1
|
Limberger Nedel B, Garcia Madure M, Guaresi S, Soares Machado ME, Madrid de Bittencourt M, Nobrega Chagas N, Gerchman F. Breast Adiposity: Menopausal Status Impact and its Influence on Glycemic and Anthropometric Metabolic Parameters. J Clin Endocrinol Metab 2024; 109:2467-2477. [PMID: 38558168 DOI: 10.1210/clinem/dgae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT Ectopic fat depots are related to the deregulation of energy homeostasis, leading to diseases related to obesity and metabolic syndrome (MetS). Despite significant changes in body composition over women's lifespans, little is known about the role of breast adipose tissue (BrAT) and its possible utilization as an ectopic fat depot in women of different menopausal statuses. OBJECTIVE We aimed to assess the relationship between BrAT and metabolic glycemic and lipid profiles and body composition parameters in adult women. METHODS In this cross-sectional study, we enrolled adult women undergoing routine mammograms and performed history and physical examination, body composition assessment, semi-automated assessment of breast adiposity (BA) from mammograms, and fasting blood collection for biochemical analysis. Correlations and multivariate regression analysis were used to examine associations of BA with metabolic and body composition parameters. RESULTS Of the 101 participants included in the final analysis, 76.2% were in menopause, and 23.8% were in premenopause. The BA was positively related with fasting plasma glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, body mass index, waist circumference, body fat percentage, and abdominal visceral and subcutaneous fat when adjusted for age among women in postmenopause. Also, the BA was an independent predictor of hyperglycemia and MetS. These associations were not present among women in premenopause. CONCLUSION The BA was related to different adverse body composition and metabolic factors in women in postmenopause. The results suggest that there might be a relevant BrAT endocrine role during menopause, with mechanisms yet to be clarified, thus opening up research perspectives on the subject and potential clinical implications.
Collapse
Affiliation(s)
- Barbara Limberger Nedel
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | - Michelle Garcia Madure
- Faculty of Nutrition and Food Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | - Silvia Guaresi
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | - Maria Elisa Soares Machado
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | | | - Nathalia Nobrega Chagas
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | - Fernando Gerchman
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, 90035-903, Brazil
| |
Collapse
|
2
|
Shi XK, Peng T, Azimova B, Li XL, Li SS, Cao DY, Fu NJ, Zhang GL, Xiao WL, Wang F. Luteolin and its analog luteolin-7-methylether from Leonurus japonicus Houtt suppress aromatase-mediated estrogen biosynthesis to alleviate polycystic ovary syndrome by the inhibition of tumor progression locus 2. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118279. [PMID: 38705425 DOI: 10.1016/j.jep.2024.118279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurus japonicus Houtt (L. japonicus, Chinese motherwort), known as Yi Mu Cao which means "good for women", has long been widely used in China and other Asian countries to alleviate gynecological disorders, often characterized by estrogen dysregulation. It has been used for the treatment of polycystic ovary syndrome (PCOS), a common endocrine disorder in women but the underlying mechanism remains unknown. AIM OF THE STUDY The present study was designed to investigate the effect and mechanism of flavonoid luteolin and its analog luteolin-7-methylether contained in L. japonicus on aromatase, a rate-limiting enzyme that catalyzes the conversion of androgens to estrogens and a drug target to induce ovulation in PCOS patients. MATERIALS AND METHODS Estrogen biosynthesis in human ovarian granulosa cells was examined using ELISA. Western blots were used to explore the signaling pathways in the regulation of aromatase expression. Transcriptomic analysis was conducted to elucidate the potential mechanisms of action of compounds. Finally, animal models were used to assess the therapeutic potential of these compounds in PCOS. RESULTS Luteolin potently inhibited estrogen biosynthesis in human ovarian granulosa cells stimulated by follicle-stimulating hormone. This effect was achieved by decreasing cAMP response element-binding protein (CREB)-mediated expression of aromatase. Mechanistically, luteolin and luteolin-7-methylether targeted tumor progression locus 2 (TPL2) to suppress mitogen-activated protein kinase 3/6 (MKK3/6)-p38 MAPK-CREB pathway signaling. Transcriptional analysis showed that these compounds regulated the expression of different genes, with the MAPK signaling pathway being the most significantly affected. Furthermore, luteolin and luteolin-7-methylether effectively alleviated the symptoms of PCOS in mice. CONCLUSIONS This study demonstrates a previously unrecognized role of TPL2 in estrogen biosynthesis and suggests that luteolin and luteolin-7-methylether have potential as novel therapeutic agents for the treatment of PCOS. The results provide a foundation for further development of these compounds as effective and safe therapies for women with PCOS.
Collapse
Affiliation(s)
- Xiao-Ke Shi
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Peng
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Bahtigul Azimova
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, 45 Aybek Street, 100015, Tashkent, Uzbekistan
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China.
| | - Shan-Shan Li
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Yi Cao
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650500, China
| | - Nai-Jie Fu
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Lin Zhang
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Fei Wang
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Albers FEM, Lou MWC, Dashti SG, Swain CTV, Rinaldi S, Viallon V, Karahalios A, Brown KA, Gunter MJ, Milne RL, English DR, Lynch BM. Sex-steroid hormones and risk of postmenopausal estrogen receptor-positive breast cancer: a case-cohort analysis. Cancer Causes Control 2024; 35:921-933. [PMID: 38363402 PMCID: PMC11130059 DOI: 10.1007/s10552-024-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Sex-steroid hormones are associated with postmenopausal breast cancer but potential confounding from other biological pathways is rarely considered. We estimated risk ratios for sex-steroid hormone biomarkers in relation to postmenopausal estrogen receptor (ER)-positive breast cancer, while accounting for biomarkers from insulin/insulin-like growth factor-signaling and inflammatory pathways. METHODS This analysis included 1208 women from a case-cohort study of postmenopausal breast cancer within the Melbourne Collaborative Cohort Study. Weighted Poisson regression with a robust variance estimator was used to estimate risk ratios (RRs) and 95% confidence intervals (CIs) of postmenopausal ER-positive breast cancer, per doubling plasma concentration of progesterone, estrogens, androgens, and sex-hormone binding globulin (SHBG). Analyses included sociodemographic and lifestyle confounders, and other biomarkers identified as potential confounders. RESULTS Increased risks of postmenopausal ER-positive breast cancer were observed per doubling plasma concentration of progesterone (RR: 1.22, 95% CI 1.03 to 1.44), androstenedione (RR 1.20, 95% CI 0.99 to 1.45), dehydroepiandrosterone (RR: 1.15, 95% CI 1.00 to 1.34), total testosterone (RR: 1.11, 95% CI 0.96 to 1.29), free testosterone (RR: 1.12, 95% CI 0.98 to 1.28), estrone (RR 1.21, 95% CI 0.99 to 1.48), total estradiol (RR 1.19, 95% CI 1.02 to 1.39) and free estradiol (RR 1.22, 95% CI 1.05 to 1.41). A possible decreased risk was observed for SHBG (RR 0.83, 95% CI 0.66 to 1.05). CONCLUSION Progesterone, estrogens and androgens likely increase postmenopausal ER-positive breast cancer risk, whereas SHBG may decrease risk. These findings strengthen the causal evidence surrounding the sex-hormone-driven nature of postmenopausal breast cancer.
Collapse
Affiliation(s)
- Frances E M Albers
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
| | - Makayla W C Lou
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
| | - S Ghazaleh Dashti
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Christopher T V Swain
- Cancer Epidemiology Division, Cancer Council Victoria, Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
- Department of Physiotherapy, Melbourne School of Health Sciences, University of Melbourne, Melbourne, Australia
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Kristy A Brown
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Cancer Epidemiology and Prevention Research Unit, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia.
- Cancer Epidemiology Division, Cancer Council Victoria, Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia.
- Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
4
|
Eden JA. Why does hormonal contraception and menopausal hormonal treatment have such a small effect on breast cancer risk? Aust N Z J Obstet Gynaecol 2024. [PMID: 38686660 DOI: 10.1111/ajo.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Oestrogen is considered by many to be a major cause of breast cancer, and yet hormonal contraception and menopausal hormonal therapy have a paradoxically small effect on breast cancer risk. Also, in the oestrogen-only arm of the Women's Health Initiative, subjects given oestrogen had a reduced risk of breast cancer compared to controls. Initiation of breast cancer likely begins early in life, in the long-lived ER-PR- breast stem cell. The main mitogen of ER+PR+ breast cancers is oestrogen derived from local breast fat and the tumour itself, rather than circulating oestrogens. Progesterone is relatively breast neutral, but progestins in the laboratory have been shown to expand malignant breast stem cell number.
Collapse
Affiliation(s)
- John A Eden
- Royal Hospital for Women, University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Wu T, Ding K, Wang C, Lin G, Xie C, Chen X, Li Q, Yu F, Mao Y, Hong W, Lu L, Li S. G-protein-coupled estrogen receptor 1 promotes peritoneal metastasis of gastric cancer through nicotinamide adenine dinucleotide kinase 1-mediated redox modulation. FASEB J 2024; 38:e23449. [PMID: 38315451 DOI: 10.1096/fj.202301172rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Adipose tissue is the second most important site of estrogen production, where androgens are converted into estrogen by aromatase. While gastric cancer patients often develop adipocyte-rich peritoneal metastasis, the underlying mechanism remains unclear. In this study, we identified the G-protein-coupled estrogen receptor (GPER1) as a promoter of gastric cancer peritoneal metastasis. Functional in vitro studies revealed that β-Estradiol (E2) or the GPER1 agonist G1 inhibited anoikis in gastric cancer cells. Additionally, genetic overexpression or knockout of GPER1 significantly inhibited or enhanced gastric cancer cell anoikis in vitro and peritoneal metastasis in vivo, respectively. Mechanically, GPER1 knockout disrupted the NADPH pool and increased reactive oxygen species (ROS) generation. Conversely, overexpression of GPER1 had the opposite effects. GPER1 suppressed nicotinamide adenine dinucleotide kinase 1(NADK1) ubiquitination and promoted its phosphorylation, which were responsible for the elevated expression of NADK1 at protein levels and activity, respectively. Moreover, genetic inhibition of NADK1 disrupted NADPH and redox homeostasis, leading to high levels of ROS and significant anoikis, which inhibited lung and peritoneal metastasis in cell-based xenograft models. In summary, our study suggests that inhibiting GPER1-mediated NADK1 activity and its ubiquitination may be a promising therapeutic strategy for peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Teng Wu
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ke Ding
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Chun Wang
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Guoliang Lin
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Chengjie Xie
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Xianying Chen
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Quanxin Li
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Fenghai Yu
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuling Mao
- Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Lei Lu
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shuai Li
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Mumtaz S, Akhtar N, Ahmed A, Qazi AS. Dietary Pattern and Cancer. Cancer Treat Res 2024; 191:191-216. [PMID: 39133409 DOI: 10.1007/978-3-031-55622-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Diet play an important role in the development of cancer. A lot of research has been done on the role of individual nutrients or phytochemicals and cancer risk. Both harmful and beneficial associations of this nutrient have been observed with cancer. However, there is an interaction of individual dietary constituents to influence disease risk. On the other hand, examining the diet as a whole as is done in dietary patterns research may produce more accurate estimates and data that can be more easily translated into dietary recommendations. Dietary patterns and cancer research are becoming increasingly common in the epidemiology literature, and novel dietary patterns are being generated at a rapid pace. However, major issues remain over whether one general "healthy" dietary pattern can be suggested for cancer prevention or whether several diets should be advocated for different forms of cancer protection. It is challenging to study typical human diet in animal model that is appropriate for cancer prevention. Some dietary patterns, such as the ketogenic diet or macronutrient composition alteration, have been investigated more extensively in animal models than in humans in terms of cancer prevention, and bigger human observational studies are now needed to advise dietary guidelines. The question of whether to adapt nutritional guidelines to population subgroups based on susceptibility factors (for example, family history, sex, age, other lifestyle factors or comorbidities, metabolomics signatures, or microbiota-based profiles) is still open and will be crucial in moving the field forward.
