1
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
2
|
Gray M, Nash KR, Yao Y. Adenylyl cyclase 2 expression and function in neurological diseases. CNS Neurosci Ther 2024; 30:e14880. [PMID: 39073001 PMCID: PMC11284242 DOI: 10.1111/cns.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Adenylyl cyclases (Adcys) catalyze the formation of cAMP, a secondary messenger essential for cell survival and neurotransmission pathways in the CNS. Adcy2, one of ten Adcy isoforms, is highly expressed in the CNS. Abnormal Adcy2 expression and mutations have been reported in various neurological disorders in both rodents and humans. However, due to the lack of genetic tools, loss-of-function studies of Adcy2 are scarce. In this review, we summarize recent findings on Adcy2 expression and function in neurological diseases. Specifically, we first introduce the biochemistry, structure, and function of Adcy2 briefly. Next, the expression and association of Adcy2 in human patients and rodent models of neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), psychiatric disorders (Tourette syndrome, schizophrenia, and bipolar disorder), and other neurological conditions (stress-associated disorders, stroke, epilepsy, and Lesch-Nyhan Syndrome) are elaborated. Furthermore, we discuss the pros and cons of current studies as well as key questions that need to be answered in the future. We hope to provide a focused review on Adcy2 that promotes future research in the field.
Collapse
Affiliation(s)
- Marsilla Gray
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
3
|
Guha S, Nguyen AM, Young A, Mondell E, Farber DB. Decreased CREB phosphorylation impairs embryonic retinal neurogenesis in the Oa1-/- mouse model of Ocular albinism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594013. [PMID: 38798688 PMCID: PMC11118284 DOI: 10.1101/2024.05.14.594013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mutations in the human Ocular albinism type-1 gene OA1 are associated with abnormal retinal pigment epithelium (RPE) melanogenesis and poor binocular vision resulting from misrouting of ipsilateral retinal ganglion cell (iRGC) axons to the brain. We studied the latter using wild-type (WT) and Oa1-/- mouse eyes. At embryonic stages, the WT RPE-specific Oa1 protein signals through cAMP/Epac1-Erk2-CREB. Following CREB phosphorylation, a pCREB gradient extends from the RPE to the differentiating retinal amacrine and RGCs. In contrast to WT, the Oa1-/- RPE and ventral ciliary-margin-zone, a niche for iRGCs, express less pCREB while their retinas have a disrupted pCREB gradient, indicating Oa1's involvement in pCREB maintenance. Oa1-/- retinas also show hyperproliferation, enlarged nuclei, reduced differentiation, and fewer newborn amacrine and RGCs than WT retinas. Our results demonstrate that Oa1's absence leads to reduced binocular vision through a hyperproliferation-associated block in differentiation that impairs neurogenesis. This may affect iRGC axon's routing to the brain.
Collapse
Affiliation(s)
- Sonia Guha
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Andrew M. Nguyen
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Alejandra Young
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Ethan Mondell
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Debora B. Farber
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Gopalakrishna R, Aguilar J, Oh A, Lee E, Hou L, Lee T, Xu E, Nguyen J, Mack WJ. Resveratrol and its metabolites elicit neuroprotection via high-affinity binding to the laminin receptor at low nanomolar concentrations. FEBS Lett 2024; 598:995-1007. [PMID: 38413095 PMCID: PMC11087200 DOI: 10.1002/1873-3468.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Resveratrol prevents various neurodegenerative diseases in animal models despite reaching only low nanomolar concentrations in the brain after oral administration. In this study, based on the quenching of intrinsic tryptophan fluorescence and molecular docking, we found that trans-resveratrol, its conjugates (glucuronide and sulfate), and dihydro-resveratrol (intestinal microbial metabolite) bind with high affinities (Kd, 0.2-2 nm) to the peptide G palindromic sequence (near glycosaminoglycan-binding motif) of the 67-kDa laminin receptor (67LR). Preconditioning with low concentrations (0.01-10 nm) of these polyphenols, especially resveratrol-glucuronide, protected neuronal cells from death induced by serum withdrawal via activation of cAMP-mediated signaling pathways. This protection was prevented by a 67LR-blocking antibody, suggesting a role for this cell-surface receptor in neuroprotection by resveratrol metabolites.
Collapse
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer Aguilar
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Oh
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily Lee
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucas Hou
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tammy Lee
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Xu
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - James Nguyen
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Xu G, Zou X, Dong Y, Alhaskawi A, Zhou H, Ezzi SHA, Kota VG, Abdulla MHAH, Alenikova O, Abdalbary SA, Lu H. Advancements in autologous peripheral nerve transplantation care: a review of strategies and practices to facilitate recovery. Front Neurol 2024; 15:1330224. [PMID: 38523615 PMCID: PMC10959128 DOI: 10.3389/fneur.2024.1330224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Autologous peripheral nerve transplantation, a pioneering technique in nerve injury treatment, has demonstrated remarkable progress. We examine recent nursing strategies and methodologies tailored to various anatomical sites, highlighting their role in postoperative recovery enhancement. Encompassing brachial plexus, upper limb, and lower limb nerve transplantation care, this discussion underscores the importance of personalized rehabilitation plans, interdisciplinary collaboration, and innovative approaches like nerve electrical stimulation and nerve growth factor therapy. Moreover, the exploration extends to effective complication management and prevention strategies, encompassing infection control and pain management. Ultimately, the review concludes by emphasizing the advances achieved in autologous peripheral nerve transplantation care, showcasing the potential to optimize postoperative recovery through tailored and advanced practices.
Collapse
Affiliation(s)
- Guoying Xu
- Operating Theater, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiying Zhou
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | - Olga Alenikova
- Department of Neurology, Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Belarus
| | - Sahar Ahmed Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Operating Theater, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| |
Collapse
|
6
|
Jiang C, Zhao J, Zhang Y, Zhu X. Role of EPAC1 in chronic pain. Biochem Biophys Rep 2024; 37:101645. [PMID: 38304575 PMCID: PMC10832381 DOI: 10.1016/j.bbrep.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Chronic pain usually lasts over three months and commonly occurs in chronic diseases (cancer, arthritis, and diabetes), injuries (herniated discs, torn ligaments), and many major pain disorders (neuropathic pain, fibromyalgia, chronic headaches). Unfortunately, there is currently a lack of effective treatments to help people with chronic pain to achieve complete relief. Therefore,it is particularly important to understand the mechanism of chronic pain and find new therapeutic targets. The exchange protein directly activated by cyclic adenosine monophosphate(cAMP) (EPAC) has been recognized for its functions in nerve regeneration, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities. In recent years, many studies have found that the subtype of EPAC, EPAC1 is involved in the regulation of neuroinflammation and plays a crucial role in the regulation of pain, which is expected to become a new therapeutic target for chronic pain. This article reviews the major contributions of EPAC1 in chronic pain.
