1
|
Peng KY, Liao HW, Chueh JS, Pan CY, Lin YH, Chen YM, Chen PY, Huang CL, Wu VC. Pathophysiological and Pharmacological Characteristics of KCNJ5 157-159delITE Somatic Mutation in Aldosterone-Producing Adenomas. Biomedicines 2021; 9:biomedicines9081026. [PMID: 34440230 PMCID: PMC8391641 DOI: 10.3390/biomedicines9081026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022] Open
Abstract
Mutated channelopathy could play important roles in the pathogenesis of aldosterone-producing adenoma (APA). In this study, we identified a somatic mutation, KCNJ5 157-159delITE, and reported its immunohistological, pathophysiological and pharmacological characteristics. We conducted patch-clamp experiments on HEK293T cells and experiments on expression of aldosterone synthase (CYP11B2) and aldosterone secretion in HAC15 cells to evaluate electrophysiological and functional properties of this mutated KCNJ5. Immunohistochemistry was conducted to identify expressions of several steroidogenic enzymes. Macrolide antibiotics and a calcium channel blocker were administrated to evaluate the functional attenuation of mutated KCNJ5 channel in transfected HAC15 cells. The interaction between macrolides and KCNJ5 protein was evaluated via molecular docking and molecular dynamics simulation analysis. The immunohistochemistry analysis showed strong CYP11B2 immunoreactivity in the APA harboring KCNJ5 157-159delITE mutation. Whole-cell patch-clamp data revealed that mutated KCNJ5 157-159delITE channel exhibited loss of potassium ion selectivity. The mutant-transfected HAC15 cells increased the expression of CYP11B2 and aldosterone secretion, which was partially suppressed by clarithromycin and nifedipine but not roxithromycin treatment. The docking analysis and molecular dynamics simulation disclosed that roxithromycin had strong interaction with KCNJ5 L168R mutant channel but not with this KCNJ5 157-159delITE mutant channel. We showed comprehensive evaluations of the KCNJ5 157-159delITE mutation which revealed that it disrupted potassium channel selectivity and aggravated autonomous aldosterone production. We further demonstrated that macrolide antibiotics, roxithromycin, could not interfere the aberrant electrophysiological properties and gain-of-function aldosterone secretion induced by KCNJ5 157-159delITE mutation.
Collapse
Affiliation(s)
- Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | | | - Jeff S. Chueh
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei 110, Taiwan;
| | - Chien-Yuan Pan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan;
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | - Yung-Ming Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | - Peng-Ying Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | - Chun-Lin Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
- Correspondence: ; Tel.: +886-2-23562082
| |
Collapse
|
2
|
Ioakim KJ, Sydney GI, Paschou SA. Glucose metabolism disorders in patients with adrenal gland disorders: pathophysiology and management. Hormones (Athens) 2020; 19:135-143. [PMID: 31721134 DOI: 10.1007/s42000-019-00147-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
The aim of this review is to explore and discuss disorders of glucose metabolism that can arise in individuals with adrenal gland disorders, as well as to enumerate the available therapeutic treatments for these while considering their benefits and drawbacks. Hyperfunctioning adrenal glands, as in hypercortisolism, hyperaldosteronism, and malignancy, or hypofunctioning of adrenal glands, as in adrenal insufficiency, can lead to carbohydrate metabolism dysregulation with subsequent glucometabolic repercussions, either hyperglycemia or hypoglycemia. Glycemic disorders further affect patients' quality of life and represent a therapeutic dilemma for physicians. Current management strategies for glycemic dysregulation in individuals with adrenal gland disorders are fighting the underlying causes, as well as utilizing antidiabetic therapies that aid in maintaining euglycemia. Further research focused on discovering drug preparations of greater accuracy and effectiveness tailored to patients with adrenal problems as well as studies investigating optimal lifestyle management models for these individuals will assist towards achieving optimal regulation of glucose metabolism.
Collapse
Affiliation(s)
| | - Guy I Sydney
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Stavroula A Paschou
- School of Medicine, European University Cyprus, Nicosia, Cyprus.
- Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Thivon and Papadiamantopoulou, 11527, Athens, Greece.
| |
Collapse
|
3
|
Metzger JM, Matsoff HN, Zinnen AD, Fleddermann RA, Bondarenko V, Simmons HA, Mejia A, Moore CF, Emborg ME. Post mortem evaluation of inflammation, oxidative stress, and PPARγ activation in a nonhuman primate model of cardiac sympathetic neurodegeneration. PLoS One 2020; 15:e0226999. [PMID: 31910209 PMCID: PMC6946159 DOI: 10.1371/journal.pone.0226999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac dysautonomia is a common nonmotor symptom of Parkinson’s disease (PD) associated with loss of sympathetic innervation to the heart and decreased plasma catecholamines. Disease-modifying strategies for PD cardiac neurodegeneration are not available, and biomarkers of target engagement are lacking. Systemic administration of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) recapitulates PD cardiac dysautonomia pathology. We recently used positron emission tomography (PET) to visualize and quantify cardiac sympathetic innervation, oxidative stress, and inflammation in adult male rhesus macaques (Macaca mulatta; n = 10) challenged with 6-OHDA (50mg/kg; i.v.). Twenty-four hours post-intoxication, the animals were blindly and randomly assigned to receive daily doses of the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone (n = 5; 5mg/kg p.o.) or placebo (n = 5). Quantification of PET radioligand uptake showed increased oxidative stress and inflammation one week after 6-OHDA which resolved to baseline levels by twelve weeks, at which time pioglitazone-treated animals showed regionally preserved sympathetic innervation. Here we report post mortem characterization of heart and adrenal tissue in these animals compared to age and sex matched normal controls (n = 5). In the heart, 6-OHDA-treated animals showed a significant loss of sympathetic nerve fibers density (tyrosine hydroxylase (TH)-positive fibers). The anatomical distribution of markers of sympathetic innervation (TH) and inflammation (HLA-DR) significantly correlated with respective in vivo PET findings across left ventricle levels and regions. No changes were found in alpha-synuclein immunoreactivity. Additionally, CD36 protein expression was increased at the cardiomyocyte intercalated discs following PPARγ-activation compared to placebo and control groups. Systemic 6-OHDA decreased adrenal medulla expression of catecholamine producing enzymes (TH and aromatic L-amino acid decarboxylase) and circulating levels of norepinephrine, which were attenuated by PPARγ-activation. Overall, these results validate in vivo PET findings of cardiac sympathetic innervation, oxidative stress, and inflammation and illustrate cardiomyocyte CD36 upregulation as a marker of PPARγ target engagement.
Collapse
Affiliation(s)
- Jeanette M. Metzger
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Helen N. Matsoff
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Alexandra D. Zinnen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Rachel A. Fleddermann
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Viktoriya Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Colleen F. Moore
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ali Y, Dohi K, Okamoto R, Katayama K, Ito M. Novel molecular mechanisms in the inhibition of adrenal aldosterone synthesis: Action of tolvaptan via vasopressin V 2 receptor-independent pathway. Br J Pharmacol 2019; 176:1315-1327. [PMID: 30801659 DOI: 10.1111/bph.14630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the inhibitory effect and associated molecular mechanisms of tolvaptan on angiotensin II (AngII)-induced aldosterone production in vitro and in vivo. EXPERIMENTAL APPROACH In vitro, H295R human adrenocarcinoma cells were incubated with 1 μmol·L-1 arginine vasopressin (AVP) or dDAVP, or tolvaptan (0.1, 1, and 3 μmol·L-1 ) in the presence and absence of 100 nmol·L-1 of AngII. In vivo, Sprague-Dawley rats were treated with tolvaptan 0.05% in the diet for 6 days in the presence and absence of 200 pmol·min-1 AngII. KEY RESULTS Tolvaptan suppressed AngII-induced aldosterone production in a dose-dependent manner in H295R cells, whereas neither AVP nor dDAVP in the presence or absence of AngII altered aldosterone production, suggesting the vasopressin V2 receptor was not involved in the inhibitory effect of tolvaptan on aldosterone synthesis. In addition, tolvaptan inhibited the AngII-induced increase in aldosterone synthase (CYP11B2) protein levels without suppressing CYP11B2 mRNA expression. Notably, tolvaptan increased the levels of unfolded protein response (UPR) marker DDIT3 and eIF2α phosphorylation (a UPR-induced event), which could block the translation of CYP11B2 mRNA into protein and thereby inhibit aldosterone production. In vivo, tolvaptan significantly inhibited AngII-induced increases in serum and adrenal aldosterone levels and CYP11B2 protein levels. This anti-aldosterone effect was associated with a reduction in the elevated systolic and diastolic BP. CONCLUSIONS AND IMPLICATIONS Tolvaptan inhibited AngII-stimulated aldosterone production via a V2 receptor-independent pathway, which can counteract or even surpass its potential activating effect of diuresis-induced aldosterone secretion in certain aldosterone-mediated pathological conditions.
