1
|
Tian W, Chen S. Neurotransmitters, Cell Types, and Circuit Mechanisms of Motor Skill Learning and Clinical Applications. Front Neurol 2021; 12:616820. [PMID: 33716924 PMCID: PMC7947691 DOI: 10.3389/fneur.2021.616820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 02/02/2023] Open
Abstract
Animals acquire motor skills to better survive and adapt to a changing environment. The ability to learn novel motor actions without disturbing learned ones is essential to maintaining a broad motor repertoire. During motor learning, the brain makes a series of adjustments to build novel sensory–motor relationships that are stored within specific circuits for long-term retention. The neural mechanism of learning novel motor actions and transforming them into long-term memory still remains unclear. Here we review the latest findings with regard to the contributions of various brain subregions, cell types, and neurotransmitters to motor learning. Aiming to seek therapeutic strategies to restore the motor memory in relative neurodegenerative disorders, we also briefly describe the common experimental tests and manipulations for motor memory in rodents.
Collapse
Affiliation(s)
- Wotu Tian
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Poulin JF, Gaertner Z, Moreno-Ramos OA, Awatramani R. Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches. Trends Neurosci 2020; 43:155-169. [PMID: 32101709 PMCID: PMC7285906 DOI: 10.1016/j.tins.2020.01.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/13/2019] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Abstract
Dysfunctional dopamine (DA) signaling has been associated with a broad spectrum of neuropsychiatric disorders, prompting investigations into how midbrain DA neuron heterogeneity may underpin this variety of behavioral symptoms. Emerging literature indeed points to functional heterogeneity even within anatomically defined DA clusters. Recognizing the need for a systematic classification scheme, several groups have used single-cell profiling to catalog DA neurons based on their gene expression profiles. We aim here not only to synthesize points of congruence but also to highlight key differences between the molecular classification schemes derived from these studies. In doing so, we hope to provide a common framework that will facilitate investigations into the functions of DA neuron subtypes in the healthy and diseased brain.
Collapse
Affiliation(s)
- Jean-Francois Poulin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zachary Gaertner
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Mesman S, van Hooft JA, Smidt MP. Mest/Peg1 Is Essential for the Development and Maintenance of a SNc Neuronal Subset. Front Mol Neurosci 2017; 9:166. [PMID: 28133444 PMCID: PMC5233686 DOI: 10.3389/fnmol.2016.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022] Open
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons originate at the floor plate and floor plate-basal plate boundary of the midbrain ventricular zone. During development mdDA neurons are specified by a unique set of transcription factors and signaling cascades, to form the different molecular subsets of the mdDA neuronal population. In a time series micro-array study performed previously, mesoderm specific transcript (Mest) was found to be one of the most upregulated genes during early mdDA neuronal development. Here, we show that Mest transcript is expressed in the midbrain throughout development and becomes restricted to the substantia nigra (SNc) at late stages. In Mest KO animals mdDA neurons are progressively lost in the adult, mostly affecting the SNc, reflected by a 50% decrease of TH protein and DA release in the striatum and a reduction of climbing behavior. Analysis of Lrp6 KO embryos suggest a subtle opposite phenotype to the Mest KO, hinting toward the possibility that specific loss of mdDA neurons in Mest ablated animals could be due to affected WNT-signaling. Interestingly, the mdDA neuronal region affected by the loss of Mest remains relatively unaffected in Pitx3 mutants, suggesting that both genes are essential for the development and/or maintenance of different mdDA neuronal subsets within the SNc. Overall, the neuroanatomical and phenotypical consequences detected upon the loss of Mest, resemble the loss of SNc neurons and loss of movement control as seen in Parkinson’s Disease (PD), suggesting that the Mest mouse model may be used as a model-system for PD.