Collapse
Affiliation(s)
- Chenlu Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Jiacheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Yihang Zhang
- Medical School of Nantong University, Nantong, 226001, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
7
|
Zhang T, Dolga AM, Eisel ULM, Schmidt M. Novel crosstalk mechanisms between GluA3 and Epac2 in synaptic plasticity and memory in Alzheimer's disease. Neurobiol Dis 2024; 191:106389. [PMID: 38142840 DOI: 10.1016/j.nbd.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aβ), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Aparicio JG, Hopp H, Harutyunyan N, Stewart C, Cobrinik D, Borchert M. Aberrant gene expression yet undiminished retinal ganglion cell genesis in iPSC-derived models of optic nerve hypoplasia. Ophthalmic Genet 2024; 45:1-15. [PMID: 37807874 PMCID: PMC10841193 DOI: 10.1080/13816810.2023.2253902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Optic nerve hypoplasia (ONH), the leading congenital cause of permanent blindness, is characterized by a retinal ganglion cell (RGC) deficit at birth. Multifactorial developmental events are hypothesized to underlie ONH and its frequently associated neurologic and endocrine abnormalities; however, environmental influences are unclear and genetic underpinnings are unexplored. This work investigates the genetic contribution to ONH RGC production and gene expression using patient induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs). MATERIALS AND METHODS iPSCs produced from ONH patients and controls were differentiated to ROs. RGC genesis was assessed using immunofluorescence and flow cytometry. Flow-sorted BRN3+ cells were collected for RNA extraction for RNA-Sequencing. Differential gene expression was assessed using DESeq2 and edgeR. PANTHER was employed to identify statistically over-represented ontologies among the differentially expressed genes (DEGs). DEGs of high interest to ONH were distinguished by assessing function, mutational constraint, and prior identification in ONH, autism and neurodevelopmental disorder (NDD) studies. RESULTS RGC genesis and survival were similar in ONH and control ROs. Differential expression of 70 genes was identified in both DESeq2 and edgeR analyses, representing a ~ 4-fold higher percentage of DEGs than in randomized study participants. DEGs showed trends towards over-representation of validated NDD genes and ONH exome variant genes. Among the DEGs, RAPGEF4 and DMD had the greatest number of disease-relevant features. CONCLUSIONS ONH genetic background was not associated with impaired RGC genesis but was associated with DEGs exhibiting disease contribution potential. This constitutes some of the first evidence of a genetic contribution to ONH.
Collapse
Affiliation(s)
- Jennifer G. Aparicio
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Hanno Hopp
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Narine Harutyunyan
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Carly Stewart
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of
Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark Borchert
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Gao J, Khang MK, Liao Z, Webb K, Detloff MR, Lee JS. Rolipram-loaded PgP nanoparticle reduces secondary injury and enhances motor function recovery in a rat moderate contusion SCI model. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102702. [PMID: 37574117 DOI: 10.1016/j.nano.2023.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Spinal cord injury (SCI) results in immediate axonal damage and cell death, as well as a prolonged secondary injury consist of a cascade of pathophysiological processes. One important aspect of secondary injury is activation of phosphodiesterase 4 (PDE4) that leads to reduce cAMP levels in the injured spinal cord. We have developed an amphiphilic copolymer, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) that can deliver Rolipram, the PDE4 inhibitor. The objective of this work was to investigate the effect of rolipram loaded PgP (Rm-PgP) on secondary injury and motor functional recovery in a rat moderate contusion SCI model. We observed that Rm-PgP can increase cAMP level at the lesion site, and reduce secondary injury such as the inflammatory response by macrophages/microglia, astrogliosis by activated astrocytes and apoptosis as well as improve neuronal survival at 4 weeks post-injury (WPI). We also observed that Rm-PgP can improve motor functional recovery after SCI over 4 WPI.
Collapse
Affiliation(s)
- Jun Gao
- Drug Design Delivery and Development (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Min Kyung Khang
- Drug Design Delivery and Development (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Zhen Liao
- Drug Design Delivery and Development (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA.
| | - Ken Webb
- MicroEnvironmental Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA.
| | - Megan Ryan Detloff
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA 19129, USA.