Collapse
Affiliation(s)
- Yusuf Ali
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryuji Okamoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
5
|
Malaiyandi LM, Sharthiya H, Surachaicharn N, Shams Y, Arshad M, Schupbach C, Kopf PG, Dineley KE. M 3-subtype muscarinic receptor activation stimulates intracellular calcium oscillations and aldosterone production in human adrenocortical HAC15 cells. Mol Cell Endocrinol 2018; 478:1-9. [PMID: 29959979 PMCID: PMC6193837 DOI: 10.1016/j.mce.2018.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
Abstract
A previous body of work in bovine and rodent models shows that cholinergic agonists modulate the secretion of steroid hormones from the adrenal cortex. In this study we used live-cell Ca2+ imaging to investigate cholinergic activity in the HAC15 human adrenocortical carcinoma cell line. The cholinergic agonists carbachol and acetylcholine triggered heterogeneous Ca2+ oscillations that were strongly inhibited by antagonists with high affinity for the M3 muscarinic receptor subtype, while preferential block of M1 or M2 receptors was less effective. Acute exposure to carbachol and acetylcholine modestly elevated aldosterone secretion in HAC15 cells, and this effect was also diminished by M3 inhibition. HAC15 cells expressed relatively high levels of mRNA for M3 and M2 receptors, while M1 and M5 mRNA were much lower. In conclusion, our data extend previous findings in non-human systems to implicate the M3 receptor as the dominant muscarinic receptor in the human adrenal cortex.
Collapse
Affiliation(s)
- Latha M Malaiyandi
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Harsh Sharthiya
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60515, USA.
| | | | - Yara Shams
- Department of Pharmacology, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Mohammad Arshad
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Chad Schupbach
- Department of Pharmacology, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Phillip G Kopf
- Department of Pharmacology, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Kirk E Dineley
- Department of Pharmacology, Midwestern University, Downers Grove, IL, 60515, USA.
| |
Collapse
|
6
|
Sydney GI, Ioakim KJ, Paschou SA. Insulin resistance and adrenal incidentalomas: A bidirectional relationship. Maturitas 2018; 121:1-6. [PMID: 30704559 DOI: 10.1016/j.maturitas.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 01/25/2023]
Abstract
An adrenal incidentaloma (AI) is an adrenal mass incidentally found via a radiological modality, independent of an endocrinological investigation. In this review, we aimed to investigate the possible reasons behind the increased frequency in AI detection, especially in ageing populations. The pathophysiological effects of insulin resistance (IR), hyperinsulinemia and various anabolic pathways are analyzed. In addition, we review data from studies indicating an increased incidence of adrenal adenomas and carcinomas in patients with type 2 diabetes mellitus (T2DM). The establishment of obesity as a global epidemic, with a higher prevalence in the female than in the male population, coincide with data regarding AIs and the conditions may share a pathophysiological basis. Furthermore, we discuss the bidirectional association of AIs with obesity, insulin resistance and T2DM, especially in patients with autonomous cortisol secretion. Lastly, as per the definition of an AI, we touch upon the evolution of radiological imaging as another possible cause of the rise in prevalence of AIs, especially concerning the greater use and precision of computed tomography (CT).