Collapse
Affiliation(s)
- Sara Mumtaz
- National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Nosheen Akhtar
- National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | - Asma Saleem Qazi
- National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| |
Collapse
|
7
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
8
|
Jiang G, Shao J, Tang T, Wang M, Wang J, Jia X, Lai S. TMT-Based Proteomics Analysis Revealed the Protein Changes in Perirenal Fat from Obese Rabbits. Int J Mol Sci 2023; 24:17167. [PMID: 38138996 PMCID: PMC10743514 DOI: 10.3390/ijms242417167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity has become increasingly prevalent in recent years, and there is a need for a deeper understanding of the complex pathogenesis underlying the obesity condition. Therefore, the objective of this study was to investigate how a high-fat diet (HFD) affects protein expression in a female-rabbit model compared to a standard normal-diet group (SND), to gain comprehensive insights into the molecular mechanisms involved in obesity. To achieve this objective, a tandem mass tag (TMT)-based quantitative proteomics analysis was conducted to examine the molecular changes occurring in the white adipose tissue (WAT) from the HFD and SND groups. The sequencing results identified a total of 4215 proteins, among which 151 proteins exhibited significant differential expression. Specifically, there were 85 upregulated proteins and 66 downregulated proteins in the HFD group compared to the SND group. Further analysis of these differentially expressed proteins (DEPs) revealed their involvement in crucial biological processes, including energy metabolism, hormonal regulation, and inflammatory response. In conclusion, this study sheds light on the impact of HFD on protein expression in a female-rabbit model, providing new insights into the molecular mechanisms underlying obesity and the associated metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.J.); (J.S.); (T.T.); (M.W.); (J.W.); (X.J.)
| |
Collapse
|
9
|
Nahmias-Blank D, Maimon O, Meirovitz A, Sheva K, Peretz-Yablonski T, Elkin M. Excess body weight and postmenopausal breast cancer: Emerging molecular mechanisms and perspectives. Semin Cancer Biol 2023; 96:26-35. [PMID: 37739109 DOI: 10.1016/j.semcancer.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Postmenopausal, obese women have a significantly higher risk of developing estrogen receptor-positive (ER+) breast tumors, that are resistant to therapies and are associated with higher recurrence and death rates. The global prevalence of overweight/obese women has reached alarming proportions and with postmenopausal ER+ breast carcinoma (BC) having the highest incidence among the three obesity-related cancers in females (i.e., breast, endometrial and ovarian), this is of significant concern. Elucidation of the precise molecular mechanisms underlying the pro-cancerous action of obesity in ER+BC is therefore critical for disease prevention and novel treatment initiatives. Interestingly, accumulating data has shown opposing relationships between obesity and cancer in either pre- or post-menopausal women. Excess body weight is associated with an increased risk of breast cancer in postmenopausal women and a decreased risk in pre-menopausal women. Moreover, excess adiposity during early life appears to be protective against postmenopausal breast cancer, including both ER+ and ER negative BC subtypes. Overall, estrogen-dependent mechanisms have been implicated as the main driving force in obesity-related breast tumorigenesis. In the present review we discuss the epidemiologic and mechanistic aspects of association between obesity and breast tumors after menopause, mainly in the context of hormone dependency. Molecular and cellular events underlying this association present as potential avenues for both therapeutic intervention as well as the prevention of BC-promoting processes linked to excess adiposity, which is proving to be vital in an increasingly obese global population.
Collapse
Affiliation(s)
- Daniela Nahmias-Blank
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofra Maimon
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amichay Meirovitz
- Legacy Heritage Oncology Center and Dr. Larry Norton Institute, Soroka University Medical Center, Be'er Sheva 84101, Israel
| | - Kim Sheva
- Legacy Heritage Oncology Center and Dr. Larry Norton Institute, Soroka University Medical Center, Be'er Sheva 84101, Israel
| | - Tamar Peretz-Yablonski
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Hebrew University Medical School, Jerusalem 91120, Israel
| | - Michael Elkin
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Hebrew University Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
10
|
Albers FE, Lou MW, Dashti SG, Swain CT, Rinaldi S, Viallon V, Karahalios A, Brown KA, Gunter MJ, Milne RL, English DR, Lynch BM. Sex-steroid hormones and risk of postmenopausal estrogen receptor-positive breast cancer: a case-cohort analysis. RESEARCH SQUARE 2023:rs.3.rs-3406466. [PMID: 37886482 PMCID: PMC10602098 DOI: 10.21203/rs.3.rs-3406466/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Purpose Sex-steroid hormones are associated with postmenopausal breast cancer but potential confounding from other biological pathways is rarely considered. We estimated risk ratios for sex-steroid hormone biomarkers in relation to postmenopausal estrogen receptor (ER)-positive breast cancer, while accounting for biomarkers from insulin/insulin-like growth factor-signaling and inflammatory pathways. Methods This analysis included 1,208 women from a case-cohort study of postmenopausal breast cancer within the Melbourne Collaborative Cohort Study. Weighted Poisson regression with a robust variance estimator was used to estimate risk ratios (RRs) and 95% confidence intervals (CIs) of postmenopausal ER-positive breast cancer, per doubling plasma concentration of progesterone, estrogens, androgens, and sex hormone binding globulin (SHBG). Analyses included sociodemographic and lifestyle confounders, and other biomarkers identified as potential confounders. Results Increased risks of postmenopausal ER-positive breast cancer were observed per doubling plasma concentration of progesterone (RR: 1.22, 95% CI: 1.03 to 1.44), androstenedione (RR: 1.20, 95% CI: 0.99 to 1.45), dehydroepiandrosterone (RR: 1.15, 95% CI: 1.00 to 1.34), total testosterone (RR: 1.11, 95% CI: 0.96 to 1.29), free testosterone (RR: 1.12, 95% CI: 0.98 to 1.28), estrone (RR: 1.21, 95% CI: 0.99 to 1.48), total estradiol (RR: 1.19, 95% CI: 1.02 to 1.39) and free estradiol (RR: 1.22, 95% CI: 1.05 to 1.41). A possible decreased risk was observed for SHBG (RR: 0.83, 95% CI: 0.66 to 1.05). Conclusion Progesterone, estrogens and androgens likely increase postmenopausal ER-positive breast cancer risk, whereas SHBG may decrease risk. These findings strengthen the causal evidence surrounding the sex hormone-driven nature of postmenopausal breast cancer.
Collapse
|
11
|
Bakierzynska M, Cullinane MC, Redmond HP, Corrigan M. Prophylactic aspirin intake and breast cancer risk; A systematic review and meta-analysis of observational cohort studies. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106940. [PMID: 37321932 DOI: 10.1016/j.ejso.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Breast Cancer (BC) is the most common cancer amongst women. The chemo-preventative effects of aspirin on breast cancer have been demonstrated in several longitudinal studies however previous meta-analysis have shown inconsistent results. This study aimed to assess the relationship between aspirin use and BC risk, and to determine if there is a dose-response relationship between aspirin and BC risk. Studies incorporating BC risk with aspirin use published within the last twenty years were included. The study report is based on the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Meta-Analysis of Observational Studies in Epidemiology. Twenty-eight cohort studies that reported BC incidence during a follow up of 4.4-32 years were included. Compared to non-users, aspirin users had a reduced risk of BC (HR = 0.91, c.i 0.81-0.97, p = 0.002). There was no obvious association between BC risk reduction and aspirin dose (HR = 0.94, c.i 0.85-1.04) or duration (HR = 0.86, c.i 0.71-1.03). Frequency, however, was associated with a reduced risk of BC (HR = 0.90, c.i 0.82-0.98). A risk reduction was observed in oestrogen receptor (ER) positive tumours (HR = 0.90, c.i 0.86-0.96, p = 0.0004) while no relationship was observed with ER negative tumours (HR = 0.94, c.i 0.85-1.05). This meta-analysis found an association between aspirin intake and BC risk reduction. A more favourable outcome was noted with ingestion of greater than 6 tablets of aspirin per week. Aspirin had a significant risk reduction in patients with ER positive tumours compared to ER negative BC.
Collapse
Affiliation(s)
| | | | - Henry Paul Redmond
- Department of Surgery, Cork University Hospital, University College Cork, Cork, Ireland
| | - Mark Corrigan
- Department of Surgery, Cork University Hospital, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Dehesh T, Fadaghi S, Seyedi M, Abolhadi E, Ilaghi M, Shams P, Ajam F, Mosleh-Shirazi MA, Dehesh P. The relation between obesity and breast cancer risk in women by considering menstruation status and geographical variations: a systematic review and meta-analysis. BMC Womens Health 2023; 23:392. [PMID: 37496015 PMCID: PMC10373406 DOI: 10.1186/s12905-023-02543-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Given the increase in the incidence of breast cancer during the past decades, several studies have investigated the effects of variables on breast cancer, especially obesity. This systematic review and meta-analysis aims to evaluate any effects of obesity on breast cancer risk in women, before and after menopause, and in different continents.All forms of relevant literature examining any association between obesity and breast cancer, including cohort, case-control, and cross-sectional studies, were identified in the PubMed, Scopus, EMBASE, and Web of Science databases from January 1, 1990 until January 13, 2023. Body mass index (BMI) > 30 was used to indicate obesity. Every type of breast cancer was examined as outcome factors. The quality of the papers was evaluated using the Newcastle-Ottawa scale checklist. The Egger and Begg test was used to evaluate publication bias. To assess any extra impact of each research on the final measurement, a sensitivity analysis was carried out.One hundred and two studies were included in this meta-analysis. Respectively, 48 and 67 studies reported associations between obesity and breast cancer in pre and post menopausal women. Combining all studies, the pooled OR of the association between obesity and breast cancer in pre-menopausal women was OR = 0.93 CI: (0.85-1.1), (I2 = 65.4%), and for post-menopausal woman, OR = 1.26 CI: (1.19-1.34), (I2 = 90.5%).Obesity has a protective role in breast cancer among pre-menopausal women, but this relationship is statistically significant only in European women. The chance of developing breast cancer increases in post-menopausal women who are obese. This relationship is significant among Asian, North American, African and European women.
