1
|
O'Neill AF, Ribeiro RC, Pinto EM, Clay MR, Zambetti GP, Orr BA, Weldon CB, Rodriguez-Galindo C. Pediatric Adrenocortical Carcinoma: The Nuts and Bolts of Diagnosis and Treatment and Avenues for Future Discovery. Cancer Manag Res 2024; 16:1141-1153. [PMID: 39263332 PMCID: PMC11389717 DOI: 10.2147/cmar.s348725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Adrenocortical tumors (ACTs) are infrequent neoplasms in children and adolescents and are typically associated with clinical symptoms reflective of androgen overproduction. Pediatric ACTs typically occur in the context of a germline TP53 mutation, can be cured when diagnosed at an early stage, but are difficult to treat when advanced or associated with concurrent TP53 and ATRX alterations. Recent work has demonstrated DNA methylation patterns suggestive of prognostic significance. While current treatment standards rely heavily upon surgical resection, chemotherapy, and hormonal modulation, small cohort studies suggest promise for multi-tyrosine kinases targeting anti-angiogenic pathways or immunomodulatory therapies. Future work will focus on novel risk stratification algorithms and combination therapies intended to mitigate toxicity for patients with perceived low-risk disease while intensifying therapy or accelerating discoveries aimed at improving survival for patients with difficult-to-treat disease.
Collapse
Affiliation(s)
- Allison F O'Neill
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael R Clay
- Department of Pathology, Children's Hospital Colorado, Denver, CO, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Carlos Rodriguez-Galindo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
Yasar HA, Aktas BY, Ucar G, Goksu SS, Bilgetekin I, Cakar B, Sakin A, Ates O, Basoglu T, Arslan C, Demiray AG, Paydas S, Cicin I, Sendur MAN, Karadurmus N, Kosku H, Uner A, Yumuk PF, Utkan G, Kefeli U, Tanriverdi O, Cinkir H, Gumusay O, Turhal NS, Menekse S, Kut E, Beypinar I, Sakalar T, Demir H, Yekeduz E, Kilickap S, Erman M, Urun Y. Adrenocortical Cancer in the Real World: A Comprehensive Analysis of Clinical Features and Management from the Turkish Oncology Group (TOG). Clin Genitourin Cancer 2024; 22:102077. [PMID: 38626660 DOI: 10.1016/j.clgc.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION Adrenocortical carcinoma (ACC) is a rare yet highly malignant tumor associated with significant morbidity and mortality. This study aims to delineate the clinical features, survival patterns, and treatment modalities of ACC, providing insights into the disease's prognosis. MATERIALS AND METHODS A retrospective analysis of 157 ACC patients was performed to assess treatment methodologies, demographic patterns, pathological and clinical attributes, and laboratory results. The data were extracted from the hospital's database. Survival analyses were conducted using the Kaplan-Meier method, with univariate and multivariate analyses being performed through the log-rank test and Cox regression analyses. RESULTS The median age was 45, and 89.4% had symptoms at the time of diagnosis. The median tumor size was 12 cm. A total of 117 (79.6%) patients underwent surgery. A positive surgical border was detected in 26 (24.1%) patients. Adjuvant therapy was administered to 44.4% of patients. The median overall survival for the entire cohort was 44.3 months. Median OS was found to be 87.3 months (95% confidence interval [CI] 74.4-100.2) in stage 2, 25.8 (95% CI 6.5-45.1) months in stage 3, and 13.3 (95% CI 7.0-19.6) months in stage 4 disease. Cox regression analysis identified age, Ki67 value, Eastern Cooperative Oncology Group performance status, and hormonal activity as significant factors associated with survival in patients with nonmetastatic disease. In metastatic disease, only patients who underwent surgery exhibited significantly improved overall survival in univariate analyses. CONCLUSION ACC is an uncommon tumor with a generally poor prognosis. Understanding the defining prognostic factors in both localized and metastatic diseases is vital. This study underscores age, Ki67 value, Eastern Cooperative Oncology Group performance status, and hormonal activity as key prognostic determinants for localized disease, offering critical insights into the complexities of ACC management and potential avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Gokhan Ucar
- Medical Oncology Department, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | | | - Irem Bilgetekin
- Medical Oncology Department, Gazi University, Ankara, Turkey
| | - Burcu Cakar
- Medical Oncology Department, Ege University, Izmir, Turkey
| | - Abdullah Sakin
- Medical Oncology Department, Van Yuzuncu Yıl University, Van, Turkey
| | - Ozturk Ates
- Medical Oncology Department, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Tugba Basoglu
- Medical Oncology Department, Marmara University, Istanbul, Turkey
| | - Cagatay Arslan
- Medical Oncology Department, Bahcesehir University, MedicalPark Hospital, Izmir, Turkey
| | | | - Semra Paydas
- Medical Oncology Department, Adana Cukurova University, Adana, Turkey
| | - Irfan Cicin
- Medical Oncology Department, Trakya University, Edirne, Turkey
| | | | - Nuri Karadurmus
- Medical Oncology Department, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Hakan Kosku
- Medical Oncology Department, Ankara University, Ankara, Turkey
| | - Aytuğ Uner
- Medical Oncology Department, Gazi University, Ankara, Turkey
| | - Perran Fulden Yumuk
- Medical Oncology Department, Marmara University, Istanbul, Turkey; Medical Oncology Department, Koç University, Istanbul; Turkey
| | - Gungor Utkan
- Medical Oncology Department, Ankara University, Ankara, Turkey
| | - Umut Kefeli
- Medical Oncology Department, Kocaeli University, Kocaeli, Turkey
| | - Ozgur Tanriverdi
- Medical Oncology Department, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Havva Cinkir
- Medical Oncology Department, Gaziantep University, Gaziantep, Turkey
| | - Ozge Gumusay
- Medical Oncology Department, Gaziosmanpasa University, Tokat, Turkey
| | | | - Serkan Menekse
- Medical Oncology Department, Manisa City Hospital, Manisa, Turkey
| | - Engin Kut
- Medical Oncology Department, Manisa City Hospital, Manisa, Turkey
| | - Ismail Beypinar
- Medical Oncology Department, Afyon Health Sciences University, Afyon, Turkey
| | - Teoman Sakalar
- Medical Oncology Department, Aksaray University, Aksaray, Turkey
| | - Hacer Demir
- Medical Oncology Department, Afyon Health Sciences University, Afyon, Turkey
| | - Emre Yekeduz
- Medical Oncology Department, Ankara University, Ankara, Turkey
| | | | - Mustafa Erman
- Medical Oncology Department, Hacettepe University, Ankara, Turkey
| | - Yuksel Urun
- Medical Oncology Department, Ankara University, Ankara, Turkey.
| |
Collapse
|
3
|
Gasperini B, Falvino A, Piccirilli E, Tarantino U, Botta A, Visconti VV. Methylation of the Vitamin D Receptor Gene in Human Disorders. Int J Mol Sci 2023; 25:107. [PMID: 38203278 PMCID: PMC10779104 DOI: 10.3390/ijms25010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The Vitamin D Receptor (VDR) mediates the actions of 1,25-Dihydroxvitamin D3 (1,25(OH)2D3), which has important roles in bone homeostasis, growth/differentiation of cells, immune functions, and reduction of inflammation. Emerging evidences suggest that epigenetic modifications of the VDR gene, particularly DNA methylation, may contribute to the onset and progression of many human disorders. This review aims to summarize the available information on the role of VDR methylation signatures in different pathological contexts, including autoimmune diseases, infectious diseases, cancer, and others. The reversible nature of DNA methylation could enable the development of therapeutic strategies, offering new avenues for the management of these worldwide diseases.
Collapse
Affiliation(s)
- Beatrice Gasperini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Angela Falvino
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Eleonora Piccirilli
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| |
Collapse
|
4
|
Ryckx S, De Schepper J, Giron P, Maes K, Vaeyens F, Wilgenhof K, Lefesvre P, Ernst C, Vanderlinden K, Klink D, Hes F, Vanbesien J, Gies I, Staels W. Peripheral precocious puberty in Li-Fraumeni syndrome: a case report and literature review of pure androgen-secreting adrenocortical tumors. J Med Case Rep 2023; 17:195. [PMID: 37179382 PMCID: PMC10183130 DOI: 10.1186/s13256-023-03889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/14/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Pure androgen-secreting adrenocortical tumors are a rare but important cause of peripheral precocious puberty. CASE PRESENTATION Here, we report a pure androgen-secreting adrenocortical tumor in a 2.5-year-old boy presenting with penile enlargement, pubic hair, frequent erections, and rapid linear growth. We confirmed the diagnosis through laboratory tests, medical imaging, and histology. Furthermore, genetic testing detected a pathogenic germline variant in the TP53 gene, molecularly confirming underlying Li-Fraumeni syndrome. DISCUSSION Only 15 well-documented cases of pure androgen-secreting adrenocortical tumors have been reported so far. No clinical or imaging signs were identified to differentiate adenomas from carcinomas, and no other cases of Li-Fraumeni syndrome were diagnosed in the four patients that underwent genetic testing. However, diagnosing Li-Fraumeni syndrome is important as it implies a need for intensive tumor surveillance and avoidance of ionizing radiation. CONCLUSION In this article, we emphasize the need to screen for TP53 gene variants in children with androgen-producing adrenal adenomas and report an association with arterial hypertension.
Collapse
Affiliation(s)
- Sofie Ryckx
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, ZNA Queen Paola Child Hospital, Lindendreef 1, 2020, Antwerp, Belgium.
- Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Jean De Schepper
- Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Philippe Giron
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ken Maes
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Freya Vaeyens
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kaat Wilgenhof
- Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Pierre Lefesvre
- Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Caroline Ernst
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kim Vanderlinden
- Division of Pediatric Surgery, Department of Surgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Daniel Klink
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, ZNA Queen Paola Child Hospital, Lindendreef 1, 2020, Antwerp, Belgium
| | - Frederik Hes
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jesse Vanbesien
- Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Inge Gies
- Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Willem Staels
- Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
5
|
Wang X, Ng CS, Yin W, Liang L. Application of TFE3 Immunophenotypic and TFE3 mRNA Expressions in Diagnosis and Prognostication of Adrenal Cortical Neoplasms and Distinction From Kidney Tumors. Appl Immunohistochem Mol Morphol 2023; 31:9-16. [PMID: 36476598 DOI: 10.1097/pai.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022]
Abstract
We explored the application of TFE3 immunostaining and TFE3 mRNA expression in the differential diagnosis and prognostication of adrenal cortical tumors and distinction of the latter from clear cell renal cell carcinoma (ccRCC) which show significant morphologic overlap. TFE3 immunostaining was performed on a large cohort of samples including 40 adrenal cortex tissues, 95 adrenocortical adenoma (ACA), 11 adrenocortical carcinoma (ACC), 53 ccRCC, and 18 pheochromocytomas. TFE3 was compared with other immunomarkers melan-A, inhibin-α, synaptophysin, chromogranin A, CAIX and CD10. One hundred percent normal adrenal cortices and 94% ACA were strongly and diffusely stained for TFE3 while no ACC showed diffuse staining. TFE3 is thus useful in distinguishing ACA from ACC. TFE3 is also useful in separating ACC from ccRCC as 64% ACC showed partial, while only 7% of ccRCC showed partial TFE3 staining. Only 1 pheochromocytoma showed focal weak TFE3 staining. Results also demonstrated superiority of TFE3 over other commonly used immunomarkers. TFE3 gene rearrangement testing by fluorescence in situ hybridization showed no rearrangement in 6 TFE3 positive adrenal tumors. TFE3 mRNA were analyzed by the Cancer Genome Atlas database and we found TFE3 mRNA expression correlated with overall patient survival in ACC. Our study showed usefulness of TFE3 in distinguishing ACA from ACC, and ACC from ccRCC. TFE3 is superior over other commonly used immunomarkers for adrenal tumors. In addition, decreased TFE3 immunoexpression and TFE3 mRNA expression may carry poor prognostic implication in adrenal tumors.
