1
|
Gan X, Dai G, Li Y, Xu L, Liu G. Intricate roles of estrogen and estrogen receptors in digestive system cancers: a systematic review. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0224. [PMID: 39475214 PMCID: PMC11523274 DOI: 10.20892/j.issn.2095-3941.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Gender disparities are evident across different types of digestive system cancers, which are typically characterized by a lower incidence and mortality rate in females compared to males. This finding suggests a potential protective role of female steroid hormones, particularly estrogen, in the development of these cancers. Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors (ERs), including the classic (ERα and ERβ) and non-traditional ERs [G protein-coupled estrogen receptor (GPER)]. Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers. In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers, including hepatocellular, pancreatic, esophageal, gastric, and colorectal carcinoma. Furthermore, we discuss the potential molecular mechanisms underlying ERα, ERβ, and GPER effects, and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs. The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved. Additionally, deciphering the intricate roles of estrogen, ERs, and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers, eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | - Guanqi Dai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
2
|
Shi Y, Yang H, Bai X, Liu X, Li Q, Du W. Female and diabetes are risk factors for alpha-fetoprotein and protein induced by vitamin K absence or antagonist-II negative in hepatocellular carcinoma. Medicine (Baltimore) 2024; 103:e40100. [PMID: 39432605 PMCID: PMC11495763 DOI: 10.1097/md.0000000000040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common type of tumor with a high incidence. Alpha-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II or des-gamma-carboxy prothrombin) are proven effective biomarkers for HCC. Combining them can enhance detection rates. However, when both AFP and PIVKA-II are negative, clinical diagnosis may be missed. This study aims to explore the risk factors for AFP and PIVKA-II negativity in HCC, thereby reducing missed diagnoses. A retrospective study enrolled 609 HCC patients at Shandong Public Health Clinical Center Affiliated with Shandong University from January 2010 to March 2022. Patients with negative AFP and PIVKA-II were the observed group, and others with at least 1 positive were controls. Epidemiological, clinical, laboratory, and radiological data were collected and analyzed to identify the frequency and factors influencing AFP and PIVKA-II negativity. Receiver operating characteristic (ROC) curves were used to assess the prediction model's ability to detect negative AFP and PIVKA-II in HCC. Gender (P = .045, 95% confidence interval [95%CI] = 1.013-3.277), diabetes mellitus (P = .018, 95%CI = 1.151-4.422), tumor size (P = .000, 95%CI = 0.677-0.841), glutamate transpeptidase (P = .003, 95%CI = 0.239-0.737), total bilirubin (P = .001, 95%CI = 0.235-0.705), and hepatitis B virus-associated infections (P = .007, 95%CI = 0.077-0.661) were significantly associated with AFP and PIVKA-II negativity in HCC. The prediction model had an area under curve of 0.832 (P < .001, 95%CI = 0.786-0.877), with a sensitivity of 81.2% and specificity of 75.5% in all HCC patients. Female diabetic patients with levels closer to normal for glutamate transpeptidase and total bilirubin are more likely to develop AFP and PIVKA-II-negative HCC. Imaging is crucial for screening liver cancer in these patients.
Collapse
Affiliation(s)
- Yanhui Shi
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongli Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xue Bai
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyan Liu
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Qiang Li
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Wenjun Du
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| |
Collapse
|
3
|
Simińska D, Kojder K, Jeżewski D, Tarnowski M, Tomasiak P, Piotrowska K, Kolasa A, Patrycja K, Chlubek D, Baranowska-Bosiacka I. Estrogen α and β Receptor Expression in the Various Regions of Resected Glioblastoma Multiforme Tumors and in an In Vitro Model. Int J Mol Sci 2024; 25:4130. [PMID: 38612938 PMCID: PMC11012502 DOI: 10.3390/ijms25074130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor with a higher prevalence in men and a higher survival rate in transmenopausal women. It exhibits distinct areas influenced by changing environmental conditions. This study examines how these areas differ in the levels of estrogen receptors (ERs) which play an important role in the development and progression of many cancers, and whose expression levels are often correlated with patient survival. This study utilized two research models: an in vitro model employing the U87 cell line and a second model involving tumors resected from patients (including tumor core, enhancing tumor region, and peritumoral area). ER expression was assessed at both gene and protein levels, with the results validated using confocal microscopy and immunohistochemistry. Under hypoxic conditions, the U87 line displayed a decrease in ERβ mRNA expression and an increase in ERα mRNA expression. In patient samples, ERβ mRNA expression was lower in the tumor core compared to the enhancing tumor region (only in males when the study group was divided by sex). In addition, ERβ protein expression was lower in the tumor core than in the peritumoral area (only in women when the study group was divided by sex). Immunohistochemical analysis indicated the highest ERβ protein expression in the enhancing tumor area, followed by the peritumoral area, and the lowest in the tumor core. The findings suggest that ER expression may significantly influence the development of GBM, exhibiting variability under the influence of conditions present in different tumor areas.
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland;
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland;
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Kapczuk Patrycja
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| |
Collapse
|
4
|
Yue Z, He S, Wang J, Jiang Q, Wang H, Wu J, Li C, Wang Z, He X, Jia N. Glyceollins from soybean: Their pharmacological effects and biosynthetic pathways. Heliyon 2023; 9:e21874. [PMID: 38034638 PMCID: PMC10682181 DOI: 10.1016/j.heliyon.2023.e21874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Flavonoids are a highly abundant class of secondary metabolites present in plants. Isoflavonoids, in particular, are primarily synthesized in leguminous plants within the subfamily Papilionoideae. Numerous reports have established the favorable role of isoflavonoids in preventing a range of human diseases. Among the isoflavonoid components, glyceollins are synthesized specifically in soybean plants and have displayed promising effects in mitigating the occurrence and progression of breast and ovarian cancers as well as other diseases. Consequently, glyceollins have become a sought-after natural component for promoting women's health. In recent years, extensive research has focused on investigating the molecular mechanism underlying the preventative properties of glyceollins against various diseases. Substantial progress has also been made toward elucidating the biosynthetic pathway of glyceollins and exploring potential regulatory factors. Herein, we provide a review of the research conducted on glyceollins since their discovery five decades ago (1972-2023). We summarize their pharmacological effects, biosynthetic pathways, and advancements in chemical synthesis to enhance our understanding of the molecular mechanisms of their function and the genes involved in their biosynthetic pathway. Such knowledge may facilitate improved glyceollin synthesis and the creation of health products based on glyceollins.
Collapse
Affiliation(s)
- Zhiyong Yue
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Shanhong He
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Jinpei Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Qi Jiang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Hanping Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Jia Wu
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Chenxi Li
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Zixian Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Xuan He
- School of Engineering, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Nannan Jia
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| |
Collapse
|
5
|
Seif Eldin WR, Saad EA, Monier A, Elshazli RM. Association of TERT (rs2736098 and rs2736100) genetic variants with elevated risk of hepatocellular carcinoma: a retrospective case-control study. Sci Rep 2023; 13:18382. [PMID: 37884663 PMCID: PMC10603040 DOI: 10.1038/s41598-023-45716-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an inflammatory problematic issue with higher mortality among different ethnic populations. The telomerase reverse transcriptase (TERT) gene has an imperative role in the proliferation of various cancerous illnesses, particularly HCC. Moreover, the TERT (rs2736098 and rs2739100) variants were correlated with the HCC susceptibility and telomere shortening, but with unconvincing outcomes. The main purpose of this outward work is to assess the correlation between these significant variants within the TERT gene and the elevated risk of HCC with the aid of various computational bioinformatics tools. This study included 233 participants [125 cancer-free controls and 108 HCC patients] from the same locality. In addition, 81.5% of HCC patients were positive for HCV autoantibodies, while 73.1% of HCC patients were positive for cirrhotic liver. Genomic DNA of the TERT (rs2736098 and rs2736100) variants were characterized utilizing the PCR-RFLP method. Interestingly, the frequencies of TERT (rs2736098*A allele) and TERT (rs2736100*T allele) conferred a significant correlation with increased risk of HCC compared to healthy controls (p-value = 0.002, and 0.016, respectively). The TERT (rs2736098*A/A) genotype indicated a definite association with positive smoking and splenomegaly (p-value < 0.05), while the TERT (rs2736100*T/T) genotype observed a significant difference with higher levels of HCV autoantibodies (p-value = 0.009). In conclusion, this significant work confirmed the contribution of the TERT (rs2736098*A and rs2736100*T) alleles with elevated risk of HCC progression and telomere shortening among Egyptian subjects.
Collapse
Affiliation(s)
- Walaa R Seif Eldin
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Entsar A Saad
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, 34517, Egypt.
| | - Ahmed Monier
- Department of Digestive Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34518, Egypt.