Collapse
Affiliation(s)
- Tania Dehesh
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Shohreh Fadaghi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Seyedi
- Department of Health of Management and Medical Information Sciencese, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abolhadi
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Shams
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ajam
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radio-Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Dehesh
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Hajirahimkhan A, Howell C, Bartom ET, Dong H, Lantvit DD, Xuei X, Chen SN, Pauli GF, Bolton JL, Clare SE, Khan SA, Dietz BM. Breast cancer prevention with liquiritigenin from licorice through the inhibition of aromatase and protein biosynthesis in high-risk women's breast tissue. Sci Rep 2023; 13:8734. [PMID: 37253812 PMCID: PMC10229614 DOI: 10.1038/s41598-023-34762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Breast cancer risk continues to increase post menopause. Anti-estrogen therapies are available to prevent postmenopausal breast cancer in high-risk women. However, their adverse effects have reduced acceptability and overall success in cancer prevention. Natural products such as hops (Humulus lupulus) and three pharmacopeial licorice (Glycyrrhiza) species have demonstrated estrogenic and chemopreventive properties, but little is known regarding their effects on aromatase expression and activity as well as pro-proliferation pathways in human breast tissue. We show that Gycyrrhiza inflata (GI) has the highest aromatase inhibition potency among these plant extracts. Moreover, phytoestrogens such as liquiritigenin which is common in all licorice species have potent aromatase inhibitory activity, which is further supported by computational docking of their structures in the binding pocket of aromatase. In addition, GI extract and liquiritigenin suppress aromatase expression in the breast tissue of high-risk postmenopausal women. Although liquiritigenin has estrogenic effects in vitro, with preferential activity through estrogen receptor (ER)-β, it reduces estradiol-induced uterine growth in vivo. It downregulates RNA translation, protein biosynthesis, and metabolism in high-risk women's breast tissue. Finally, it reduces the rate of MCF-7 cell proliferation, with repeated dosing. Collectively, these data suggest that liquiritigenin has breast cancer prevention potential for high-risk postmenopausal women.
Collapse
Affiliation(s)
- Atieh Hajirahimkhan
- Division of Breast Surgery, Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior, 4-220, Chicago, IL, 60611, USA.
| | - Caitlin Howell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, The Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Huali Dong
- University of Illinois Cancer Center, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Daniel D Lantvit
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, College of Medicine, Indiana University, Indianapolis, IN, USA
| | - Shao-Nong Chen
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Guido F Pauli
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Judy L Bolton
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Susan E Clare
- Division of Breast Surgery, Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior, 4-220, Chicago, IL, 60611, USA
| | - Seema A Khan
- Division of Breast Surgery, Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior, 4-220, Chicago, IL, 60611, USA
| | - Birgit M Dietz
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Zhang LC, Liu YN, La XQ, Li ST, Wen LN, Liu T, Li HQ, Li AP, Wu H, Wu CX, Li ZY. The bound polyphenols of foxtail millet (Setaria italica) inner shell inhibit breast cancer by promoting lipid accumulation-induced autophagic death. Food Chem Toxicol 2023:113855. [PMID: 37230459 DOI: 10.1016/j.fct.2023.113855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Foxtail millet is a traditional excellent crop with high nutritional value in the world, belong to cereals. The bran of foxtail millet is rich in polyphenol that has antioxidant, anti-inflammatory, and anti-tumorigenic effects. Previously, we extracted bound polyphenols from the inner shell of foxtail millet bran (BPIS). Here, we report that BPIS specifically induced breast cancer cell death and elevated the autophagy level simultaneously. The addition of an autophagy inhibitor blocked BPIS-induced breast cancer cell death, indicating that excessive autophagy induced cell death. Furthermore, oil red O and BODIPY staining also confirmed that lipids, which are important inducers of autophagy, accumulated in breast cancer cells treated with BPIS. Lipidomics research revealed that glycerophospholipids were the main accumulated lipids induced by BPIS. Further study showed that elevated PCYT1A expression was responsible for glycerophospholipid accumulation, and BPIS contained ferulic acid and p-coumaric acid, which induced PCYT1A expression and breast cancer cell death. Collectively, our results revealed that BPIS resulted in autophagic death by enhancing lipid accumulation in breast cancer cells, and BPIS contains ferulic acid and p-coumaric acid, which provided new insights into developing nutraceuticals and drugs for breast cancer patients.
Collapse
Affiliation(s)
- Li-Chao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Ya-Ning Liu
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiao-Qin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Shuai-Tao Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Li-Na Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ting Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Han-Qing Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Haitao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Chang-Xin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Zhuo-Yu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China; Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
15
|
Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases-current status. Front Pharmacol 2023; 14:1155558. [PMID: 37188267 PMCID: PMC10175629 DOI: 10.3389/fphar.2023.1155558] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Local formation and action of estrogens have crucial roles in hormone dependent cancers and benign diseases like endometriosis. Drugs that are currently used for the treatment of these diseases act at the receptor and at the pre-receptor levels, targeting the local formation of estrogens. Since 1980s the local formation of estrogens has been targeted by inhibitors of aromatase that catalyses their formation from androgens. Steroidal and non-steroidal inhibitors have successfully been used to treat postmenopausal breast cancer and have also been evaluated in clinical studies in patients with endometrial, ovarian cancers and endometriosis. Over the past decade also inhibitors of sulfatase that catalyses the hydrolysis of inactive estrogen-sulfates entered clinical trials for treatment of breast, endometrial cancers and endometriosis, with clinical effects observed primarily in breast cancer. More recently, inhibitors of 17beta-hydroxysteroid dehydrogenase 1, an enzyme responsible for formation of the most potent estrogen, estradiol, have shown promising results in preclinical studies and have already entered clinical evaluation for endometriosis. This review aims to provide an overview of the current status of the use of hormonal drugs for the major hormone-dependent diseases. Further, it aims to explain the mechanisms behind the -sometimes- observed weak effects and low therapeutic efficacy of these drugs and the possibilities and the advantages of combined treatments targeting several enzymes in the local estrogen formation, or drugs acting with different therapeutic mechanisms.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Romano
- GROW Department of Gynaecology, Faculty of Health, Medicine and Life Sciences (FHML)/GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Chen J, Wang Y, Meng W, Zhao R, Lin W, Xiao H, Liao Y. Stearoyl-CoA Desaturases1 Accelerates Non-Small Cell Lung Cancer Metastasis by Promoting Aromatase Expression to Improve Estrogen Synthesis. Int J Mol Sci 2023; 24:ijms24076826. [PMID: 37047797 PMCID: PMC10095487 DOI: 10.3390/ijms24076826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Metastases contribute to the low survival rate of non-small cell lung cancer (NSCLC) patients. Targeting lipid metabolism for anticancer therapies is attractive. Accumulative evidence shows that stearoyl-CoA desaturases1 (SCD1), a key enzyme in lipid metabolism, enables tumor metastasis and the underlying mechanism remains unknown. In this study, immunohistochemical staining of 96 clinical specimens showed that the expression of SCD1 was increased in tumor tissues (p < 0.001). SCD1 knockdown reduced the migration and invasion of HCC827 and PC9 cells in transwell and wound healing assays. Aromatase (CYP19A1) knockdown eliminated cell migration and invasion caused by SCD1 overexpression. Western blotting assays demonstrated that CYP19A1, along with β-catenin protein levels, was reduced in SCD1 knocked-down cells, and estrogen concentration was reduced (p < 0.05) in cell culture medium measured by enzyme-linked immunosorbent assay. SCD1 overexpression preserving β-catenin protein stability was evaluated by coimmunoprecipitation and Western blotting. The SCD1 inhibitor A939572, and a potential SCD1 inhibitor, grape seed extract (GSE), significantly inhibited cell migration and invasion by blocking SCD1 and its downstream β-catenin, CYP19A1 expression, and estrogen concentration. In vivo tumor formation assay and a tail vein metastasis model indicated that knockdown of SCD1 blocked tumor growth and metastasis. In conclusion, SCD1 could accelerate metastasis by maintaining the protein stability of β-catenin and then promoting CYP19A1 transcription to improve estrogen synthesis. SCD1 is expected to be a promised therapeutic target, and its novel inhibitor, GSE, has great therapeutic potential in NSCLC.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Cardiovascular Disease as a Consequence or a Cause of Cancer: Potential Role of Extracellular Vesicles. Biomolecules 2023; 13:biom13020321. [PMID: 36830690 PMCID: PMC9953640 DOI: 10.3390/biom13020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Both cardiovascular disease and cancer continue to be causes of morbidity and mortality all over the world. Preventing and treating heart disease in patients undergoing cancer treatment remain an important and ongoing challenge for improving the lives of cancer patients, but also for their survival. Despite ongoing efforts to improve patient survival, minimal advances have been made in the early detection of cardiovascular disease in patients suffering from cancer. Understanding the communication between cancer and cardiovascular disease can be based on a deeper knowledge of the molecular mechanisms that define the profile of the bilateral network and establish disease-specific biomarkers and therapeutic targets. The role of exosomes, microvesicles, and apoptotic bodies, together defined as extracellular vesicles (EVs), in cross talk between cardiovascular disease and cancer is in an incipient form of research. Here, we will discuss the preclinical evidence on the bilateral connection between cancer and cardiovascular disease (especially early cardiac changes) through some specific mediators such as EVs. Investigating EV-based biomarkers and therapies may uncover the responsible mechanisms, detect the early stages of cardiovascular damage and elucidate novel therapeutic approaches. The ultimate goal is to reduce the burden of cardiovascular diseases by improving the standard of care in oncological patients treated with anticancer drugs or radiotherapy.