| | - Jeoung Soo Lee
- Drug Design Delivery and Development (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
10
|
Zhou G, Wang Z, Han S, Chen X, Li Z, Hu X, Li Y, Gao J. Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. Front Mol Neurosci 2022; 15:808510. [PMID: 35283731 PMCID: PMC8904388 DOI: 10.3389/fnmol.2022.808510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/26/2022] [Indexed: 01/03/2023] Open
Abstract
Spinal cord injury (SCI) results in multiple pathophysiological processes, including blood–spinal cord barrier disruption, hemorrhage/ischemia, oxidative stress, neuroinflammation, scar formation, and demyelination. These responses eventually lead to severe tissue destruction and an inhibitory environment for neural regeneration.cAMP signaling is vital for neurite outgrowth and axonal guidance. Stimulating intracellular cAMP activity significantly promotes neuronal survival and axonal regrowth after SCI.However, neuronal cAMP levels in adult CNS are relatively low and will further decrease after injury. Targeting cAMP signaling has become a promising strategy for neural regeneration over the past two decades. Furthermore, studies have revealed that cAMP signaling is involved in the regulation of glial cell function in the microenvironment of SCI, including macrophages/microglia, reactive astrocytes, and oligodendrocytes. cAMP-elevating agents in the post-injury milieu increase the cAMP levels in both neurons and glial cells and facilitate injury repair through the interplay between neurons and glial cells and ultimately contribute to better morphological and functional outcomes. In recent years, combination treatments associated with cAMP signaling have been shown to exert synergistic effects on the recovery of SCI. Agents carried by nanoparticles exhibit increased water solubility and capacity to cross the blood–spinal cord barrier. Implanted bioscaffolds and injected hydrogels are potential carriers to release agents locally to avoid systemic side effects. Cell transplantation may provide permissive matrices to synergize with the cAMP-enhanced growth capacity of neurons. cAMP can also induce the oriented differentiation of transplanted neural stem/progenitor cells into neurons and increase the survival rate of cell grafts. Emerging progress focused on cAMP compartmentation provides researchers with new perspectives to understand the complexity of downstream signaling, which may facilitate the clinical translation of strategies targeting cAMP signaling for SCI repair.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyan Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhimin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianghui Hu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Jun Gao
| |
Collapse
|
11
|
Musheshe N, Oun A, Sabogal-Guáqueta AM, Trombetta-Lima M, Mitchel SC, Adzemovic A, Speek O, Morra F, van der Veen CHJT, Lezoualc’h F, Cheng X, Schmidt M, Dolga AM. Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants (Basel) 2022; 11:antiox11020314. [PMID: 35204198 PMCID: PMC8868285 DOI: 10.3390/antiox11020314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Exchange proteins directly activated by cAMP (Epac) proteins are implicated in a wide range of cellular functions including oxidative stress and cell survival. Mitochondrial-dependent oxidative stress has been associated with progressive neuronal death underlying the pathology of many neurodegenerative diseases. The role of Epac modulation in neuronal cells in relation to cell survival and death, as well as its potential effect on mitochondrial function, is not well established. In immortalized hippocampal (HT-22) neuronal cells, we examined mitochondria function in the presence of various Epac pharmacological modulators in response to oxidative stress due to ferroptosis. Our study revealed that selective pharmacological modulation of Epac1 or Epac2 isoforms, exerted differential effects in erastin-induced ferroptosis conditions in HT-22 cells. Epac1 inhibition prevented cell death and loss of mitochondrial integrity induced by ferroptosis, while Epac2 inhibition had limited effects. Our data suggest Epac1 as a plausible therapeutic target for preventing ferroptosis cell death associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nshunge Musheshe
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| | - Asmaa Oun
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Sarah C. Mitchel
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Ahmed Adzemovic
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Oliver Speek
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Francesca Morra
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Christina H. J. T. van der Veen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Frank Lezoualc’h
- Inserm UMR-1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse Paul Sabatier, 31400 Toulouse, France;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX 7000, USA;
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Groningen Research Institute of Asthma and COPD (GRIAC), Groningen Research Institute of Pharmacy (GRIP), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| |
Collapse
|
12
|
The Role of Neuropeptide-Stimulated cAMP-EPACs Signalling in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010311. [PMID: 35011543 PMCID: PMC8746471 DOI: 10.3390/molecules27010311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3′, 5′-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.
Collapse
|
13
|
GPR3 accelerates neurite outgrowth and neuronal polarity formation via PI3 kinase-mediating signaling pathway in cultured primary neurons. Mol Cell Neurosci 2021; 118:103691. [PMID: 34871769 DOI: 10.1016/j.mcn.2021.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022] Open
Abstract
During neuronal development, immature neurons extend neurites and subsequently polarize to form an axon and dendrites. We have previously reported that G protein-coupled receptor 3 (GPR3) levels increase during neuronal development, and that GPR3 has functions in neurite outgrowth and neuronal differentiation in cerebellar granular neurons. Moreover, GPR3 is transported and concentrated at the tips of neurite, thereby contributing to the local activation of protein kinase A (PKA). However, the signaling pathways for GPR3-mediated neurite outgrowth and its subsequent effects on neuronal polarization have not yet been elucidated. We therefore analyzed the signaling pathways related to GPR3-mediated neurite outgrowth, and also focused on the possible roles of GPR3 in axon polarization. We demonstrated that, in cerebellar granular neurons, GPR3-mediated neurite outgrowth was mediated by multiple signaling pathways, including those of PKA, extracellular signal-regulated kinases (ERKs), and most strongly phosphatidylinositol 3-kinase (PI3K). In addition, the GPR3-mediated activation of neurite outgrowth was associated with G protein-coupled receptor kinase 2 (GRK2)-mediated signaling and phosphorylation of the C-terminus serine/threonine residues of GPR3, which affected downstream protein kinase B (Akt) signaling. We further demonstrated that GPR3 was transiently increased early in the development of rodent hippocampal neurons. It was subsequently concentrated at the tip of the longest neurite, and was thus associated with accelerated polarity formation in a PI3K-dependent manner in rat hippocampal neurons. In addition, GPR3 knockout in mouse hippocampal neurons led to delayed neuronal polarity formation, thereby affecting the dephosphorylation of collapsing response mediator protein 2 (CRMP2), which is downstream of the PI3K signaling pathway. Taken together, these findings suggest that the intrinsic expression of GPR3 in differentiated neurons constitutively activates PI3K-mediated signaling pathway predominantly, thus accelerating neurite outgrowth and further augmenting polarity formation in primary cultured neurons.
Collapse
|
14
|
Ponsaerts L, Alders L, Schepers M, de Oliveira RMW, Prickaerts J, Vanmierlo T, Bronckaers A. Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines 2021; 9:703. [PMID: 34206420 PMCID: PMC8301462 DOI: 10.3390/biomedicines9070703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic stroke is caused by a thromboembolic occlusion of a major cerebral artery, with the impaired blood flow triggering neuroinflammation and subsequent neuronal damage. Both the innate immune system (e.g., neutrophils, monocytes/macrophages) in the acute ischemic stroke phase and the adaptive immune system (e.g., T cells, B cells) in the chronic phase contribute to this neuroinflammatory process. Considering that the available therapeutic strategies are insufficiently successful, there is an urgent need for novel treatment options. It has been shown that increasing cAMP levels lowers neuroinflammation. By inhibiting cAMP-specific phosphodiesterases (PDEs), i.e., PDE4, 7, and 8, neuroinflammation can be tempered through elevating cAMP levels and, thereby, this can induce an improved functional recovery. This review discusses recent preclinical findings, clinical implications, and future perspectives of cAMP-specific PDE inhibition as a novel research interest for the treatment of ischemic stroke. In particular, PDE4 inhibition has been extensively studied, and is promising for the treatment of acute neuroinflammation following a stroke, whereas PDE7 and 8 inhibition more target the T cell component. In addition, more targeted PDE4 gene inhibition, or combined PDE4 and PDE7 or 8 inhibition, requires more extensive research.