Collapse
Affiliation(s)
- Xingen Wang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou
- Department of pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chi-Sing Ng
- Department of Pathology, St. Teresa's Hospital, Mong Kok, Hong Kong
| | - Weihua Yin
- Department of pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou
| |
Collapse
|
6
|
Rich JM, Duddalwar V, Cheng PM, Aron M, Daneshmand S. Feminizing Adrenocortical Tumor with Multiple Recurrences: A Case Report. Case Rep Oncol 2023; 16:1033-1040. [PMID: 37900824 PMCID: PMC10601808 DOI: 10.1159/000533835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2023] [Indexed: 10/31/2023] Open
Abstract
Feminizing adrenocortical tumors (FATs) are exceptionally rare primary adrenal neoplasms that cause high estrogen and low testosterone levels. They are most common in adult males, typically presenting with gynecomastia, hypogonadism, and weight loss. They are almost always malignant, with a poor prognosis and a high recurrence rate. We report a case of a 35-year-old man with an adrenal FAT with high estrogen (181 pg/mL) and low testosterone (37 ng/dL) who presented with gynecomastia, erectile dysfunction, subclinical Cushing syndrome, and pain localizing to different regions of the torso. There was no evidence of metastatic disease initially as seen by visualization of a well-marginated mass on computed tomography scan. Surgical resection of the FAT was performed, and the mass was confirmed to be a low-grade tumor. Clinical symptoms were resolved after surgery. Despite complete resection with negative margins, the patient subsequently had two separate local metastatic recurrences within a few years, treated with a combination of further surgery and medical intervention. This case highlights the unique features of an exceedingly rare adrenal tumor and stresses the importance of early detection and vigilant surveillance following resection due to high recurrence rates.
Collapse
Affiliation(s)
- Joseph M. Rich
- MD/PhD Program, USC-Caltech MD/PhD Program, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Vinay Duddalwar
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Phillip M. Cheng
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Manju Aron
- Department of Pathology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Siamak Daneshmand
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
8
|
Turai PI, Nyirő G, Borka K, Micsik T, Likó I, Patócs A, Igaz P. Exploratory Circular RNA Profiling in Adrenocortical Tumors. Cancers (Basel) 2022; 14:cancers14174313. [PMID: 36077848 PMCID: PMC9454786 DOI: 10.3390/cancers14174313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The histological differential diagnosis of adrenocortical adenoma and carcinoma is difficult and requires great expertise. Measures taken towards the distinction of adrenal tumors are of paramount importance. The non-coding circular RNAs (circRNAs) were shown to be expressed in a tissue and tumor specific manner. CircRNAs are investigated as a useful adjunct to the differential diagnosis of benign and malignant tumors of several organs, but they have not been investigated in adrenocortical tumors yet. Here, we have performed circRNA profiling in adrenocortical tumors by next-generation sequencing to detect already known and de novo circRNAs. Out of the five most differentially expressed circRNAs, circPHC3 could be confirmed by TaqMan RT-qPCR to be overexpressed in carcinoma and adenoma vs. healthy tissues in an independent validation cohort. Abstract Differentiation of adrenocortical adenoma (ACA) and carcinoma (ACC) is often challenging even in the histological analysis. Circular RNAs (circRNAs) belonging to the group of non-coding RNAs have been implicated as relevant factors in tumorigenesis. Our aim was to explore circRNA expression profiles in adrenocortical tumors by next-generation sequencing followed by RT-qPCR validation. Archived FFPE (formalin-fixed, paraffin embedded) including 8 ACC, 8 ACA and 8 normal adrenal cortices (NAC) were used in the discovery cohort. For de novo and known circRNA expression profiling, a next-generation sequencing platform was used. CIRI2, CircExplorer2, AutoCirc bioinformatics tools were used for the discovery of circRNAs. The top five most differentially circRNAs were measured by RT-qPCR in an independent validation cohort (10 ACC, 8 ACA, 8 NAC). In silico predicted, interacting microRNAs potentially sponged by differentially expressed circRNAs were studied by individual RT-qPCR assays. We focused on overexpressed circRNAs here. Significantly differentially expressed circRNAs have been revealed between the cohorts by NGS. Only circPHC3 could be confirmed to be significantly overexpressed in ACC, ACA vs. NAC samples by RT-qPCR. We could not observe microRNA expression changes fully corresponding to our sponging hypothesis. To the best of our knowledge, our study is the first to investigate circRNAs in adrenocortical tumors. Further studies are warranted to explore their biological and diagnostic relevance.
Collapse
Affiliation(s)
- Péter István Turai
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Gábor Nyirő
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091 Budapest, Hungary
| | - Tamás Micsik
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| | - István Likó
- MTA-SE Hereditary Tumors Research Group, Eötvös Lóránd Research Network, H-1089 Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
- MTA-SE Hereditary Tumors Research Group, Eötvös Lóránd Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Peter Igaz
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Correspondence:
| |
Collapse
|
9
|
Nazha B, Zhuang TZ, Dada HI, Drusbosky LM, Brown JT, Ravindranathan D, Carthon BC, Kucuk O, Goldman J, Master VA, Bilen MA. Blood-Based Next-Generation Sequencing in Adrenocortical Carcinoma. Oncologist 2022; 27:462-468. [PMID: 35462410 PMCID: PMC9177103 DOI: 10.1093/oncolo/oyac061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare and heterogeneous malignancy with poor prognosis. We aimed to evaluate the feasibility of next-generation sequencing (NGS) testing of circulating cell-free tumor DNA (ctDNA) in patients with ACC, to characterize the genomic landscape of alterations, and to identify potential clinically actionable mutations. METHODS Retrospective analysis of genomic data from 120 patients with ACC who had ctDNA testing between 12/2016 and 10/2021 using Guardant360 (Guardant Health, CA) was performed. ctDNA NGS analysis interrogated single nucleotide variants, fusions, indels, and copy number amplifications of up to 83 genes. The frequency of genomic alterations, landscape of co-occurring mutations, and pathogenic/likely pathogenic alterations with potential targeted therapies was identified. The prevalence of alterations identified in ctDNA was compared to those detected in tissue using a publicly available database (cBioPortal). RESULTS The median age of this cohort was 53 years (range 21-81), and 56% of patients were female. Ninety-six patients (80%) had ≥1 somatic alteration detected. TP53 (52%), EGFR (23%), CTNNB1 (18%), MET (18%), and ATM (14%) were found to be the most frequently altered genes in ACC samples. Pathogenic and/or likely pathogenic mutations in therapeutically relevant genes were observed in 56 patients (47%) and included EGFR, BRAF, MET, CDKN2A, CDK4/6, and ATM. The most frequent co-occurring mutations were EGFR + MET (9%), MET + CDK4 (7%), EGFR + CDK4 (7%), and BRAF + MET (7%). The frequencies of mutations detected in ctDNA were similar to those detected in tissue. CONCLUSIONS Utilizing blood-based NGS to characterize genomic alterations in advanced ACC is feasible in over 80% of patients. Almost half of the patients had actionable mutations with approved therapies in other cancers. This approach might inform the development of personalized treatment options or identify clinical trials available for this aggressive malignancy.
Collapse
Affiliation(s)
- Bassel Nazha
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tony Z Zhuang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Jacqueline T Brown
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Deepak Ravindranathan
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley C Carthon
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Goldman
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj A Master
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Daher M, Varghese J, Gruschkus SK, Jimenez C, Waguespack SG, Bedrose S, Altameemi L, Bazerbashi H, Naing A, Subaiah V, Campbell MT, Shah AY, Zhang M, Sheth RA, Karam JA, Wood CG, Perrier ND, Graham PH, Lee JE, Habra MA. Temporal Trends in Outcomes in Patients With Adrenocortical Carcinoma: A Multidisciplinary Referral-center Experience. J Clin Endocrinol Metab 2022; 107:1239-1246. [PMID: 35092681 PMCID: PMC9016449 DOI: 10.1210/clinem/dgac046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 01/31/2023]
Abstract
CONTEXT Reporting temporal trends in adrenocortical carcinoma (ACC) helps guide management strategies. OBJECTIVE This work aimed to report the trends in disease burden and clinical outcomes over time that cannot be adequately captured from individual clinical trials. METHODS A retrospective study was held of ACC patients seen at a referral cancer center between February 1998 and August 2019. Clinical outcomes were compared between an early cohort (February 1998-June 2007) and a late cohort (July 2007-August 2019). RESULTS A total of 621 patients included with a median age at diagnosis of 49.3 years (range, 0.5-86.6 years). There were 285 (45.9%) patients with hormonal overproduction. More patients in the late cohort had stage IV disease compared to the early cohort (36.8% vs 23.1%; P < .0001). Resection of the primary tumor was performed in 502 patients (80.8%). Complete resection (R0) was more common in the late cohort (165 [60.2%]) than in the early cohort (100 [44.6%]; P = .0005). Of 475 patients with metastatic disease (stage IV or recurrent metastatic disease), 352 (74.1%) received mitotane, 320 (67.4%) received chemotherapy, and 53 (11.2%) received immunotherapy. In the early cohort, 70 (33%) received 2 or more lines of therapy, whereas in the late cohort, 127 (48%) received 2 or more lines of therapy. The 5-year overall survival (OS) rates were 65%, 58%, 45%, and 10% for stage I, II, III, and IV disease, respectively, whereas the 2-year OS rates in patients with stage IV disease was 24% in the early cohort and 46% in the late cohort (P = .01). CONCLUSION ACC clinical outcomes improved over the past 2 decades as more patients had complete resection or received more lines of systemic therapy.