Collapse
|
18
|
El-attar AA, Ibrahim OM, Alhassanin SA, Essa ES, Mostafa TM. Effect of metformin as an adjuvant therapy to letrozole on estradiol and other biomarkers involved in the pathogenesis of breast cancer in overweight and obese postmenopausal women: a pilot study. Eur J Clin Pharmacol 2023; 79:299-309. [PMID: 36562831 PMCID: PMC9879830 DOI: 10.1007/s00228-022-03444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Metformin may provide a therapeutic benefit in different types of malignancy. PURPOSE We aimed at evaluating the effect of metformin as an adjuvant therapy to letrozole on estradiol and other biomarkers involved in the pathogenesis of breast cancer in overweight and obese postmenopausal women. METHODS Seventy-five postmenopausal stages II-III breast cancer female patients were assessed for eligibility in an open-labeled parallel pilot study. Forty-five patients met the inclusion criteria and were assigned into three arms: the lean arm (n = 15) women who received letrozole 2.5 mg/day, the control arm (n = 15) overweight/obese women who received letrozole 2.5 mg/day, and the metformin arm (n = 15) overweight/obese women who received letrozole 2.5 mg/day plus metformin (2000 ± 500 mg/day). The intervention duration was 6 months. Blood samples were obtained at baseline and 6 months after intervention for the measurement of serum estradiol, leptin, osteocalcin levels, fasting blood glucose concentration, and serum insulin. RESULTS After the intervention and as compared to the control arm, the metformin arm showed a significantly lower ratio to the baseline (significant reduction) for estradiol (p = 0.0433), leptin (p < 0.0001), fasting blood glucose (p = 0.0128), insulin (p = 0.0360), osteocalcin serum levels (p < 0.0001), and the homeostatic model assessment of insulin resistance "HOMA-IR" value (p = 0.0145). There was a non-significant variation in the lactate ratio to the baseline among the three study arms (p = 0.5298). CONCLUSION Metformin may exert anti-cancer activity by decreasing the circulating estradiol, leptin, and insulin. Metformin might represent a safe and promising adjuvant therapy to letrozole in overweight/obese postmenopausal women with breast cancer. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05053841/Registered September 23, 2021 - Retrospectively.
Collapse
Affiliation(s)
- Aya Ahmed El-attar
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Osama Mohamed Ibrahim
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Suzan Ahmed Alhassanin
- grid.411775.10000 0004 0621 4712Department of Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Enas Said Essa
- grid.411775.10000 0004 0621 4712Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Tarek Mohamed Mostafa
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
19
|
Furth PA, Wang W, Kang K, Rooney BL, Keegan G, Muralidaran V, Zou X, Flaws JA. Esr1 but Not CYP19A1 Overexpression in Mammary Epithelial Cells during Reproductive Senescence Induces Pregnancy-Like Proliferative Mammary Disease Responsive to Anti-Hormonals. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:84-102. [PMID: 36464512 PMCID: PMC9768685 DOI: 10.1016/j.ajpath.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022]
Abstract
Molecular-level analyses of breast carcinogenesis benefit from vivo disease models. Estrogen receptor 1 (Esr1) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) overexpression targeted to mammary epithelial cells in genetically engineered mouse models induces largely similar rates of proliferative mammary disease in prereproductive senescent mice. Herein, with natural reproductive senescence, Esr1 overexpression compared with CYP19A1 overexpression resulted in significantly higher rates of preneoplasia and cancer. Before reproductive senescence, Esr1, but not CYP19A1, overexpressing mice are tamoxifen resistant. However, during reproductive senescence, Esr1 mice exhibited responsiveness. Both Esr1 and CYP19A1 are responsive to letrozole before and after reproductive senescence. Gene Set Enrichment Analyses of RNA-sequencing data sets showed that higher disease rates in Esr1 mice were accompanied by significantly higher expression of cell proliferation genes, including members of prognostic platforms for women with early-stage hormone receptor-positive disease. Tamoxifen and letrozole exposure induced down-regulation of these genes and resolved differences between the two models. Both Esr1 and CYP19A1 overexpression induced abnormal developmental patterns of pregnancy-like gene expression. This resolved with progression through reproductive senescence in CYP19A1 mice, but was more persistent in Esr1 mice, resolving only with tamoxifen and letrozole exposure. In summary, genetically engineered mouse models of Esr1 and CYP19A1 overexpression revealed a diversion of disease processes resulting from the two distinct molecular pathophysiological mammary gland-targeted intrusions into estrogen signaling during reproductive senescence.
Collapse
Affiliation(s)
- Priscilla A Furth
- Department of Oncology, Georgetown University, Washington, District of Columbia; Department of Medicine, Georgetown University, Washington, District of Columbia.
| | - Weisheng Wang
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Keunsoo Kang
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Brendan L Rooney
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Grace Keegan
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Vinona Muralidaran
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Xiaojun Zou
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
20
|
Hanusek K, Karczmarski J, Litwiniuk A, Urbańska K, Ambrozkiewicz F, Kwiatkowski A, Martyńska L, Domańska A, Bik W, Paziewska A. Obesity as a Risk Factor for Breast Cancer-The Role of miRNA. Int J Mol Sci 2022; 23:ijms232415683. [PMID: 36555323 PMCID: PMC9779381 DOI: 10.3390/ijms232415683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common cancer diagnosed among women in the world, with an ever-increasing incidence rate. Due to the dynamic increase in the occurrence of risk factors, including obesity and related metabolic disorders, the search for new regulatory mechanisms is necessary. This will help a complete understanding of the pathogenesis of breast cancer. The review presents the mechanisms of obesity as a factor that increases the risk of developing breast cancer and that even initiates the cancer process in the female population. The mechanisms presented in the paper relate to the inflammatory process resulting from current or progressive obesity leading to cell metabolism disorders and disturbed hormonal metabolism. All these processes are widely regulated by the action of microRNAs (miRNAs), which may constitute potential biomarkers influencing the pathogenesis of breast cancer and may be a promising target of anti-cancer therapies.
Collapse
Affiliation(s)
- Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Urbańska
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Andrzej Kwiatkowski
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Lidia Martyńska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Faculty of Medical and Health Sciences, Institute of Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Correspondence:
| |
Collapse
|
21
|
High Post-Treatment Leptin Concentration as a Prognostic Biomarker of the High Risk of Luminal Breast Cancer Relapse: A Six-Year Comprehensive Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122063. [PMID: 36556428 PMCID: PMC9783731 DOI: 10.3390/life12122063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
(1) Background: Nowadays, obesity is well-recognised as a significant risk factor for many chronic diseases, for example, hypertension, diabetes, atherosclerosis and cancer. This study is designed to investigate the prognostic value of the pre- and post-treatment serum levels of adiponectin and leptin in luminal A and B invasive breast cancer (IBrC) patients based on six-years follow-up. (2) Methods: Among 70 patients who underwent breast surgery, 35 were Stage I and 35 were Stage II. The concentrations of pre- and post-treatment adiponectin and leptin were evaluated with a specific ELISA kit. The median follow-up was 68.5 months (inter-quartile range (IQR) = 59-72 months) with a recurrence rate of 15.71%. (3) Results: Generally, concentrations of leptin and adiponectin increased after adjuvant therapy. Follow-up showed a significantly higher incidence of disease relapse in IBrC patients with a high post-treatment concentration of leptin (25.71% vs. 5.71% of cases with a low post-treatment concentration of leptin). A post-treatment leptin concentration of 26.88 ng/mL with a specificity of 64.9% and a sensitivity of 88.9% was determined as the best cut-off value to distinguish patients with disease recurrence from those without disease relapse. (4) Conclusions: Our results demonstrated that only the post-treatment serum leptin concentration may be of value as a prognostic indicator and could contribute to predicting a future outcome for patients with early-stage IBrC.
Collapse
|
22
|
Ratre P, Kulkarni S, Das S, Liang C, Mishra PK, Thareja S. Medicinal chemistry aspects and synthetic strategies of coumarin as aromatase inhibitors: an overview. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:41. [PMID: 36471176 DOI: 10.1007/s12032-022-01916-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Coumarin is a bicyclic oxygen bearing heterocyclic scaffold formed by fusion of benzene with the pyrone ring. Because of its unique physicochemical characteristics and the ease with which it may be transformed into a wide range of functionalized coumarins during synthesis, coumarin provides a privileged scaffold for medicinal chemists. As a result, many coumarin derivatives have been developed, synthesized, and evaluated to target a variety of therapeutic domains, thereby making it an attractive template for designing novel anti-breast cancer compounds. The main culprit in estrogen overproduction in the estrogen-dependent breast cancer (EDBC), is the enzyme aromatase (AR), and it is thought to be a significant target for the effective treatment of EDBC. Considering coumarins versatility, this review presents a detailed overview of diverse study of aromatase as a target for coumarins. An overview of structure-activity relationship analysis of coumarin core is also included so as to summarize the desired pharmacophoric features essential for design and development of aromatase inhibitors (AIs) using coumarin core. Identification of key synthesis techniques that could aid researchers in designing and developing novel analogues with significant anti-breast cancer properties along with their mechanism of action have also been covered in the current review.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sweety Das
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710 021, People's Republic of China
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
23
|
Praseetha NG, Divya UK, Nair S. Identifying the potential role of curcumin analogues as anti-breast cancer agents; an in silico approach. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer ranks top among newly reported cancer cases and most of the women suffers from breast cancer. Development of target therapy using phytochemicals with minimal side effects is trending in health care research. Phytochemicals targets complex multiple signalling events in cancer and are pleiotropic in nature. Thus, the present study was conducted to check the effectivity of curcumin analogues (Capsaicin, Chlorogenic acid, Ferulic acid, Zingerone, Gingerol) against the receptors that are expressed in breast cancer cells and prove its ethno-medicinal value by using bioinformatic tools and softwares like PDB, Patch Dock, PubChem, Chimera and My Presto.
Result
Out of the various curcumin analogues studied, Ferulic acid showed best binding affinity with all the breast cancer cell specific receptors (FGF, MMP9, RNRM1, TGF-beta, DHFR, VEGF and aromatase) which was confirmed through the docking studies.
Conclusion
The current work was a preliminary step towards screening suitable drug candidate against breast cancer using in silico methods. This information can be used further to carry out in vivo studies using selected natural analogues of curcumin as a suitable drug candidate against breast cancer saving time and cost.
Collapse
|
24
|
Du Y, Wu T. Heart failure and cancer: From active exposure to passive adaption. Front Cardiovasc Med 2022; 9:992011. [PMID: 36304546 PMCID: PMC9592839 DOI: 10.3389/fcvm.2022.992011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
The human body seems like a "balance integrator." On the one hand, the body constantly actively receives various outside stimuli and signals to induce changes. On the other hand, several internal regulations would be initiated to adapt to these changes. In most cases, the body could keep the balance in vitro and in vivo to reach a healthy body. However, in some cases, the body can only get to a pathological balance. Actively exposed to unhealthy lifestyles and passively adapting to individual primary diseases lead to a similarly inner environment for both heart failure and cancer. To cope with these stimuli, the body must activate the system regulation mechanism and face the mutual interference. This review summarized the association between heart failure and cancer from active exposure to passive adaption. Moreover, we hope to inspire researchers to contemplate these two diseases from the angle of overall body consideration.