Collapse
Affiliation(s)
- Laura Ponsaerts
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Lotte Alders
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Melissa Schepers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Jos Prickaerts
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Annelies Bronckaers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
15
|
Gopalakrishna R, Lin C, Kindy MS, Mack WJ. Nogo-A receptor internalization by cyclic adenosine monophosphate in overcoming axonal growth inhibitors after stroke. Neural Regen Res 2021; 17:91-92. [PMID: 34100435 PMCID: PMC8451563 DOI: 10.4103/1673-5374.314298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Correspondence to: Rayudu Gopalakrishna, .
| | - Charlotte Lin
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Sun F, Zhang J, Chen L, Yuan Y, Guo X, Dong L, Sun J. Epac1 Signaling Pathway Mediates the Damage and Apoptosis of Inner Ear Hair Cells after Noise Exposure in a Rat Model. Neuroscience 2021; 465:116-127. [PMID: 33838290 DOI: 10.1016/j.neuroscience.2021.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
To investigate the role of the exchange protein directly activated by cAMP (Epac) signaling pathway in inner ear hair cell damage and apoptosis after noise exposure, we analyzed the expression level of Epac1 in a rat model of noise-induced hearing loss (NIHL), based on rat exposure to a 4-kHz and 106-dB sound pressure level (SPL) for 8 h. Loss of outer hair cells (OHCs), mitochondrial lesions, and hearing loss were examined after treatment with the Epac agonist, 8-CPT, or the Epac inhibitor, ESI-09. The effects of 8-CPT and ESI-09 on cell proliferation and apoptosis were examined by CCK-8 assays, holographic microscopy imaging, and Annexin-V FITC/PI staining in HEI-OC1 cells. The effects of 8-CPT and ESI-09 on Ca2+ entry were evaluated by confocal Ca2+ fluorescence measurement. We found that the expression level of Epac1 was significantly increased in the cochlear tissue after noise exposure. In NIHL rats, 8-CPT increased the loss of OHCs, mitochondrial lesions, and hearing loss compared to control rats, while ESI-09 produced the opposite effects. Oligomycin was used to induce HEI-OC1 cell damage in vitro. In HEI-OC1 cells treated with oligomycin, 8-CPT and ESI-09 increased and reduced cell apoptosis, respectively. Moreover, 8-CPT promoted Ca2+ uptake in HEI-OC1 cells, while ESI-09 inhibited this process. In conclusion, our data provide strong evidence that the Epac1 signaling pathway mediates early pathological damage in NIHL, and that Epac1 inhibition protects from NIHL, identifying Epac1 as a new potential therapeutic target for NIHL.
Collapse
Affiliation(s)
- Fanfan Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China; Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China
| | - Junge Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Yuhao Yuan
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaotao Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China.
| |
Collapse
|
18
|
Abstract
The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.
Collapse
Affiliation(s)
- Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
19
|
Guijarro-Belmar A, Domanski DM, Bo X, Shewan D, Huang W. The therapeutic potential of targeting exchange protein directly activated by cyclic adenosine 3',5'-monophosphate (Epac) for central nervous system trauma. Neural Regen Res 2021; 16:460-469. [PMID: 32985466 PMCID: PMC7996029 DOI: 10.4103/1673-5374.293256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Millions of people worldwide are affected by traumatic spinal cord injury, which usually results in permanent sensorimotor disability. Damage to the spinal cord leads to a series of detrimental events including ischaemia, haemorrhage and neuroinflammation, which over time result in further neural tissue loss. Eventually, at chronic stages of traumatic spinal cord injury, the formation of a glial scar, cystic cavitation and the presence of numerous inhibitory molecules act as physical and chemical barriers to axonal regrowth. This is further hindered by a lack of intrinsic regrowth ability of adult neurons in the central nervous system. The intracellular signalling molecule, cyclic adenosine 3′,5′-monophosphate (cAMP), is known to play many important roles in the central nervous system, and elevating its levels as shown to improve axonal regeneration outcomes following traumatic spinal cord injury in animal models. However, therapies directly targeting cAMP have not found their way into the clinic, as cAMP is ubiquitously present in all cell types and its manipulation may have additional deleterious effects. A downstream effector of cAMP, exchange protein directly activated by cAMP 2 (Epac2), is mainly expressed in the adult central nervous system, and its activation has been shown to mediate the positive effects of cAMP on axonal guidance and regeneration. Recently, using ex vivo modelling of traumatic spinal cord injury, Epac2 activation was found to profoundly modulate the post-lesion environment, such as decreasing the activation of astrocytes and microglia. Pilot data with Epac2 activation also suggested functional improvement assessed by in vivo models of traumatic spinal cord injury. Therefore, targeting Epac2 in traumatic spinal cord injury could represent a novel strategy in traumatic spinal cord injury repair, and future work is needed to fully establish its therapeutic potential.
Collapse
Affiliation(s)
- Alba Guijarro-Belmar
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen; Sainsbury Wellcome Centre, University College London, London, UK
| | - Dominik Mateusz Domanski
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Xuenong Bo
- Center for Neuroscience, Surgery and Trauma, Queen Mary University of London, London, UK
| | - Derryck Shewan
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Wenlong Huang
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
20
|
Ávila-Mendoza J, Subramani A, Denver RJ. Krüppel-Like Factors 9 and 13 Block Axon Growth by Transcriptional Repression of Key Components of the cAMP Signaling Pathway. Front Mol Neurosci 2020; 13:602638. [PMID: 33281552 PMCID: PMC7689098 DOI: 10.3389/fnmol.2020.602638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
Krüppel-like factors (KLFs) are zinc finger transcription factors implicated in diverse biological processes, including differentiation of neural cells. The ability of mammalian neurons to elongate axons decreases during postnatal development in parallel with a decrease in cAMP, and increase in expression of several Klf genes. The paralogous KLFs 9 and 13 inhibit neurite outgrowth, and we hypothesized that their actions are mediated through repression of cAMP signaling. To test this we used the adult mouse hippocampus-derived cell line HT22 engineered to control expression of Klf9 or Klf13 with doxycycline, or made deficient for these Klfs by CRISPR/Cas9 genome editing. We also used primary hippocampal cells isolated from wild type, Klf9–/– and Klf13–/– mice. Forced expression of Klf9 or Klf13 in HT22 changed the mRNA levels of several genes involved with cAMP signaling; the predominant action was gene repression, and KLF13 influenced ∼4 times more genes than KLF9. KLF9 and KLF13 repressed promoter activity of the protein kinase a catalytic subunit alpha gene in transfection-reporter assays; KLF13, but not KLF9 repressed the calmodulin 3 promoter. Forskolin activation of a cAMP-dependent promoter was reduced after forced expression of Klf9 or Klf13, but was enhanced in Klf gene knockout cells. Forced expression of Klf9 or Klf13 blocked cAMP-dependent neurite outgrowth in HT22 cells, and axon growth in primary hippocampal neurons, while Klf gene knockout enhanced the effect of elevated cAMP. Taken together, our findings show that KLF9 and KLF13 inhibit neurite/axon growth in hippocampal neurons, in part, by inhibiting the cAMP signaling pathway.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, Hefendehl JK, Collins HY, Stevens B, Barres BA, MacVicar BA. Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia. Cell Rep 2020; 27:2895-2908.e4. [PMID: 31167136 DOI: 10.1016/j.celrep.2019.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Microglia, the brain's immune cells, maintain homeostasis and sense pathological changes by continuously surveying the parenchyma with highly motile large processes. Here, we demonstrate that microglia also use thin actin-dependent filopodia that allow fast nanoscale sensing within discrete regions. Filopodia are distinct from large processes by their size, speed, and regulation mechanism. Increasing cyclic AMP (cAMP) by activating norepinephrine Gs-coupled receptors, applying nitric oxide, or inhibiting phosphodiesterases rapidly increases filopodia but collapses large processes. Alternatively, Gi-coupled P2Y12 receptor activation collapses filopodia but triggers large processes extension with bulbous tips. Similar control of cytoskeletal dynamics and microglial morphology by cAMP is observed in ramified primary microglia, suggesting that filopodia are intrinsically generated sensing structures. Therefore, nanoscale surveillance of brain parenchyma by microglia requires localized cAMP increases that drive filopodia formation. Shifting intracellular cAMP levels controls the polarity of microglial responses to changes in brain homeostasis and alters the scale of immunosurveillance.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada.