| |
Collapse
|
6
|
Caserta S, Gangemi S, Murdaca G, Allegra A. Gender Differences and miRNAs Expression in Cancer: Implications on Prognosis and Susceptibility. Int J Mol Sci 2023; 24:11544. [PMID: 37511303 PMCID: PMC10380791 DOI: 10.3390/ijms241411544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs are small, noncoding molecules of about twenty-two nucleotides with crucial roles in both healthy and pathological cells. Their expression depends not only on genetic factors, but also on epigenetic mechanisms like genomic imprinting and inactivation of X chromosome in females that influence in a sex-dependent manner onset, progression, and response to therapy of different diseases like cancer. There is evidence of a correlation between miRNAs, sex, and cancer both in solid tumors and in hematological malignancies; as an example, in lymphomas, with a prevalence rate higher in men than women, miR-142 is "silenced" because of its hypermethylation by DNA methyltransferase-1 and it is blocked in its normal activity of regulating the migration of the cell. This condition corresponds in clinical practice with a more aggressive tumor. In addition, cancer treatment can have advantages from the evaluation of miRNAs expression; in fact, therapy with estrogens in hepatocellular carcinoma determines an upregulation of the oncosuppressors miR-26a, miR-92, and miR-122 and, consequently, apoptosis. The aim of this review is to present an exhaustive collection of scientific data about the possible role of sex differences on the expression of miRNAs and the mechanisms through which miRNAs influence cancerogenesis, autophagy, and apoptosis of cells from diverse types of tumors.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
7
|
Ji R, Chen J, Xie Y, Dou X, Qing B, Liu Z, Lu Y, Dang L, Zhu X, Sun Y, Zheng X, Zhang L, Guo D, Chen Y. Multi-omics profiling of cholangiocytes reveals sex-specific chromatin state dynamics during hepatic cystogenesis in polycystic liver disease. J Hepatol 2023; 78:754-769. [PMID: 36681161 DOI: 10.1016/j.jhep.2022.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS Cholangiocytes transit from quiescence to hyperproliferation during cystogenesis in polycystic liver disease (PLD), the severity of which displays prominent sex differences. Epigenetic regulation plays important roles in cell state transition. We aimed to investigate the sex-specific epigenetic basis of hepatic cystogenesis and to develop therapeutic strategies targeting epigenetic modifications for PLD treatment. METHODS Normal and cystic primary cholangiocytes were isolated from wild-type and PLD mice of both sexes. Chromatin states were characterized by analyzing chromatin accessibility (ATAC sequencing) and multiple histone modifications (chromatin immunoprecipitation sequencing). Differential gene expression was determined by transcriptomic analysis (RNA sequencing). Pharmacologic inhibition of epigenetic modifying enzymes was undertaken in PLD model mice. RESULTS Through genome-wide profiling of chromatin dynamics, we revealed a profound increase of global chromatin accessibility during cystogenesis in both male and female PLD cholangiocytes. We identified a switch from H3K9me3 to H3K9ac on cis-regulatory DNA elements of cyst-associated genes and showed that inhibition of H3K9ac acetyltransferase or H3K9me3 demethylase slowed cyst growth in male, but not female, PLD mice. In contrast, we found that H3K27ac was specifically increased in female PLD mice and that genes associated with H3K27ac-gained regions were enriched for cyst-related pathways. In an integrated epigenomic and transcriptomic analysis, we identified an estrogen receptor alpha-centered transcription factor network associated with the H3K27ac-regulated cystogenic gene expression program in female PLD mice. CONCLUSIONS Our findings highlight the multi-layered sex-specific epigenetic dynamics underlying cholangiocyte state transition and reveal a potential epigenetic therapeutic strategy for male PLD patients. IMPACT AND IMPLICATIONS In the present study, we elucidate a sex-specific epigenetic mechanism underlying the cholangiocyte state transition during hepatic cystogenesis and identify epigenetic drugs that effectively slow cyst growth in male PLD mice. These findings underscore the importance of sex difference in the pathogenesis of PLD and may guide researchers and physicians to develop sex-specific personalized approaches for PLD treatment.
Collapse
Affiliation(s)
- Rongjie Ji
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jiayuan Chen
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuyang Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China
| | - Xudan Dou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Bo Qing
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zhiheng Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Lin Dang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lirong Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China.
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Hancock JM, Li Y, Martin TE, Andersen CL, Ye X. Upregulation of FOXA2 in uterine luminal epithelium and vaginal basal epithelium of epiERα-/- (Esr1fl/flWnt7aCre/+) mice†. Biol Reprod 2023; 108:359-362. [PMID: 36611017 PMCID: PMC10014416 DOI: 10.1093/biolre/ioac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Forkhead box protein A2 (FOXA2) is a pioneer transcription factor important for epithelial budding and morphogenesis in different organs. It has been used as a specific marker for uterine glandular epithelial cells (GE). FOXA2 has close interactions with estrogen receptor α (ERα). ERα binding to Foxa2 gene in the uterus indicates its regulation of Foxa2. The intimate interactions between ERα and FOXA2 and their essential roles in early pregnancy led us to investigate the expression of FOXA2 in the female reproductive tract of pre-implantation epiERα-/- (Esr1fl/flWnt7aCre/+) mice, in which ERα is conditionally deleted in the epithelium of reproductive tract. In the oviduct, FOXA2 is detected in the ciliated epithelial cells of ampulla but absent in the isthmus of day 3.5 post-coitum (D3.5) Esr1fl/fl control and epiERα-/- mice. In the uterus, FOXA2 expression in the GE appears to be comparable between Esr1fl/fl and epiERα-/- mice. However, FOXA2 is upregulated in the D0.5 and D3.5 but not PND25-28 epiERα-/- uterine luminal epithelial cells (LE). In the vagina, FOXA2 expression is low in the basal layer and increases toward the superficial layer of the D3.5 Esr1fl/fl vaginal epithelium, but FOXA2 is detected in the basal, intermediate, and superficial layers, with the strongest FOXA2 expression in the intermediate layers of the D3.5 epiERα-/- vaginal epithelium. This study demonstrates that loss of ERα in LE and vaginal basal layer upregulates FOXA2 expression in these epithelial cells during early pregnancy. The mechanisms for epithelial cell-type specific regulation of FOXA2 by ERα remain to be elucidated.
Collapse
Affiliation(s)
- Jonathan Matthew Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, USA
| | - Yuehuan Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Taylor Elijah Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, USA
| | - Christian Lee Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, USA
| |
Collapse
|
9
|
Tomesz A, Szabo L, Molnar R, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. Changes in miR-124-1, miR-212, miR-132, miR-134, and miR-155 Expression Patterns after 7,12-Dimethylbenz(a)anthracene Treatment in CBA/Ca Mice. Cells 2022; 11:cells11061020. [PMID: 35326471 PMCID: PMC8947631 DOI: 10.3390/cells11061020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Specific gene and miRNA expression patterns are potential early biomarkers of harmful environmental carcinogen exposures. The aim of our research was to develop an assay panel by using several miRNAs for the rapid screening of potential carcinogens. The expression changes of miR-124-1, miR-212, miR-132, miR-134, and miR-155 were examined in the spleen, liver, and kidneys of CBA/Ca mice, following the 20 mg/bwkg intraperitoneal 7,12-dimethylbenz(a)anthracene (DMBA) treatment. After 24 h RNA was isolated, the miRNA expressions were analyzed by a real-time polymerase chain reaction and compared to a non-treated control. DMBA induced significant changes in the expression of miR-134, miR-132, and miR-124-1 in all examined organs in female mice. Thus, miR-134, miR-132, and miR-124-1 were found to be suitable biomarkers for the rapid screening of potential chemical carcinogens and presumably to monitor the protective effects of chemopreventive agents.
Collapse
Affiliation(s)
- Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
10
|
Chen C, Chang H. Time trend and age‐specific gender difference in the incidence of liver cancer from 2009 to 2018 in Taiwan. ADVANCES IN DIGESTIVE MEDICINE 2022. [DOI: 10.1002/aid2.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuen‐Fei Chen
- Department of Medicine Mackay Medical College New Taipei City Taiwan
| | - Hung‐Chuen Chang
- Division of Gastroenterology, Department of Internal Medicine, Shin Kong Wu Ho‐Su Memorial Hospital Taipei Taiwan
- School of Medicine Fu Jen Catholic University New Taipei City Taiwan
| |
Collapse
|
11
|
Kim W. Hepatocellular Carcinoma. SEX/GENDER-SPECIFIC MEDICINE IN THE GASTROINTESTINAL DISEASES 2022:229-234. [DOI: 10.1007/978-981-19-0120-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Chattopadhyay M, Jenkins EC, Lechuga-Vieco AV, Nie K, Fiel MI, Rialdi A, Guccione E, Enriquez JA, Sia D, Lujambio A, Germain D. The portrait of liver cancer is shaped by mitochondrial genetics. Cell Rep 2022; 38:110254. [DOI: 10.1016/j.celrep.2021.110254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/07/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
|
13
|
Xia B, Peng J, Enrico DT, Lu K, Cheung EC, Kuo Z, He Q, Tang Y, Liu A, Fan D, Zhang C, He Y, Pan Y, Yuan J. Metabolic syndrome and its component traits present gender-specific association with liver cancer risk: a prospective cohort study. BMC Cancer 2021; 21:1084. [PMID: 34620113 PMCID: PMC8499577 DOI: 10.1186/s12885-021-08760-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND & AIMS Little is known on the gender-specific effect and potential role of non-linear associations between metabolic syndrome (MetS) components and liver cancer risk. We evaluated these associations based on the UK Biobank cohort. METHODS We included 474,929 individuals without previous cancer based on the UK Biobank cohort. Gender-specific hazard ratios (HRs) and 95% confidence interval (CIs) were calculated by Cox proportional hazards regression, adjusting for potential confounders. Non-linear associations for individual MetS components were assessed by the restricted cubic spline method. RESULTS Over a median follow-up of 6.6 years, we observed 276 cases of liver cancer (175 men, 101 women). MetS [HR 1.48, 95% CI 1.27-1.72] and central obesity [HR 1.65, 95% CI 1.18-2.31] were associated with higher risk of liver cancer in men but not in women. Participants with hyperglycaemia has higher risk of liver cancer. High waist circumference and blood glucose were dose-dependently associated with increased liver cancer risk in both genders. For high density lipoprotein (HDL) cholesterol (both genders) and blood pressure (women), U-shaped associations were observed. Low HDL cholesterol (< 1.35 mmol/L) in men and high HDL cholesterol in women (> 1.52 mmol/L) were associated with increased liver cancer risk. CONCLUSIONS MetS components showed gender-specific linear or U- shaped associations with the risk of liver cancer. Our study might provide evidence for individualized management of MetS for preventing liver cancer.