Collapse
Affiliation(s)
- Simone Mesman
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam Amsterdam, Netherlands
| | - Johannes A van Hooft
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam Amsterdam, Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
4
|
Abstract
Age-related cataracts are frequently associated with degenerative changes in the ocular lens including the aggregation of proteins - mainly crystallins, but also other proteins including amyloids (Aβ) leading to the hypothesis that cataracts could be used as "biomarkers" for Alzheimer disease. Even if this hypothesis was rejected by David Beebe's last paper (Bei et al., Exp. Eye Res., 2015), it is a fascinating aspect to look for commonalities between eye diseases and neurological disorders. In this review, I discuss such commonalities between eye and brain mainly from a developmental point of view. The finding of the functional homology of the Drosophila eyeless gene with the mammalian Pax6 gene marks a first highlight in the developmental genetics of the eye - this result destroyed the "dogma" of the different evolutionary routes of eye development in flies and mammals. The second highlight was the finding that Pax6 is also involved in the development of the forebrain supporting the pleiotropic role of many genes. These findings opened a new avenue for research showing that a broad variety of transcription factors, but also structural proteins are involved both, in eye and brain development as well as into the maintenance of the functional integrity of the corresponding tissue(s). In this review recent findings are summarized demonstrating that genes whose mutations have been identified first to be causative for congenital or juvenile eye disorders are also involved in regenerative processes and neurogenesis (Pax6), but also in neurodegenerative diseases like Parkinson (e.g. Pitx3) or in neurological disorders like Schizophrenia (e.g. Crybb1, Crybb2).
Collapse
Affiliation(s)
- Jochen Graw
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstaedter Landstr, 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
5
|
Neurobehavioral Anomalies in the Pitx3/ak Murine Model of Parkinson’s Disease and MPTP. Behav Genet 2015; 46:228-41. [DOI: 10.1007/s10519-015-9753-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023]
|
6
|
Jiménez-Jiménez FJ, García-Martín E, Alonso-Navarro H, Agúndez JA. PITX3 and Risk for Parkinson's Disease: A Systematic Review and Meta-Analysis. Eur Neurol 2013; 71:49-56. [DOI: 10.1159/000353981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/23/2013] [Indexed: 12/13/2022]
|
7
|
Beeler JA. Preservation of function in Parkinson's disease: what's learning got to do with it? Brain Res 2011; 1423:96-113. [PMID: 22000081 DOI: 10.1016/j.brainres.2011.09.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/06/2011] [Accepted: 09/20/2011] [Indexed: 01/16/2023]
Abstract
Dopamine denervation gives rise to abnormal corticostriatal plasticity; however, its role in the symptoms and progression of Parkinson's disease (PD) has not been articulated or incorporated into current clinical models. The 'integrative selective gain' framework proposed here integrates dopaminergic mechanisms known to modulate basal ganglia throughput into a single conceptual framework: (1) synaptic weights, the neural instantiation of accumulated experience and skill modulated by dopamine-dependent plasticity and (2) system gain, the operating parameters of the basal ganglia, modulated by dopamine's on-line effects on cell excitability, glutamatergic transmission and the balance between facilitatory and inhibitory pathways. Within this framework and based on recent work, a hypothesis is presented that prior synaptic weights and established skills can facilitate motor performance and preserve function despite diminished dopamine; however, dopamine denervation induces aberrant corticostriatal plasticity that degrades established synaptic weights and replaces them with inappropriate, inhibitory learning that inverts the function of the basal ganglia resulting in 'anti-optimization' of motor performance. Consequently, mitigating aberrant corticostriatal plasticity represents an important therapeutic objective, as reflected in the long-duration response to levodopa, reinterpreted here as the correction of aberrant learning. It is proposed that viewing aberrant corticostriatal plasticity and learning as a provisional endophenotype of PD would facilitate investigation of this hypothesis.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci U S A 2010; 108:840-5. [PMID: 21187382 DOI: 10.1073/pnas.1006511108] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Treatment of Parkinson disease (PD) with L-3,4-dihydroxyphenylalanine (L-DOPA) dramatically relieves associated motor deficits, but L-DOPA-induced dyskinesias (LID) limit the therapeutic benefit over time. Previous investigations have noted changes in striatal medium spiny neurons, including abnormal activation of extracellular signal-regulated kinase1/2 (ERK). Using two PD models, the traditional 6-hydroxydopamine toxic lesion and a genetic model with nigrostriatal dopaminergic deficits, we found that acute dopamine challenge induces ERK activation in medium spiny neurons in denervated striatum. After repeated L-DOPA treatment, however, ERK activation diminishes in medium spiny neurons and increases in striatal cholinergic interneurons. ERK activation leads to enhanced basal firing rate and stronger excitatory responses to dopamine in striatal cholinergic neurons. Pharmacological blockers of ERK activation inhibit L-DOPA-induced changes in ERK phosphorylation, neuronal excitability, and the behavioral manifestation of LID. In addition, a muscarinic receptor antagonist reduces LID. These data indicate that increased dopamine sensitivity of striatal cholinergic neurons contributes to the expression of LID, which suggests novel therapeutic targets for LID.