Collapse
Affiliation(s)
- Yantao Du
- Ningbo Institute of Medical Science, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Tao Wu
- Department of Cardiovascular Center, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
25
|
Association of sarcopenia with endocrine therapy toxicity in patients with early breast cancer. Breast Cancer Res Treat 2022; 196:323-328. [DOI: 10.1007/s10549-022-06741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
|
26
|
Macrophages Upregulate Estrogen Receptor Expression in the Model of Obesity-Associated Breast Carcinoma. Cells 2022; 11:cells11182844. [PMID: 36139419 PMCID: PMC9496942 DOI: 10.3390/cells11182844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BC) and obesity are two heterogeneous conditions with a tremendous impact on health. BC is the most commonly diagnosed neoplasm and the leading cause of cancer-related mortality among women, and the prevalence of obesity in women worldwide reaches pandemic proportions. Obesity is a significant risk factor for both incidence and worse prognosis in estrogen receptor positive (ER+) BC. Yet, the mechanisms underlying the association between excess adiposity and increased risk/therapy resistance/poorer outcome of ER+, but not ER−negative (ER−), BC are not fully understood. Tumor-promoting action of obesity, predominantly in ER + BC patients, is often attributed to the augmented production of estrogen in ‘obese’ adipose tissue. However, in addition to the estrogen production, expression levels of ER represent a key determinant in hormone-driven breast tumorigenesis and therapy response. Here, utilizing in vitro and in vivo models of BC, we show that macrophages, whose adverse activation by obesogenic substances is fueled by heparanase (extracellular matrix-degrading enzyme), are capable of upregulating ER expression in tumor cells, in the setting of obesity-associated BC. These findings underscore a previously unknown mechanism through which interplay between cellular/extracellular elements of obesity-associated BC microenvironment influences estrogen sensitivity—a critical component in hormone-related cancer progression and resistance to therapy.
Collapse
|
27
|
Brooks JD, Christensen RAG, Sung JS, Pike MC, Orlow I, Bernstein JL, Morris EA. MRI background parenchymal enhancement, breast density and breast cancer risk factors: A cross-sectional study in pre- and post-menopausal women. NPJ Breast Cancer 2022; 8:97. [PMID: 36008488 PMCID: PMC9411561 DOI: 10.1038/s41523-022-00458-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022] Open
Abstract
Breast tissue enhances on contrast MRI and is called background parenchymal enhancement (BPE). Having high BPE has been associated with an increased risk of breast cancer. We examined the relationship between BPE and the amount of fibroglandular tissue on MRI (MRI-FGT) and breast cancer risk factors. This was a cross-sectional study of 415 women without breast cancer undergoing contrast-enhanced breast MRI at Memorial Sloan Kettering Cancer Center. All women completed a questionnaire assessing exposures at the time of MRI. Prevalence ratios (PR) and 95% confidence intervals (CI) describing the relationship between breast cancer risk factors and BPE and MRI-FGT were generated using modified Poisson regression. In multivariable-adjusted models a positive association between body mass index (BMI) and BPE was observed, with a 5-unit increase in BMI associated with a 14% and 44% increase in prevalence of high BPE in pre- and post-menopausal women, respectively. Conversely, a strong inverse relationship between BMI and MRI-FGT was observed in both pre- (PR = 0.66, 95% CI 0.57, 0.76) and post-menopausal (PR = 0.66, 95% CI 0.56, 0.78) women. Use of preventive medication (e.g., tamoxifen) was associated with having low BPE, while no association was observed for MRI-FGT. BPE is an imaging marker available from standard contrast-enhanced MRI, that is influenced by endogenous and exogenous hormonal exposures in both pre- and post-menopausal women.
Collapse
Affiliation(s)
- Jennifer D Brooks
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| | | | - Janice S Sung
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth A Morris
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
28
|
Lunger F, Aeschbacher P, Nett PC, Peros G. The impact of bariatric and metabolic surgery on cancer development. Front Surg 2022; 9:918272. [PMID: 35910464 PMCID: PMC9334768 DOI: 10.3389/fsurg.2022.918272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2022] [Indexed: 12/21/2022] Open
Abstract
Obesity (BMI ≥ 30 kg/m2) with related comorbidities such as type 2 diabetes mellitus, cardiovascular disease, sleep apnea syndrome, and fatty liver disease is one of the most common preventable risk factors for cancer development worldwide. They are responsible for at least 40% of all newly diagnosed cancers, including colon, ovarian, uterine, breast, pancreatic, and esophageal cancer. Although various efforts are being made to reduce the incidence of obesity, its prevalence continues to spread in the Western world. Weight loss therapies such as lifestyle change, diets, drug therapies (GLP-1-receptor agonists) as well as bariatric and metabolic surgery are associated with an overall risk reduction of cancer. Therefore, these strategies should always be essential in therapeutical concepts in obese patients. This review discusses pre- and post-interventional aspects of bariatric and metabolic surgery and its potential benefit on cancer development in obese patients.
Collapse
Affiliation(s)
- Fabian Lunger
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Visceral and Thoracic Surgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Pauline Aeschbacher
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp C. Nett
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Correspondance: Philipp C. Nett
| | - Georgios Peros
- Department of Visceral and Thoracic Surgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| |
Collapse
|
29
|
Vitamin D deficiency: a potential risk factor for cancer in obesity? Int J Obes (Lond) 2022; 46:707-717. [PMID: 35027681 DOI: 10.1038/s41366-021-01045-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022]
Abstract
Obesity is considered an abnormal or excessive accumulation of adipose tissue, due to a prolonged positive energy balance that arises when energy intake is greater than energy expenditure, leading to an increased risk for the individual health and for the development of metabolic chronic diseases including several different types of cancer. Vitamin D deficiency is a metabolic alteration, which is often associated with the obesity condition. Vitamin D is a liposoluble vitamin, which plays a pivotal role in calcium-phosphate metabolism but extraskeletal effects have also been described. Among these, it plays an important role also in adipocyte physiology and glucose metabolism, typically dysregulated in subjects affected by obesity. Moreover, it is now recognized that Vitamin D also influences the processes of cell proliferation, differentiation, adhesion potentially leading to carcinogenesis. Indeed, data indicate a potential link between vitamin D levels and cancer, and higher vitamin D concentrations have been associated with a lower risk of developing different kinds of tumors, including breast, colon, lymphoma, lung, and prostate cancers. Thus, this review will revise the literature regarding this issue investigating and highlighting the potential mechanism of action, which might lead to new therapeutical options.
Collapse
|
30
|
Dashti SG, Simpson JA, Viallon V, Karahalios A, Moreno‐Betancur M, Brasky T, Pan K, Rohan TE, Shadyab AH, Thomson CA, Wild RA, Wassertheil‐Smoller S, Ho GYF, Strickler HD, English DR, Gunter MJ. Adiposity and breast, endometrial, and colorectal cancer risk in postmenopausal women: Quantification of the mediating effects of leptin, C-reactive protein, fasting insulin, and estradiol. Cancer Med 2022; 11:1145-1159. [PMID: 35048536 PMCID: PMC8855919 DOI: 10.1002/cam4.4434] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 10/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Mechanisms underlying the adiposity-cancer relationship are incompletely understood. We quantified the mediating roles of C-reactive protein (CRP), leptin, fasting insulin, and estradiol in the effect of adiposity on estrogen receptor (ER)-positive breast, endometrial, and colorectal cancer risk in postmenopausal women. METHODS We used a case-cohort study within the Women's Health Initiative Observational Study, analyzed as a cumulative sampling case-control study. The study included 188 breast cancer cases, 98 endometrial cancer cases, 193 colorectal cancer cases, and 285 controls. Interventional indirect and direct effects on the risk ratio (RR) scale were estimated using causal mediation analysis. RESULTS For breast cancer, the total effect RR for BMI ≥30 versus ≥18.5-<25 kg/m2 was 1.87 (95%CI,1.11-3.13). The indirect effect RRs were 1.38 (0.79-2.33) through leptin and CRP, 1.58 (1.17-2.43) through insulin, and 1.11 (0.98-1.30) through estradiol. The direct effect RR was 0.82 (0.39-1.68). For endometrial cancer, the total effect RR was 2.12 (1.12-4.00). The indirect effect RRs were 1.72 (0.85-3.98) through leptin and CRP, 1.42 (0.96-2.26) through insulin, and 1.24 (1.03-1.65) through estradiol. The direct effect RR was 0.70 (0.23-2.04). For colorectal cancer, the total effect RR was 1.70 (1.03-2.79). The indirect effect RRs were 1.04 (0.61-1.72) through leptin and CRP, 1.36 (1.00-1.88) through insulin, and 1.02 (0.88-1.17) through estradiol. The direct effect RR was 1.16 (0.58-2.43). CONCLUSION Leptin, CRP, fasting insulin, and estradiol appear to mediate the effect of high BMI on cancer risk to different extents, with likely varying degrees of importance between cancers. These insights might be important in developing interventions to modify obesity-associated cancer risk in postmenopausal women.
Collapse
Affiliation(s)
- S. Ghazaleh Dashti
- Clinical Epidemiology and Biostatistics UnitMurdoch Children’s Research InstituteMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneMelbourneAustralia
| | - Julie A. Simpson
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneMelbourneAustralia
| | - Vivian Viallon
- Nutrition and Metabolism BranchInternational Agency for Research on Cancer (IARC)LyonFrance
| | - Amalia Karahalios
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneMelbourneAustralia
| | - Margarita Moreno‐Betancur
- Clinical Epidemiology and Biostatistics UnitMurdoch Children’s Research InstituteMelbourneAustralia
- Clinical Epidemiology and Biostatistics UnitDepartment of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Theodore Brasky
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Kathy Pan
- Hematology/OncologyKaiser Permanente DowneyDowneyCaliforniaUSA
| | - Thomas E. Rohan
- Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of CaliforniaSan DiegoUSA
| | - Cynthia A. Thomson
- Health Promotion SciencesMel & Enid Zickerman College of Public HealthUniversity of Arizona Cancer CenterTucsonArizonaUSA
| | - Robert A. Wild
- Obstetrics and Gynecology, Biostatistics and EpidemiologyOklahoma University Health Sciences CentreOklahoma CityOklahomaUSA
| | | | - Gloria Y. F. Ho
- Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Howard D. Strickler
- Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Dallas R. English
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneMelbourneAustralia
| | - Marc J. Gunter
- Nutrition and Metabolism BranchInternational Agency for Research on Cancer (IARC)LyonFrance
| |
Collapse
|
31
|
The role of leptin and low testosterone in obesity. Int J Impot Res 2022; 34:704-713. [DOI: 10.1038/s41443-022-00534-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022]
|
32
|
Holm JB, Rosendahl AH, Borgquist S. Local Biomarkers Involved in the Interplay between Obesity and Breast Cancer. Cancers (Basel) 2021; 13:cancers13246286. [PMID: 34944905 PMCID: PMC8699696 DOI: 10.3390/cancers13246286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Breast cancer is the second most common cancer in women worldwide. The risk of developing breast cancer depends on various mechanisms, such as age, heredity, reproductive factors, physical inactivity, and obesity. Obesity increases the risk of breast cancer and worsens outcomes for breast cancer patients. The rate of obesity is increasing worldwide, stressing the need for awareness of the association between obesity and breast cancer. In this review, we outline the biomarkers—including cellular and soluble factors—in the breast, associated with obesity, that affect the risk of breast cancer and breast cancer prognosis. Through these biomarkers, we aim to better identify patients with obesity with a higher risk of breast cancer and an inferior prognosis. Abstract Obesity is associated with an increased risk of breast cancer, which is the most common cancer in women worldwide (excluding non-melanoma skin cancer). Furthermore, breast cancer patients with obesity have an impaired prognosis. Adipose tissue is abundant in the breast. Therefore, breast cancer develops in an adipose-rich environment. During obesity, changes in the local environment in the breast occur which are associated with breast cancer. A shift towards a pro-inflammatory state is seen, resulting in altered levels of cytokines and immune cells. Levels of adipokines, such as leptin, adiponectin, and resistin, are changed. Aromatase activity rises, resulting in higher levels of potent estrogen in the breast. Lastly, remodeling of the extracellular matrix takes place. In this review, we address the current knowledge on the changes in the breast adipose tissue in obesity associated with breast cancer initiation and progression. We aim to identify obesity-associated biomarkers in the breast involved in the interplay between obesity and breast cancer. Hereby, we can improve identification of women with obesity with an increased risk of breast cancer and an impaired prognosis. Studies investigating mammary adipocytes and breast adipose tissue in women with obesity versus women without obesity are, however, sparse and further research is needed.