Collapse
Affiliation(s)
- Bin Xia
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - De Toni Enrico
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Kuiqing Lu
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Eddie C Cheung
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Division of Gastroenterology, Davis School of Medicine, University of California, Oakland, USA
| | - Zichong Kuo
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qiangsheng He
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Tang
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Anran Liu
- Department of Clinical Nutrition, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Die Fan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Jinqiu Yuan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China. .,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China. .,Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Shen YT, Huang X, Zhang G, Jiang B, Li CJ, Wu ZS. Pan-Cancer Prognostic Role and Targeting Potential of the Estrogen-Progesterone Axis. Front Oncol 2021; 11:636365. [PMID: 34322374 PMCID: PMC8311599 DOI: 10.3389/fonc.2021.636365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Estrogen receptors (ESRs) and progesterone receptors (PGRs) are associated with the development and progression of various tumors. The feasibility of ESRs and PGRs as prognostic markers and therapeutic targets for multiple cancers was evaluated via pan-cancer analysis. Methods The pan-cancer mRNA expression levels, genetic variations, and prognostic values of ESR1, ESR2, and PGR were analyzed using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and cBioPortal. The expression levels of ERa, ERb, and PGR proteins were detected by immunohistochemical staining using paraffin-embedded tissue specimens of ovarian serous cystadenocarcinoma (OV) and uterine endometrioid adenocarcinoma (UTEA). Correlation between immunomodulators and immune cells was determined based on the Tumor and Immune System Interaction Database (TISIDB). Results ESR1, ESR2, and PGR mRNAs were found to be differentially expressed in different cancer types, and were associated with tumor progression and clinical prognosis. ERa, ERb, and PGR proteins were further determined to be significantly differentially expressed in OV and UTEA via immunohistochemical staining. The expression of ERa protein was positively correlated with a high tumor stage, whereas the expression of PGR protein was conversely associated with a high tumor stage in patients with OV. In patients with UTEA, the expression levels of both ERa and PGR proteins were conversely associated with tumor grade and stage. In addition, the expression levels of ESR1, ESR2, and PGR mRNAs were significantly associated with the expression of immunomodulators and immune cells. Conclusion ESR1, ESR2, and PGR are potential prognostic markers and therapeutic targets, as well as important factors for the prediction, evaluation, and individualized treatment in several cancer types.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Pathology, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Jiang
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Cheng-Jun Li
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front Oncol 2021; 11:681377. [PMID: 34195082 PMCID: PMC8236851 DOI: 10.3389/fonc.2021.681377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ameena Mohamed Ali
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohamed Eldaw
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
16
|
Inhibiting roles of FOXA2 in liver cancer cell migration and invasion by transcriptionally suppressing microRNA-103a-3p and activating the GREM2/LATS2/YAP axis. Cytotechnology 2021; 73:523-537. [PMID: 34349344 DOI: 10.1007/s10616-021-00475-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/08/2021] [Indexed: 01/14/2023] Open
Abstract
Forkhead box A2 (FOXA2) has emerged as a tumor inhibitor in several human malignancies. This work focused on the effect of FOXA2 on liver cancer (LC) cell invasion and migration and the involving molecules. FOXA2 expression in LC tissues and cell lines was determined. The potential target microRNA (miRNA) of FOXA2 was predicted via bioinformatic analysis and validated through a ChIP assay. The mRNA target of miRNA-103a-3p was predicted via bioinformatic analysis and confirmed via a luciferase assay. Altered expression of FOXA2, miR-103a-3p and GREM2 was introduced in cells to identify their roles in LC cell migration and invasion. Consequently, FOXA2 and GREM2 were poorly expressed while miR-103a-3p was highly expressed in LC samples. Overexpression of FOXA2 or GREM2 suppressed migration and invasion of LC cells, while up-regulation of miR-103a-3p led to inverse trends. FOXA2 transcriptionally suppressed miR-103a-3p to increase GREM2 expression. Silencing of GREM2 blocked the effects of FOXA2. GREM2 increased LATS2 activity and YAP phosphorylation and degradation. To conclude, this study demonstrated that FOXA2 suppressed miR-103a-3p transcription to induce GREM2 upregulation, which increased LATS2 activity and YAP phosphorylation to inhibit migration and invasion of LC cells.
Collapse
|
17
|
Forkhead Transcription Factors in Health and Disease. Trends Genet 2021; 37:460-475. [DOI: 10.1016/j.tig.2020.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
|
18
|
Carruba G. Estrogens in Hepatocellular Carcinoma: Friends or Foes? Cancers (Basel) 2021; 13:cancers13092085. [PMID: 33925807 PMCID: PMC8123464 DOI: 10.3390/cancers13092085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Today, we know that estrogen hormones are required for the development and function of many organs, such as the liver, in both males and females. However, in some circumstances, estrogen excess may be implicated in the appearance of various chronic diseases, including cancer. This review will inspect the results of several studies to better understand the mechanisms responsible for estrogens to change from protective into harmful hormones in human liver. Abstract Estrogens are recognized as key players in physiological regulation of various, classical and non-classical, target organs, and tissues, including liver development, homeostasis, and function. On the other hand, multiple, though dispersed, experimental evidence is highly suggestive for the implication of estrogen in development and progression of hepatocellular carcinoma. In this paper, data from our own studies and the current literature are reviewed to help understanding this apparent discrepancy.
Collapse
Affiliation(s)
- Giuseppe Carruba
- Servizio di Internazionalizzazione e Ricerca Sanitaria (SIRS), Azienda di Rilievo Nazionale e di Alta Specializzazione (ARNAS)-Civico, Di Cristina, Benfratelli-Palermo, Piazza N. Leotta 2, 90127 Palermo, Italy
| |
Collapse
|
19
|
Fuhrman BJ, Moore SC, Byrne C, Makhoul I, Kitahara CM, Berrington de González A, Linet MS, Weiderpass E, Adami HO, Freedman ND, Liao LM, Matthews CE, Stolzenberg-Solomon RZ, Gaudet MM, Patel AV, Lee IM, Buring JE, Wolk A, Larsson SC, Prizment AE, Robien K, Spriggs M, Check DP, Murphy N, Gunter MJ, Van Dusen HL, Ziegler RG, Hoover RN. Association of the Age at Menarche with Site-Specific Cancer Risks in Pooled Data from Nine Cohorts. Cancer Res 2021; 81:2246-2255. [PMID: 33820799 PMCID: PMC8137527 DOI: 10.1158/0008-5472.can-19-3093] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/24/2022]
Abstract
The average age at menarche declined in European and U.S. populations during the 19th and 20th centuries. The timing of pubertal events may have broad implications for chronic disease risks in aging women. Here we tested for associations of recalled menarcheal age with risks of 19 cancers in 536,450 women [median age, 60 years (range, 31-39 years)] in nine prospective U.S. and European cohorts that enrolled participants from 1981 to 1998. Cox regression estimated multivariable-adjusted HRs and 95% confidence intervals (CI) for associations of the age at menarche with risk of each cancer in each cohort and random-effects meta-analysis was used to generate summary estimates for each cancer. Over a median 10 years of follow-up, 60,968 women were diagnosed with a first primary incident cancer. Inverse linear associations were observed for seven of 19 cancers studied. Each additional year in the age at menarche was associated with reduced risks of endometrial cancer (HR = 0.91; 95% CI, 0.89-0.94), liver cancer (HR = 0.92; 95% CI, 0.85-0.99), melanoma (HR = 0.95; 95% CI, 0.93-0.98), bladder cancer (HR = 0.96; 95% CI, 0.93-0.99), and cancers of the colon (HR = 0.97; 95% CI, 0.96-0.99), lung (HR = 0.98; 95% CI, 0.96-0.99), and breast (HR = 0.98; 95% CI, 0.93-0.99). All but one of these associations remained statistically significant following adjustment for baseline body mass index. Similarities in the observed associations between menarche and seven cancers suggest shared underlying causes rooted early in life. We propose as a testable hypothesis that early exposure to sex hormones increases mid-life cancer risks by altering functional capacities of stem cells with roles in systemic energy balance and tissue homeostasis. SIGNIFICANCE: Age at menarche is associated with risk for seven cancers in middle-aged women, and understanding the shared underlying causal pathways across these cancers may suggest new avenues for cancer prevention.
Collapse
Affiliation(s)
- Barbara J Fuhrman
- University of Pittsburgh, Pittsburgh, Pennsylvania.
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Celia Byrne
- Uniformed Health Services University, Bethesda, Maryland
| | - Issam Makhoul
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Cari M Kitahara
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | | | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hans-Olov Adami
- Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | | | - Mia M Gaudet
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - I-Min Lee
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie E Buring
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna E Prizment
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kim Robien
- Exercise and Nutrition Sciences, Public Health, George Washington University, Washington, District of Columbia
| | | | - David P Check
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
20
|
Tassinari R, Narciso L, Tait S, Busani L, Martinelli A, Di Virgilio A, Carli F, Deodati A, La Rocca C, Maranghi F. Juvenile Toxicity Rodent Model to Study Toxicological Effects of Bisphenol A (BPA) at Dose Levels Derived From Italian Children Biomonitoring Study. Toxicol Sci 2020; 173:387-401. [PMID: 31697385 DOI: 10.1093/toxsci/kfz226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bisphenol A (BPA) is a plasticizer with endocrine disrupting properties particularly relevant for children health. Recently BPA has been associated with metabolic dysfunctions but no data are yet available in specific, long-term studies. This study aimed to evaluate BPA modes of action and hazards during animal juvenile life-stage, corresponding to childhood. Immature Sprague-Dawley rats of both sexes were orally treated with 0 (vehicle only-olive oil), 2, 6, and 18 mg/kg bw per day of BPA for 28 days, from weaning to sexual maturity. Dose levels were obtained from the PERSUADED biomonitoring study in Italian children. Both no-observed-adverse-effect-level (NOAEL)/low-observed-adverse-effect-level (LOAEL) and estimated benchmark dose (BMD) approaches were applied. General toxicity, parameters of sexual development, endocrine/reproductive/functional liver and kidney biomarkers, histopathology of target tissues, and gene expression in hypothalamic-pituitary area and liver were studied. No mortality or general toxicity occurred. Sex-specific alterations were observed in liver, thyroid, spleen, leptin/adiponectin serum levels, and hypothalamic-pituitary gene expression. Thyroid homeostasis and liver were the most sensitive targets of BPA exposure in the peripubertal phase. The proposed LOAEL was 2 mg/kg bw, considering as critical effect the liver endpoints, kidney weight in male and adrenal histomorphometrical alterations and osteopontin upregulation in female rats. The BMD lower bounds were 0.05 and 1.33 mg/kg bw in males and females, considering liver and thyroid biomarkers, respectively. Overall, BPA evaluation at dose levels derived from children biomonitoring study allowed to identify sex-specific, targeted toxicological effects that may have significant impact on risk assessment for children.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Martinelli
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Di Virgilio
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù".,Children's Hospital-Tor Vergata University, Rome, Italy
| | | | | | | |
Collapse
|
21
|
Watanabe T, Tokumoto Y, Joko K, Michitaka K, Horiike N, Tanaka Y, Tada F, Kisaka Y, Nakanishi S, Yamauchi K, Yukimoto A, Nakamura Y, Hirooka M, Abe M, Hiasa Y. Sex difference in the development of hepatocellular carcinoma after direct-acting antiviral therapy in patients with HCV infection. J Med Virol 2020; 92:3507-3515. [PMID: 32374470 DOI: 10.1002/jmv.25984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
Sex differences in the predictors for hepatocellular carcinoma (HCC) development after direct-acting antiviral (DAA) therapy was investigated. DAA therapy was given to 1438 (663 male, 775 female) patients. Sex differences in the HCC development rate and the factors contributing to HCC development after DAA therapy were investigated. Male patients had a significantly higher cumulative HCC incidence (log-rank test, P = .007). On multivariate analysis, the fibrosis-4 index (HR = 1.11; 95%CI, 1.042-1.202, P = .002) and posttreatment α-fetoprotein (AFP) (HR = 1.11; 95%CI, 1.046-1.197, P = .001) were found to be independent factors that contributed to HCC development following DAA therapy in female patients, whereas only posttreatment AFP (HR = 1.090; 95%CI, 1.024-1.160, P = .007) was an independent factor in male patients. The optimal posttreatment AFP cut-off values were set based on receiver operating characteristic curve analyses. The optimal posttreatment AFP cut-off value was much higher in females (6.0 ng/mL) than in male (3.5 ng/mL) patients. In conclusion both in male and female patients, posttreatment AFP was an independent predictor of HCC development after DAA therapy. However, the cut-off values differed between the sexes. In male patients, HCC could be seen in patients with relatively low posttreatment AFP levels; more careful observation might be needed in such patients.