Collapse
Affiliation(s)
- Guy I Sydney
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | | | - Stavroula A Paschou
- School of Medicine, European University Cyprus, Nicosia, Cyprus; Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
7
|
Chang CH, Hu YH, Huang KH, Lin YH, Tsai YC, Wu CH, Yang SY, Chang CC, Lu CC, Wu KD, Wu VC. Higher Screening Aldosterone to Renin Ratio in Primary Aldosteronism Patients with Diabetes Mellitus. J Clin Med 2018; 7:jcm7100360. [PMID: 30332741 PMCID: PMC6209946 DOI: 10.3390/jcm7100360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/06/2023] Open
Abstract
Accumulated evidence has shown that low renin hypertension is common in patients with diabetic nephropathy. However, the performance of aldosterone to renin ratio (ARR) in primary aldosteronism (PA) patients with diabetes has not been well validated. Here, we report the performance of screening ARR in PA patients with diabetes. The study enrolled consecutive patients and they underwent ARR testing at screening. Then the diagnosis of PA was confirmed from the Taiwan Primary Aldosteronism Investigation registration dataset. Generalized additive model smoothing plot was used to validate the performance of screening ARR in PA patients with or without diabetes. During this study period, 844 PA patients were confirmed and 136 (16.0%) among them had diabetes. Other 816 patients were diagnosed with essential hypertension and used as the control group and 89 (10.9%) among them had diabetes. PA patients with diabetes were older and had a longer duration of hypertensive latency, higher systolic blood pressure and lower glomerular filtration rate than those PA patients without diabetes. The cut-off value of ARR in the generalized additive model predicting PA was 65 ng/dL per ng/mL/h in diabetic patients, while 45 ng/dL per ng/mL/h in non-diabetic patients. There was a considerable prevalence of diabetes among PA patients, which might be capable of interfering with the conventional screening test. The best cut-off value of ARR, more than 65 ng/dL per ng/mL/h in PA patients with diabetes, was higher than those without diabetes.
Collapse
Affiliation(s)
- Chia-Hui Chang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Taipei 23142, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Ya-Hui Hu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Taipei 23142, Taiwan.
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Yao-Chou Tsai
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Taipei 23142, Taiwan.
| | - Che-Hsiung Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Taipei 23142, Taiwan.
| | - Shao-Yu Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Kwan-Dun Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan.
- TAIPAI, Taiwan Primary Aldosteronism Investigation (TAIPAI) Study Group, Taipei 10002, Taiwan.
| |
Collapse
|
8
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
9
|
Targeted disruption of the Kcnj5 gene in the female mouse lowers aldosterone levels. Clin Sci (Lond) 2018; 132:145-156. [PMID: 29222092 PMCID: PMC6365593 DOI: 10.1042/cs20171285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 01/21/2023]
Abstract
Aldosterone is released from adrenal zona glomerulosa (ZG) cells and plays an important role in Na and K homoeostasis. Mutations in the human inwardly rectifying K channel CNJ type (KCNJ) 5 (KCNJ5) gene encoding the G-coupled inwardly rectifying K channel 4 (GIRK4) cause abnormal aldosterone secretion and hypertension. To better understand the role of wild-type (WT) GIRK4 in regulating aldosterone release, we have looked at aldosterone secretion in a Kcnj5 knockout (KO) mouse. We found that female but not male KO mice have reduced aldosterone levels compared with WT female controls, but higher levels of aldosterone after angiotensin II (Ang-II) stimulation. These differences could not be explained by sex differences in aldosterone synthase (Cyp11B2) gene expression in the mouse adrenal. Using RNAseq analysis to compare WT and KO adrenals, we showed that females also have a much larger set of differentially expressed adrenal genes than males (395 compared with 7). Ingenuity Pathway Analysis (IPA) of this gene set suggested that peroxisome proliferator activated receptor (PPAR) nuclear receptors regulated aldosterone production and altered signalling in the female KO mouse, which could explain the reduced aldosterone secretion. We tested this hypothesis in H295R adrenal cells and showed that the selective PPARα agonist fenofibrate can stimulate aldosterone production and induce Cyp11b2. Dosing mice in vivo produced similar results. Together our data show that Kcnj5 is important for baseline aldosterone secretion, but its importance is sex-limited at least in the mouse. It also highlights a novel regulatory pathway for aldosterone secretion through PPARα that may have translational potential in human hyperaldosteronism.