| | - Christopher J Bohlen
- Stanford University School of Medicine, Department of Neurobiology, Stanford, CA 94305, USA
| | - Elisa M York
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| | - Hyun B Choi
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| | - Alireza Kamyabi
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| | - Lasse Dissing-Olesen
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School Boston, MA 02115, USA
| | - Jasmin K Hefendehl
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| | - Hannah Y Collins
- Stanford University School of Medicine, Department of Neurobiology, Stanford, CA 94305, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School Boston, MA 02115, USA
| | - Ben A Barres
- Stanford University School of Medicine, Department of Neurobiology, Stanford, CA 94305, USA
| | - Brian A MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
22
|
Kaplan A, Andrei SA, van Regteren Altena A, Simas T, Banerjee SL, Kato N, Bisson N, Higuchi Y, Ottmann C, Fournier AE. Polypharmacological Perturbation of the 14-3-3 Adaptor Protein Interactome Stimulates Neurite Outgrowth. Cell Chem Biol 2020; 27:657-667.e6. [PMID: 32220335 DOI: 10.1016/j.chembiol.2020.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Targeting protein-protein interactions (PPIs) is a promising approach in the development of drugs for many indications. 14-3-3 proteins are a family of phosphoprotein-binding molecules with critical functions in dozens of cell signaling networks. 14-3-3s are abundant in the central nervous system, and the small molecule fusicoccin-A (FC-A), a tool compound that can be used to manipulate 14-3-3 PPIs, enhances neurite outgrowth in cultured neurons. New semisynthetic FC-A derivatives with improved binding affinity for 14-3-3 complexes have recently been developed. Here, we use a series of screens that identify these compounds as potent inducers of neurite outgrowth through a polypharmacological mechanism. Using proteomics and X-ray crystallography, we discover that these compounds extensively regulate the 14-3-3 interactome by stabilizing specific PPIs, while disrupting others. These results provide new insights into the development of drugs to target 14-3-3 PPIs, a potential therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Andrew Kaplan
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Sebastian A Andrei
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anna van Regteren Altena
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Tristan Simas
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Sara L Banerjee
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche sur le Cancer, Université Laval, Québec, QC, Canada
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Nicolas Bisson
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche sur le Cancer, Université Laval, Québec, QC, Canada
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
23
|
Xin M, Feng J, Hao Y, You J, Wang X, Yin X, Shang P, Ma D. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. J Neurol Sci 2020; 413:116775. [PMID: 32197118 DOI: 10.1016/j.jns.2020.116775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.
Collapse
Affiliation(s)
- Meiying Xin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| | - Yulei Hao
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiulin You
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xiang Yin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Pei Shang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| |
Collapse
|
24
|
Epac2 Promotes Axonal Outgrowth and Attenuates the Glial Reaction in an Ex Vivo Model of Spinal Cord Injury. J Neurosci 2020; 40:2184-2185. [PMID: 32161180 DOI: 10.1523/jneurosci.2450-19.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/25/2023] Open
|
25
|
Richard SA. EPAC2: A new and promising protein for glioma pathogenesis and therapy. Oncol Rev 2020; 14:446. [PMID: 32395202 PMCID: PMC7204831 DOI: 10.4081/oncol.2020.446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/16/2020] [Indexed: 01/02/2023] Open
Abstract
Gliomas are prime brain cancers which are initiated by malignant modification of neural stem cells, progenitor cells and differentiated glial cells such as astrocyte, oligodendrocyte as well as ependymal cells. Exchange proteins directly activated by cAMP (EPACs) are crucial cyclic adenosine 3’,5’-monophosphate (cAMP)-determined signaling pathways. Cyclic AMP-intermediated signaling events were utilized to transduce protein kinase A (PKA) leading to the detection of EPACs or cAMP-guanine exchange factors (cAMP-GEFs). EPACs have been detected as crucial proteins associated with the pathogenesis of neurological disorders as well as numerous human diseases. EPAC proteins have two isoforms. These isoforms are EPAC1 and EPAC2. EPAC2 also known as Rap guanine nucleotide exchange factor 4 (RAPGEF4) is generally expression in all neurites. Higher EAPC2 levels was detected in the cortex, hippocampus as well as striatum of adult mouse brain. Activation as well as over-secretion of EPAC2 triggers apoptosis in neurons and EPAC-triggered apoptosis was intermediated via the modulation of Bcl-2 interacting member protein (BIM). EPAC2 secretory levels has proven to be more in low-grade clinical glioma than high-grade clinical glioma. This review therefore explores the effects of EPAC2/RAPGEF4 on the pathogenesis of glioma instead of EPAC1 because EPAC2 and not EPAC1 is predominately expressed in the brain. Therefore, EPAC2 is most likely to modulate glioma pathogenesis rather than EPAC1.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, Ho, Ghana, West Africa
| |
Collapse
|
26
|
Nikulina E, Gkioka V, Siddiq MM, Mellado W, Hilaire M, Cain CR, Hannila SS, Filbin MT. Myelin-associated glycoprotein inhibits neurite outgrowth through inactivation of the small GTPase Rap1. FEBS Lett 2020; 594:1389-1402. [PMID: 31985825 DOI: 10.1002/1873-3468.13740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/05/2022]
Abstract
Rap1 is a small GTPase that has been implicated in dendritic development and plasticity. In this study, we investigated the role of Rap1 in axonal growth and its activation in response to neurotrophins and myelin-associated inhibitors. We report that Rap1 is activated by brain-derived neurotrophic factor and that this activation can be blocked by myelin-associated glycoprotein (MAG) or central nervous system myelin, which also induced increases in Rap1GAP1 levels. In addition, we demonstrate that adenoviral overexpression of Rap1 enhances neurite outgrowth in the presence of MAG and myelin, while inhibition of Rap1 activity through overexpression of Rap1GAP1 blocks neurite outgrowth. These findings suggest that Rap1GAP1 negatively regulates neurite outgrowth, making it a potential therapeutic target to promote axonal regeneration.