Collapse
Affiliation(s)
- Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kouji Joko
- Center for Liver-Biliary-Pancreatic Diseases, Matsuyama Red Cross Hospital, Matsuyama, Ehime, Japan
| | - Kojiro Michitaka
- Department of Gastroenterology, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Norio Horiike
- Department of Gastroenterology, Saiseikai Imabari Hospital, Imabari, Ehime, Japan
| | - Yoshinori Tanaka
- Department of Gastroenterology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Fujimasa Tada
- Department of Internal Medicine, Saiseikai Matsuyama Hospital, Matsuyama, Ehime, Japan
| | - Yoshiyasu Kisaka
- Department of Gastroenterology, Uwajima City Hospital, Uwajima, Ehime, Japan
| | - Seiji Nakanishi
- Department of Gastroenterology, Ehime Prefectural Imabari Hospital, Imabari, Ehime, Japan
| | - Kazuhiko Yamauchi
- Department of Gastroenterology, National Hospital Organization Ehime Medical Center, Toon, Ehime, Japan
| | - Atsushi Yukimoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
22
|
Chen CL, Kuo MJ, Yen AMF, Yang WS, Kao JH, Chen PJ, Chen HH. Gender Difference in the Association Between Metabolic Factors and Hepatocellular Carcinoma. JNCI Cancer Spectr 2020; 4:pkaa036. [PMID: 33134821 PMCID: PMC7583157 DOI: 10.1093/jncics/pkaa036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A gender difference in hepatocellular carcinoma (HCC) that men have higher incidence than women has long been noted and can be explained by the cross-talk between sex hormones and hepatitis B virus/hepatitis C virus (HBV/HCV). Whether metabolic factors yield similar sexual difference in non-HBV/HCV-HCC remains elusive. METHODS There were 74 782 hepatitis B surface antigen (HBsAg)/antibody to hepatitis C virus (anti-HCV) negative residents who participated in the Keelung Community-Based Integrated Screening program and were followed in 2000-2007. Incident HCC was identified by linkage to the Taiwan Cancer Registry. Cox proportional hazards regression models were used to estimate the association between metabolic factors and HCC stratified by sex. All statistical tests were 2-sided. RESULTS With 320 829 follow-up person-years, 99 residents developed HCC. The adjusted hazard ratios (aHR) were 2.10 (95% confidence interval [CI] = 1.07 to 4.13) and 3.71 (95% CI = 2.01 to 6.86) for prediabetes and diabetes, respectively, in men. The corresponding adjusted hazard ratios were 1.16 (95% CI = 0.48 to 2.83) and 1.47 (95% CI = 0.65 to 3.34) in women. Compared with normal weight (body mass index [BMI] = 23-25), underweight (BMI < 21, HR = 3.56, 95% CI = 1.18 to 10.8) and overweight (BMI = 25 to <27.3, HR = 3.81, 95% CI = 1.43 to 10.2) were associated with an elevated risk in men. The statistically significant gradient relationship per advanced BMI category was noted in women (aHR = 1.41, 95% CI = 1.07 to 1.87). The HCC-fasting glucose (P = .046) and HCC-BMI (P = .03) associations were statistically significantly modified by sex. Elevated aspartate aminotransferase, aspartate aminotransferase-to-platelet index and fibrosis index, and habitual alcohol consumption were related to HCC only in men, whereas increased alanine aminotransferase and lower platelet levels predicted HCC risk in women. CONCLUSIONS We found that BMI-HCC associations were U-shape for men and linear for women, and the elevated HCC risk began from glucose impairment in men only. Whether good glycemic and weight control can reduce HCC risk warrants further investigation.
Collapse
Affiliation(s)
- Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jeng Kuo
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Hepatogastroenterology, Tainan Municipal Hospital, Tainan, Taiwan
| | - Amy Ming-Fang Yen
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Hsi Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
24
|
Sex Hormone-Dependent Physiology and Diseases of Liver. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082620. [PMID: 32290381 PMCID: PMC7216036 DOI: 10.3390/ijerph17082620] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Sexual dimorphism is associated not only with somatic and behavioral differences between men and women, but also with physiological differences reflected in organ metabolism. Genes regulated by sex hormones differ in expression in various tissues, which is especially important in the case of liver metabolism, with the liver being a target organ for sex hormones as its cells express estrogen receptors (ERs: ERα, also known as ESR1 or NR3A; ERβ; GPER (G protein-coupled ER, also known as GPR 30)) and the androgen receptor (AR) in both men and women. Differences in sex hormone levels and sex hormone-specific gene expression are mentioned as some of the main variations in causes of the incidence of hepatic diseases; for example, hepatocellular carcinoma (HCC) is more common in men, while women have an increased risk of autoimmune liver disease and show more acute liver failure symptoms in alcoholic liver disease. In non-alcoholic fatty liver disease (NAFLD), the distinction is less pronounced, but increased incidences are suggested among men and postmenopausal women, probably due to an increased tendency towards visceral fat accumulation.
Collapse
|
25
|
Zhang J, Zhang Z, Sun J, Ma Q, Zhao W, Chen X, Qiao H. MiR-942 regulates the function of breast cancer cell by targeting FOXA2. Biosci Rep 2019; 39:BSR20192298. [PMID: 31701999 PMCID: PMC6879377 DOI: 10.1042/bsr20192298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA (MiR)-942 regulates the development of a variety of tumors, however, its function in breast cancer (BCa) has been less reported. Therefore, the present study investigated the regulatory effects of miR-942 on BCa cells. The expression of miR-942 in whole blood samples and BCa cell lines was detected by quantitative real-time (qRT)-PCR. Direct target gene for miR-942 was confirmed by dual-luciferase reporter assay. FOXA2 expression in adjacent tissues was detected by qRT-PCR. The effects of miR-942, or miR-942 with FOXA2, on the cell viability, proliferation, apoptosis, migration and invasion of BCa cells were determined by cell counting kit-8 (CCK-8), colony formation assay, flow cytometry, wound scratch and Transwell, respectively. The levels of N-Cadherin, E-Cadherin and Snail were determined by Western blot. Kaplan-Meier was used to explore the relationship among the expressions of miR-942 and FOXA2 and the prognosis of BCa patients. MiR-942 had high expressed in BCa, while its low expression significantly suppressed the cell viability, proliferation, migration and invasion of BCa, but increased cell apoptosis. Down-regulation of N-Cadherin and Snail and up-regulation of E-Cadherin were also induced by low-expression of miR-942. FOXA2, which was proved as the direct target gene for miR-942 and was low-expressed in BCa, partially reversed the effect of overexpressed miR-942 on promoting cell viability, proliferation, migration and invasion, and suppressed cell apoptosis. A lower survival rate was observed in BCa patients with a high expression of miR-942 and a low expression of FOXA2. MiR-942 promoted the progression of BCa by down-regulating the expression of FOXA2.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Zhiqiang Zhang
- Department of Thoracic Surgery, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Jirui Sun
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Qiushuang Ma
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Wenming Zhao
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Xue Chen
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Haizhi Qiao
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| |
Collapse
|
26
|
Lyu M, Zhou J, Chen H, Bai H, Song J, Liu T, Cheng Y, Ying B. The genetic variants in calcium signaling related genes influence anti-tuberculosis drug induced liver injury: A prospective study. Medicine (Baltimore) 2019; 98:e17821. [PMID: 31689868 PMCID: PMC6946452 DOI: 10.1097/md.0000000000017821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although many genetic variants related to anti-tuberculosis drug induced liver injury (ATDILI) have been identified, the prediction and personalized treatment of ATDILI have failed to achieve, indicating there remains an area for further exploration. This study aimed to explore the influence of single nucleotide polymorphisms (SNPs) in Bradykinin receptor B2 (BDKRB2), Teneurin transmembrane protein 2 (TENM2), transforming growth factor beta 2 (TGFB2), and solute carrier family 2 member 13 (SLC2A13) on the risk of ATDILI.The subjects comprised 746 Chinese tuberculosis (TB) patients. Custom-by-design 2x48-Plex SNPscanTM kit was employed to genotype 28 selected SNPs. The associations of SNPs with ATDILI risk and clinical phenotypes were analyzed according to the distributions of allelic and genotypic frequencies and different genetic models. The odds ratio (OR) with corresponding 95% confidence interval (CI) was calculated.Among subjects with successfully genotyped, 107 participants suffered from ATDILI during follow-up. In BDKRB2, patients with rs79280755 G allele or rs117806152 C allele were more vulnerable to ATDILI (PBonferronicorrection = .002 and .03, respectively). Rs79280755 increased the risk of ATDILI significantly whether in additive (OR = 3.218, 95% CI: 1.686-6.139, PBonferroni correction = .003) or dominant model (PBonferroni correction = .003), as well as rs117806152 (Additive model: PBonferroni correction = .05; dominant model: PBonferroni correction = .03). For TENM2, rs80003210 G allele contributed to the decreased risk of ATDILI (PBonferroni correction = .02), while rs2617972 A allele conferred susceptibility to ATDILI (PBonferroni correction = .01). Regarding rs2617972, significant findings were also observed in both additive (OR = 3.203, 95% CI: 1.487-6.896, PBonferroni correction = .02) and dominant model (PBonferroni correction = .02). Moreover, rs79280755 and rs117806152 in BDKRB2 significantly affected some laboratory indicators. However, no meaningful SNPs were observed in TGFB2 and SLC2A13.Our study revealed that both BDKRB2 and TENM2 genetic polymorphisms were interrogated in relation to ATDILI susceptibility and some laboratory indicators in the Western Chinese Han population, shedding a new light on exploring novel biomarkers and targets for ATDILI.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuhui Cheng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Wang S, Xiang C, Mou L, Yang Y, Zhong R, Wang L, Sun C, Qin Z, Yang J, Qian J, Zhao Y, Wang Y, Pan X, Qie J, Jiang Y, Wang X, Yang Y, Zhou WP, Miao X, He F, Jin L, Wang H. Trans-acting non-synonymous variant of FOXA1 predisposes to hepatocellular carcinoma through modulating FOXA1-ERα transcriptional program and may have undergone natural selection. Carcinogenesis 2019; 41:146-158. [DOI: 10.1093/carcin/bgz136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