Collapse
Affiliation(s)
- Jonas Busk Holm
- Department of Oncology, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Correspondence: (J.B.H.); (S.B.)
| | - Ann H. Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Barngatan 4, 221 85 Lund, Sweden;
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Barngatan 4, 221 85 Lund, Sweden;
- Correspondence: (J.B.H.); (S.B.)
| |
Collapse
|
33
|
Gallo M, Adinolfi V, Barucca V, Prinzi N, Renzelli V, Barrea L, Di Giacinto P, Ruggeri RM, Sesti F, Arvat E, Baldelli R, Arvat E, Colao A, Isidori A, Lenzi A, Baldell R, Albertelli M, Attala D, Bianchi A, Di Sarno A, Feola T, Mazziotti G, Nervo A, Pozza C, Puliani G, Razzore P, Ramponi S, Ricciardi S, Rizza L, Rota F, Sbardella E, Zatelli MC. Expected and paradoxical effects of obesity on cancer treatment response. Rev Endocr Metab Disord 2021; 22:681-702. [PMID: 33025385 DOI: 10.1007/s11154-020-09597-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Obesity, whose prevalence is pandemic and continuing to increase, is a major preventable and modifiable risk factor for diabetes and cardiovascular diseases, as well as for cancer. Furthermore, epidemiological studies have shown that obesity is a negative independent prognostic factor for several oncological outcomes, including overall and cancer-specific survival, for several site-specific cancers as well as for all cancers combined. Yet, a recently growing body of evidence suggests that sometimes overweight and obesity may associate with better outcomes, and that immunotherapy may show improved response among obese patients compared with patients with a normal weight. The so-called 'obesity paradox' has been reported in several advanced cancer as well as in other diseases, albeit the mechanisms behind this unexpected relationship are still not clear. Aim of this review is to explore the expected as well as the paradoxical relationship between obesity and cancer prognosis, with a particular emphasis on the effects of cancer therapies in obese people.
Collapse
Affiliation(s)
- Marco Gallo
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Via Genova, 3, 10126, Turin, Italy.
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, ASL Verbano Cusio Ossola, Domodossola, Italy
| | - Viola Barucca
- Oncology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Natalie Prinzi
- ENETS Center of Excellence, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori Milano, Milan, Italy
| | - Valerio Renzelli
- Department of Experimental Medicine, AO S. Andrea, Sapienza University of Rome, Rome, Italy
| | - Luigi Barrea
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Paola Di Giacinto
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Rosaria Maddalena Ruggeri
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico G. Martino, Messina, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Arvat
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Via Genova, 3, 10126, Turin, Italy
| | - Roberto Baldelli
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dimauro I, Grazioli E, Antinozzi C, Duranti G, Arminio A, Mancini A, Greco EA, Caporossi D, Parisi A, Di Luigi L. Estrogen-Receptor-Positive Breast Cancer in Postmenopausal Women: The Role of Body Composition and Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9834. [PMID: 34574758 PMCID: PMC8467802 DOI: 10.3390/ijerph18189834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women worldwide and the most common cause of cancer-related death. To date, it is still a challenge to estimate the magnitude of the clinical impact of physical activity (PA) on those parameters producing significative changes in future BC risk and disease progression. However, studies conducted in recent years highlight the role of PA not only as a protective factor for the development of ER+ breast cancer but, more generally, as a useful tool in the management of BC treatment as an adjuvant to traditional therapies. In this review, we focused our attention on data obtained from human studies analyzing, at each level of disease prevention (i.e., primary, secondary, tertiary and quaternary), the positive impact of PA/exercise in ER+ BC, a subtype representing approximately 70% of all BC diagnoses. Moreover, given the importance of estrogen receptors and body composition (i.e., adipose tissue) in this subtype of BC, an overview of their role will also be made throughout this review.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.G.); (A.P.)
| | - Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| | - Guglielmo Duranti
- Unit of Biocheminstry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Alessia Arminio
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| | - Annamaria Mancini
- Dipartimento di Scienze Motorie e del Benessere (DISMeB), Università Degli Studi di Napoli “Parthenope”, Via F. Acton, 38, 80133 Naples, Italy;
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore 482, 80145 Naples, Italy
| | - Emanuela A. Greco
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.G.); (A.P.)
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| |
Collapse
|
35
|
Clinical Value of Body Mass Index and Waist-Hip Ratio in Clinicopathological Characteristics and Prognosis of Uterine Leiomyomata. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8156288. [PMID: 34422081 PMCID: PMC8376463 DOI: 10.1155/2021/8156288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022]
Abstract
Objective To explore the relationship between body mass index (BMI) and waist-to-hip ratio (WHR) and clinicopathological characteristics and prognosis of uterine leiomyomata (UL). Methods A retrospective analysis of the clinical data of 133 patients with UL admitted to our hospital from September 2018 to August 2019. According to the BMI standard, the patients were divided into the normal group (n = 32), the super-recombination group (n = 45), and the obesity group (n = 56). According to WHR, the patients were divided into the normal body group (n = 32) and the obesity body group (n = 101). The prognosis of all patients with UL at 3 months postoperatively was evaluated. The relationship between BMI patients and clinical characteristics in different groups was compared, and univariate analysis and multivariate logistic regression model were used to analyze the factors affecting the prognosis of UL patients. Results The proportion of UL patients in the overweight/obese group was higher than that of the normal group, the proportion of the obese body group was higher than that of the normal body group, and the proportion of the good prognosis group was higher than that of the poor prognosis group (P < 0.05). The difference between the overweight/obese group and the normal group and the obese body group and the normal body group was irregular vaginal bleeding, the number of tumors, and the diameter of the lesion (P < 0.05), and the differences between the degenerations in the obese body group and the normal body group were statistically significant (P < 0.05). Multivariate analysis showed that BMI, WHR, surgical method, and tumor location were all independent risk factors that affected the prognosis of the surgery (P < 0.05). Conclusion Elevated BMI and WHR can be accompanied by an increased risk of UL. Obesity is a risk factor for UL. Overweight/obese women are more clinically pathological than normal patients, and overweight/obese patients have worse surgical prognosis than normal patients. In order to reduce the prevalence of UL and improve the clinicopathological characteristics and prognosis of patients, clinically obese women should be instructed to use reasonable diet and exercise to control weight.
Collapse
|
36
|
Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY, McDonnell DP. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun 2021; 12:5103. [PMID: 34429409 PMCID: PMC8385107 DOI: 10.1038/s41467-021-25354-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia and dyslipidemia are associated with an increased risk for many cancer types and with poor outcomes in patients with established disease. Whereas the mechanisms by which this occurs are multifactorial we determine that chronic exposure of cells to 27-hydroxycholesterol (27HC), an abundant circulating cholesterol metabolite, selects for cells that exhibit increased cellular uptake and/or lipid biosynthesis. These cells exhibit substantially increased tumorigenic and metastatic capacity. Notably, the metabolic stress imposed upon cells by the accumulated lipids requires sustained expression of GPX4, a negative regulator of ferroptotic cell death. We show that resistance to ferroptosis is a feature of metastatic cells and further demonstrate that GPX4 knockdown attenuates the enhanced tumorigenic and metastatic activity of 27HC resistant cells. These findings highlight the general importance of ferroptosis in tumor growth and metastasis and suggest that dyslipidemia/hypercholesterolemia impacts cancer pathogenesis by selecting for cells that are resistant to ferroptotic cell death.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dmitri Kazmin
- Emory Vaccine Center, Emory University, Atlanta, GA, 30322, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
37
|
Metcalfe RS, Kemp R, Heffernan SM, Churm R, Chen YC, Ruffino JS, Conway GE, Tornillo G, Orange ST. Anti-carcinogenic effects of exercise-conditioned human serum: evidence, relevance and opportunities. Eur J Appl Physiol 2021. [PMID: 33864493 DOI: 10.1007/s00421-021-04680-x.pmid:33864493;pmcid:pmc8260517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Regular physical activity reduces the risk of several site-specific cancers in humans and suppresses tumour growth in animal models. The mechanisms through which exercise reduces tumour growth remain incompletely understood, but an intriguing and accumulating body of evidence suggests that the incubation of cancer cells with post-exercise serum can have powerful effects on key hallmarks of cancer cell behaviour in vitro. This suggests that exercise can impact tumour biology through direct changes in circulating proteins, RNA molecules and metabolites. Here, we provide a comprehensive narrative overview of what is known about the effects of exercise-conditioned sera on in vitro cancer cell behaviour. In doing so, we consider the key limitations of the current body of literature, both from the perspective of exercise physiology and cancer biology, and we discuss the potential in vivo physiological relevance of these findings. We propose key opportunities for future research in an area that has the potential to identify key anti-oncogenic protein targets and optimise physical activity recommendations for cancer prevention, treatment and survivorship.