Collapse
Affiliation(s)
- Marilyne Daher
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeena Varghese
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephen K Gruschkus
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sara Bedrose
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lina Altameemi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hadil Bazerbashi
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vivek Subaiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030USA
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nancy D Perrier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Paul H Graham
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeffery E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
11
|
Araujo-Castro M, Marazuela M. Cushing´s syndrome due to bilateral adrenal cortical disease: Bilateral macronodular adrenal cortical disease and bilateral micronodular adrenal cortical disease. Front Endocrinol (Lausanne) 2022; 13:913253. [PMID: 35992106 PMCID: PMC9389040 DOI: 10.3389/fendo.2022.913253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cushing´s syndrome (CS) secondary to bilateral adrenal cortical disease may be caused by bilateral macronodular adrenal cortical disease (BMACD) or by bilateral micronodular adrenal cortical disease (miBACD). The size of adrenal nodules is a key factor for the differentiation between these two entities (>1cm, BMACD and <1cm; miBACD). BMACD can be associated with overt CS, but more commonly it presents with autonomous cortisol secretion (ACS). Surgical treatment of BMACD presenting with CS or with ACS and associated cardiometabolic comorbidities should be the resection of the largest adrenal gland, since it leads to hypercortisolism remission in up to 95% of the cases. Medical treatment focused on the blockade of aberrant receptors may lead to hypercortisolism control, although cortisol response is frequently transient. miBACD is mainly divided in primary pigmented nodular adrenocortical disease (PPNAD) and isolated micronodular adrenocortical disease (i-MAD). miBACD can present at an early age, representing one of the main causes of CS at a young age. The high-dose dexamethasone suppression test can be useful in identifying a paradoxical increase in 24h-urinary free cortisol, that is a quite specific in PPNAD. Bilateral adrenalectomy is generally the treatment of choice in patients with overt CS in miBACD, but unilateral adrenalectomy could be considered in cases with asymmetric disease and mild hypercortisolism. This article will discuss the clinical presentation, genetic background, hormonal and imaging features and treatment of the main causes of primary bilateral adrenal hyperplasia associated with hypercortisolism.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Endocrinology & Nutrition Department, Ramón y Cajal University Hospital, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
- Departament of Medicine, Alcalá University, Madrid, Spain
- *Correspondence: Marta Araujo-Castro,
| | - Mónica Marazuela
- Endocrinology & Nutrition Department, La Princesa University Hospital, Madrid, Spain
| |
Collapse
|
12
|
Wang L, Lyu Y, Li Y, Li K, Wen H, Feng C, Li N. ASXL1 promotes adrenocortical carcinoma and is associated with chemoresistance to EDP regimen. Aging (Albany NY) 2021; 13:22286-22297. [PMID: 34536950 PMCID: PMC8507286 DOI: 10.18632/aging.203534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare but aggressive disease that lacks definitive treatment. We aim to evaluate role of ASXL1 in ACC and exploit its therapeutic merits therein. We performed in silico reproduction of datasets of the Cancer Genome Atlas (TCGA), GDSC (Genomics of Drug Sensitivity in Cancer) and Human Protein Atlas using platforms of cBioPortal, UALCAN, NET-GE, GSEA and GEPIA. Validation in ACC was performed in tissue, in vitro and in vivo using the NCI-H295R and SW-13 cells. ASXL1 was gained in over 50% of ACC cases with its mRNA overexpressed in DNA gained cases. ASXL1 overexpression was associated with recurrence and worsened prognosis in ACC. ASXL1 gain was associated with resistance to etoposide, doxorubicin and cisplatin (EDP). ASXL1 expression was positively correlated with FSCN1 expression. Targeting ASXL1 significantly impaired fitness of ACC cells, which could be in part rescued by FSCN1 overexpression. Targeting FSCN1 however could not rescue resistance to EDP induced by ASXL1 overexpression. Targeting ASXL1 sensitized ACC cells to EDP regimen but constitutive ASXL3 overexpression in SW-13 cells could induce resistance upon prolonged treatment. Functional gain of ASXL1 was common in ACC and exerted pro-tumorigenic and chemoresistance role. Targeting ASXL1 hold promise to ACC treatment.
Collapse
Affiliation(s)
- Liang Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yinfeng Lyu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuqing Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Kunping Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hui Wen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ning Li
- Department of Urology, Fourth Affiliated Hospital of China Medical University, Shenyang 100032, Liaoning Province, P.R. China
| |
Collapse
|
13
|
Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, Cottrell E, Amar L, Wu X, O'Toole S, Goodchild E, Marker A, Senanayake R, Garg S, Åkerström T, Backman S, Jordan S, Polubothu S, Berney DM, Gluck A, Lines KE, Thakker RV, Tuthill A, Joyce C, Kaski JP, Karet Frankl FE, Metherell LA, Teo AED, Gurnell M, Parvanta L, Drake WM, Wozniak E, Klinzing D, Kuan JL, Tiang Z, Gomez Sanchez CE, Hellman P, Foo RSY, Mein CA, Kinsler VA, Björklund P, Storr HL, Zennaro MC, Brown MJ. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat Genet 2021; 53:1360-1372. [PMID: 34385710 PMCID: PMC9082578 DOI: 10.1038/s41588-021-00906-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/29/2021] [Indexed: 01/05/2023]
Abstract
Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.
Collapse
Affiliation(s)
- Junhua Zhou
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elena A B Azizan
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK.
- Department of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia.
| | - Claudia P Cabrera
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | | | - Giulia Argentesi
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Laurence Amar
- Université de Paris, PARCC, Inserm, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension Artérielle, Paris, France
| | - Xilin Wu
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sam O'Toole
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emily Goodchild
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alison Marker
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Russell Senanayake
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Sumedha Garg
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Suzanne Jordan
- Cellular Pathology Department, Royal London Hospital, London, UK
| | - Satyamaanasa Polubothu
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Daniel M Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Anna Gluck
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kate E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antoinette Tuthill
- Department of Endocrinology and Diabetes, Cork University Hospital, Cork, Ireland
| | - Caroline Joyce
- Clinical Biochemistry, Cork University Hospital, Cork, Ireland
| | - Juan Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital and University College London Institute of Cardiovascular Science, London, UK
| | - Fiona E Karet Frankl
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Lou A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ada E D Teo
- Dept of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Laila Parvanta
- Department of Surgery, St Bartholomew's Hospital, London, UK
| | - William M Drake
- Department of Endocrinology, St Bartholomew's Hospital, London, UK
| | - Eva Wozniak
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - David Klinzing
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jyn Ling Kuan
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Celso E Gomez Sanchez
- G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Roger S Y Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charles A Mein
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | | | - Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maria-Christina Zennaro
- Université de Paris, PARCC, Inserm, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| | - Morris J Brown
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Surgical Management of Adrenocortical Carcinoma: Current Highlights. Biomedicines 2021; 9:biomedicines9080909. [PMID: 34440112 PMCID: PMC8389566 DOI: 10.3390/biomedicines9080909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Adrenocortical carcinoma (ACC) is a rare tumor, often discovered at an advanced stage and associated with poor prognosis. Treatment is guided by staging according to the European Network for the Study of Adrenal Tumors (ENSAT) classification. Surgery is the treatment of choice for ACC. The aim of this review is to provide a complete overview on surgical approaches and management of adrenocortical carcinoma. METHODS This comprehensive review has been carried out according to the PRISMA statement. The literature sources were the databases PubMed, Scopus and Cochrane Library. The search thread was: ((surgery) OR (adrenalectomy)) AND (adrenocortical carcinoma). RESULTS Among all studies identified, 17 were selected for the review. All of them were retrospective. A total of 2498 patients were included in the studies, of whom 734 were treated by mini-invasive approaches and 1764 patients were treated by open surgery. CONCLUSIONS Surgery is the treatment of choice for ACC. Open adrenalectomy (OA) is defined as the gold standard. In recent years laparoscopic adrenalectomy (LA) has gained more popularity. No significant differences were reported for overall recurrence rate, time to recurrence, and cancer-specific mortality between LA and OA, in particular for Stage I-II. Robotic adrenalectomy (RA) has several advantages compared to LA, but there is still a lack of specific documentation on RA use in ACC.
Collapse
|
15
|
Moore EC, Ioannou L, Ruseckaite R, Serpell J, Ahern S. Hereditary Endocrine Tumors and Associated Syndromes: A Narrative Review for Endocrinologists and Endocrine Surgeons. Endocr Pract 2021; 27:1165-1174. [PMID: 34265452 DOI: 10.1016/j.eprac.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Hereditary endocrine tumors (HET) were among the first group of tumors where predisposition syndromes were recognized. The utility of genetic awareness is having the capacity to treat at an earlier stage, screen for other manifestations and initiate family cascade testing. The aim of this narrative review is to describe the most common hereditary syndromes associated with frequently encountered endocrine tumors, with an emphasis on screening and surveillance. METHODS A MEDLINE search of articles for relevance to endocrine tumors and hereditary syndromes was performed. RESULTS The most common hereditary syndromes associated with frequently encountered endocrine tumors are described in terms of prevalence, genotype, phenotype, penetrance of malignancy, surgical management, screening and surveillance. CONCLUSION Medical practitioners involved in the care of patients with endocrine tumors, should have an index of suspicion for an underlying hereditary syndrome. Interdisciplinary care is integral to successful, long-term management of these patients and affected family members.
Collapse
Affiliation(s)
- Edwina C Moore
- Department of Endocrine Surgery, Peninsula Private Hospital and Department of Public Health and Preventive Medicine, Monash University.
| | - Liane Ioannou
- Department of Public Health and Preventive Medicine, Monash University
| | - Rasa Ruseckaite
- Department of Public Health and Preventive Medicine, Monash University
| | - Jonathan Serpell
- Department of Breast, Endocrine and General Surgery, Alfred Health, Monash University
| | - Susannah Ahern
- Department of Epidemiology and Preventive Medicine, Monash University
| |
Collapse
|
16
|
Mantiri BJ, Sigumonrong Y. Bilateral adrenal tumor: A case report and current challenges. Int J Surg Case Rep 2021; 84:106134. [PMID: 34225065 PMCID: PMC8261670 DOI: 10.1016/j.ijscr.2021.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION A bilateral adrenal tumor is a rare case. It differs significantly from unilateral adrenal mass since it is related strongly to genetic and family history. Adrenocortical Carcinoma might cause related hormonal syndromes such as Cushing syndrome, Conn syndrome, and virilization. AIM This study aims to report an uncommon presentation of a 15-year-old female with bilateral Adrenal Tumor since an early age with virilization as the main symptoms. CASE PRESENTATION The patient is a 15-year-old girl with female genitalia presentation. She complained of a bulging mass on her right flank with pain four years ago. The mass size grew progressively and initially painless. However, the patient started to feel pain a year ago. Since she was six years old, the mass started to appear on the left flank, and then it also started to appear on the right side. The mass appearance is simultaneous with virilization symptom development, such as the emergence of facial hair, mustache, and sideburns. In 2020, MRI showed a lesion on the right suprarenal with contrast enhancement with 14.5 × 11.5 cm in size, and a 5.6 × 4 cm recurrent left suprarenal lesion. The patient underwent right adrenalectomy resection surgery on January 21st, 2021. The immunohistochemistry examination suggested Adrenocortical Carcinoma. CONCLUSION Adrenocortical Carcinoma is a hormone-secreting tumor that might affect the patient's condition systematically. Neglected cases of adrenal cortical carcinoma might affect secondary sexual organ development in the long term. Thus, an early diagnosis and treatment are paramount for this case.
Collapse
Affiliation(s)
- Ben Julian Mantiri
- Urology Resident of Urology Department, Faculty of Medicine, Universitas Indonesia - H. Adam Malik Hospital, Medan, Indonesia.
| | - Yacobda Sigumonrong
- Urology Consultant of Urology Department, Faculty of Medicine, Universitas Indonesia - H. Adam Malik Hospital, Medan, Indonesia
| |
Collapse
|
17
|
Southall TM, MacDonald M, Acker MR, Organ M. Functional Adrenocortical Carcinoma: A Rare Case With Thrombus Extension Into the Inferior Vena Cava and a Presentation of Cushing Syndrome. Cureus 2021; 13:e14239. [PMID: 33959434 PMCID: PMC8093109 DOI: 10.7759/cureus.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare, highly malignant endocrine tumor, often associated with a poor prognosis. Most patients who develop ACC are either children of ages 1-6, or adults in their fourth to fifth decade of life. Individuals with a functional cortisol-secreting ACC frequently present with Cushing syndrome. We report a case of an 18-year-old male who was found to have a large ACC tumor, with thrombus extension into the inferior vena cava (IVC), after presenting with Cushing syndrome. ACC presents a challenging scenario for physicians as surgical resection remains the only form of curative therapy, however, despite such treatment many patients quickly develop metastases.