Interplay of pioneer transcription factor forkhead box A1 (FOXA1) and estrogen receptor has been implicated in sexual dimorphism in hepatocellular carcinoma (HCC), but etiological relevance of its polymorphism was unknown. In the case control study (1152 patients versus1242 controls), we observed significant increase in HCC susceptibility in hepatitis B virus carriers associated with a non-synonymous Thr83Ala variant of FOXA1 (odds ratio [OR], 1.28; 95% confidence interval [CI], 1.11−1.48, for Ala83-containing genotype, after validation in an independent population with 933 patients versus 1030 controls), a tightly linked (CGC)5/6or7 repeat polymorphism at its promoter (OR 1.32; 95% CI 1.10–1.60, for (CGC)6or7-repeat-containing genotype), and their combined haplotype (OR 1.50; 95% CI 1.24–1.81, for (CGC)6or7−Ala83 haplotype). The susceptible FOXA1-Ala83 impairs its interaction with ERα, attenuates transactivation toward some of their dual target genes, such as type 1 iodothyronine deiodinase, UDP glucuronosyltransferase 2 family, polypeptide B17 and sodium/taurocholate cotransporting polypeptide, but correlates with strengthened cellular expression of α-fetoprotein (AFP) and elevated AFP serum concentration in HCC patients (n = 1096). The susceptible FOXA1 cis-variant with (CGC)6or7 repeat strengthens the binding to transcription factor early growth response 1 and enhances promoter activity and gene expression. Evolutionary population genetics analyses with public datasets reveal significant population differentiation and unique haplotype structure of the derived protective FOXA1-Thr83 and suggest that it may have undergone positive natural selection in Chinese population. These findings epidemiologically highlight the functional significance of FOXA1-ERα transcriptional program and regulatory network in liver cancer development.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chan Xiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Mou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and State Key Laboratory of Environment Health (Incubation), Ministry of Education Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liyan Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji Qian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yuanyuan Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuedong Pan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingbo Qie
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Jiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics and State Key Laboratory of Environment Health (Incubation), Ministry of Education Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuchu He
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Haijian Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| |
Collapse
|
28
|
Wu Y, Yao N, Feng Y, Tian Z, Yang Y, Zhao Y. Identification and characterization of sexual dimorphism‑linked gene expression profile in hepatocellular carcinoma. Oncol Rep 2019; 42:937-952. [PMID: 31322260 PMCID: PMC6667920 DOI: 10.3892/or.2019.7217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is sexually disparate in humans, with a significantly increased prevalence in males. The molecular mechanisms by which the inhibition or development of liver cancer are facilitated require further investigation with regard to sex factors affecting disease progression. In the present study, functional signatures of differentially expressed genes (DEGs) were screened in female and male tumors via bioinformatics analysis. The following gene chip expression profiles were downloaded from the Gene Expression Omnibus: GSE19665, GSE23342 and GSE9843. They comprised cancerous and non-cancerous tissue from patients with HCC and included critical sex features. Further evaluation of selected DEGs in the two sexual groups was performed via hierarchical clustering analysis. Venn diagram and functional protein-protein interaction (PPI) network analyses were performed. Survival analysis of patients with differences in gene expression levels was subsequently performed using the Kaplan-Meier Plotter database. Certain identified DEGs were common in female and male tumor samples, whereas others exhibited a sexually-biased expression profile. Gene Ontology revealed that the cell cycle module ‘biological process’ was enriched in tumors derived from both sexes, whereas the metabolic pathways and drug metabolism modules were only significantly enriched in cancer tissues from male subjects. A number of hub DEGs in the cell cycle and p53 signaling pathways were involved in significant protein-protein interaction (PPI) modules, including CDK1 and CCNB1. These DEGs were upregulated in tumors derived from female subjects compared with those derived from male subjects, and could be used as markers of poor prognosis in male patients. Other genes, such as CYP3A4 and SERPINA4, were identified in metabolic pathways, and were downregulated in male compared with female subjects. These genes were associated with a decreased survival rate. The data demonstrated that sex differences in physiology may regulate the levels of gene expression and/or activity, including gene function associated with oncogenesis and the outcomes of liver cancer. Additional surveys are required to explore in detail the molecular mechanisms underlying the differences in gene expression between the two sexes during the development of liver cancer.
Collapse
Affiliation(s)
- Yuchao Wu
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Naijuan Yao
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yali Feng
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhen Tian
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Yang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
29
|
Padberg F, Tarnow P, Luch A, Zellmer S. Minor structural modifications of bisphenol A strongly affect physiological responses of HepG2 cells. Arch Toxicol 2019; 93:1529-1541. [PMID: 31055635 DOI: 10.1007/s00204-019-02457-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Bisphenols represent a large group of structurally similar compounds. In contrast to bisphenol A (BPA) and bisphenol S (BPS), however, toxicological data are usually scarce, thus making bisphenols an ideal candidate for read-across assessments. BPA, bisphenol C (BPC) and a newly synthesized bisphenol A/C (BPA/C) differ only by one methyl group attached to the phenolic ring. Their EC50 values for cytotoxicity and logPOW values are comparable. However, the estrogenic activities of these bisphenols are not comparable and among this group only BPC leads to a decrease of the mitochondrial membrane potential and ATP concentration in HepG2 cells. Conversely, the cell division rate was decreased by BPS, BPA, BPC and BPA/C at 10% toxicity (EC10). At lower concentrations, only BPC significantly affected proliferation. The pro-inflammatory cytokines TGFB1 and TNF were significantly upregulated by BPC only, while SPP1 was upregulated by BPA, BPA/C and BPS. BPC led to the release of cytochrome c from mitochondria, indicating that this compound is capable of inducing apoptosis. In conclusion, the read-across approach revealed non-applicable in the case of the various structurally and physicochemically comparable bisphenols tested in this study, as the presence of one or two additional methyl group(s) attached at the phenol ring profoundly affected cellular physiology.
Collapse
Affiliation(s)
- F Padberg
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Strasse 8-10, 10589, Berlin, Germany.
| | - P Tarnow
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Strasse 8-10, 10589, Berlin, Germany
| | - A Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Strasse 8-10, 10589, Berlin, Germany
| | - S Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
30
|
Huang C, Liu J, Xiong B, Yonemura Y, Yang X. Expression and prognosis analyses of forkhead box A (FOXA) family in human lung cancer. Gene 2018; 685:202-210. [PMID: 30415009 DOI: 10.1016/j.gene.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023]
Abstract
Despite advances in early diagnosis and treatment, cancer still remains the major reason of mortality worldwide. The forkhead box A (FOXA) family is reported to participate in diverse human diseases. However, little is known about their expression and prognostic values in human lung cancer. Herein, we conducted a detailed cancer vs. normal analysis. The mRNA expression levels of FOXA family in numerous kind of cancers, including lung cancer, were analyzed using the Oncomine and GEPIA database. We observed that the mRNA expression levels of FOXA1, and FOXA3 were all increased while FOXA2 were decreased in most cancers compared with normal tissues, especially in lung cancer. Moreover, the expression levels of FOXA1, and FOXA3 are also highly expressed, while FOXA2 were decreased in almost all cancer cell lines, particularly in lung cancer cell lines, analyzing by Cancer Cell Line Encyclopedia (CCLE) and EMBL-EBI databases. Furthermore, the LinkedOmics database was used to evaluate the prognostic values, indicating that higher expression of FOXA1, FOXA3 indicated a poor overall survival (OS), while increased FOXA2 revealed a better OS in lung cancer. To conclusion, FOXA family showed significant expression differences between cancer and normal tissues, especially lung cancer, and FOXA1, FOXA3 could be promising prognostic biomarkers for lung cancer.
Collapse
Affiliation(s)
- Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China
| | - Jiuyang Liu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, PR China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China
| | - Yutaka Yonemura
- Peritoneal Dissemination Center, Kishiwada Tokushukai Hospital, Kishiwada 596-0032, Japan; Department of Surgery, Kusatsu General Hospital, Shiga 600-8189, Japan
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China.
| |
Collapse
|
31
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
32
|
Hepatitis B virus promotes proliferation and metastasis in male Chinese hepatocellular carcinoma patients through the LEF-1/miR-371a-5p/SRCIN1/pleiotrophin/Slug pathway. Exp Cell Res 2018; 370:174-188. [DOI: 10.1016/j.yexcr.2018.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022]
|
33
|
Zheng D, Wang X, Antonson P, Gustafsson JÅ, Li Z. Genomics of sex hormone receptor signaling in hepatic sexual dimorphism. Mol Cell Endocrinol 2018; 471:33-41. [PMID: 28554805 PMCID: PMC5702598 DOI: 10.1016/j.mce.2017.05.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
The liver plays a crucial role in a variety of physiological processes. Sexual dimorphism is markedly defined in liver disorders, such as fatty liver diseases and liver cancer, but barely addressed in the normal liver. Distinct sex hormone signaling between male and female livers is the major driving factor for hepatic sexual dimorphism. Over 6000 genes are differently expressed between male and female livers in mice. Here we address how sex hormone receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), mediate sexually dimorphic gene expression in mouse livers. We identified 5192 ERα target genes and 4154 AR target genes using ChIP-Seq. Using liver-specific ERα or AR knockout mice, we further identified direct and functional target genes of ERα (123 genes) and AR (151 genes) that contribute to hepatic sexual dimorphism. We also found that the most significant sexually dimorphic gene expression was initiated at birth by comparing hepatic gene expression data from the embryonic stage E10.5 to the postnatal stage P60 during liver development. Overall, our study indicates that sex hormone receptor signaling drives sexual dimorphism of hepatic gene expression throughout liver development.