Collapse
Affiliation(s)
- Richard S Metcalfe
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK.
| | - Rachael Kemp
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Shane M Heffernan
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Rachel Churm
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Yung-Chih Chen
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | | | - Gillian E Conway
- In Vitro Toxicology Group, Institute of Life Sciences, College of Medicine, Swansea University, Swansea, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Samuel T Orange
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Rauner G, Kuperwasser C. Microenvironmental control of cell fate decisions in mammary gland development and cancer. Dev Cell 2021; 56:1875-1883. [PMID: 34256927 DOI: 10.1016/j.devcel.2021.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Cell fate decisions are critical for adequate tissue development, maintenance and regeneration. In the mammary gland, epithelial cell fates are tightly controlled by the microenvironment. Here, we review how cell fate decisions are regulated by components of the microenvironment during mammary gland development and how pathological changes in the microenvironment can alter cell fates, leading to malignancy. Specifically, we describe the current understanding of how mammary cell fate is controlled and directed by three elements: the extracellular matrix, the immune microenvironment, and hormones-and how these elements can converge to create microenvironments that promote a fourth element: DNA damage.
Collapse
Affiliation(s)
- Gat Rauner
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
39
|
Laborda-Illanes A, Sánchez-Alcoholado L, Boutriq S, Plaza-Andrades I, Peralta-Linero J, Alba E, González-González A, Queipo-Ortuño MI. A New Paradigm in the Relationship between Melatonin and Breast Cancer: Gut Microbiota Identified as a Potential Regulatory Agent. Cancers (Basel) 2021; 13:3141. [PMID: 34201776 PMCID: PMC8269379 DOI: 10.3390/cancers13133141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023] Open
Abstract
In this review we summarize a possible connection between gut microbiota, melatonin production, and breast cancer. An imbalance in gut bacterial population composition (dysbiosis), or changes in the production of melatonin (circadian disruption) alters estrogen levels. On the one hand, this may be due to the bacterial composition of estrobolome, since bacteria with β-glucuronidase activity favour estrogens in a deconjugated state, which may ultimately lead to pathologies, including breast cancer. On the other hand, it has been shown that these changes in intestinal microbiota stimulate the kynurenine pathway, moving tryptophan away from the melatonergic pathway, thereby reducing circulating melatonin levels. Due to the fact that melatonin has antiestrogenic properties, it affects active and inactive estrogen levels. These changes increase the risk of developing breast cancer. Additionally, melatonin stimulates the differentiation of preadipocytes into adipocytes, which have low estrogen levels due to the fact that adipocytes do not express aromatase. Consequently, melatonin also reduces the risk of breast cancer. However, more studies are needed to determine the relationship between microbiota, melatonin, and breast cancer, in addition to clinical trials to confirm the sensitizing effects of melatonin to chemotherapy and radiotherapy, and its ability to ameliorate or prevent the side effects of these therapies.
Collapse
Affiliation(s)
- Aurora Laborda-Illanes
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (M.I.Q.-O.)
- Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Lidia Sánchez-Alcoholado
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (M.I.Q.-O.)
- Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Soukaina Boutriq
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (M.I.Q.-O.)
- Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Isaac Plaza-Andrades
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (M.I.Q.-O.)
| | - Jesús Peralta-Linero
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (M.I.Q.-O.)
| | - Emilio Alba
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (M.I.Q.-O.)
- Centro de Investigación Biomédica en Red de Cáncer (Ciberonc CB16/12/00481), 28029 Madrid, Spain
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (M.I.Q.-O.)
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (M.I.Q.-O.)
- Centro de Investigación Biomédica en Red de Cáncer (Ciberonc CB16/12/00481), 28029 Madrid, Spain
| |
Collapse
|
40
|
de Miranda FS, Guimarães JPT, Menikdiwela KR, Mabry B, Dhakal R, Rahman RL, Moussa H, Moustaid-Moussa N. Breast cancer and the renin-angiotensin system (RAS): Therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 2021; 528:111245. [PMID: 33753205 DOI: 10.1016/j.mce.2021.111245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The Renin-Angiotensin System (RAS) is classically recognized for regulating blood pressure and fluid balance. Recently, this role has extended to other areas including inflammation, obesity, diabetes, as well as breast cancer. RAS components are expressed in normal and cancerous breast tissues, and downregulation of RAS inhibits metastasis, proliferation, angiogenesis, and desmoplasia in the tumor microenvironment. Therefore, RAS inhibitors (Angiotensin receptor blockers, ARBs, or angiotensin converting enzyme inhibitors, ACE-I) may be beneficial as preventive adjuvant therapies to thwart breast cancer development and improve outcomes, respectively. Given the beneficial effects of RAS inhibitors in metabolic diseases, which often co-exist in breast cancer patients, combining RAS inhibitors with other breast cancer therapies may enhance the effectiveness of current treatments. This review scrutinizes above associations, to advance our understanding of the role of RAS in breast cancer and its potential for repurposing of RAS inhibitors to improve the therapeutic approach for breast cancer patients.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - João Pedro Tôrres Guimarães
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (ICB/USP), São Paulo, SP, Brazil; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brennan Mabry
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
41
|
Hetemäki N, Mikkola TS, Tikkanen MJ, Wang F, Hämäläinen E, Turpeinen U, Haanpää M, Vihma V, Savolainen-Peltonen H. Adipose tissue estrogen production and metabolism in premenopausal women. J Steroid Biochem Mol Biol 2021; 209:105849. [PMID: 33610799 DOI: 10.1016/j.jsbmb.2021.105849] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Although the ovaries produce the majority of estrogens in women before menopause, estrogen is also synthesized in peripheral tissues such as adipose tissue (AT). The typical female AT distribution, concentrated in subcutaneous and femoro-gluteal regions, is estrogen-mediated, but the significance of estrogen synthesis in AT of premenopausal women is poorly understood. DESIGN AND METHODS Serum and subcutaneous and visceral AT homogenates from 28 premenopausal women undergoing non-malignant surgery were analyzed for estrone, estradiol, and serum estrone sulfate (E1S) concentrations with liquid chromatography-tandem mass spectrometry. Isotopic precursors were used to measure enzyme activities of estrone-producing steroid sulfatase and estradiol-producing 17β-hydroxysteroid dehydrogenases (17β-HSD). Messenger RNA (mRNA) expression levels of genes for estrogen-metabolizing enzymes were analyzed using real-time reverse transcription quantitative polymerase chain reaction. RESULTS While estradiol was the predominant circulating active estrogen, estrone dominated in AT, with a higher concentration in visceral than subcutaneous AT (median, 2657 vs 1459 pmol/kg; P = 0.002). Both AT depots converted circulating E1S to estrone, and estrone to estradiol. Median levels of estrone were five to ten times higher in subcutaneous and visceral AT than in serum (P < 0.001) and the estradiol level in visceral AT was 1.3 times higher than in serum (P < 0.005). The local estrone concentration in visceral AT correlated positively with mRNA expression of estrone-producing enzyme aromatase (r = 0.65, P = 0.003). Waist circumference correlated positively with increased estradiol production in subcutaneous AT (r = 0.60, P = 0.039). CONCLUSIONS Premenopausal AT demonstrated high estrogenic enzyme activity and considerable local estrogen concentrations. This may be a factor promoting female-typical AT distribution in premenopausal women.
Collapse
Affiliation(s)
- Natalia Hetemäki
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland; Folkhälsan Research Center, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Tomi S Mikkola
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland; Folkhälsan Research Center, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Matti J Tikkanen
- Folkhälsan Research Center, University of Helsinki, FIN-00014, Helsinki, Finland; Heart and Lung Center, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| | - Feng Wang
- Folkhälsan Research Center, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Esa Hämäläinen
- Department of Clinical Chemistry, University of Helsinki, FIN-00029 HUS, Helsinki, Finland
| | - Ursula Turpeinen
- HUSLAB, Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| | - Mikko Haanpää
- HUSLAB, Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| | - Veera Vihma
- Folkhälsan Research Center, University of Helsinki, FIN-00014, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Hanna Savolainen-Peltonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland; Folkhälsan Research Center, University of Helsinki, FIN-00014, Helsinki, Finland.
| |
Collapse
|
42
|
Metcalfe RS, Kemp R, Heffernan SM, Churm R, Chen YC, Ruffino JS, Conway GE, Tornillo G, Orange ST. Anti-carcinogenic effects of exercise-conditioned human serum: evidence, relevance and opportunities. Eur J Appl Physiol 2021; 121:2107-2124. [PMID: 33864493 PMCID: PMC8260517 DOI: 10.1007/s00421-021-04680-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Regular physical activity reduces the risk of several site-specific cancers in humans and suppresses tumour growth in animal models. The mechanisms through which exercise reduces tumour growth remain incompletely understood, but an intriguing and accumulating body of evidence suggests that the incubation of cancer cells with post-exercise serum can have powerful effects on key hallmarks of cancer cell behaviour in vitro. This suggests that exercise can impact tumour biology through direct changes in circulating proteins, RNA molecules and metabolites. Here, we provide a comprehensive narrative overview of what is known about the effects of exercise-conditioned sera on in vitro cancer cell behaviour. In doing so, we consider the key limitations of the current body of literature, both from the perspective of exercise physiology and cancer biology, and we discuss the potential in vivo physiological relevance of these findings. We propose key opportunities for future research in an area that has the potential to identify key anti-oncogenic protein targets and optimise physical activity recommendations for cancer prevention, treatment and survivorship.
Collapse
Affiliation(s)
- Richard S Metcalfe
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK.
| | - Rachael Kemp
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Shane M Heffernan
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Rachel Churm
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Yung-Chih Chen
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | | | - Gillian E Conway
- In Vitro Toxicology Group, Institute of Life Sciences, College of Medicine, Swansea University, Swansea, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Samuel T Orange
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
Bhardwaj P, Brown KA. Obese Adipose Tissue as a Driver of Breast Cancer Growth and Development: Update and Emerging Evidence. Front Oncol 2021; 11:638918. [PMID: 33859943 PMCID: PMC8042134 DOI: 10.3389/fonc.2021.638918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is an established risk factor for breast cancer growth and progression. A number of advances have been made in recent years revealing new insights into this link. Early events in breast cancer development involve the neoplastic transformation of breast epithelial cells to cancer cells. In obesity, breast adipose tissue undergoes significant hormonal and inflammatory changes that create a mitogenic microenvironment. Many factors that are produced in obesity have also been shown to promote tumorigenesis. Given that breast epithelial cells are surrounded by adipose tissue, the crosstalk between the adipose compartment and breast epithelial cells is hypothesized to be a significant player in the initiation and progression of breast cancer in individuals with excess adiposity. The present review examines this crosstalk with a focus on obese breast adipose-derived estrogen, inflammatory mediators and adipokines, and how they are mechanistically linked to breast cancer risk and growth through stimulation of oxidative stress, DNA damage, and pro-oncogenic transcriptional programs. Pharmacological and lifestyle strategies targeting these factors and their downstream effects are evaluated for feasibility and efficacy in decreasing the risk of obesity-induced breast epithelial cell transformation and consequently, breast cancer development.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
44
|
Bustamante-Marin XM, Merlino JL, Devericks E, Carson MS, Hursting SD, Stewart DA. Mechanistic Targets and Nutritionally Relevant Intervention Strategies to Break Obesity-Breast Cancer Links. Front Endocrinol (Lausanne) 2021; 12:632284. [PMID: 33815289 PMCID: PMC8011316 DOI: 10.3389/fendo.2021.632284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
The worldwide prevalence of overweight and obesity has tripled since 1975. In the United States, the percentage of adults who are obese exceeds 42.5%. Individuals with obesity often display multiple metabolic perturbations, such as insulin resistance and persistent inflammation, which can suppress the immune system. These alterations in homeostatic mechanisms underlie the clinical parameters of metabolic syndrome, an established risk factor for many cancers, including breast cancer. Within the growth-promoting, proinflammatory milieu of the obese state, crosstalk between adipocytes, immune cells and breast epithelial cells occurs via obesity-associated hormones, angiogenic factors, cytokines, and other mediators that can enhance breast cancer risk and/or progression. This review synthesizes evidence on the biological mechanisms underlying obesity-breast cancer links, with emphasis on emerging mechanism-based interventions in the context of nutrition, using modifiable elements of diet alone or paired with physical activity, to reduce the burden of obesity on breast cancer.