Collapse
|
9
|
Beeler JA, Cao ZFH, Kheirbek MA, Ding Y, Koranda J, Murakami M, Kang UJ, Zhuang X. Dopamine-dependent motor learning: insight into levodopa's long-duration response. Ann Neurol 2010; 67:639-47. [PMID: 20437561 DOI: 10.1002/ana.21947] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Dopamine (DA) is critical for motor performance, motor learning, and corticostriatal plasticity. The relationship between motor performance and learning, and the role of DA in the mediation of them, however, remain unclear. METHODS To examine this question, we took advantage of PITx3-deficient mice (aphakia mice), in which DA in the dorsal striatum is reduced by 90%. PITx3-deficient mice do not display obvious motor deficits in their home cage, but are impaired in motor tasks that require new motor skills. We used the accelerating rotarod as a motor learning task. RESULTS We show that the deficiency in motor skill learning in PITx3(-/-) is dramatic and can be rescued with levodopa treatment. In addition, cessation of levodopa treatment after acquisition of the motor skill does not result in an immediate drop in performance. Instead, there is a gradual decline of performance that lasts for a few days, which is not related to levodopa pharmacokinetics. We show that this gradual decline is dependent on the retesting experience. INTERPRETATION This observation resembles the long-duration response to levodopa therapy in its slow buildup of improvement after the initiation of therapy and gradual degradation. We hypothesize that motor learning may play a significant, underappreciated role in the symptomatology of Parkinson disease as well as in the therapeutic effects of levodopa. We suggest that the important, yet enigmatic long-duration response to chronic levodopa treatment is a manifestation of rescued motor learning.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Guibinga GH, Hsu S, Friedmann T. Deficiency of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis. Mol Ther 2009; 18:54-62. [PMID: 19672249 DOI: 10.1038/mt.2009.178] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neuronal transcription factors play vital roles in the specification and development of neurons, including dopaminergic (DA) neurons. Mutations in the gene encoding the purine biosynthetic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause the resulting intractable and largely untreatable neurological impairment of Lesch-Nyhan disease (LND). The disorder is associated with a defect in basal ganglia DA pathways. The mechanisms connecting the purine metabolic defect and the central nervous system (CNS) phenotype are poorly understood but have been presumed to reflect a developmental defect of DA neurons. We have examined the effect of HPRT deficiency on the differentiation of neurons in the well-established human (NT2) embryonic carcinoma neurogenesis model. We have used a retrovirus expressing a small hairpin RNA (shRNA) to knock down HPRT gene expression and have examined the expression of a number of transcription factors essential for neuronal differentiation and marker genes involved in DA biosynthetic pathway. HPRT-deficient NT2 cells demonstrate aberrant expression of several transcription factors and DA markers. Although differentiated HPRT-deficient neurons also demonstrate a striking deficit in neurite outgrowth during differentiation, resulting neurons demonstrate wild-type electrophysiological properties. These results represent direct experimental evidence for aberrant neurogenesis in HPRT deficiency and suggest developmental roles for other housekeeping genes in neurodevelopmental disease.