Collapse
Affiliation(s)
- Daoshan Zheng
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xiao Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 14183, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 14183, Sweden; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Zhaoyu Li
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
34
|
Wang P, Wu SP, Brooks KE, Kelleher AM, Milano-Foster JJ, DeMayo FJ, Spencer TE. Generation of Mouse for Conditional Expression of Forkhead Box A2. Endocrinology 2018; 159:1897-1909. [PMID: 29546371 PMCID: PMC6018745 DOI: 10.1210/en.2018-00158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/07/2018] [Indexed: 02/02/2023]
Abstract
Forkhead box A2 (FOXA2) is a pioneer transcription factor involved in organ development, function, and cancer. In the uterus, FOXA2 is essential for pregnancy and expressed specifically in the glands of the endometrium. Loss of FOXA2 function occurs during development of endometrial cancer in humans. The current study describes the development of a mouse model for conditional expression of mouse FOXA2. Using a system consisting of a minigene located at the Rosa26 locus, we generated a CAG-S-mFOXA2 allele in embryonic stem cells and subsequently in mice; before activation, the minigene is silent because of a floxed stop cassette inserted between the promoter and the transgene. To validate functionality, mice with the CAG-S-mFOXA2 allele were crossed with progesterone receptor (Pgr)-Cre mice and lactotransferrin (Ltf)-iCre mice that express Cre in the immature and adult uterus, respectively. In immature Pgr-Cre-CAG-S-mFoxa2 mice, FOXA2 protein was expressed in the luminal epithelium (LE), glandular epithelium (GE), stroma, and inner layer of the myometrium. Interestingly, FOXA2 protein was not observed in most of the LE of uteri from adult Pgr-Cre-CAG-S-mFoxa2 mice, although FOXA2 was maintained in the stroma, GE, and myometrium. The adult Pgr-Cre-CAG-S-mFoxa2 females were completely infertile. In contrast, Ltf-iCre-CAG-S-mFoxa2 mice were fertile with no detectable histological differences in the uterus. The adult uterus of Pgr-Cre-CAG-S-mFoxa2 mice was smaller, contained few endometrial glands, and displayed areas of partially stratified LE and GE. This transgenic mouse line is a valuable resource to elucidating and exploring FOXA2 function.
Collapse
Affiliation(s)
- Peng Wang
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle, North Carolina
| | - Kelsey E Brooks
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Andrew M Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle, North Carolina
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
35
|
Cuomo D, Porreca I, Cobellis G, Tarallo R, Nassa G, Falco G, Nardone A, Rizzo F, Mallardo M, Ambrosino C. Carcinogenic risk and Bisphenol A exposure: A focus on molecular aspects in endoderm derived glands. Mol Cell Endocrinol 2017; 457:20-34. [PMID: 28111205 DOI: 10.1016/j.mce.2017.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Epidemiological and experimental evidence associates the exposure to Bisphenol A with the increase of cancer risk in several organs, including prostate. BPA targets different pathways involved in carcinogenicity including the Nuclear Receptors (i.e. estrogen and androgen receptors), stress regulated proteins and, finally, epigenetic changes. Here, we analyse BPA-dependent carcinogenesis in endoderm-derived glands, thyroid, liver, pancreas and prostate focusing on cell signalling, DNA damage repair pathways and epigenetic modifications. Mainly, we gather molecular data evidencing harmful effects at doses relevant for human risk (low-doses). Since few molecular data are available, above all for the pancreas, we analysed transcriptomic data generated in our laboratory to suggest possible mechanisms of BPA carcinogenicity in endoderm-derived glands, discussing the role of nuclear receptors and stress/NF-kB pathways. We evidence that an in vitro toxicogenomic approach might suggest mechanisms of toxicity applicable to cells having the same developmental origin. Although we cannot draw firm conclusions, published data summarized in this review suggest that exposure to BPA, primarily during the developmental stages, represents a risk for carcinogenesis of endoderm-derived glands.
Collapse
Affiliation(s)
- Danila Cuomo
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy; Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy
| | | | - Gilda Cobellis
- Department of Experimental Medicine, Sez. Bozzatti, II University of Naples, 80138 Napoli, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy; Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Geppino Falco
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Antonio Nardone
- Department of Public Health, University of Naples "Federico II", Napoli, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
36
|
Ren H, Ren B, Zhang J, Zhang X, Li L, Meng L, Li Z, Li J, Gao Y, Ma X. Androgen enhances the activity of ETS-1 and promotes the proliferation of HCC cells. Oncotarget 2017; 8:109271-109288. [PMID: 29312607 PMCID: PMC5752520 DOI: 10.18632/oncotarget.22669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
The expression of androgen receptor (AR) has been detected in hepatocellular cancer (HCC). However, there is no universal model detailing AR’s function and mechanism in HCC. This study’s results show that treatment with dihydrotestosterone (DHT), an endogenous androgen, promoted HCC cells’ proliferation and up-regulated the transcription factor activity of ETS-1 (E26 transformation specific sequence 1), which mediates the migration and invasion of cancer cells via protein-protein interaction between AR and ETS-1. Results from luciferase assays showed that ETS-1’s activity was significantly up-regulated following androgen treatment. AR mediated ETS-1’s DHT-induced transcription factor activity. A potential protein-protein interaction between ETS-1 and AR was identified via glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. The mechanisms’ data indicated that enhancing AR activity increases ETS-1’s activity by modulating its cytoplasmic/nuclear translocation and recruiting ETS-1 to its target genes’ promoter. Moreover, while overexpression of AR significantly increased the proliferation or in vitro migration or invasion of HepG2 cells in the presence of androgen, inhibiting AR’s activity reduced these abilities. Thus, AR’s function as a novel ETS-1 co-activator or potentially therapeutic target of HCC has been demonstrated.
Collapse
Affiliation(s)
- Hui Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Bo Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jiabin Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xiaofeng Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lixin Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lingzhan Meng
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Zhijie Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jia Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Yinjie Gao
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xuemei Ma
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| |
Collapse
|
37
|
Iyer JK, Kalra M, Kaul A, Payton ME, Kaul R. Estrogen receptor expression in chronic hepatitis C and hepatocellular carcinoma pathogenesis. World J Gastroenterol 2017; 23:6802-6816. [PMID: 29085224 PMCID: PMC5645614 DOI: 10.3748/wjg.v23.i37.6802] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/12/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate gender-specific liver estrogen receptor (ER) expression in normal subjects and patients with hepatitis C virus (HCV)-related cirrhosis and hepatocellular carcinoma (HCC).
METHODS Liver tissues from normal donors and patients diagnosed with HCV-related cirrhosis and HCV-related HCC were obtained from the NIH Liver Tissue and Cell Distribution System. The expression of ER subtypes, ERα and ERβ, were evaluated by Western blotting and real-time RT-PCR. The subcellular distribution of ERα and ERβ was further determined in nuclear and cytoplasmic tissue lysates along with the expression of inflammatory [activated NF-κB and IκB-kinase (IKK)] and oncogenic (cyclin D1) markers by Western blotting and immunohistochemistry. The expression of ERα and ERβ was correlated with the expression of activated NF-κB, activated IKK and cyclin D1 by Spearman’s correlation.
RESULTS Both ER subtypes were expressed in normal livers but male livers showed significantly higher expression of ERα than females (P < 0.05). We observed significantly higher mRNA expression of ERα in HCV-related HCC liver tissues as compared to normals (P < 0.05) and ERβ in livers of HCV-related cirrhosis and HCV-related HCC subjects (P < 0.05). At the protein level, there was a significantly higher expression of nuclear ERα in livers of HCV-related HCC patients and nuclear ERβ in HCV-related cirrhosis patients as compared to normals (P < 0.05). Furthermore, we observed a significantly higher expression of phosphorylated NF-κB and cyclin D1 in diseased livers (P < 0.05). There was a positive correlation between the expression of nuclear ER subtypes and nuclear cyclin D1 and a negative correlation between cytoplasmic ER subtypes and cytoplasmic phosphorylated IKK in HCV-related HCC livers. These findings suggest that dysregulated expression of ER subtypes following chronic HCV-infection may contribute to the progression of HCV-related cirrhosis to HCV-related HCC.
CONCLUSION Gender differences were observed in ERα expression in normal livers. Alterations in ER subtype expression observed in diseased livers may influence gender-related disparity in HCV-related pathogenesis.