Collapse
Affiliation(s)
- Elena Nikulina
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Vasiliki Gkioka
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Mustafa M Siddiq
- Icahn Medical Institute 12-52, Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Melissa Hilaire
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Christine R Cain
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Sari S Hannila
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marie T Filbin
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| |
Collapse
|
27
|
Cyclic-AMP induces Nogo-A receptor NgR1 internalization and inhibits Nogo-A-mediated collapse of growth cone. Biochem Biophys Res Commun 2020; 523:678-684. [PMID: 31948754 DOI: 10.1016/j.bbrc.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 11/24/2022]
Abstract
The promotion of axonal regeneration is required for functional recovery from stroke and various neuronal injuries. However, axonal regeneration is inhibited by diverse axonal growth inhibitors, such as Nogo-A. Nogo-66, a C-terminal domain of Nogo-A, binds to the Nogo-A receptor 1 (NgR1) and induces the collapse of growth cones and inhibits neurite outgrowth. NgR1 is also a receptor for additional axonal growth inhibitors, suggesting it is an important target for the prevention of axonal growth inhibition. By using the indirect immunofluorescence method, we show for the first time that a cell-permeable cAMP analog (dibutyryl-cAMP) induced a rapid decrease in the cell surface expression of NgR1 in Neuroscreen-1 (NS-1) cells. The biotinylation method revealed that cAMP indeed induced internalization of NgR1 within minutes. Other intracellular cAMP-elevating agents, such as forskolin, which directly activates adenylyl cyclase, and rolipram, which inhibits cyclic nucleotide phosphodiesterase, also induced this process. This internalization was found to be reversible and influenced by intracellular levels of cAMP. Using selective activators and inhibitors of protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac), we found that NgR1 internalization is independent of PKA, but dependent on Epac. The decrease in cell surface expression of NgR1 desensitized NS-1 cells to Nogo-66-induced growth cone collapse. Therefore, it is likely that besides axonal growth inhibitors affecting neurons, neurons themselves also self-regulate their sensitivity to axonal growth inhibitors, as influenced by intracellular cAMP/Epac. This normal cellular regulatory mechanism may be pharmacologically exploited to overcome axonal growth inhibitors, and enhance functional recovery after stroke and neuronal injuries.
Collapse
|
28
|
EPAC1 and EPAC2 promote nociceptor hyperactivity associated with chronic pain after spinal cord injury. NEUROBIOLOGY OF PAIN 2019; 7:100040. [PMID: 31890991 PMCID: PMC6926371 DOI: 10.1016/j.ynpai.2019.100040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic pain following spinal cord injury (SCI) is associated with electrical hyperactivity (spontaneous and evoked) in primary nociceptors. Cyclic adenosine monophosphate (cAMP) signaling is an important contributor to nociceptor excitability, and knockdown of the cAMP effector, exchange protein activated by cAMP (EPAC), has been shown to relieve pain-like responses in several chronic pain models. To examine potentially distinct roles of each EPAC isoform (EPAC1 and 2) in maintaining chronic pain, we used rat and mouse models of contusive spinal cord injury (SCI). Pharmacological inhibition of EPAC1 or 2 in a rat SCI model was sufficient to reverse SCI-induced nociceptor hyperactivity, indicating that EPAC1 and 2 signaling activity are complementary, with both required to maintain hyperactivity. However, EPAC activation was not sufficient to induce similar hyperactivity in nociceptors from naïve rats, and we observed no change in EPAC protein expression after SCI. In the mouse SCI model, inhibition of both EPAC isoforms through a combination of pharmacological inhibition and genetic deletion was required to reverse SCI-induced nociceptor hyperactivity. This was consistent with our finding that neither EPAC1-/- nor EPAC2-/- mice were protected against SCI-induced chronic pain as assessed with an operant mechanical conflict test. Thus, EPAC1 and 2 activity may play a redundant role in mouse nociceptors, although no corresponding change in EPAC protein expression levels was detected after SCI. Despite some differences between these species, our data demonstrate a fundamental role for both EPAC1 and EPAC2 in mechanisms maintaining nociceptor hyperactivity and chronic pain after SCI.