Collapse
|
10
|
Plissonnier ML, Fauconnet S, Bittard H, Mougin C, Rommelaere J, Lascombe I. Cell death and restoration of TRAIL-sensitivity by ciglitazone in resistant cervical cancer cells. Oncotarget 2017; 8:107744-107762. [PMID: 29296202 PMCID: PMC5746104 DOI: 10.18632/oncotarget.22632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Known activators of the Peroxisome Proliferator-Activated Receptor γ (PPARγ), thiazolidinediones (TZD) induce apoptosis in a variety of cancer cells through dependent and/or independent mechanisms of the receptor. We tested a panel of TZD (Rosiglitazone, Pioglitazone, Ciglitazone) to shed light on their potential therapeutic effects on three cervical cancer cell lines (HeLa, Ca Ski, C-33 A). In these cells, only ciglitazone triggered apoptosis through PPARγ-independent mechanisms and in particular via both extrinsic and intrinsic pathways in Ca Ski cells containing Human PapillomaVirus (HPV) type 16. It also inhibits cervical cancer xenograft development in nude mice. Ciglitazone kills cervical cancer cells by activating death receptor signalling pathway, caspase cascade and BH3 interacting-domain death agonist (Bid) cleavage through the up-regulation of Death Receptor 4 (DR4)/DR5 and soluble and membrane-bound TNF related apoptosis inducing ligand (TRAIL). Importantly, the drug let TRAIL-resistant Ca Ski cells to respond to TRAIL through the downregulation of cellular FLICE-Like Inhibitory Protein (c-FLIP) level. For the first time, we revealed that ciglitazone is able to decrease E6 viral oncoprotein expression known to block TRAIL pathway and this was associated with cell death. Our results highlight the capacity of ciglitazone to restore TRAIL sensitivity and to prevent E6 blocking action to induce apoptosis in cervical cancer cells.
Collapse
Affiliation(s)
- Marie-Laure Plissonnier
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Cancer Research Center of Lyon, INSERM U1052, Lyon F-69424, France
| | - Sylvie Fauconnet
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Urology, University Hospital of Besançon, Besançon F-25030, France
| | - Hugues Bittard
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Urology, University Hospital of Besançon, Besançon F-25030, France
| | - Christiane Mougin
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Pathology, University Hospital of Besançon, Besançon F-25030, France
| | - Jean Rommelaere
- German Cancer Research Center Tumor Virology F010, Heidelberg 69120, Germany
| | - Isabelle Lascombe
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France
| |
Collapse
|
11
|
Suzuki D, Saito-Hakoda A, Ito R, Shimizu K, Parvin R, Shimada H, Noro E, Suzuki S, Fujiwara I, Kagechika H, Rainey WE, Kure S, Ito S, Yokoyama A, Sugawara A. Suppressive effects of RXR agonist PA024 on adrenal CYP11B2 expression, aldosterone secretion and blood pressure. PLoS One 2017; 12:e0181055. [PMID: 28800627 PMCID: PMC5553648 DOI: 10.1371/journal.pone.0181055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The effects of retinoids on adrenal aldosterone synthase gene (CYP11B2) expression and aldosterone secretion are still unknown. We therefore examined the effects of nuclear retinoid X receptor (RXR) pan-agonist PA024 on CYP11B2 expression, aldosterone secretion and blood pressure, to elucidate its potential as a novel anti-hypertensive drug. We demonstrated that PA024 significantly suppressed angiotensin II (Ang II)-induced CYP11B2 mRNA expression, promoter activity and aldosterone secretion in human adrenocortical H295R cells. Human CYP11B2 promoter functional analyses using its deletion and point mutants indicated that the suppression of CYP11B2 promoter activity by PA024 was in the region from -1521 (full length) to -106 including the NBRE-1 and the Ad5 elements, and the Ad5 element may be mainly involved in the PA024-mediated suppression. PA024 also significantly suppressed the Ang II-induced mRNA expression of transcription factors NURR1 and NGFIB that bind to and activate the Ad5 element. NURR1 overexpression demonstrated that the decrease of NURR1 expression may contribute to the PA024-mediated suppression of CYP11B2 transcription. PA024 also suppressed the Ang II-induced mRNA expression of StAR, HSD3β2 and CYP21A2, a steroidogenic enzyme group involved in aldosterone biosynthesis. Additionally, the PA024-mediated CYP11B2 transcription suppression was shown to be exerted via RXRα. Moreover, the combination of PPARγ agonist pioglitazone and PA024 caused synergistic suppressive effects on CYP11B2 mRNA expression. Finally, PA024 treatment significantly lowered both the systolic and diastolic blood pressure in Tsukuba hypertensive mice (hRN8-12 x hAG2-5). Thus, RXR pan-agonist PA024 may be a candidate anti-hypertensive drugs that acts via the suppression of aldosterone synthesis and secretion.