Collapse
Affiliation(s)
- Ghiabe-Henri Guibinga
- Department of Pediatrics, Center for Molecular Genetics, University of California, San Diego School of Medicine, La Jolla, California 92093-0634, USA
| | | | | |
Collapse
|
11
|
Beeler JA, Cao ZFH, Kheirbek MA, Zhuang X. Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology 2009; 34:1149-61. [PMID: 18704092 PMCID: PMC2752723 DOI: 10.1038/npp.2008.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both the dorsal and ventral striatum have been demonstrated to have a critical role in reinforcement learning and addiction. Dissecting the specific function of these striatal compartments and their associated nigrostriatal and mesoaccumbens dopamine pathways, however, has proved difficult. Previous studies using lesions to isolate the contribution of nigrostriatal and mesoaccumbens dopamine in mediating the locomotor and reinforcing effects of psychostimulant drugs have yielded inconsistent and inconclusive results. Using a naturally occurring mutant mouse line, aphakia, that lacks a nigrostriatal dopamine pathway but retains an intact mesoaccumbens pathway, we show that the locomotor activating effects of cocaine, including locomotor sensitization, are dependent on an intact nigrostriatal dopamine projection. In contrast, cocaine reinforcement, as measured by conditioned place preference and cocaine sensitization of sucrose preference, is intact in these mice. In light of the well-established role of the nucleus accumbens in mediating the effects of psychostimulants, these data suggest that the nigrostriatal pathway can act as a critical effector mechanism for the nucleus accumbens highlighting the importance of intrastriatal connectivity and providing insight into the functional architecture of the striatum.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA.
| | | | - Mazen A Kheirbek
- Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Jacobs FMJ, van Erp S, van der Linden AJA, von Oerthel L, Burbach JPH, Smidt MP. Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 2009; 136:531-40. [PMID: 19144721 DOI: 10.1242/dev.029769] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, the meso-diencephalic dopaminergic (mdDA) neurons have been extensively studied for their association with Parkinson's disease. Thus far, specification of the dopaminergic phenotype of mdDA neurons is largely attributed to the orphan nuclear receptor Nurr1. In this study, we provide evidence for extensive interplay between Nurr1 and the homeobox transcription factor Pitx3 in vivo. Both Nurr1 and Pitx3 interact with the co-repressor PSF and occupy the promoters of Nurr1 target genes in concert. Moreover, in vivo expression analysis reveals that Nurr1 alone is not sufficient to drive the dopaminergic phenotype in mdDA neurons but requires Pitx3 for full activation of target gene expression. In the absence of Pitx3, Nurr1 is kept in a repressed state through interaction with the co-repressor SMRT. Highly resembling the effect of ligand activation of nuclear receptors, recruitment of Pitx3 modulates the Nurr1 transcriptional complex by decreasing the interaction with SMRT, which acts through HDACs to keep promoters in a repressed deacetylated state. Indeed, interference with HDAC-mediated repression in Pitx3(-/-) embryos efficiently reactivates the expression of Nurr1 target genes, bypassing the necessity for Pitx3. These data position Pitx3 as an essential potentiator of Nurr1 in specifying the dopaminergic phenotype, providing novel insights into mechanisms underlying development of mdDA neurons in vivo, and the programming of stem cells as a future cell replacement therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Frank M J Jacobs
- Department of Neuroscience & Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Terminal Differentiation of Mesodiencephalic Dopaminergic Neurons:. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [DOI: 10.1007/978-1-4419-0322-8_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Smits SM, Noorlander CW, Kas MJH, Ramakers GMJ, Smidt MP. Alterations in serotonin signalling are involved in the hyperactivity of Pitx3-deficient mice. Eur J Neurosci 2008; 27:388-95. [PMID: 18215235 DOI: 10.1111/j.1460-9568.2008.06032.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pitx3 deficiency in mice causes a dramatic loss of dopaminergic neurones located in the substantia nigra pars compacta during development. This early disruption of the nigrostriatal pathway in Pitx3-deficient mice is characterized by increased spontaneous home-cage activity levels during the habitual sleep phase of these animals. These findings are reminiscent of the spontaneous hyperactivity in mice neonatally lesioned with 6-hydroxydopamine, which is caused by an extensive serotonergic hyperinnervation of the striatum. The present study investigated whether an imbalance between dopamine (DA) and serotonin (5-HT) signalling is involved in the behavioural phenotype of Pitx3-deficient mice. Serotonergic hyperinnervation was demonstrated by increased [3H]-citalopram autoradiographic binding specifically in the dorsal striatum of adult Pitx3-deficient mice, indicating alterations in 5-HT transporter levels that correlated to DA dysfunction in Pitx3 deficiency. In addition, stimulus-induced release of DA and 5-HT indicated an altered balance between these neurotransmitters in the dorsal striatum of Pitx3-/- mice. To determine whether the increased 5-HT signalling was involved in the spontaneous hyperactivity during the light phase observed in Pitx3 deficiency, we treated Pitx3-deficient and control mice with the selective irreversible tryptophan hydroxylase inhibitor p-chlorophenylalanine to decrease 5-HT levels. Reduction of 5-HT levels in Pitx3-deficient mice decreased their locomotor activity to normal levels, whereas the same treatment increased the locomotor activity levels of control mice. Taken together, our results indicate alterations in 5-HT signalling in Pitx3-deficient mice that underlie their spontaneous hyperactivity.