Collapse
Affiliation(s)
- Thomas M Southall
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, CAN
| | | | | | - Michael Organ
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, CAN
| |
Collapse
|
18
|
Araujo-Castro M, Pascual-Corrales E, Molina-Cerrillo J, Alonso-Gordoa T. Immunotherapy in Adrenocortical Carcinoma: Predictors of Response, Efficacy, Safety, and Mechanisms of Resistance. Biomedicines 2021; 9:biomedicines9030304. [PMID: 33809752 PMCID: PMC8002272 DOI: 10.3390/biomedicines9030304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with limited treatment options in the advanced stages. Immunotherapy offers hope for altering the orthodox management of cancer, and its role in advanced ACC has been investigated in different studies. With the aim clarifying the role of immunotherapy in ACC we performed a comprehensive review about this topic focusing on the predictors of response, efficacy, safety, and the mechanisms of resistance. Five clinical trials with four immune checkpoint inhibitors (pembrolizumab, avelumab, nivolumab, and ipilimumab) have investigated the role of immunotherapy in advanced ACC. Despite, the different primary endpoints used in these studies, the reported rates of overall response rate and progression free survival were generally poor. Three main potential markers of response to immunotherapy in ACC have been described: Expression of PD-1 and PD-L1, microsatellite instability and tumor mutational burden. However, none of them has been validated in prospective studies. Several mechanisms of ACC immunoevasion may be responsible of immunotherapy failure, and a greater knowledge of these mechanisms might lead to the development of new strategies to overcome the immunotherapy resistance. In conclusion, although currently the role of immunotherapy is limited, the identification of immunological markers of response and the implementation of strategies to avoid immunotherapy resistance could improve the efficacy of this therapy.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Ramón y Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Correspondence:
| | - Eider Pascual-Corrales
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Ramón y Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (J.M.-C.); (T.A.-G.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (J.M.-C.); (T.A.-G.)
| |
Collapse
|
19
|
Expression of Glutamine Metabolism-Related and Amino Acid Transporter Proteins in Adrenal Cortical Neoplasms and Pheochromocytomas. DISEASE MARKERS 2021; 2021:8850990. [PMID: 33505538 PMCID: PMC7806379 DOI: 10.1155/2021/8850990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Background Glutamine metabolism is considered an important metabolic phenotype of proliferating tumor cells. Objective The objective of this study was to investigate the expression of glutamine metabolism-related and amino acid transporter proteins in adrenal cortical neoplasms (ACNs) and pheochromocytomas (PCCs) in the adrenal gland. Methods A tissue microarray was constructed for 132 cases of ACN (115 cases of adrenal cortical adenoma and 17 cases of adrenal cortical carcinoma) and 189 cases of PCC. Immunohistochemical staining for glutamine metabolism-related proteins GLS1 and GDH and amino acid transporter proteins SLC1A5, SLC7A5, and SLC7A11 as well as SDHB was performed and compared with clinicopathologic parameters. Results The expression levels of GLS (p < 0.001), SLC7A5 (p = 0.049), and SDHB (p = 0.007) were higher in ACN than in PCC, whereas the expression levels of SLC1A5 (p < 0.001) and SLC7A11 (p < 0.001) were higher in PCC than in ACN. In ACN, GLS positivity was associated with a higher Fuhrman grade (p = 0.009), and SLC1A5 positivity was associated with SDHB positivity (p = 0.004) and a clear cell proportion < 25% (p = 0.010). SDHB negativity was also associated with tumor cell necrosis (p = 0.007). In PCC, SLC7A11 positivity was associated with nonnorepinephrine type (p = 0.008). In Kaplan-Meier analysis, patients with GLS positivity (p = 0.039) and SDHB negativity (p = 0.005) had significantly shorter overall survival in ACN. In PCC patients with a GAPP score ≥ 3, GLS positivity (p = 0.001) and SDHB positivity (p = 0.001) were associated with shorter disease-free survival, whereas GLS positivity (p = 0.004) was also associated with shorter overall survival. Conclusions The expression of glutamine metabolism-related and amino acid transporter proteins in ACN and PCC is distinct and associated with prognosis.
Collapse
|
20
|
Akhavanfard S, Yehia L, Padmanabhan R, Reynolds JP, Ni Y, Eng C. Germline EGFR variants are over-represented in adolescents and young adults (AYA) with adrenocortical carcinoma. Hum Mol Genet 2020; 29:3679-3690. [PMID: 33326033 DOI: 10.1093/hmg/ddaa268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
Adrenocortical Carcinoma (ACC) is a rare endocrine tumor with poor overall prognosis and 1.5-fold overrepresentation in females. In children, ACC is associated with inherited cancer syndromes with 50-80% of childhood-ACC associated with TP53 germline variants. ACC in adolescents and young adults (AYA) is rarely due to germline TP53, IGF2, PRKAR1A and MEN1 variants. We analyzed exome sequencing data from 21 children (<15y), 32 AYA (15-39y), and 60 adults (>39y) with ACC, and retained all pathogenic, likely pathogenic, and highly prioritized variants of uncertain significance. We engineered a stable lentiviral-mutant ACC cell line, harboring an EGFR variant (p.Asp1080Asn) from a 21-year-old female without germline-TP53-variant and with aggressive ACC. We found that 4.8% of the children (P = 0.004) and 6.2% of AYA (P < 0.0001), all-female participants, harbored germline EGFR variants, compared to only 0.3% of the control group. Expanding our analysis to the RTK-RAS-MAPK pathway, we found that the RTK genes have the highest number of highly prioritized germline variants in these individuals amongst all three arms of this pathway. We showed EGFR mutant cells migrate faster and are characterized by a stem-like phenotype compared to wild type cells. While EGFR inhibitors did not affect the stemness of mutant cells, Sunitinib, a multireceptor tyrosine kinase inhibitor, significantly reduced their stem-like behavior. Our data suggest that EGFR could be a novel underlying germline predisposition factor for ACC, especially in the Childhood-AYA (C-AYA) population. Further clinical validation can improve precision oncology management of this disease, which is known to have limited therapeutic options.
Collapse
Affiliation(s)
- Sara Akhavanfard
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Roshan Padmanabhan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | | | - Ying Ni
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.,Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH 44195, USA.,Germline High-Risk Cancer Focus Group, Cancer Prevention, Control & Population Research Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Chevais A, Selivanova LS, Kuznetzov NS, Derkatch DА, Yukina MY, Beltsevich DG. [Immunohistochemical study on the expression/hyperexpression of aberrant/eutopic receptors in patients with bilateral macronodular adrenal hyperplasia]. ACTA ACUST UNITED AC 2020; 66:4-12. [PMID: 33481362 DOI: 10.14341/probl12516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/06/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023]
Abstract
Bilateral macronodular adrenal hyperplasia (BMAH) is a rare cause of Cushing's syndrome. In this case cortisol production can be regulated by both genetic factors and various molecular mechanisms. The presence of aberrant or overexpression of eutopic receptors on the membrane of adrenal cortex may lead to activation of cAMP/PKA signaling pathways and consequently, pathological stimulation of steroidogenesis. Since proving the effectiveness of unilateral adrenalectomy in BMAH by achievement of stable remission, preoperative clinical and laboratory tests (ligand-induced tests) are no longer of relevant. Nevertheless, in the absence of normalization of the level of cortisol in the postoperative period or its recurrence, subsequent specific targeted medical options can be offered only if expression/hyperexpression predominance of one or another receptor. Their detection becomes possible using more reliable diagnostic methods such as polymerase chain reaction (PCR) and immunohistochemical studies (IHC) than clinical laboratory tests. At the moment, PCR has gained a wider application. This article summarizes data on the use of immunohistochemical study in BMAH.
Collapse
|
22
|
LeGout JD, Bailey RE, Bolan CW, Bowman AW, Chen F, Cernigliaro JG, Alexander LF. Multimodality Imaging of Abdominopelvic Tumors with Venous Invasion. Radiographics 2020; 40:2098-2116. [PMID: 33064623 DOI: 10.1148/rg.2020200047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A broad range of abdominal and pelvic tumors can manifest with or develop intraluminal venous invasion. Imaging features at cross-sectional modalities and contrast-enhanced US that allow differentiation of tumor extension within veins from bland thrombus include the expansile nature of tumor thrombus and attenuation and enhancement similar to those of the primary tumor. Venous invasion is a distinctive feature of hepatocellular carcinoma and renal cell carcinoma with known prognostic and treatment implications; however, this finding remains an underrecognized characteristic of multiple other malignancies-including cholangiocarcinoma, adrenocortical carcinoma, pancreatic neuroendocrine tumor, and primary venous leiomyosarcoma-and can be a feature of benign tumors such as renal angiomyolipoma and uterine leiomyomatosis. Recognition of tumor venous invasion at imaging has clinical significance and management implications for a range of abdominal and pelvic tumors. For example, portal vein invasion is a strong negative prognostic indicator in patients with hepatocellular carcinoma. In patients with rectal cancer, diagnosis of extramural venous invasion helps predict local and distant recurrence and is associated with worse survival. The authors present venous invasion by vascular distribution and organ of primary tumor origin with review of typical imaging features. Common pitfalls and mimics of neoplastic thrombus, including artifacts and anatomic variants, are described to help differentiate these findings from tumor in vein. By accurately diagnosing tumor venous invasion, especially in tumors where its presence may not be a typical feature, radiologists can help referring clinicians develop the best treatment strategies for their patients. ©RSNA, 2020.
Collapse
Affiliation(s)
- Jordan D LeGout
- From the Department of Radiology, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Ryan E Bailey
- From the Department of Radiology, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Candice W Bolan
- From the Department of Radiology, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Andrew W Bowman
- From the Department of Radiology, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Frank Chen
- From the Department of Radiology, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Joseph G Cernigliaro
- From the Department of Radiology, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Lauren F Alexander
- From the Department of Radiology, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| |
Collapse
|
23
|
Ettaieb M, Kerkhofs T, van Engeland M, Haak H. Past, Present and Future of Epigenetics in Adrenocortical Carcinoma. Cancers (Basel) 2020; 12:cancers12051218. [PMID: 32414074 PMCID: PMC7281315 DOI: 10.3390/cancers12051218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023] Open
Abstract
DNA methylation profiling has been suggested a reliable technique to distinguish between benign and malignant adrenocortical tumors, a process which with current diagnostic methods remains challenging and lacks diagnostic accuracy of borderline tumors. Accurate distinction between benign and malignant adrenal tumors is of the essence, since ACC is a rare but aggressive endocrine disease with an annual incidence of about 2.0 cases per million people per year. The estimated five-year overall survival rate for ACC patients is <50%. However, available treatment regimens are limited, in which a radical surgical resection is the only curable option. Nevertheless, up to 85% of patients with radical resection show recurrence of the local disease often with concurrent metastases. Adrenolytic therapy with mitotane, administered alone or in combination with cytotoxic agents, is currently the primary (palliative) treatment for patients with advanced ACC and is increasingly used in adjuvant setting to prevent recurrence. Prognostic stratification is important in order to individualize adjuvant therapies. On April 1, 2020, there were 7404 publications on adrenocortical carcinoma (adrenocortical carcinoma) OR adrenocortical carcinoma [MeSH Terms]) OR adrenal cortex cancer[MeSH Terms]) OR adrenal cortical carcinoma [MeSH Terms]) OR adrenal cortex neoplasm [MeSH Terms]) OR adrenocortical cancer [MeSH Terms]), yet the underlying pathophysiology and characteristics of ACC is not fully understood. Knowledge on epigenetic alterations in the process of adrenal tumorigenesis is rapidly increasing and will add to a better understanding of the pathogenesis of ACC. DNA methylation profiling has been heralded as a promising method in the prognostication of ACC. This review summarizes recent findings on epigenetics of ACC and its role in diagnosis, prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Madeleine Ettaieb
- Department of Internal Medicine, Division of Endocrinology, Maxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands;
- Correspondence:
| | - Thomas Kerkhofs
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Harm Haak
- Department of Internal Medicine, Division of Endocrinology, Maxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands;
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
- Department of Health Services Research and CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
| |
Collapse
|
24
|
Sinclair TJ, Gillis A, Alobuia WM, Wild H, Kebebew E. Surgery for adrenocortical carcinoma: When and how? Best Pract Res Clin Endocrinol Metab 2020; 34:101408. [PMID: 32265101 DOI: 10.1016/j.beem.2020.101408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy that is frequently asymptomatic at presentation, yet has a high rate of metastatic disease at the time of diagnosis. Prognosis is overall poor, particularly with cortisol-producing tumors. While the treatment of ACC is guided by stage of disease, complete surgical resection is the most important step in the management of patients with primary, recurrent, or metastatic ACC. Triphasic chest, abdomen, and pelvis computer tomography (CT) scans and 18F flourodeoxyglucose positron emission tomography CT scanning are essential for accurate staging; moreover, MRI may be helpful to identify liver metastasis and evaluate the involvement of adjacent organs for operative planning. Surgical resection with negative margins is the single most important prognostic factor for survival in patients with ACC. To achieve the highest rate of R0 resection, open adrenalectomy is the gold standard surgical approach for confirmed or highly suspected ACC. It is extremely important that the tumor capsule is not ruptured, regardless of the surgical approach used. The best post-operative outcomes (complications and oncologic) are achieved by high-volume surgeons practicing at high-volume centers.