Collapse
|
29
|
Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans In Vitro and Transforms Postlesion Inhibitory Environment to Promote Axonal Outgrowth in an Ex Vivo Model of Spinal Cord Injury. J Neurosci 2019; 39:8330-8346. [PMID: 31409666 DOI: 10.1523/jneurosci.0374-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Millions of patients suffer from debilitating spinal cord injury (SCI) without effective treatments. Elevating cAMP promotes CNS neuron growth in the presence of growth-inhibiting molecules. cAMP's effects on neuron growth are partly mediated by Epac, comprising Epac1 and Epac2; the latter predominantly expresses in postnatal neural tissue. Here, we hypothesized that Epac2 activation would enhance axonal outgrowth after SCI. Using in vitro assays, we demonstrated, for the first time, that Epac2 activation using a specific soluble agonist (S-220) significantly enhanced neurite outgrowth of postnatal rat cortical neurons and markedly overcame the inhibition by chondroitin sulfate proteoglycans and mature astrocytes on neuron growth. We further investigated the novel potential of Epac2 activation in promoting axonal outgrowth by an ex vivo rat model of SCI mimicking post-SCI environment in vivo and by delivering S-220 via a self-assembling Fmoc-based hydrogel that has suitable properties for SCI repair. We demonstrated that S-220 significantly enhanced axonal outgrowth across the lesion gaps in the organotypic spinal cord slices, compared with controls. Furthermore, we elucidated, for the first time, that Epac2 activation profoundly modulated the lesion environment by reducing astrocyte/microglial activation and transforming astrocytes into elongated morphology that guided outgrowing axons. Finally, we showed that S-220, when delivered by the gel at 3 weeks after contusion SCI in male adult rats, resulted in significantly better locomotor performance for up to 4 weeks after treatment. Our data demonstrate a promising therapeutic potential of S-220 in SCI, via beneficial effects on neurons and glia after injury to facilitate axonal outgrowth.SIGNIFICANCE STATEMENT During development, neuronal cAMP levels decrease significantly compared with the embryonic stage when the nervous system is established. This has important consequences following spinal cord injury, as neurons fail to regrow. Elevating cAMP levels encourages injured CNS neurons to sprout and extend neurites. We have demonstrated that activating its downstream effector, Epac2, enhances neurite outgrowth in vitro, even in the presence of an inhibitory environment. Using a novel biomaterial-based drug delivery system in the form of a hydrogel to achieve local delivery of an Epac2 agonist, we further demonstrated that specific activation of Epac2 enhances axonal outgrowth and minimizes glial activation in an ex vivo model of spinal cord injury, suggesting a new strategy for spinal cord repair.
Collapse
|
30
|
Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 2019; 20:ijms20061346. [PMID: 30884895 PMCID: PMC6470985 DOI: 10.3390/ijms20061346] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
There are many downstream targets of mitogen-activated protein kinase (MAPK) signalling that are involved in neuronal development, cellular differentiation, cell migration, cancer, cardiovascular dysfunction and inflammation via their functions in promoting apoptosis and cell motility and regulating various cytokines. It has been reported that cyclic AMP response element-binding protein (CREB) is phosphorylated and activated by cyclic AMP signalling and calcium/calmodulin kinase. Recent evidence also points to CREB phosphorylation by the MAPK signalling pathway. However, the specific roles of CREB phosphorylation in MAPK signalling have not yet been reviewed in detail. Here, we describe the recent advances in the study of this MAPK-CREB signalling axis in human diseases. Overall, the crosstalk between extracellular signal-related kinase (ERK) 1/2 and p38 MAPK signalling has been shown to regulate various physiological functions, including central nervous system, cardiac fibrosis, alcoholic cardiac fibrosis, osteoclast differentiation, mucin production in the airway, vascular smooth muscle cell migration, steroidogenesis and asthmatic inflammation. In this review, we focus on ERK1/2 and/or p38 MAPK-dependent CREB activation associated with various diseases to provide insights for basic and clinical researchers.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Hiroaki Tsurumaki
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Haruka Aoki-Saito
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Makiko Sato
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Masakiyo Yatomi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Kazutaka Takehara
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 sho-wa machi Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
31
|
Han S, Kim DH, Sung J, Yang H, Park JW, Youn I. Electrical stimulation accelerates neurite regeneration in axotomized dorsal root ganglion neurons by increasing MMP-2 expression. Biochem Biophys Res Commun 2019; 508:348-353. [PMID: 30503336 DOI: 10.1016/j.bbrc.2018.11.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 01/08/2023]
Abstract
Electrical stimulation (ES) can be useful for promoting the regeneration of injured axons, but the mechanism underlying its positive effects is largely unknown. The current study aimed to investigate whether ES could enhance the regeneration of injured neurites in dorsal root ganglion explants and regulate the MMP-2 expression level, which is correlated with regeneration. Significantly increased neurite regeneration and MMP-2 expression was observed in the ES group compared with the sham group. However, an MMP inhibitor significantly decreased this ES-induced neurite regeneration. Our data suggest that the positive effect of ES on neurite regeneration could likely be mediated by an increase in MMP-2 expression, thereby promoting the regeneration of injured neurites.
Collapse
Affiliation(s)
- Sungmin Han
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea
| | - Dong Hwee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joohwan Sung
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hwasun Yang
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea
| | - Jong Woong Park
- Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Inchan Youn
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
32
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
33
|
Russart KLG, Huk D, Nelson RJ, Kirschner LS. Elevated aggressive behavior in male mice with thyroid-specific Prkar1a and global Epac1 gene deletion. Horm Behav 2018; 98:121-129. [PMID: 29289659 PMCID: PMC5828986 DOI: 10.1016/j.yhbeh.2017.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/25/2022]
Abstract
Alterations in circulating thyroid hormone concentrations are associated with several psychological and behavioral disorders. In humans, behavioral disorders such as anxiety, depression, and attention-deficit hyperactivity disorder can be associated with thyroid disease. The Tpo-Cre;Prkar1aflox/flox;Epac1-/- (R1A-Epac1KO) mice, originally bred to investigate the role of exchange protein directly activated by cAMP (Epac1) in follicular thyroid cancer, displayed self-mutilating and aggressive behaviors during casual observation. To assess these atypical responses, behavioral testing was conducted with the R1A-Epac1KO mice, as well as their single knockout counterparts, the thyroid-specific Prkar1a-/- and global Epac1-/- mice. Mice of all three genotypes demonstrated increased aggressive behavior against an intruder mouse. In addition, Epac1-/- mice increased response to an auditory stimulus, and the Prkar1a-/- and R1A-Epac1KO mice increased swimming behavior in the Porsolt forced swim test. Both Prkar1a-/- mice and R1A-Epac1KO mice have increased circulating thyroxine and corticosterone concentrations. Although hyperthyroidism has not been previously associated with aggression, increased thyroid hormone signaling might contribute to the increased aggressive response to the intruder mouse, as well as the increased swimming response. Mice with a genetic background of Tpo-Cre;Prkar1aflox/flox;Epac1-/- are aggressive, and both the thyroid-specific knockout of Prkar1a and global knockout of Epac1 likely contribute to this aggressive behavior. This study supports the hypothesis that altered thyroid signaling and aggressive behavior are linked.