Collapse
Affiliation(s)
| | - Jenna L. Merlino
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Emily Devericks
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Meredith S. Carson
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| |
Collapse
|
45
|
The Tumor Promotional Role of Adipocytes in the Breast Cancer Microenvironment and Macroenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1342-1352. [PMID: 33639102 DOI: 10.1016/j.ajpath.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The role of the adipocyte in the tumor microenvironment has received significant attention as a critical mediator of the obesity-cancer relationship. Current estimates indicate that 650 million adults have obesity, and thirteen cancers, including breast cancer, are estimated to be associated with obesity. Even in people with a normal body mass index, adipocytes are key players in breast cancer progression because of the proximity of tumors to mammary adipose tissue. Outside the breast microenvironment, adipocytes influence metabolic and immune function and produce numerous signaling molecules, all of which affect breast cancer development and progression. The current epidemiologic data linking obesity, and importantly adipose tissue, to breast cancer risk and prognosis, focusing on metabolic health, weight gain, and adipose distribution as underlying drivers of obesity-associated breast cancer is presented here. Bioactive factors produced by adipocytes, both normal and cancer associated, such as cytokines, growth factors, and metabolites, and the potential mechanisms through which adipocytes influence different breast cancer subtypes are highlighted.
Collapse
|
46
|
Modern Understanding of the Gut Microbiotа in Patients with Diabetes Mellitus. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Impact of obesity on clinical outcomes in hormone receptor-positive breast cancer: a systematic review. Breast Cancer 2021; 28:755-764. [PMID: 33428124 DOI: 10.1007/s12282-020-01213-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The relationship between obesity and prognosis of early breast cancer is complex. Increased levels of aromatase present in adipose tissue of obese postmenopausal women may lead to suboptimal suppression of systemic estrogens. However, studies have been mixed with respect to the association between use of aromatase inhibitors (AIs) and clinical outcomes in obese women with early breast cancer. METHODS We conducted a systematic literature review following PRISMA guidelines to examine the impact of obesity on the efficacy of AIs in early-stage hormone receptor-positive breast cancer. Primary outcome measures included disease-free survival, relapse-free survival, distant recurrence-free survival, breast cancer-free survival, and overall survival. RESULTS Of 491 studies identified, eight studies met criteria for inclusion: three retrospective cohort studies, one prospective cohort study and four randomized controlled trials. Four studies limited eligibility to postmenopausal women. Percentage of obese patients in studies ranged from 10 to 30%. Two studies examined use of AIs alone while the remainder included patients treated with either AIs or tamoxifen. Five out of seven studies suggested a negative impact of obesity on AI efficacy. CONCLUSIONS The results of our systematic review highlight a need for further research exploring the optimal endocrine therapies for obese women. There is insufficient evidence at present to recommend tailoring adjuvant endocrine therapy with use of specific AIs or for dosing modifications of AIs in this patient population.
Collapse
|
48
|
Dashti SG, English DR, Simpson JA, Karahalios A, Moreno-Betancur M, Biessy C, Rinaldi S, Ferrari P, Tjønneland A, Halkjær J, Dahm CC, Vistisen HT, Menegaux F, Perduca V, Severi G, Aleksandrova K, Schulze MB, Masala G, Sieri S, Tumino R, Macciotta A, Panico S, Hiensch AE, May AM, Quirós JR, Agudo A, Sánchez MJ, Amiano P, Colorado-Yohar S, Ardanaz E, Allen NE, Weiderpass E, Fortner RT, Christakoudi S, Tsilidis KK, Riboli E, Kaaks R, Gunter MJ, Viallon V, Dossus L. Adiposity and Endometrial Cancer Risk in Postmenopausal Women: A Sequential Causal Mediation Analysis. Cancer Epidemiol Biomarkers Prev 2021; 30:104-113. [PMID: 33008875 DOI: 10.1158/1055-9965.epi-20-0965] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Adiposity increases endometrial cancer risk, possibly through inflammation, hyperinsulinemia, and increasing estrogens. We aimed to quantify the mediating effects of adiponectin (anti-inflammatory adipocytokine); IL6, IL1-receptor antagonist, TNF receptor 1 and 2, and C-reactive protein (inflammatory status biomarkers); C-peptide (hyperinsulinemia biomarker); and free estradiol and estrone (estrogen biomarkers) in the adiposity-endometrial cancer link in postmenopausal women. METHODS We used data from a case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC). Eligible women did not have cancer, hysterectomy, and diabetes; did not use oral contraceptives or hormone therapy; and were postmenopausal at recruitment. Mediating pathways from adiposity to endometrial cancer were investigated by estimating natural indirect (NIE) and direct (NDE) effects using sequential mediation analysis. RESULTS The study included 163 cases and 306 controls. The adjusted OR for endometrial cancer for body mass index (BMI) ≥30 versus ≥18.5-<25 kg/m2 was 2.51 (95% confidence interval, 1.26-5.02). The ORsNIE were 1.95 (1.01-3.74) through all biomarkers [72% proportion mediated (PM)] decomposed as: 1.35 (1.06-1.73) through pathways originating with adiponectin (33% PM); 1.13 (0.71-1.80) through inflammation beyond (the potential influence of) adiponectin (13% PM); 1.05 (0.88-1.24) through C-peptide beyond adiponectin and inflammation (5% PM); and 1.22 (0.89-1.67) through estrogens beyond preceding biomarkers (21% PM). The ORNDE not through biomarkers was 1.29 (0.54-3.09). Waist circumference gave similar results. CONCLUSIONS Reduced adiponectin and increased inflammatory biomarkers, C-peptide, and estrogens mediated approximately 70% of increased odds of endometrial cancer in women with obesity versus normal weight. IMPACT If replicated, these results could have implications for identifying targets for intervention to reduce endometrial cancer risk in women with obesity.
Collapse
Affiliation(s)
- S Ghazaleh Dashti
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Margarita Moreno-Betancur
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Carine Biessy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Sabina Rinaldi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Jytte Halkjær
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | | | | - Vittorio Perduca
- Laboratoire de Mathématiques Appliquées à Paris 5-MAP5 (UMR CNRS 8145), Université Paris Descartes, Université de Paris, Paris, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, CESP U1018 INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti," University of Florence, Florence, Italy
| | - Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Matthias B Schulze
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP) Ragusa, Ragusa, Italy
| | - Alessandra Macciotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Salvatore Panico
- Dipoartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy
| | - Anouk E Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Universidad de Granada, Granada, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Public Health Division of Gipuzkoa, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Sandra Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Naomi E Allen
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Elisabete Weiderpass
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- MRC Centre for Transplantation, King's College London, London, United Kingdom
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Vivian Viallon
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Laure Dossus
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
49
|
Ortega MA, Fraile-Martínez O, García-Montero C, Pekarek L, Guijarro LG, Castellanos AJ, Sanchez-Trujillo L, García-Honduvilla N, Álvarez-Mon M, Buján J, Zapico Á, Lahera G, Álvarez-Mon MA. Physical Activity as an Imperative Support in Breast Cancer Management. Cancers (Basel) 2020; 13:E55. [PMID: 33379177 PMCID: PMC7796347 DOI: 10.3390/cancers13010055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy and the second cause of cancer-related death among women. It is estimated that 9 in 10 cases of BC are due to non-genetic factors, and approximately 25% to 30% of total breast cancer cases should be preventable only by lifestyle interventions. In this context, physical activity represents an excellent and accessible approach not only for the prevention, but also for being a potential support in the management of breast cancer. The present review will collect the current knowledge of physical activity in the background of breast cancer, exploring its systemic and molecular effects, considering important variables in the training of these women and the evidence regarding the benefits of exercise on breast cancer survival and prognosis. We will also summarize the various effects of physical activity as a co-adjuvant therapy in women receiving different treatments to deal with its adverse effects. Finally, we will reveal the impact of physical activity in the enhancement of quality of life of these patients, to conclude the central role that exercise must occupy in breast cancer management, in an adequate context of a healthy lifestyle.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Oscar Fraile-Martínez
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Cielo García-Montero
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Leonel Pekarek
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Luis G. Guijarro
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Alejandro J. Castellanos
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Lara Sanchez-Trujillo
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Natalio García-Honduvilla
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Julia Buján
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Álvaro Zapico
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Obstetrics and Gynecology Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel A. Álvarez-Mon
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| |
Collapse
|
50
|
Pace F, Watnick PI. The Interplay of Sex Steroids, the Immune Response, and the Intestinal Microbiota. Trends Microbiol 2020; 29:849-859. [PMID: 33257138 DOI: 10.1016/j.tim.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
The role of sex steroids in mammalian maturation is well established. Recently, it has been increasingly appreciated that sex steroids also play an important role in the propensity of adults to develop a myriad of diseases. The exposure and responsiveness of tissues to sex steroids varies among individuals and between the sexes, and this has been correlated with gender-specific differences in the composition of the intestinal microbiota and in susceptibility to metabolic, autoimmune, and neoplastic diseases. Here we focus on recent studies that demonstrate an interplay between sex steroids, the intestinal immune response, and the intestinal microbiota. While correlations between biological sex, the intestinal innate immune response, intestinal inflammation, and intestinal microbiota have been established, many gaps in our knowledge prevent the emergence of an overarching model for this complex interaction. Such a model could aid in the development of prebiotic, probiotic, or synthetic therapeutics that decrease the risk of autoimmune, metabolic, neoplastic, and infectious diseases of the intestine and mitigate the particular health risks faced by individuals receiving sex steroid treatment.
Collapse
Affiliation(s)
- Fernanda Pace
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|