Collapse
Affiliation(s)
- Simone M Smits
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Differential effects of recombinant adeno-associated virus-mediated neuropeptide Y overexpression in the hypothalamic paraventricular nucleus and lateral hypothalamus on feeding behavior. J Neurosci 2008; 27:14139-46. [PMID: 18094253 DOI: 10.1523/jneurosci.3280-07.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well known that neuropeptide Y (NPY) increases food intake. The hypothalamic paraventricular nucleus (PVN) and the lateral hypothalamus (LH) are both involved in the acute, hyperphagic effects of NPY. Although it is obvious that increased energy intake may lead to obesity, it is less understood which aspects of feeding behavior are affected and whether one or multiple neural sites mediate the effects of long-term increased NPY signaling. By long-term overexpressing NPY in either the PVN or the LH, we uncovered brain site-specific effects of NPY on meal frequency, meal size, and diurnal feeding patterns. In rats injected with adeno-associated virus-NPY in the PVN, increased food intake resulted from an increase in the amount of meals consumed, whereas in rats injected in the LH, increased food intake was attributable to increased meal size. Interestingly, food intake and body weight gain were only temporarily increased in PVN-injected rats, whereas in LH-injected rats hyperphagia and body weight gain remained for the entire 50 d. Moreover, in LH-NPY rats, but not in PVN-NPY rats, diurnal rhythmicity with regard to food intake and body core temperature was lost. These data clearly show that the NPY system differentially regulates energy intake and energy expenditure in the PVN and LH, which together adjust energy balance.
Collapse
|
16
|
Kramer ER, Aron L, Ramakers GMJ, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 2007; 5:e39. [PMID: 17298183 PMCID: PMC1808500 DOI: 10.1371/journal.pbio.0050039] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 12/07/2006] [Indexed: 12/16/2022] Open
Abstract
Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD. What does a neuron need to survive? Our body produces its own survival factors for neurons, so-called neurotrophic factors, which have additional roles in neuron differentiation, growth, and function. Declining production of a neurotrophic factor or impaired signal transduction in ageing neurons may contribute to pathological neurodegeneration in humans. Glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been suggested as survival factors for midbrain dopaminergic neurons, a group of neurons primarily affected in Parkinson disease. To investigate the physiological requirements for GDNF and BDNF to establish and maintain an important output pathway of these neurons—the nigrostriatal pathway—in the intact brain, we generated mutant mice with regionally selective ablations of the receptors for these survival factors, Ret (receptor of GDNF and related family members) or TrkB (BDNF receptor). Surprisingly, these mice survive to adulthood and show normal development and maturation of the nigrostriatal system. However, in ageing mice, ablation of Ret leads to a progressive and cell-type–specific loss of substantia nigra pars compacta neurons and their projections into the striatum. Our findings establish Ret and subsequent downstream effectors as critical regulators of long-term maintenance of the nigrostriatal system. Ret, a receptor for glial cell line-derived neurotrophic factor, selectively regulates long-term maintenance of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Edgar R Kramer
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
- * To whom correspondence should be addressed. E-mail: (RK), (ERK)
| | - Liviu Aron
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | - Geert M. J Ramakers
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Seitz
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
- Institute for Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
| | - Xiaoxi Zhuang
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois, United States of America
| | - Klaus Beyer