Collapse
Affiliation(s)
- Tiffany J Sinclair
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrea Gillis
- Division of General Surgery, Department of Surgery, Albany Medical College, Albany, NY, USA
| | - Wilson M Alobuia
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah Wild
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Electron Kebebew
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Szychlińska M, Baranowska-Jurkun A, Matuszewski W, Wołos-Kłosowicz K, Bandurska-Stankiewicz E. Markers of Subclinical Cardiovascular Disease in Patients with Adrenal Incidentaloma. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E69. [PMID: 32050625 PMCID: PMC7074127 DOI: 10.3390/medicina56020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/19/2023]
Abstract
Due to the growing availability of imaging examinations the percentage of patients with incidentally diagnosed adrenal tumors has increased. The vast majority of these lesions are benign, non-functioning adenomas, although according to various estimates even up to 30%-50% of patients with adrenal incidentaloma may present biochemical hypercortisolemia, without typical clinical features of Cushing's syndrome. Adrenal adenomas secreting small amounts of glucocorticoids may cause morphological and functional changes in the myocardium and blood vessels. Early stages of cardiovascular remodeling may be observed among asymptomatic patients with adrenal adenoma. Vascular changes precede the development of cardiovascular diseases and can increase morbidity and mortality in patients with adrenal incidentaloma. This risk may result not only from the traditional risk factors. Seemingly hormonally inactive adrenal tumors can indeed produce small amounts of glucocorticoids that have metabolic implications. Therefore, evaluation of patients with incidental adrenal findings presenting with subclinical cardiovascular disease seems of particular importance.
Collapse
Affiliation(s)
- Magdalena Szychlińska
- Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland; (A.B.-J.); (W.M.); (K.W.-K.); (E.B.-S.)
| | | | | | | | | |
Collapse
|
26
|
Seidel E, Walenda G, Messerschmidt C, Obermayer B, Peitzsch M, Wallace P, Bahethi R, Yoo T, Choi M, Schrade P, Bachmann S, Liebisch G, Eisenhofer G, Beule D, Scholl UI. Generation and characterization of a mitotane-resistant adrenocortical cell line. Endocr Connect 2020; 9:122-134. [PMID: 31910152 PMCID: PMC6993260 DOI: 10.1530/ec-19-0510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Mitotane is the only drug approved for the therapy of adrenocortical carcinoma (ACC). Its clinical use is limited by the occurrence of relapse during therapy. To investigate the underlying mechanisms in vitro, we here generated mitotane-resistant cell lines. After long-term pulsed treatment of HAC-15 human adrenocortical carcinoma cells with 70 µM mitotane, we isolated monoclonal cell populations of treated cells and controls and assessed their respective mitotane sensitivities by MTT assay. We performed exome sequencing and electron microscopy, conducted gene expression microarray analysis and determined intracellular lipid concentrations in the presence and absence of mitotane. Clonal cell lines established after pulsed treatment were resistant to mitotane (IC50 of 102.2 ± 7.3 µM (n = 12) vs 39.4 ± 6.2 µM (n = 6) in controls (biological replicates, mean ± s.d., P = 0.0001)). Unlike nonresistant clones, resistant clones maintained normal mitochondrial and nucleolar morphology during mitotane treatment. Resistant clones largely shared structural and single nucleotide variants, suggesting a common cell of origin. Resistance depended, in part, on extracellular lipoproteins and was associated with alterations in intracellular lipid homeostasis, including levels of free cholesterol, as well as decreased steroid production. By gene expression analysis, resistant cells showed profound alterations in pathways including steroid metabolism and transport, apoptosis, cell growth and Wnt signaling. These studies establish an in vitro model of mitotane resistance in ACC and point to underlying molecular mechanisms. They may enable future studies to overcome resistance in vitro and improve ACC treatment in vivo.
Collapse
Affiliation(s)
- Eric Seidel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, BCRT – Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Gudrun Walenda
- Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Clemens Messerschmidt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Benedikt Obermayer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paal Wallace
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rohini Bahethi
- Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Petra Schrade
- Charité – Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Vegetative Anatomie, Berlin, Germany
| | - Sebastian Bachmann
- Charité – Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Vegetative Anatomie, Berlin, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ute I Scholl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, BCRT – Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
De Martino MC, Feelders RA, Pivonello C, Simeoli C, Papa F, Colao A, Pivonello R, Hofland LJ. The role of mTOR pathway as target for treatment in adrenocortical cancer. Endocr Connect 2019; 8:R144-R156. [PMID: 31398711 PMCID: PMC6733361 DOI: 10.1530/ec-19-0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
Adrenocortical carcinomas (ACCs) are rare tumors with scant treatment options for which new treatments are required. The mTOR pathway mediates the intracellular signals of several growth factors, including the insulin-like growth factors (IGFs), and therefore represents a potential attractive pathway for the treatment of several malignancies including ACCs. Several mTOR inhibitors, including sirolimus, temsirolimus and everolimus, have been clinically developed. This review summarizes the results of the studies evaluating the expression of the mTOR pathway components in ACCs, the effects of the mTOR inhibitors alone or in combination with other drugs in preclinical models of ACCs and the early experience with the use of these compounds in the clinical setting. The mTOR pathway seems a potential target for treatment of patients with ACC, but further investigation is still required to define the potential role of mTOR inhibitors alone or in combination with other drugs in the treatment of ACC patients.
Collapse
Affiliation(s)
- Maria Cristina De Martino
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Richard A Feelders
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Chiara Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Fortuna Papa
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Leo J Hofland
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Ma H, Li R, Di X, Jin X, Wang Y, Lai B, Shi C, Ji M, Zhu X, Wang K. ITRAQ-based proteomic analysis reveals possible target-related proteins in human adrenocortical adenomas. BMC Genomics 2019; 20:655. [PMID: 31419939 PMCID: PMC6697928 DOI: 10.1186/s12864-019-6030-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism (PA), which is the most common form of secondary arterial hypertension. However, the authentic fundamental mechanisms underlying ACAs remain unclear. Objective Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and bioinformatics analyses from etiological studies of ACAs were performed to screen the differentially expressed proteins (DEPs) and investigate the relevant mechanisms of their occurrence and development. Results could help determine therapeutic targets of clinical significance. Methods In the present study, iTRAQ-based proteomics was applied to analyze ACA tissue samples from normal adrenal cortex tissues adjacent to the tumor. Using proteins extracted from a panel of four pairs of ACA samples, we identified some upregulated proteins and other downregulated proteins in all four pairs of ACA samples compared with adjacent normal tissue. Subsequently, we predicted protein–protein interaction networks of three DEPs to determine the authentic functional factors in ACA. Results A total of 753 DEPs were identified, including 347 upregulated and 406 downregulated proteins. The expression of three upregulated proteins (E2F3, KRT6A, and ALDH1A2) was validated by Western blot in 24 ACA samples. Our data suggested that some DEPs might be important hallmarks during the development of ACA. Conclusions This study is the first proteomic research to investigate alterations in protein levels and affected pathways in ACA using the iTRAQ technique. Thus, this study not only provides a comprehensive dataset on overall protein changes but also sheds light on its potential molecular mechanism in human ACAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6030-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- He Ma
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Hematology, the Second Hospital of Jilin University, Changchun, China
| | - Yan Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Bingjie Lai
- Department of Intensive Care Unit, the Second Hospital of Jilin University, Changchun, China
| | - Cailian Shi
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Mingxin Ji
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Xinran Zhu
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
29
|
Zhou DK, Liu ZH, Gao BQ, Wang WL. Giant nonfunctional ectopic adrenocortical carcinoma on the anterior abdominal wall: A case report. World J Clin Cases 2019; 7:2075-2080. [PMID: 31423440 PMCID: PMC6695534 DOI: 10.12998/wjcc.v7.i15.2075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Adrenocortical cancer (ACC) is an infrequent and often aggressive malignancy with a very poor prognosis. It can be classified as functional or nonfunctional. Nonfunctional ACC is hampered by the absence of specific signs or symptoms; only abdominal pain with or without incidental adrenal occupation is typically present.
CASE SUMMARY We report a rare case of a patient with a 30 cm × 15 cm × 8 cm ectopic ACC on the anterior abdominal wall without organ adhesion. A 77-year-old male was admitted to our hospital because of a huge abdominal mass, which, by ultrasonography, had an unclear border with the liver. Computed tomography showed that the mass was not associated with any organ but was adherent to the anterior abdominal wall. The patient underwent tumor resection, and a postoperative pathology examination showed a neuroendocrine tumor, which was diagnosed as ACC. The patient was disease-free at the 9-mo follow up.
CONCLUSION The anterior abdominal wall is a rare site of ACC growth.
Collapse
Affiliation(s)
- Dong-Kai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zheng-Hao Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Bing-Qiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
30
|
Abstract
Adrenocortical carcinomas (ACC) are rare and aggressive neoplasms. Due to their high rate of local recurrence and distant metastases (up to 85%) they are associated with a poor survival. The 5‑year survival in ACC patients with lymph node metastasis or local infiltration is 50% and with distant metastasis less than 15%. An R0 resection with locoregional and para-aortic/paracaval lymphadenectomy is the only curative option and reasonable treatment possibility. The treatment of these patients should therefore be planned and carried out in centers. Local recurrences and distant metastases should also be treated with R0 resection when feasible, combined with neoadjuvant/adjuvant chemotherapy and/or radiation. In the case of an asymptomatic non-resectable ACC, debulking operations cannot be recommended. The primary operation can also be done in a minimally invasive procedure if principles of oncological surgery are followed (radical resection, no damage of the tumor capsule, lymphadenectomy), since survival after open and minimally invasive laparoscopic resection was comparable. Palliative resections are only indicated in symptomatic patients.