Collapse
Affiliation(s)
- Janaki K Iyer
- Department of Biochemistry and Microbiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, United States
- (Current Affiliation) Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, United States
| | - Mamta Kalra
- Immatics US Inc, Houston, TX 77077, United States
| | - Anil Kaul
- Health Care Administration, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, United States
| | - Mark E Payton
- Department of Statistics, Oklahoma State University, Stillwater, OK 74078, United States
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, United States
| |
Collapse
|
38
|
Zhang S, Liu Q, Zhang Q, Liu L. MicroRNA-30a-5p suppresses proliferation, invasion and tumor growth of hepatocellular cancer cells via targeting FOXA1. Oncol Lett 2017; 14:5018-5026. [PMID: 29085515 DOI: 10.3892/ol.2017.6745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/09/2017] [Indexed: 01/04/2023] Open
Abstract
Deregulation of microRNAs (miRs) has been observed in a variety of types of human cancer. Previously, miR-30a-5p has been demonstrated to exhibit a suppressive role in hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unclear. The present study aimed to elucidate the regulatory mechanism of miR-30a-5p in proliferation and invasion of HCC cells. Quantitative reverse transcription polymerase and western blotting were used to examine mRNA and protein expression of Forkhead box A1 (FOXA1). MTT and Transwell assays were performed to examine proliferation and invasion. Luciferase reporter assay was used to determine the association between miR-30a-5p and FOXA1. The data indicated that miR-30a-5p was significantly downregulated in HCC tissues compared with normal liver tissues. Furthermore, the level of miR-30a-5p was lower in HCC tissues with higher histological grade and advanced tumor stage compared with tissues with lower histological grade and tumor stage. Additionally, restoration of miR-30a-5p expression decreased the proliferation and invasion of HCC HepG2 and SMMC-7721 cells. FOXA1, a novel oncogene in HCC, was further identified as a target of miR-30a-5p. Furthermore, high expression of miR-30a-5p suppressed mRNA and protein expression of FOXA1, while overexpression of FOXA1 reversed the suppressive effect of miR-30a-5p on proliferation and invasion of HepG2 and SMMC-7721 cells. FOXA1 was markedly upregulated in HCC tissues compared with normal liver tissues, and its level was higher in HCC tissues with higher histological grade and advanced tumor stage. In addition, it was found that overexpression of miR-30a-5p significantly suppressed the tumor growth of HCC cells in nude mice. Taken together, the present study supports that miR-30a-5p inhibits the proliferation, invasion, and tumor growth of HCC cells, partly at least, by inhibition of FOXA1 expression, and therefore suggests that miR-30a-5p may serve as a potential candidate for HCC therapy.
Collapse
Affiliation(s)
- Shuliang Zhang
- Department of Hepatobiliary Surgery, Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| | - Qin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling Liu
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
39
|
Zheng B, Zhu YJ, Wang HY, Chen L. Gender disparity in hepatocellular carcinoma (HCC): multiple underlying mechanisms. SCIENCE CHINA-LIFE SCIENCES 2017; 60:575-584. [PMID: 28547581 DOI: 10.1007/s11427-016-9043-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
On the global scale, hepatitis B virus (HBV) infection is the main cause of hepatocellular carcinoma (HCC) especially in regions of Asia where HBV infection is endemic. Epidemiological studies show that the incidence of inflammation-driven HCC in males is three times as high as in females. Recent studies suggest that sex hormones have a crucial role in the pathogenesis and development of HBV-induced HCC. We found that the estrogen/androgen signaling pathway is associated with decreased/increased transcription and replication of HBV genes and can promote the development of HBV infections by up/downregulating HBV RNA transcription and inflammatory cytokines levels, which in turn slow down the progression of HBV-induced HCC. Additionally, sex hormones can also affect HBV-related HCC by inducing epigenetic changes. The evidence that both morphology and function of the human liver are affected by sex hormones was found over 60 years ago. However, the underlying molecular mechanism largely remains to be elucidated. This review focuses mainly on the molecular mechanisms behind the sex difference in HCC associated with HBV and other factors. In addition, several potential treatment and therapeutic strategies for inflammation-driven HCC will be introduced in this review.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Yan-Jing Zhu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China. .,National Center for Liver Cancer, Shanghai, 201805, China. .,State Key Laboratory of Oncogenes and related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China. .,National Center for Liver Cancer, Shanghai, 201805, China.
| |
Collapse
|
40
|
Zinovyeva MV, Kuzmich AI, Monastyrskaya GS, Sverdlov ED. The role of FOXA subfamily factors in embryonic development and carcinogenesis of the pancreas. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2017. [DOI: 10.3103/s0891416816030113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Forkhead box a2 (FOXA2) is essential for uterine function and fertility. Proc Natl Acad Sci U S A 2017; 114:E1018-E1026. [PMID: 28049832 DOI: 10.1073/pnas.1618433114] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Establishment of pregnancy is a critical event, and failure of embryo implantation and stromal decidualization in the uterus contribute to significant numbers of pregnancy losses in women. Glands of the uterus are essential for establishment of pregnancy in mice and likely in humans. Forkhead box a2 (FOXA2) is a transcription factor expressed specifically in the glands of the uterus and is a critical regulator of postnatal uterine gland differentiation in mice. In this study, we conditionally deleted FOXA2 in the adult mouse uterus using the lactotransferrin Cre (Ltf-Cre) model and in the neonatal mouse uterus using the progesterone receptor Cre (Pgr-Cre) model. The uteri of adult FOXA2-deleted mice were morphologically normal and contained glands, whereas the uteri of neonatal FOXA2-deleted mice were completely aglandular. Notably, adult FOXA2-deleted mice are completely infertile because of defects in blastocyst implantation and stromal cell decidualization. Leukemia inhibitory factor (LIF), a critical implantation factor of uterine gland origin, was not expressed during early pregnancy in adult FOXA2-deleted mice. Intriguingly, i.p. injections of LIF initiated blastocyst implantation in the uteri of both gland-containing and glandless adult FOXA2-deleted mice. Although pregnancy was rescued by LIF and was maintained to term in uterine gland-containing adult FOXA2-deleted mice, pregnancy failed by day 10 in neonatal FOXA2-deleted mice lacking uterine glands. These studies reveal a previously unrecognized role for FOXA2 in regulation of adult uterine function and fertility and provide original evidence that uterine glands and, by inference, their secretions play important roles in blastocyst implantation and stromal cell decidualization.
Collapse
|
42
|
Zhu L, Huang F, Deng G, Nie W, Huang W, Xu H, Zheng S, Yi Z, Wan T. MicroRNA-212 targets FOXA1 and suppresses the proliferation and invasion of intrahepatic cholangiocarcinoma cells. Exp Ther Med 2016; 12:3790-3796. [PMID: 28105112 DOI: 10.3892/etm.2016.3824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), which are a class of small RNAs, have been shown to negatively regulate the expression of their target genes by directly binding to the 3'-untranslated region (3'-UTR) of mRNA. miRNA dysregulation has been associated with the pathogenesis of numerous types of human cancer. However, the role of miRNAs in intrahepatic cholangiocarcinoma (ICC) has yet to be fully elucidated. The present study aimed to investigate the role of miR-212 in the growth and metastasis of ICC in vitro, as well as the underlying mechanism. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to examine mRNA and protein expression. An MTT assay and transwell assay were conducted to determine cell proliferation and invasion rates. The results of the RT-qPCR demonstrated that miR-212 was downregulated in the majority of investigated ICC tissues, as compared with their matched adjacent non-tumor tissues. In addition, miR-212 expression was shown to be markedly downregulated in three ICC cell lines, as compared with human intrahepatic biliary epithelial cells. Furthermore, restoration of miR-212 expression significantly suppressed the proliferation and invasion of ICC QBC939 cells. Forkhead box protein A1 (FOXA1) was predicted to be a putative target of miR-212 by bioinformatics analysis with TargetScan. Therefore, a luciferase reporter assay was conducted to confirm that miR-212 was able to directly bind to the 3'-UTR of FOXA1 mRNA. In addition, using western blot analysis, the protein expression of FOXA1 was shown to be negatively regulated by miR-212 in ICC QBC939 cells. In conclusion, it was demonstrated that FOXA1 was frequently upregulated in various ICC tissues and cell lines. The results of the present study suggested that miR-212 inhibits the proliferation and invasion of ICC cells by directly targeting FOXA1, and thus may be considered a potential candidate for the treatment of ICC.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Feizhou Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Gang Deng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wanpin Nie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongbo Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaopeng Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhongjie Yi
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Tao Wan
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
43
|
Ma W, Jiang J, Li M, Wang H, Zhang H, He X, Huang L, Zhou Q. The clinical significance of forkhead box protein A1 and its role in colorectal cancer. Mol Med Rep 2016; 14:2625-31. [PMID: 27484093 PMCID: PMC4991678 DOI: 10.3892/mmr.2016.5583] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
Forkhead box protein A1 (FOXA1) is a transcription factor; recent studies have reported that FOXA1 has an oncogenic or tumor suppressive role in human malignancies, and its expression is associated with the prognosis of patients with cancer. However, further studies are required to determine the clinical significance of FOXA1 and its role in colorectal cancer (CRC). In the present study, FOXA1 expression was detected in 90 samples of CRC tissues and matched noncancerous tissues using immunohistochemistry. In these cases, FOXA1 expression was detected in 57.8% (52/90) of the CRC samples, whereas only 37.8% (34/90) of the noncancerous specimens exhibited a positive FOXA1 signal. In addition, the present study demonstrated that the mRNA expression levels of FOXA1 were significantly increased in CRC tissues compared with in matched tumor-adjacent tissues. Furthermore, the positive expression of FOXA1 was associated with poor clinicopathological characteristics of CRC, including poor tumor differentiation, large tumor size, lymph node metastases and advanced tumor-node-metastasis tumor stage. Notably, patients with CRC with positive FOXA1 expression exhibited a significantly reduced 5-year survival rate compared with those with negative FOXA1 expression. Multivariate Cox regression analysis revealed that FOXA1 expression was an independent prognostic indicator for patients with CRC. In addition, FOXA1 knockdown evidently inhibited cell proliferation and induced apoptosis in SW480 and HCT116 CRC cells. Notably, FOXA1 knockdown also prominently reduced the expression of yes-associated protein (YAP) in SW480 and HCT116 cells. In conclusion, the results of the present study indicated that FOXA1 may be considered a potential prognostic marker, and may promote tumor growth of CRC by upregulating YAP expression.
Collapse
Affiliation(s)
- Wenqi Ma
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Miao Li
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongli Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lili Huang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
44
|
Sun Y, Tao C, Huang X, He H, Shi H, Zhang Q, Wu H. Metformin induces apoptosis of human hepatocellular carcinoma HepG2 cells by activating an AMPK/p53/miR-23a/FOXA1 pathway. Onco Targets Ther 2016; 9:2845-53. [PMID: 27274280 PMCID: PMC4869652 DOI: 10.2147/ott.s99770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The antidiabetic drug metformin has been shown to possess antitumor functions in many types of cancers. Although studies have revealed its beneficial effects on the prognosis of hepatocellular carcinoma (HCC), the detailed molecular mechanism underlying this event remains largely unknown. In this work, we showed that miR-23a was significantly induced upon metformin treatment; inhibition of miR-23a abrogated the proapoptotic effect of metformin in HepG2 cells. We next established forkhead box protein A1 (FOXA1) as the functional target of miR-23a, and silencing FOXA1 mimicked the effect of metformin. Moreover, the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of p53 were increased upon metformin treatment, and the inhibition of p53 abrogated the induction of miR-23a by metformin, suggesting that AMPK/p53 signaling axis is responsible for the induction of miR-23a by metformin. In summary, we unraveled a novel AMPK/p53/miR-23a/FOXA1 axis in the regulation of apoptosis in HCC, and the application of metformin could, therefore, be effective in the treatment of HCC.