- Department of Metabolic Biochemistry, Adolf Butenandt Institute, Munich, Germany
| | - Marten P Smidt
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rüdiger Klein
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
- * To whom correspondence should be addressed. E-mail: (RK), (ERK)
| |
Collapse
|
17
|
Jacobs FMJ, Smits SM, Noorlander CW, von Oerthel L, van der Linden AJA, Burbach JPH, Smidt MP. Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development 2007; 134:2673-84. [PMID: 17592014 DOI: 10.1242/dev.02865] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Selective neuronal loss in the substantia nigra (SNc), as described for Parkinson's disease (PD) in humans and for Pitx3 deficiency in mice, highlights the existence of neuronal subpopulations. As yet unknown subset-specific gene cascades might underlie the observed differences in neuronal vulnerability. We identified a developmental cascade in mice in which Ahd2 (Aldh1a1) is under the transcriptional control of Pitx3. Interestingly, Ahd2 distribution is restricted to a subpopulation of the meso-diencephalic dopaminergic (mdDA) neurons that is affected by Pitx3 deficiency. Ahd2 is involved in the synthesis of retinoic acid (RA), which has a crucial role in neuronal patterning, differentiation and survival in the brain. Most intriguingly, restoring RA signaling in the embryonic mdDA area counteracts the developmental defects caused by Pitx3 deficiency. The number of tyrosine hydroxylase-positive (TH+) neurons was significantly increased after RA treatment in the rostral mdDA region of Pitx3-/- embryos. This effect was specific for the rostral part of the developing mdDA area, and was observed exclusively in Pitx3-/- embryos. The effect of RA treatment during the critical phase was preserved until later in development, and our data suggest that RA is required for the establishment of proper mdDA neuronal identity. This positions Pitx3 centrally in a mdDA developmental cascade linked to RA signaling. Here, we propose a novel mechanism in which RA is involved in mdDA neuronal development and maintenance, providing new insights into subset-specific vulnerability in PD.
Collapse
Affiliation(s)
- Frank M J Jacobs
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Singh B, Wilson JH, Vasavada HH, Guo Z, Allore HG, Zeiss CJ. Motor deficits and altered striatal gene expression in aphakia (ak) mice. Brain Res 2007; 1185:283-92. [PMID: 17949697 DOI: 10.1016/j.brainres.2007.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/30/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Like humans with Parkinson's disease (PD), the ak mouse lacks the majority of the substantia nigra pars compacta (SNc) and experiences striatal denervation. The purpose of this study was to test whether motor abnormalities in the ak mouse progress over time, and whether motor function could be associated with temporal alterations in the striatal transcriptome. Ak and wt mice (28 to 180 days old) were tested using paradigms sensitive to nigrostriatal dysfunction. Results were analyzed using a linear mixed model. Ak mice significantly underperformed wt controls in rotarod, balance beam, string test, pole test and cotton shred tests at all ages examined. Motor performance in ak mice remained constant over the first 6 months of life, with the exception of the cotton shred test, in which ak mice exhibited marginal decline in performance. Dorsal striatal semi-quantitative RT-PCR for 19 dopaminergic, cholinergic, glutaminergic and catabolic genes was performed in 1- and 6-month-old groups of ak and wt mice. Preproenkephalin levels in ak mice were elevated in both age groups. Drd1, 3 and 4 levels declined over time, in contrast to increasing Drd2 expression. Additional findings included decreased Chrnalpha6 expression and elevated VGluT1 expression at both time points in ak mice and elevated AchE expression in young ak mice only. Results confirm that motor ability does not decline significantly for the first 6 months of life in ak mice. Their striatal gene expression patterns are consistent with dopaminergic denervation, and change over time, despite relatively unaltered motor performance.
