strength and the expression of factors related to muscle atrophy (MuRF1, Atrogin and p53). An increase in Plin2 and a concomitant decrease of Plin5 was also observed when we considered animal model of disuse-induced muscle atrophy. As a whole, these data indicate that Plin2 and Plin5 have a different expression pattern during muscle aging and inactivity, and only Plin2 appears to be associated with functional alterations of the muscle.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never! Biogerontology 2014; 16:249-64. [PMID: 25537184 DOI: 10.1007/s10522-014-9546-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).
Collapse
|
39
|
Tevald MA, Foulis SA, Kent JA. Effect of age on in vivo oxidative capacity in two locomotory muscles of the leg. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9713. [PMID: 25227177 PMCID: PMC4165814 DOI: 10.1007/s11357-014-9713-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
To determine the effects of age and sex on in vivo mitochondrial function of distinct locomotory muscles, the tibialis anterior (TA) and medial gastrocnemius (MG), of young (Y; 24 ± 3 years) and older (O; 69 ± 4) men (M) and women (W) of similar overall physical activity (PA) was compared. In vivo mitochondrial function was measured using phosphorus magnetic resonance spectroscopy, and PA and physical function were measured in all subjects. Overall PA was similar among the groups, although O (n = 17) had fewer daily minutes of moderate-to-vigorous PA (p = 0.001), and slowed physical function (p < 0.05 for all variables), compared with Y (n = 17). In TA, oxidative capacity (V max; mM s(-1)) was higher in O than Y (p < 0.001; Y = 0.90 ± 0.12; O = 1.12 ± 0.18). There was no effect of age in MG (p = 0.5; Y = 0.91 ± 0.17; O = 0.96 ± 0.24), but women had higher oxidative capacity than men (p = 0.007; M = 0.84 ± 0.18; W = 1.03 ± 0.18). In vivo mitochondrial function was preserved in healthy O men and women, despite lower intensity PA and physical function in this group. The extent to which compensatory changes in gait may be responsible for this preservation warrants further investigation. Furthermore, women had higher oxidative capacity in the MG, but not the TA.
Collapse
Affiliation(s)
- Michael A Tevald
- Department of Rehabilitation Sciences, University of Toledo, 2801 W, Bancroft Street, MS 119, Toledo, OH, 43616, USA,
| | | | | |
Collapse
|
40
|
Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Viña J, Hellsten Y. Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med 2014; 73:166-73. [PMID: 24858720 DOI: 10.1016/j.freeradbiomed.2014.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/10/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant system. Aging is associated with accumulation of oxidative damage to lipids, DNA, and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across the leg of young (23 ± 1 years) and older (66 ± 2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) forms of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62 ± 2 years) were included. Exercise increased the venous concentration of GSSG in an intensity-dependent manner in young sedentary subjects, suggesting an exercise-induced increase in ROS formation. In contrast, venous GSSG levels remained unaltered during exercise in the older sedentary and active groups despite a higher skeletal muscle expression of the superoxide-generating enzyme NADPH oxidase. Arterial concentration of GSH and expression of antioxidant enzymes in skeletal muscle of older active subjects were increased. The potential impairment in exercise-induced ROS formation may be an important mechanism underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity upregulates antioxidant systems, which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; Copenhagen Muscle Research Centre and University of Southern Denmark, Copenhagen, Denmark.
| | - Stefan P Mortensen
- Copenhagen Muscle Research Centre and University of Southern Denmark, Copenhagen, Denmark; Department of Cardiovascular and Renal Research, University of Southern Denmark, Copenhagen, Denmark
| | - Helena Cabo
- Department of Physiology, Faculty of Medicine, University of Valencia, and Fundación Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Mari-Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia, and Fundación Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, and Fundación Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Ylva Hellsten
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; Copenhagen Muscle Research Centre and University of Southern Denmark, Copenhagen, Denmark
| |
Collapse
|
41
|
Russell AP, Foletta VC, Snow RJ, Wadley GD. Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta Gen Subj 2013; 1840:1276-84. [PMID: 24291686 DOI: 10.1016/j.bbagen.2013.11.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/01/2013] [Accepted: 11/16/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Maintaining skeletal muscle mitochondrial content and function is important for sustained health throughout the lifespan. Exercise stimulates important key stress signals that control skeletal mitochondrial biogenesis and function. Perturbations in mitochondrial content and function can directly or indirectly impact skeletal muscle function and consequently whole-body health and wellbeing. SCOPE OF REVIEW This review will describe the exercise-stimulated stress signals and molecular mechanisms positively regulating mitochondrial biogenesis and function. It will then discuss the major myopathies, neuromuscular diseases and conditions such as diabetes and ageing that have dysregulated mitochondrial function. Finally, the impact of exercise and potential pharmacological approaches to improve mitochondrial function in diseased populations will be discussed. MAJOR CONCLUSIONS Exercise activates key stress signals that positively impact major transcriptional pathways that transcribe genes involved in skeletal muscle mitochondrial biogenesis, fusion and metabolism. The positive impact of exercise is not limited to younger healthy adults but also benefits skeletal muscle from diseased populations and the elderly. Impaired mitochondrial function can directly influence skeletal muscle atrophy and contribute to the risk or severity of disease conditions. Pharmacological manipulation of exercise-induced pathways that increase skeletal muscle mitochondrial biogenesis and function in critically ill patients, where exercise may not be possible, may assist in the treatment of chronic disease. GENERAL SIGNIFICANCE This review highlights our understanding of how exercise positively impacts skeletal muscle mitochondrial biogenesis and function. Exercise not only improves skeletal muscle mitochondrial health but also enables us to identify molecular mechanisms that may be attractive targets for therapeutic manipulation. This article is part of a Special Issue entitled Frontiers of mitochondrial research.
Collapse
Affiliation(s)
- Aaron P Russell
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, 3125 Burwood, Australia.
| | - Victoria C Foletta
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, 3125 Burwood, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, 3125 Burwood, Australia
| | - Glenn D Wadley
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, 3125 Burwood, Australia
| |
Collapse
|