Collapse
Affiliation(s)
- S Schimmack
- Klinik für Allgemein‑, Viszeral und Transplantationschirurgie, Universität Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Deutschland.
| | - O Strobel
- Klinik für Allgemein‑, Viszeral und Transplantationschirurgie, Universität Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Deutschland
| |
Collapse
|
31
|
Butz H, Patócs A. MicroRNAs in endocrine tumors. EJIFCC 2019; 30:146-164. [PMID: 31263390 PMCID: PMC6599198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are small, protein noncoding RNAs that regulate gene expression post-transcriptionally. Their role is considered to set the gene expression to the optimal level, or in other words to provide "fine tuning" of gene expression. They regulate essential physiological processes such as differentiation, cell growth, apoptosis and their role is known in tumor development too. At tissue level differential miRNA expression in endocrine disorders including endocrine malignancies has also been reported. A new era of miRNAs-related research started when miRNAs were successfully detected outside of cells, in biofluids, in cell-free environments. Their significant role has been demonstrated in cell-cell communication in tumor biology. Due to their stability circulating miRNAs can serve as potential biomarkers. In common diseases circulating miRNAs can be potentially proposed as screening biomarkers and they are also useful to detect tumor recurrence hence they can be applied in post-surgery follow-up too. MiRNAs as diagnostic markers can also be helpful at tissue level when certain histology diagnosis is challenging. Beside diagnosis, tissue miRNAs have the potential to predict prognosis. Intensive research is carried out regarding endocrine tumors as well in terms of miRNAs. However, until now miRNAs as biomarkers do not applied in routine diagnostics, probably due to the challenging preanalytics. In this review we summarized tissue and circulating miRNAs found in thyroid, adrenal, pituitary and neuroendocrine tumors. We aimed to highlight the most important, selected miRNAs with potential diagnostic and prognostic value both in tissue and circulation. Common miRNAs across different endocrine neoplasms are summarized and miRNAs enriched at 14q31 locus are also highlighted suggesting their general role in tumorigenesis of endocrine glands.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary, „Lendulet˝ Hereditary Endocrine Tumors Research Group, Semmelweis University, Budapest, Hungary, Deparment of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary, „Lendulet˝ Hereditary Endocrine Tumors Research Group, Semmelweis University, Budapest, Hungary, Deparment of Molecular Genetics, National Institute of Oncology, Budapest, Hungary,Corresponding author: Attila Patocs Semmelweis University Department of Laboratory Medicine Szentkiralyi Street 46 Budapest, H-1088 Hungary E-mail:
| |
Collapse
|
32
|
De Martino MC, van Koetsveld PM, Feelders RA, de Herder WW, Dogan F, Janssen JAMJL, Hofste Op Bruinink D, Pivonello C, Waaijers AM, Colao A, de Krijger RR, Pivonello R, Hofland LJ. IGF and mTOR pathway expression and in vitro effects of linsitinib and mTOR inhibitors in adrenocortical cancer. Endocrine 2019; 64:673-684. [PMID: 30838516 PMCID: PMC6551351 DOI: 10.1007/s12020-019-01869-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/12/2019] [Indexed: 01/18/2023]
Abstract
PURPOSE The IGF and mTOR-pathways are considered as potential targets for therapy in patients with adrenocortical carcinoma (ACC). This study aims to describe the IGF pathway in ACC and to explore the response to the combined treatment with the IGF1R/IR inhibitor linsitinib, and mTOR inhibitors (sirolimus and everolimus) in in vitro models of ACC. METHODS The protein expression level of IGF2, IGF1R and IGF2R was evaluated by immunohistochemistry in 17 human ACCs and the mRNA expression level of IGF1, IGF2, IGF1R, IR isoforms A and B, IGF2R, IGF-Binding-Proteins[IGFBP]-1, 2, 3 and 6 was evaluated by RT-qPCR in 12 samples. In H295R and HAC15 ACC cell lines the combined effects of linsitinib and sirolimus or everolimus on cell survival were evaluated. RESULTS A high protein expression of IGF2, IGF1R and IGF2R was observed in 82, 65 and 100% of samples, respectively. A high relative expression of IGF2 mRNA was found in the majority of samples. The mRNA levels of the IRA were higher than that of IRB and IGF1R in the majority of samples (75%). Linsitinib inhibits cell growth in the H295R and HAC15 cell lines and, combined with sirolimus or everolimus, linsitinib showed a significant additive effect. CONCLUSIONS In addition to IGF2 and IGF1R, ACC express IGF2R, IRA and several IGFBPs, suggesting that the interplay between the different components of the IGF pathway in ACC could be more complex than previously considered. The addition of mTOR inhibitors to linsitinib may have stronger antiproliferative effects than linsitinib alone.
Collapse
Affiliation(s)
- Maria Cristina De Martino
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wouter W de Herder
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fadime Dogan
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joseph A M J L Janssen
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Davine Hofste Op Bruinink
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - A Marlijn Waaijers
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Ronald R de Krijger
- Departments of Pathology, Erasmus Medical Center, Rotterdam, and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Leo J Hofland
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Abstract
Adrenocortical carcinoma (ACC) is rare within the adult population. Ectopic ACC proves even rarer. This variant is formed by cortical fragments arrested during embryologic migration. ACC is also known to be associated with several genetic syndromes and has recently been linked to Lynch syndrome in 3% of cases. We present the case of a 68-year-old male with a confirmed diagnosis of Lynch syndrome secondary to a germline MSH2 mismatch-repair gene-mutation who presented with 2 months history of non-specific abdominal pain. After imaging work-up, the patient was found to have a right upper quadrant, retroperitoneal mass. Biochemical tests were without any evidence of a hormonally active process. Fine needle aspiration of the mass revealed a poorly differentiated carcinoma of unknown etiology. The lesion was resected and found to be consistent with ectopic ACC with an associated MSH2 mutation.
Collapse
|
34
|
Mohan DR, Lerario AM, Hammer GD. Therapeutic Targets for Adrenocortical Carcinoma in the Genomics Era. J Endocr Soc 2018; 2:1259-1274. [PMID: 30402590 PMCID: PMC6215083 DOI: 10.1210/js.2018-00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare and often fatal cancer, affecting ~1 person per million per year worldwide. Approximately 75% of patients with ACC eventually develop metastases and progress on the few available standard-of-care medical therapies, highlighting an incredible need for an improved understanding of the molecular biology of this disease. Although it has long been known that ACC is characterized by certain histological and genetic features (e.g., high mitotic activity, chromosomal instability, and overexpression of IGF2), only in the last two decades of genomics has the molecular landscape of ACC been more thoroughly characterized. In this review, we describe the findings of historical genetics and recent genomics studies on ACC and discuss how underlying concepts emerging from these studies contribute to the current model of critical pathways for adrenocortical carcinogenesis. Integrative synthesis across these studies reveals that ACC consists of three distinct molecular subtypes with divergent clinical outcomes and implicates differential regulation of Wnt signaling, cell cycle, DNA methylation, immune biology, and steroidogenesis in ACC biology. These cellular programs are pharmacologically targetable and may enable the development of therapeutic strategies to improve outcomes for patients facing this devastating disease.
Collapse
Affiliation(s)
- Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan.,Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Dickson PV, Kim L, Yen TWF, Yang A, Grubbs EG, Patel D, Solórzano CC. Adjuvant and Neoadjuvant Therapy, Treatment for Advanced Disease, and Genetic Considerations for Adrenocortical Carcinoma: An Update from the SSO Endocrine and Head and Neck Disease Site Working Group. Ann Surg Oncol 2018; 25:3453-3459. [PMID: 30218246 DOI: 10.1245/s10434-018-6750-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 01/12/2023]
Abstract
This is the second of a two-part review on adrenocortical carcinoma (ACC) management. While margin-negative resection provides the only potential cure for ACC, recurrence rates remain high. Furthermore, many patients present with locally advanced, unresectable tumors and/or diffuse metastases. As a result, selecting patients for adjuvant therapy and understanding systemic therapy options for advanced ACC is important. Herein, we detail the current literature supporting the use of adjuvant mitotane therapy, consideration of adjuvant radiation therapy, and utility of cytotoxic chemotherapy in patients with advanced disease. Ongoing investigation into molecular targeted agents, immunotherapy, and inhibitors of steroidogenesis for the treatment of ACC are also highlighted. Lastly, the importance of genetic counseling in patients with ACC is addressed as up to 10% of patients will have an identifiable hereditary syndrome.
Collapse
Affiliation(s)
- Paxton V Dickson
- Division of Surgical Oncology, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Lawrence Kim
- Division of Surgical Oncology and Endocrine Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Tina W F Yen
- Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anthony Yang
- Department of Surgery, Division of Surgical Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Dhavel Patel
- Endocrine Oncology Branch, National Institutes of Health, Bethesda, MD, USA
| | - Carmen C Solórzano
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
36
|
Abstract
Adrenocortical carcinomas are rare tumours that can be diagnostically challenging. Numerous multiparametric scoring systems and diagnostic algorithms have been proposed to differentiate adrenocortical adenoma from adrenocortical carcinoma. Adrenocortical neoplasms must also be differentiated from other primary adrenal tumours, such as phaeochromocytoma and unusual primary adrenal tumours, as well as metastases to the adrenal gland. Myxoid, oncocytic and sarcomatoid variants of adrenocortical tumours must be recognized so that they are not confused with other tumours. The diagnostic criteria for oncocytic adrenocortical carcinoma are different from those for conventional adrenocortical carcinomas. Adrenocortical neoplasms in children are particularly challenging to diagnose, as histological features of malignancy in adrenocortical neoplasms in adults may not be associated with aggressive disease in the tumours of children. Recent histological and immunohistochemical studies and more comprehensive and integrated genomic characterizations continue to advance our understanding of the tumorigenesis of these aggressive neoplasms, and may provide additional diagnostic and prognostic utility and guide the development of therapeutic targets.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Sharma E, Dahal S, Sharma P, Bhandari A, Gupta V, Amgai B, Dahal S. The Characteristics and Trends in Adrenocortical Carcinoma: A United States Population Based Study. J Clin Med Res 2018; 10:636-640. [PMID: 29977421 PMCID: PMC6031252 DOI: 10.14740/jocmr3503w] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/20/2018] [Indexed: 11/15/2022] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis. Data on the incidence of ACC, however, are scarce and not recent. The purpose of this study was to characterize the tumor and the patients developing ACC over the last four decades using a large population based database. Methods We identified all cases of ACC diagnosed between 1973 - 2014 from the Surveillance, Epidemiology, and End Results-18 registry. Descriptive analyses were used for all extracted demographic, clinical, pathological, therapeutic and survival data, and were compared between the four time periods of 1973 to 1984, 1985 to 1994, 1995 to 2004 and 2005 to 2014 using Chi-square tests for categorical variables and one-way analysis of variance for continuous variables. Results There were a total of 2,014 cases of ACC between 1973 and 2014 with an age-adjusted incidence of 1.02 per million populations. The median age at diagnosis was 55 years with the majority of them being females and whites. The proportion of cases by different genders, races and age at diagnosis had not changed significantly over time. These malignancies were mostly the only primary malignancy, unilateral and of high grades at diagnosis. Surgical resection of the tumor remained the mainstay of treatment. However, there was a significant increase in the use of adjuvant radiotherapy, adjuvant chemotherapy and chemotherapy alone in recent times. The median survival time was 17 months, but continues to decrease in recent time periods. Conclusions ACC continues to be a rare malignancy in the United States. However, most cases continue to be diagnosed only in advanced stages and are associated with poor survival. These findings underline the need for specific diagnostics tools with new and more effective treatment options.