Collapse
Affiliation(s)
- Bhupinder Singh
- Section of Comparative Medicine, Yale University, 375 Congress Ave., New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
19
|
Bartrés-Faz D, Martí MJ, Junqué C, Solé-Padullés C, Ezquerra M, Bralten LBC, Gaig C, Campdelacreu J, Mercader JM, Tolosa E. Increased cerebral activity in Parkinson?s disease patients carrying the DRD2 TaqIA A1 allele during a demanding motor task: a compensatory mechanism? GENES BRAIN AND BEHAVIOR 2007; 6:588-92. [PMID: 17147698 DOI: 10.1111/j.1601-183x.2006.00290.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies suggest that neuroimaging techniques are useful for detecting the effects of functional genetic polymorphisms on brain function in healthy subjects or in patients presenting with psychiatric or neurodegenerative conditions. Former evidence showed that individuals carrying risk alleles displayed broader patterns of brain activity during behavioural and cognitive tasks, despite being clinically comparable to non-carriers. This suggests the presence of compensatory brain mechanisms. In the present study, we investigated this effect in Parkinson's disease (PD) patients carrying the DRD2 TaqIA A1 allelic variant. This variant may confer an increased risk of developing the disease and/or influence the clinical presentation. During a complex sequential motor task, we evidenced by functional magnetic resonance imaging that A1 allele carriers activated a larger network of bilateral cerebral areas than non-carriers, including cerebellar and premotor regions. Both groups had similar clinical and demographic measures. In addition, their motor performance during the functional magnetic resonance experiment was comparable. Therefore, our conclusions, pending replication in a larger sample, seem to reflect the recruitment of compensatory cerebral resources during motor processing in PD patients carrying the A1 allele.
Collapse
Affiliation(s)
- D Bartrés-Faz
- Department de Psiquiatria i Psicobiologia Clinica, Facultat de Medicina, Universitat de Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ding Y, Restrepo J, Won L, Hwang DY, Kim KS, Kang UJ. Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson's disease. Neurobiol Dis 2007; 27:11-23. [PMID: 17499513 PMCID: PMC2570533 DOI: 10.1016/j.nbd.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/25/2007] [Accepted: 03/17/2007] [Indexed: 11/26/2022] Open
Abstract
L-DOPA-induced dyskinesia (LID) is one of the main limitations of long term L-DOPA use in Parkinson's disease (PD) patients. We show that chronic L-DOPA treatment induces novel dyskinetic behaviors in aphakia mouse with selective nigrostriatal deficit mimicking PD. The stereotypical abnormal involuntary movements were induced by dopamine receptor agonists and attenuated by antidyskinetic agents. The development of LID was accompanied by preprodynorphin and preproenkephalin expression changes in the denervated dorsal striatum. Increased FosB-expression was also noted in the dorsal striatum. In addition, FosB expression was noted in the pedunculopontine nucleus and the zona incerta, structures previously not examined in the setting of LID. The aphakia mouse is a novel genetic model with behavioral and biochemical characteristics consistent with those of PD dyskinesia and provides a more consistent, convenient, and physiologic model than toxic lesion models to study the mechanism of LID and to test therapeutic approaches for LID.
Collapse
Affiliation(s)
- Yunmin Ding
- Department of Neurology, University of Chicago, Chicago, Illinois 60637
| | | | - Lisa Won
- Department of Neurology, University of Chicago, Chicago, Illinois 60637
| | - Dong-Youn Hwang
- Molecular Neurobiology Laboratory, McLean Hospital and Harvard Medical School, Belmont, Massachusetts, 02478
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, McLean Hospital and Harvard Medical School, Belmont, Massachusetts, 02478
| | - Un Jung Kang
- Department of Neurology, University of Chicago, Chicago, Illinois 60637
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
- Corresponding author with complete address, including an email address: *: Un Jung Kang,
| |
Collapse
|
21
|
Peng C, Fan S, Li X, Fan X, Ming M, Sun Z, Le W. Overexpression of pitx3 upregulates expression of BDNF and GDNF in SH-SY5Y cells and primary ventral mesencephalic cultures. FEBS Lett 2007; 581:1357-61. [PMID: 17350004 DOI: 10.1016/j.febslet.2007.02.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/26/2007] [Accepted: 02/13/2007] [Indexed: 11/18/2022]
Abstract
The transcription factor Pitx3 plays an important role in the development of midbrain to promote the growth and differentiation of dopamine neurons. The present study has demonstrated that overexpression of Pitx3 in SH-SY5Y cells and primary ventral mesencephalic (VM) cultures significantly increased the mRNA levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), and remarkably elevated the protein levels of these two neurotrophic factors. Our data provide the first evidence that pitx3-expressing cells are able to upregulate the expression of BDNF and GDNF. Therefore, Pitx3 might be a good target for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Changgeng Peng