Collapse
Affiliation(s)
- Dai Suzuki
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiko Saito-Hakoda
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rehana Parvin
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
12
|
Pan Z, Fang Z, Lu W, Liu X, Zhang Y. Osthole, a coumadin analog from Cnidium monnieri (L.) Cusson, stimulates corticosterone secretion by increasing steroidogenic enzyme expression in mouse Y1 adrenocortical tumor cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:456-462. [PMID: 26456364 DOI: 10.1016/j.jep.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osthole is an O-methylated coumadin, which was isolated and purified from the seeds of Cnidium monnieri (L.) Cusson. Osthole is a commonly used traditional Chinese medicine to treat patients with Kidney-Yang deficiency patients, who exhibit clinical signs similar to those of glucocorticoid withdrawal. However, the mechanism of action of osthole is not fully understood. OBJECTIVE This study was designed to reveal the effects of osthole on corticosterone production in mouse Y1 cell. MATERIALS AND METHODS Mouse Y1 adrenocortical cells were used to evaluate corticosterone production, which was quantified by enzyme-linked immunosorbent assay (ELISA) kits. Cell viability was tested using the MTT assay, and the mRNA and protein expression of genes encoding steroidogenic enzymes and transcription factors was monitored by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting, respectively. RESULTS Osthole stimulated corticosterone secretion from mouse Y1 cells in a dose- and time-dependent manner, and osthole enhanced the effect of dibutyryl-cAMP (Bu2cAMP) on corticosterone production. Further, osthole also increased StAR and CYP11B1 mRNA expression in a dose-dependent manner and enhanced the expression of transcription factors such as HSD3B1, FDX1, POR and RXRα as well as immediate early genes such as NR4A1. Moreover, osthole significantly increased SCARB1(SRB1) mRNA and StAR protein expression in the presence or absence of Bu2cAMP; these proteins are an important for the transport of the corticosteroid precursor cholesterol transport into mitochondria. CONCLUSIONS Our results show that the promotion of corticosterone biosynthesis and secretion is a novel effect of osthole, suggesting that this agent can be utilized for the prevention and treatment of Kidney-Yang deficiency syndrome.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhaoqin Fang
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenli Lu
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaomei Liu
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zhang
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Martinez-Arguelles DB, Papadopoulos V. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland. Front Endocrinol (Lausanne) 2015; 6:29. [PMID: 25788893 PMCID: PMC4349159 DOI: 10.3389/fendo.2015.00029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/18/2015] [Indexed: 12/18/2022] Open
Abstract
Humans are continuously exposed to hundreds of man-made chemicals that pollute the environment in addition to multiple therapeutic drug treatments administered throughout life. Some of these chemicals, known as endocrine disruptors (EDs), mimic endogenous signals, thereby altering gene expression, influencing development, and promoting disease. Although EDs are eventually removed from the market or replaced with safer alternatives, new evidence suggests that early-life exposure leaves a fingerprint on the epigenome, which may increase the risk of disease later in life. Epigenetic changes occurring in early life in response to environmental toxicants have been shown to affect behavior, increase cancer risk, and modify the physiology of the cardiovascular system. Thus, exposure to an ED or combination of EDs may represent a first hit to the epigenome. Only limited information is available regarding the effect of ED exposure on adrenal function. The adrenal gland controls the stress response, blood pressure, and electrolyte homeostasis. This endocrine organ therefore has an important role in physiology and is a sensitive target of EDs. We review herein the effect of ED exposure on the adrenal gland with particular focus on in utero exposure to the plasticizer di(2-ethylehyl) phthalate. We discuss the challenges associated with identifying the mechanism mediating the epigenetic origins of disease and availability of biomarkers that may identify individual or population risks.
Collapse
Affiliation(s)
- Daniel B. Martinez-Arguelles
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Daniel B. Martinez-Arguelles and Vassilios Papadopoulos, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montréal, QC H3G 1A4, Canada e-mail: ;
| | - Vassilios Papadopoulos
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Daniel B. Martinez-Arguelles and Vassilios Papadopoulos, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montréal, QC H3G 1A4, Canada e-mail: ;
| |
Collapse
|