Collapse
Affiliation(s)
- Eliza Sharma
- Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Suyash Dahal
- Department of Medicine, KIST Medical College and Teaching Hospital, Lalitpur, Nepal
| | - Pratibha Sharma
- Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Abani Bhandari
- Department of Medicine, KIST Medical College and Teaching Hospital, Lalitpur, Nepal
| | - Vishal Gupta
- Department of Medicine, KIST Medical College and Teaching Hospital, Lalitpur, Nepal
| | - Birendra Amgai
- Department of Medicine, Interfaith Medical Center, Brooklyn, NY, USA
| | - Sumit Dahal
- Department of Medicine, Interfaith Medical Center, Brooklyn, NY, USA
| |
Collapse
|
38
|
Armignacco R, Cantini G, Canu L, Poli G, Ercolino T, Mannelli M, Luconi M. Adrenocortical carcinoma: the dawn of a new era of genomic and molecular biology analysis. J Endocrinol Invest 2018; 41:499-507. [PMID: 29080966 DOI: 10.1007/s40618-017-0775-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023]
Abstract
Over the last decade, the development of novel and high penetrance genomic approaches to analyze biological samples has provided very new insights in the comprehension of the molecular biology and genetics of tumors. The use of these techniques, consisting of exome sequencing, transcriptome, miRNome, chromosome alteration, genome, and epigenome analysis, has also been successfully applied to adrenocortical carcinoma (ACC). In fact, the analysis of large cohorts of patients allowed the stratification of ACC with different patterns of molecular alterations, associated with different outcomes, thus providing a novel molecular classification of the malignancy to be associated with the classical pathological analysis. Improving our knowledge about ACC molecular features will result not only in a better diagnostic and prognostic accuracy, but also in the identification of more specific therapeutic targets for the development of more effective pharmacological anti-cancer approaches. In particular, the specific molecular alteration profiles identified in ACC may represent targetable events by the use of already developed or newly designed drugs enabling a better and more efficacious management of the ACC patient in the context of new frontiers of personalized precision medicine.
Collapse
Affiliation(s)
- R Armignacco
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - G Cantini
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - L Canu
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - G Poli
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - T Ercolino
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - M Mannelli
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - M Luconi
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
39
|
Kou K, Zhang H, Zhang C, Xie E, Chen Y, Wang G, Lv G. A case of adrenocortical carcinoma accompanying secondary acute adrenal hypofunction postoperation. World J Surg Oncol 2018; 16:43. [PMID: 29506536 PMCID: PMC5836435 DOI: 10.1186/s12957-018-1326-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 02/24/2023] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare, heterogeneous malignancy with a poor prognosis. ACCs are classified as functioning and non-functioning. The pathogenesis of ACC remains elusive, and diagnosis of ACC is currently based on pathology. In the absence of other effective approaches, surgical resection is the preferred treatment option. Case presentation Here, we report a case of ACC in the retroperitoneum. The patient underwent radical adrenalectomy and remained disease-free throughout a 6-month follow-up. Conclusions Radical surgical resection is an efficient therapy for ACC, and hydrocortisone can be used to alleviate symptoms of secondary acute adrenal hypofunction.
Collapse
Affiliation(s)
- Kai Kou
- Department of Hepatobiliary and Pancreatic Surgery, Bethune Hospital 1, Changchun, Jilin, 130021, China
| | - Haiwen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Bethune Hospital 1, Changchun, Jilin, 130021, China
| | - Conggui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Bethune Hospital 1, Changchun, Jilin, 130021, China
| | - Enbo Xie
- Department of Hepatobiliary and Pancreatic Surgery, Bethune Hospital 1, Changchun, Jilin, 130021, China
| | - Yuguo Chen
- Department of Hepatobiliary and Pancreatic Surgery, Bethune Hospital 1, Changchun, Jilin, 130021, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Bethune Hospital 1, Changchun, Jilin, 130021, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, Bethune Hospital 1, Changchun, Jilin, 130021, China.
| |
Collapse
|
40
|
Costa R, Carneiro BA, Tavora F, Pai SG, Kaplan JB, Chae YK, Chandra S, Kopp PA, Giles FJ. The challenge of developmental therapeutics for adrenocortical carcinoma. Oncotarget 2018; 7:46734-46749. [PMID: 27102148 PMCID: PMC5216833 DOI: 10.18632/oncotarget.8774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare disease with an estimated incidence of only 0.7 new cases per million per year. Approximately 30-70% of the patients present with advanced disease with very poor prognosis and without effective therapeutic options. In the recent years, unprecedented progresses in cancer biology and genomics have fostered the development of numerous targeted therapies for various malignancies. Immunotherapy has also transformed the treatment landscape of malignancies such as melanoma, among others. However, these advances have not brought meaningful benefits for patients with ACC. Extensive genomic analyses of ACC have revealed numerous signal transduction pathway aberrations (e.g., insulin growth factor receptor and Wnt/β-catenin pathways) that play a central role in pathophysiology. These molecular alterations have been explored as potential therapeutic targets for drug development. This manuscript summarizes recent discoveries in ACC biology, reviews the results of early clinical studies with targeted therapies, and provides the rationale for emerging treatment strategies such as immunotherapy.
Collapse
Affiliation(s)
- Ricardo Costa
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Benedito A Carneiro
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fabio Tavora
- Department of Pathology, Messejana Heart and Lung Hospital, Fortaleza, Brazil
| | - Sachin G Pai
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason B Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sunandana Chandra
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peter A Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francis J Giles
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
41
|
Hassan N, Zhao JT, Sidhu SB. The role of microRNAs in the pathophysiology of adrenal tumors. Mol Cell Endocrinol 2017; 456:36-43. [PMID: 28007658 DOI: 10.1016/j.mce.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression in a sequence-specific manner. Due to its association with an assortment of diseases, miRNAs have been extensively studied in the last decade. In this review, the current understanding of the role of miRNAs in the pathophysiology of adrenal tumors is discussed. The recent contributions of high-throughput miRNA profiling studies have identified miRNAs that have functional and molecular roles in adrenal tumorigenesis. With respect to the biological heterogeneity of adrenal tumors and the limitations of the current treatments, an improved understanding of miRNAs may hold potential diagnostic and therapeutic value to facilitate better clinical management.
Collapse
Affiliation(s)
- Nunki Hassan
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia
| | - Jing Ting Zhao
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia
| | - Stan B Sidhu
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia; University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, Sydney, St Leonards, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Kuai R, Subramanian C, White PT, Timmermann BN, Moon JJ, Cohen MS, Schwendeman A. Synthetic high-density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma. Int J Nanomedicine 2017; 12:6581-6594. [PMID: 28919755 PMCID: PMC5593402 DOI: 10.2147/ijn.s140591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy and has a 5-year survival rate of <35%. ACC cells require cholesterol for steroid hormone production, and this requirement is met via expression on the cell surface of a high level of SRB1, responsible for the uptake of high-density lipoproteins (HDLs), which carry and transport cholesterol in vivo. Here, we describe how this natural lipid carrier function of SRB1 can be utilized to improve the tumor-targeted delivery of a novel natural product derivative - withalongolide A 4,19,27-triacetate (WGA-TA) - which has shown potent antitumor efficacy, but poor aqueous solubility. Our strategy was to use synthetic HDL (sHDL) nanodisks, which are effective in tumor-targeted delivery due to their smallness, long circulation half-life, documented safety, and ability to bind to SRB1. In this study, we prepared sHDL nanodisks using an optimized phospholipid composition combined with ApoA1 mimetic peptide (22A), which has previously been tested in clinical trials, to load WGA-TA. Following optimization, WGA-TA nanodisks showed drug encapsulation efficiency of 78%, a narrow particle size distribution (9.81±0.41 nm), discoid shape, and sustained drug release in phosphate buffered saline. WGA-TA-sHDL nanodisks exhibited higher cytotoxicity in the ACC cell line H295R half maximal inhibitory concentration ([IC50] 0.26±0.045 μM) than free WGA-TA (IC50 0.492±0.115 μM, P<0.05). Fluorescent dye-loaded sHDL nanodisks efficiently accumulated in H295R adrenal carcinoma xenografts 24 hours following dosing. Moreover, daily intraperitoneal administration of 7 mg/kg WGA-TA-loaded sHDL nanodisks significantly inhibited tumor growth during 21-day administration to H295R xenograft-bearing mice compared to placebo (P<0.01). Collectively, these results suggest that WGA-TA-loaded nanodisks may represent a novel and beneficial therapeutic strategy for the treatment of ACC.
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, College of Pharmacy
- Biointerfaces Institute, University of Michigan
| | | | - Peter T White
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - James J Moon
- Department of Pharmaceutical Sciences, College of Pharmacy
- Biointerfaces Institute, University of Michigan
- Department of Biomedical Engineering
| | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy
- Biointerfaces Institute, University of Michigan
| |
Collapse
|
43
|
Scollon S, Anglin AK, Thomas M, Turner JT, Wolfe Schneider K. A Comprehensive Review of Pediatric Tumors and Associated Cancer Predisposition Syndromes. J Genet Couns 2017; 26:387-434. [PMID: 28357779 DOI: 10.1007/s10897-017-0077-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
An understanding of the role of inherited cancer predisposition syndromes in pediatric tumor diagnoses continues to develop as more information is learned through the application of genomic technology. Identifying patients and their relatives at an increased risk for developing cancer is an important step in the care of this patient population. The purpose of this review is to highlight various tumor types that arise in the pediatric population and the cancer predisposition syndromes associated with those tumors. The review serves as a guide for recognizing genes and conditions to consider when a pediatric cancer referral presents to the genetics clinic.
Collapse
Affiliation(s)
- Sarah Scollon
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, 1102 Bates St, FC 1200, Houston, TX, 77030, USA.
| | | | | | - Joyce T Turner
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | - Kami Wolfe Schneider
- Department of Pediatrics, University of Colorado, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
44
|
Doroszko M, Chrusciel M, Belling K, Vuorenoja S, Dalgaard M, Leffers H, Nielsen HB, Huhtaniemi I, Toppari J, Rahman NA. Novel genes involved in pathophysiology of gonadotropin-dependent adrenal tumors in mice. Mol Cell Endocrinol 2017; 444:9-18. [PMID: 28131743 DOI: 10.1016/j.mce.2017.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/21/2017] [Accepted: 01/22/2017] [Indexed: 02/01/2023]
Abstract
Specific inbred strains and transgenic inhibin-α Simian Virus 40 T antigen (inhα/Tag) mice are genetically susceptible to gonadectomy-induced adrenocortical neoplasias. We identified altered gene expression in prepubertally gonadectomized (GDX) inhα/Tag and wild-type (WT) mice. Besides earlier reported Gata4 and Lhcgr, we found up-regulated Esr1, Prlr-rs1, and down-regulated Grb10, Mmp24, Sgcd, Rerg, Gnas, Nfatc2, Gnrhr, Igf2 in inhα/Tag adrenal tumors. Sex-steroidogenic enzyme genes expression (Srd5a1, Cyp19a1) was up-regulated in tumors, but adrenal-specific steroidogenic enzyme (Cyp21a1, Cyp11b1, Cyp11b2) down-regulated. We localized novel Lhcgr transcripts in adrenal cortex parenchyma and in non-steroidogenic A cells, in GDX WT and in intact WT mice. We identified up-regulated Esr1 as a potential novel biomarker of gonadectomy-induced adrenocortical tumors in inhα/Tag mice presenting with an inverted adrenal-to-gonadal steroidogenic gene expression profile. A putative normal adrenal remodeling or tumor suppressor role of the down-regulated genes (e.g. Grb10, Rerg, Gnas, and Nfatc2) in the tumors remains to be addressed.