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
de Rover M, Lodder JC, Smidt MP, Brussaard AB. Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens. J Neurophysiol 2006; 96:2034-41. [PMID: 16837663 DOI: 10.1152/jn.00333.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus accumbens microcircuitry, may lead to developmental changes. First, spontaneous firing activity of cholinergic interneurons in the nucleus accumbens was recorded in vitro. Firing patterns in the Pitx3-deficient mice were more variable and intrinsically different from those observed in wild-type mice. Next, to test whether the irregular firing patterns observed in mutant mice affected the endogenous nicotinic modulation of the GABAergic input of medium spiny neurons, we recorded spontaneous GABAergic inputs to these cells before and after the application of the nicotinic receptor blocker mecamylamine. Effects of mecamylamine were found in slices of either genotype, but in a rather inconsistent manner. Possibly this was attributable to heterogeneity in firing of nearby cholinergic interneurons. Thus paired recordings of cholinergic interneurons and medium spiny neurons were performed to more precisely control the experimental conditions of the cholinergic modulation of GABAergic synaptic transmission. We found that controlling action potential firing in cholinergic neurons leads to a conditional increase in GABAergic input frequency in wild-type mice but not in Pitx3-deficient mice. We conclude that Pitx3-deficient mice have neural adaptations at the level of the nucleus accumbens microcircuitry that in turn may have behavioral consequences. It is discussed to what extent dopamine release in the nucleus accumbens may be a long-term gating mechanism leading to alterations in cholinergic transmission in the nucleus accumbens, in line with previously reported neural adaptations found as consequences of repeated drug treatment in rodents.
Collapse
Affiliation(s)
- Mischa de Rover
- Department of Experimental Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Jacobs FMJ, Smits SM, Hornman KJM, Burbach JPH, Smidt MP. Strategies to unravel molecular codes essential for the development of meso-diencephalic dopaminergic neurons. J Physiol 2006; 575:397-402. [PMID: 16809365 PMCID: PMC1819470 DOI: 10.1113/jphysiol.2006.113233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding the development of neuronal systems has become an important asset in the attempt to solve complex questions about neuropathology as found in Parkinson's disease, schizophrenia and other complex neuronal diseases. The development of anatomical and functional divergent structures in the brain is achieved by a combination of early anatomical patterning and highly coordinated neuronal migration and differentiation events. Fundamental to the existence of divergent structures in the brain is the early region-specific molecular programming. Neuronal progenitors located along the neural tube can still adapt many different identities. Their exact position in the developing brain, however, determines early molecular specification by region-specific signalling molecules. These signals determine time and region-specific expression of early regulatory genes, leading to neuronal differentiation. Here, we focus on a well-described neuronal group, the meso-diencephalic dopaminergic neurons, of which heterogeneity based on anatomical position could account for the difference in vulnerability of specific subgroups as observed in Parkinson's disease. The knowledge of their molecular coding helps us to understand how the meso-diencephalic dopaminergic system is built and could provide clues that unravel mechanisms associated with the neuropathology in complex diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- F M J Jacobs
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Smits SM, Burbach JPH, Smidt MP. Developmental origin and fate of meso-diencephalic dopamine neurons. Prog Neurobiol 2006; 78:1-16. [PMID: 16414173 DOI: 10.1016/j.pneurobio.2005.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 12/06/2005] [Accepted: 12/06/2005] [Indexed: 11/16/2022]
Abstract
Specific vulnerability of substantia nigra compacta neurons as compared to ventral tegmental area neurons, as emphasized in Parkinson's disease, has been studied for many years and is still not well understood. The molecular codes and mechanisms that drive development of these structures have recently been studied through the use of elegant genetic ablation experiments. The data suggested that specific genes at specific anatomical positions in the ventricular zone are crucial to drive development of young neurons into the direction of the dopaminergic phenotype. In addition, it has become clear the these dopaminergic neurons are present in the diencephalon and in the mesencephalon and that they may contain a specific molecular signature that defines specific subsets in terms of position and function. The data indicate that these specific subsets may explain the specific response of these neurons to toxins and genetic ablation.
Collapse
Affiliation(s)
- Simone M Smits
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|