Collapse
Affiliation(s)
- Yunpeng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chonglin Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaming Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Han He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hongqi Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Huanhuan Wu
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
45
|
Palierne G, Fabre A, Solinhac R, Le Péron C, Avner S, Lenfant F, Fontaine C, Salbert G, Flouriot G, Arnal JF, Métivier R. Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment. Mol Endocrinol 2016; 30:709-32. [PMID: 27164166 DOI: 10.1210/me.2015-1311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation by the estrogen receptor-α (ER) has been investigated mainly in breast cancer cell lines, but estrogens such as 17β-estradiol (E2) exert numerous extrareproductive effects, particularly in the liver, where E2 exhibits both protective metabolic and deleterious thrombotic actions. To analyze the direct and early transcriptional effects of estrogens in the liver, we determined the E2-sensitive transcriptome and ER cistrome in mice after acute administration of E2 or placebo. These analyses revealed the early induction of genes involved in lipid metabolism, which fits with the crucial role of ER in the prevention of liver steatosis. Characterization of the chromatin state of ER binding sites (BSs) in mice expressing or not ER demonstrated that ER is not required per se for the establishment and/or maintenance of chromatin modifications at the majority of its BSs. This is presumably a consequence of a strong overlap between ER and hepatocyte nuclear factor 4α BSs. In contrast, 40% of the BSs of the pioneer factor forkhead box protein a (Foxa2) were dependent upon ER expression, and ER expression also affected the distribution of nucleosomes harboring dimethylated lysine 4 of Histone H3 around Foxa2 BSs. We finally show that, in addition to a network of liver-specific transcription factors including CCAAT/enhancer-binding protein and hepatocyte nuclear factor 4α, ER might be required for proper Foxa2 function in this tissue.
Collapse
Affiliation(s)
- Gaëlle Palierne
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Aurélie Fabre
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Romain Solinhac
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Christine Le Péron
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Stéphane Avner
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Françoise Lenfant
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Coralie Fontaine
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Gilles Salbert
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Gilles Flouriot
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Jean-François Arnal
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Raphaël Métivier
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| |
Collapse
|
46
|
Armfield BA, Seifert AW, Zheng Z, Merton EM, Rock JR, Lopez MC, Baker HV, Cohn MJ. Molecular Characterization of the Genital Organizer: Gene Expression Profile of the Mouse Urethral Plate Epithelium. J Urol 2016; 196:1295-302. [PMID: 27173853 DOI: 10.1016/j.juro.2016.04.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE Lower urinary tract malformations are among the most common congenital anomalies in humans. Molecular genetic studies of mouse external genital development have begun to identify mechanisms that pattern the genital tubercle and orchestrate urethral tubulogenesis. The urethral plate epithelium is an endodermal signaling region that has an essential role in external genital development. However, little is known about the molecular identity of this cell population or the genes that regulate its activity. MATERIALS AND METHODS We used microarray analysis to characterize differences in gene expression between urethral plate epithelium and surrounding tissue in mouse genital tubercles. In situ hybridizations were performed to map gene expression patterns and ToppCluster (https://toppcluster.cchmc.org/) was used to analyze gene associations. RESULTS A total of 84 genes were enriched at least 20-fold in urethral plate epithelium relative to surrounding tissue. The majority of these genes were expressed throughout the urethral plate in males and females at embryonic day 12.5 when the urethral plate is known to signal. Functional analysis using ToppCluster revealed genetic pathways with known functions in other organ systems but unknown roles in external genital development. Additionally, a 3-dimensional molecular atlas of genes enriched in urethral plate epithelium was generated and deposited at the GUDMAP (GenitoUrinary Development Molecular Anatomy Project) website (http://gudmap.org/). CONCLUSIONS We identified dozens of genes previously unknown to be expressed in urethral plate epithelium at a crucial developmental period. It provides a novel panel of genes for analysis in animal models and in humans with external genital anomalies.
Collapse
Affiliation(s)
- Brooke A Armfield
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Ashley W Seifert
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Zhengui Zheng
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Emily M Merton
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Jason R Rock
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida; Department of Biology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida; Howard Hughes Medical Institute, University of Florida Genetics Institute, University of Florida, Gainesville, Florida.
| |
Collapse
|
47
|
Klinge CM. Estrogen action: Receptors, transcripts, cell signaling, and non-coding RNAs in normal physiology and disease. Mol Cell Endocrinol 2015; 418 Pt 3:191-2. [PMID: 26681526 DOI: 10.1016/j.mce.2015.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
48
|
Deng L, Yang H, Tang J, Lin Z, Yin A, Gao Y, Wang X, Jiang R, Sun B. Inhibition of MTA1 by ERα contributes to protection hepatocellular carcinoma from tumor proliferation and metastasis. J Exp Clin Cancer Res 2015; 34:128. [PMID: 26503703 PMCID: PMC4624357 DOI: 10.1186/s13046-015-0248-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although expression of MTA1 inversely correlates with the nuclear localization of ERα, the effect and molecular mechanism of ERα regulation of MTA1 remain unknown. METHODS Quantitative real-time PCR and western blot analyses were used to measure levels of MTA1. The effect on HCC cell proliferation and invasion was assessed by EdU incorporation assays and Transwell, respectively. ShRNA and dual-luciferase assays were used to investigate the regulatory relationship between MTA1 and ERα in cell lines. RESULTS We found that MTA1 gene regulation by ERα may be influenced by nuclear corepressors. The MTA1 promoter has three functional ER-element half-sites that lead to decreased MTA1 transcription and expression. ERα overexpression suppressed the proliferation and invasion of hepatocellular carcinoma cells (HCC). In addition, overexpression of MTA1 attenuated ERα-mediated suppression of the proliferation and invasion of HCC cells and tumor formation in vivo. These results suggested feedback regulation between ERα and MTA1. In summary, our results demonstrated that ERα suppressed proliferation and invasion of human HCC cells through downregulation of MTA1 transcription. CONCLUSIONS Our study is an improved description of the mechanisms of the suppressive effect of ERα on HCCs, adding understanding to the gender disparity of HCC progression.
Collapse
Affiliation(s)
- Lei Deng
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Hui Yang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junwei Tang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Zhe Lin
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Aihong Yin
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Yun Gao
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xuehao Wang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Runqiu Jiang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China.
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, P.R. China.
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China.
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, P.R. China.
| |
Collapse
|
49
|
Kanda T, Yokosuka O. The androgen receptor as an emerging target in hepatocellular carcinoma. J Hepatocell Carcinoma 2015; 2:91-9. [PMID: 27508198 PMCID: PMC4918288 DOI: 10.2147/jhc.s48956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the male-dominant liver diseases with poor prognosis, although treatments for HCC have been progressing in the past decades. Androgen receptor (AR) is a member of the nuclear receptor superfamily. Previous studies reported that AR was expressed in human HCC and non-HCC tissues. AR is activated both ligand-dependently and ligand-independently. The latter is associated with a mitogen-activated protein kinase–, v-akt murine thymoma viral oncogene homolog 1–, or signal-transducer and activator of transcription–signaling pathway, which has been implicated in the development of HCC. It has been reported that more than 200 RNA expression levels are altered by androgen treatment. In the liver, androgen-responsive genes are cytochrome P450s, transforming growth factor β, vascular endothelial growth factor, and glucose-regulated protein 78 kDa, which are also associated with human hepatocarcinogenesis. Recent studies also revealed that AR plays a role in cell migration and metastasis. It is possible that cross-talk among AR-signaling, endoplasmic reticulum stress, and innate immune response is important for human hepatocarcinogenesis and HCC development. This review shows that AR could play a potential role in human HCC and represent one of the important target molecules for the treatment of HCC.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
50
|
Sun J, Luo H, Nie W, Xu X, Miao X, Huang F, Wu H, Jin X. Protective effect of RIP and c-FLIP in preventing liver cancer cell apoptosis induced by TRAIL. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6519-6525. [PMID: 26261530 PMCID: PMC4525864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) is a member of the tumor necrosis factor superfamily that can induce tumor selective death by up-regulating death receptor 4 (DR4) and DR5 expression. The study aimed to explore the role of RIP and c-FLIP genes in TRAIL induced liver cancer cell HepG2 and Hep3B apoptosis and related mechanism. RIP and c-FLIP silenced HepG2 and Hep3B cell model were established through siRNA. Western blot was applied to test c-FLIP, RIP, DR4, DR5, FADD, Caspase-3/8/9, ERK1/2, and DFF45 protein expression. Caspase-8 kit was used to detect Caspase-8 expression. Flow cytometry was performed to measure cell apoptosis rate. Acid phosphatase method was applied to determine cell cycle. TRAIL had no significant effect on Caspase-3/8/9, DR4, DR5, ERK1/2, and DFF45 protein expression, but up-regulated c-FLIP and RIP protein expression and reduced FADD expression level. After treated by the chemotherapy drug mitomycin and adriamycin, c-FLIP and RIP expression decreased significantly, while FADD increased. After knockout c-FLIP and RIP gene, HepG2 and Hep3B cell apoptosis rate induced by TRAIL increased obviously. Meanwhile, cell subG1 percentage increased markedly and exhibited G1 phase growth retardation. In addition, after two kinds of gene knockout, Caspase-8 was activated and produce Caspase-3 P20 and P24, leading DFF45 appeared DNA fragment P17 and P25. c-FLIP and RIP can inhibit Caspase-8 activation and prompting HepG2 and Hep3B resistant to cell apoptosis induced by TRAIL.
Collapse
Affiliation(s)
- Jichun Sun
- Department of Surgery, The 3rd Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Hongwu Luo
- Department of Surgery, The 3rd Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Wanpin Nie
- Department of Surgery, The 3rd Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Xundi Xu
- Department of Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Xiongying Miao
- Department of Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Feizhou Huang
- Department of Surgery, The 3rd Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Haiyan Wu
- Department of Surgery, The 3rd Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Xiaoxin Jin
- Department of Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| |
Collapse
|