Collapse
Affiliation(s)
- Milena Doroszko
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | - Marcin Chrusciel
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | - Kirstine Belling
- DTU Multi-Assay Core, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susanna Vuorenoja
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | - Marlene Dalgaard
- DTU Multi-Assay Core, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik Leffers
- DTU Multi-Assay Core, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - H Bjørn Nielsen
- DTU Multi-Assay Core, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ilpo Huhtaniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland; Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Jorma Toppari
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Nafis A Rahman
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland.
| |
Collapse
|
45
|
Khan MI, Waguespack SG, Aloia TA, Grubbs EG, Habra MA. De Novo Development Of A Cortisol-Producing Adrenocortical Carcinoma In A Patient With Primary Adrenal Insufficiency. AACE Clin Case Rep 2017. [DOI: 10.4158/ep161395.cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Murtha TD, Korah R, Carling T. Suppression of cytochrome P450 4B1: An early event in adrenocortical tumorigenesis. Surgery 2016; 161:257-263. [PMID: 27865598 DOI: 10.1016/j.surg.2016.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/30/2016] [Accepted: 04/13/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adrenocortical carcinoma is a rare neoplasm with a poor prognosis. Conversely, adrenocortical adenomas are common and benign. Despite their shared histologic origin, little evidence exists to suggest that adrenocortical adenoma arises from adrenocortical carcinoma. Recent genetic analyses of adrenocortical carcinoma have shown recurrent gene copy deletion of CYP4B1, a cytochrome P450 isozyme. This study investigates a potential role for CYP4B1 in modulating adrenocortical tumorigenesis and/or conferring chemoresistance to adrenocortical carcinomas. METHODS Using TaqMan, real-time quantitative polymerase chain reaction techniques, we investigated CYP4B1 expression in normal adrenal cortex (n = 10), histologically confirmed adrenocortical adenomas (n = 10), and adrenocortical carcinomas (n = 10). Adrenocortical carcinoma cell lines were enforced to express CYP4B1, and effects on cell death and enhanced mitotane and cisplatin sensitivity were tested. RESULTS Gene expression analyses demonstrated suppression of CYP4B1 in 100% of both the adrenocortical adenomas (10/10) and adrenocortical carcinomas (10/10) tested. Average relative expression of CYP4B1 was decreased at 0.19 (0.01-0.50; P < .01) in adrenocortical adenomas and nearly absent in adrenocortical carcinomas (0.01; 0.00-0.05; P < .01). Protein expression correlated with mRNA expression. Ectopic expression of CYP4B1 promoted cytotoxicity and increased chemosensitivity in adrenocortical carcinoma cell lines. CONCLUSION CYP4B1 is silenced in both benign and malignant adrenocortical tumors and may contribute to tumorigenesis and chemoresistance. Sensitization of adrenocortical carcinoma cells engineered to overexpress CYP4B1 further supports this notion.
Collapse
Affiliation(s)
- Timothy D Murtha
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, CT
| | - Reju Korah
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, CT
| | - Tobias Carling
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
47
|
Abstract
Adrenal gland diagnostics can pose significant challenges. In most academic and community practice settings, adrenal gland resections are encountered less frequently than other endocrine or genitourinary specimens, leading to less familiarity with evolving classifications and criteria. The unique dichotomy between cortical and medullary lesions reflects the developmental evolution of these functionally independent components. Adrenal cortical lesions at resection include hyperplasia, adenoma, and carcinoma, with some cases straddling the boundary between these distinct clinical classifications. The lack of immunohistochemical or molecular markers to definitively categorize these intermediate lesions enhances the diagnostic challenge. In addition, modified terminology for oncocytic and myxoid cortical lesions has been proposed. Medullary lesions are somewhat easier to categorize; however, the prediction of aggressive behavior in pheochromocytomas remains a challenge due to a lack of reliable prognostic biomarkers. Recent work by the Cancer Genome Atlas Project and other research groups has identified a limited subset of molecular and signaling pathway alterations in these 2 major neoplastic categories. Ongoing research to better define prognostic and predictive biomarkers in cortical and medullary lesions has the potential to enhance both pathologic diagnosis and patient therapy.
Collapse
|
48
|
Rubin B, Regazzo D, Redaelli M, Mucignat C, Citton M, Iacobone M, Scaroni C, Betterle C, Mantero F, Fassina A, Pezzani R, Boscaro M. Investigation of N-cadherin/β-catenin expression in adrenocortical tumors. Tumour Biol 2016; 37:13545-13555. [PMID: 27468715 DOI: 10.1007/s13277-016-5257-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/15/2016] [Indexed: 02/07/2023] Open
Abstract
β-catenin is a multifunctional protein; it is a key component of the Wnt signaling, and it plays a central role in cadherin-based adhesions. Cadherin loss promotes tumorigenesis by releasing membrane-bound β-catenin, hence stimulating Wnt signaling. Cadherins seem to be involved in tumor development, but these findings are limited in adrenocortical tumors (ACTs). The objective of this study was to evaluate alterations in key components of cadherin/catenin adhesion system and of Wnt pathway. This study included eight normal adrenal samples (NA) and 95 ACT: 24 adrenocortical carcinomas (ACCs) and 71 adrenocortical adenomas (ACAs). β-catenin mutations were evaluated by sequencing, and β-catenin and cadherin (E-cadherin and N-cadherin) expression was analyzed by quantitative reverse transcription PCR (qRT-PCR) and by immunohistochemistry (IHC). We identified 18 genetic alterations in β-catenin gene. qRT-PCR showed overexpression of β-catenin in 50 % of ACC (12/24) and in 48 % of ACA (21/44). IHC data were in accordance with qRT-PCR results: 47 % of ACC (7/15) and 33 % of ACA (11/33) showed increased cytoplasmic or nuclear β-catenin accumulation. N-cadherin downregulation has been found in 83 % of ACC (20/24) and in 59 % of ACA (26/44). Similar results were obtained by IHC: N-cadherin downregulation was observed in 100 % (15/15) of ACC and in 55 % (18/33) of ACA. β-catenin overexpression together with the aberrant expression of N-cadherin may play important role in ACT tumorigenesis. The study of differentially expressed genes (such as N-cadherin and β-catenin) may enhance our understanding of the biology of ACT and may contribute to the discovery of new diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Beatrice Rubin
- Division of Endocrinology, Department of Medicine (DIMED), University of Padua, via Ospedale Civile, 105, 35128, Padua, Italy.
| | - Daniela Regazzo
- Division of Endocrinology, Department of Medicine (DIMED), University of Padua, via Ospedale Civile, 105, 35128, Padua, Italy
| | - Marco Redaelli
- Department of Molecular Medicine, University of Padova, via Marzolo 3, 35131, Padova, Italy
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, via Marzolo 3, 35131, Padova, Italy
| | - Marilisa Citton
- Division of Minimally Invasive Endocrine Surgery, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Maurizio Iacobone
- Division of Minimally Invasive Endocrine Surgery, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Carla Scaroni
- Division of Endocrinology, Department of Medicine (DIMED), University of Padua, via Ospedale Civile, 105, 35128, Padua, Italy
| | - Corrado Betterle
- Division of Endocrinology, Department of Medicine (DIMED), University of Padua, via Ospedale Civile, 105, 35128, Padua, Italy
| | - Franco Mantero
- Division of Endocrinology, Department of Medicine (DIMED), University of Padua, via Ospedale Civile, 105, 35128, Padua, Italy
| | - Ambrogio Fassina
- Division of Pathology and Cytopathology, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Raffaele Pezzani
- Division of Endocrinology, Department of Medicine (DIMED), University of Padua, via Ospedale Civile, 105, 35128, Padua, Italy
| | - Marco Boscaro
- Division of Endocrinology, Department of Medicine (DIMED), University of Padua, via Ospedale Civile, 105, 35128, Padua, Italy
| |
Collapse
|
49
|
Abstract
INTRODUCTION Adrenal tumor is a relatively common tumor. The discrimination between adrenal cortical adenoma (ACA) and adrenal cortical carcinoma (ACC) is crucial as these two diseases have distinct prognosis. ACA is a benign tumor curable by surgical excision, while the prognosis of ACC is extremely poor, with a 5-year mortality of 75-90%. Therefore, previous proteomic studies focused on markers allowing the differentiation between ACA and ACC. AREAS COVERED Several proteomic approaches based on the analysis of various samples such as human tissues, urine, and cell lines. In this review, we focused on proteomic studies performed to improve adrenal tumor diagnosis and identify ACC therapeutic targets. Expert commentary: The rapid development of cancer genomics provided a lot of information, which affects functional proteomics. In practice, differentially expressed proteins between ACA and ACC have been suggested in several proteomic studies and had a biologic implication in ACC.
Collapse
Affiliation(s)
- Hye Min Kim
- a Department of Pathology , Yonsei University College of Medicine , Seoul , South Korea
| | - Yu Kyung Lee
- a Department of Pathology , Yonsei University College of Medicine , Seoul , South Korea
| | - Ja Seung Koo
- a Department of Pathology , Yonsei University College of Medicine , Seoul , South Korea
| |
Collapse
|
50
|
Peixoto Lira RC, Fedatto PF, Marco Antonio DS, Leal LF, Martinelli CE, de Castro M, Tucci S, Neder L, Ramalho L, Seidinger AL, Cardinalli I, Mastellaro MJ, Yunes JA, Brandalise SR, Tone LG, Rauber Antonini SR, Scrideli CA. IGF2 and IGF1R in pediatric adrenocortical tumors: roles in metastasis and steroidogenesis. Endocr Relat Cancer 2016; 23:481-93. [PMID: 27185872 DOI: 10.1530/erc-15-0426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/16/2016] [Indexed: 01/01/2023]
Abstract
Deregulation of the IGF system observed in human tumors indicates a role in malignant cell transformation and in tumor cell proliferation. Although overexpression of the IGF2 and IGF1R genes was described in adrenocortical tumors (ACTs), few studies reported their profiles in pediatric ACTs. In this study, the IGF2 and IGF1R expression was evaluated by RT-qPCR according to the patient's clinical/pathological features in 60 pediatric ACT samples, and IGF1R protein was investigated in 45 samples by immunohistochemistry (IHC). Whole transcriptome and functional assays were conducted after IGF1R inhibition with OSI-906 in NCI-H295A cell line. Significant IGF2 overexpression was found in tumor samples when compared with non-neoplastic samples (P<0.001), significantly higher levels of IGF1R in patients with relapse/metastasis (P=0.031) and moderate/strong IGF1R immunostaining in 62.2% of ACTs, but no other relationship with patient survival and clinical/pathological features was observed. OSI-906 treatment downregulated genes associated with MAPK activity, induced limited reduction of cell viability and increased the apoptosis rate. After 24h, the treatment also decreased the expression of genes related to the steroid biosynthetic process, the protein levels of the steroidogenic acute regulatory protein (STAR), and androgen secretion in cell medium, supporting the role of IGF1R in steroidogenesis of adrenocortical carcinoma cells. Our data showed that the IGF1R overexpression could be indicative of aggressive ACTs in children. However, in vitro treatments with high concentrations of OSI-906 (>1μM) showed limited reduction of cell viability, suggesting that OSI-906 alone could not be a suitable therapy to abolish carcinoma cell growth.
Collapse
Affiliation(s)
- Régia Caroline Peixoto Lira
- Department of PediatricsRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Paola Fernanda Fedatto
- Department of PediatricsRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | - Letícia Ferro Leal
- Department of PediatricsRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Carlos Eduardo Martinelli
- Department of PediatricsRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Margaret de Castro
- Department of Internal MedicineRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Silvio Tucci
- Department of SurgeryRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Luciano Neder
- Department of PathologyRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Leandra Ramalho
- Department of PathologyRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ana Luiza Seidinger
- Boldrini Children CenterState University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Izilda Cardinalli
- Boldrini Children CenterState University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maria José Mastellaro
- Boldrini Children CenterState University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Andres Yunes
- Boldrini Children CenterState University of Campinas (UNICAMP), Campinas, São Paulo, Brazil State University of Campinas (UNICAMP)CampinasSão Paulo, Brazil
| | - Silvia Regina Brandalise
- Boldrini Children CenterState University of Campinas (UNICAMP), Campinas, São Paulo, Brazil State University of Campinas (UNICAMP)CampinasSão Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of PediatricsRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | - Carlos Alberto Scrideli
- Department of PediatricsRibeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|