Collapse
Affiliation(s)
- Kathryn L G Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Danielle Huk
- Department of Cancer Biology and Genetics, Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Hansen RT, Zhang HT. The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. ADVANCES IN NEUROBIOLOGY 2018; 17:169-199. [PMID: 28956333 DOI: 10.1007/978-3-319-58811-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of this chapter is to highlight the state of progress for phosphodiesterase-4 (PDE4) modulation as a potential therapeutic for psychiatric illness, and to draw attention to particular hurdles and obstacles that must be overcome in future studies to develop PDE4-mediated therapeutics. Pathological and non-pathological related memory loss will be the focus of the chapter; however, we will at times also touch upon other psychiatric illnesses like anxiety and depression. First, we will provide a brief background of PDE4, and the rationale for its extensive study in cognition. Second, we will explore fundamental differences in individual PDE4 subtypes, and then begin to address differences between pathological and non-pathological aging. Alterations of cAMP/PDE4 signaling that occur within normal vs. pathological aging, and the potential for PDE4 modulation to combat these alterations within each context will be described. Finally, we will finish the chapter with obstacles that have hindered the field, and future studies and alternative viewpoints that need to be addressed. Overall, we hope this chapter will demonstrate the incredible complexity of PDE4 signaling in the brain, and will be useful in forming a strategy to develop future PDE4-mediated therapeutics for psychiatric illnesses.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-9137, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
35
|
Ifegwu OC, Awale G, Rajpura K, Lo KWH, Laurencin CT. Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discov Today 2017; 22:1027-1044. [PMID: 28359841 PMCID: PMC7440772 DOI: 10.1016/j.drudis.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023]
Abstract
This paper reviews the most recent findings in the search for small molecule cyclic AMP analogues regarding their potential use in musculoskeletal regenerative engineering.
Collapse
Affiliation(s)
- Okechukwu Clinton Ifegwu
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guleid Awale
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06030, USA
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
36
|
Knott EP, Assi M, Rao SNR, Ghosh M, Pearse DD. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Int J Mol Sci 2017; 18:E696. [PMID: 28338622 PMCID: PMC5412282 DOI: 10.3390/ijms18040696] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Eric P Knott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Neuroscience Program, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- Bruce Wayne Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
37
|
Muñoz-Llancao P, de Gregorio C, Las Heras M, Meinohl C, Noorman K, Boddeke E, Cheng X, Lezoualc'h F, Schmidt M, Gonzalez-Billault C. Microtubule-regulating proteins and cAMP-dependent signaling in neuroblastoma differentiation. Cytoskeleton (Hoboken) 2017; 74:143-158. [PMID: 28164467 DOI: 10.1002/cm.21355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 01/15/2023]
Abstract
Neurons are highly differentiated cells responsible for the conduction and transmission of information in the nervous system. The proper function of a neuron relies on the compartmentalization of their intracellular domains. Differentiated neuroblastoma cells have been extensively used to study and understand the physiology and cell biology of neuronal cells. Here, we show that differentiation of N1E-115 neuroblastoma cells is more pronounced upon exposure of a chemical analog of cyclic AMP (cAMP), db-cAMP. We next analysed the expression of key microtubule-regulating proteins in differentiated cells and the expression and activation of key cAMP players such as EPAC, PKA and AKAP79/150. Most of the microtubule-promoting factors were up regulated during differentiation of N1E-115 cells, while microtubule-destabilizing proteins were down regulated. We observed an increase in tubulin post-translational modifications related to microtubule stability. As expected, db-cAMP increased PKA- and EPAC-dependent signalling. Consistently, pharmacological modulation of EPAC activity instructed cell differentiation, number of neurites, and neurite length in N1E-115 cells. Moreover, disruption of the PKA-AKAP interaction reduced these morphometric parameters. Interestingly, PKA and EPAC act synergistically to induce neuronal differentiation in N1E-115. Altogether these results show that the changes observed in the differentiation of N1E-115 cells proceed by regulating several microtubule-stabilizing factors, and the acquisition of a neuronal phenotype is a process involving concerted although independent functions of EPAC and PKA.
Collapse
Affiliation(s)
- Pablo Muñoz-Llancao
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Cristian de Gregorio
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Macarena Las Heras
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Christopher Meinohl
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Kevin Noorman
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Erik Boddeke
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, USA
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,Université de Toulouse III, Paul Sabatier, Toulouse, France
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, USA
| |
Collapse
|
38
|
Gorshkov K, Mehta S, Ramamurthy S, Ronnett GV, Zhou FQ, Zhang J. AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons. Nat Chem Biol 2017; 13:425-431. [PMID: 28192412 PMCID: PMC5362298 DOI: 10.1038/nchembio.2298] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Cyclic AMP (cAMP) and protein kinase A (PKA), classical examples of spatially compartmentalized signaling molecules, are critical axon determinants that regulate neuronal polarity and axon formation, yet little is known about micro-compartmentalization of cAMP and PKA signaling and its role in developing neurons. Here, we revealed that cAMP forms a gradient in developing hippocampal neurons, with higher cAMP levels in more distal regions of the axon compared to other regions of the cell. Interestingly, this cAMP gradient changed according to the developmental stage and depended on proper anchoring of PKA by A-kinase anchoring proteins (AKAPs). Disrupting PKA anchoring to AKAPs increased the cAMP gradient in early-stage neurons and led to enhanced axon elongation. Our results provide new evidence for a local negative feedback loop, assembled by AKAPs, for the precise control of a growth-stage-dependent cAMP gradient to ensure proper axon growth.
Collapse
Affiliation(s)
- Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Santosh Ramamurthy
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriele V Ronnett
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Neurology and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Feng-Quan Zhou
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
39
|
Batty NJ, Fenrich KK, Fouad K. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett 2016; 652:56-63. [PMID: 27989572 DOI: 10.1016/j.neulet.2016.12.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/23/2023]
Abstract
Injured neurons in the adult mammalian central nervous system (CNS) have a very limited capacity for axonal regeneration and neurite outgrowth. This inability to grow new axons or to regrow injured axons is due to the presence of molecules that inhibit axonal growth, and age related changes in the neuron's innate growth capabilities. Available levels of cAMP are thought to have an important role in linking both of these factors. Elevated levels of cAMP in the developing nervous system are important for the guidance and stability of growth cones. As the nervous system matures, cAMP levels decline and the growth promoting effects of cAMP diminish. It has frequently been demonstrated that increasing neuronal cAMP can enhance neurite growth and regeneration. Some methods used to increase cAMP include administration of cAMP agonists, conditioning lesions, or electrical stimulation. Furthermore, it has been proposed that multiple stages of cAMP induced growth exist, one directly caused by its downstream effector Protein Kinase A (PKA) and one caused by the eventual upregulation of gene transcription. Although the role cAMP in promoting axon growth is well accepted, the downstream pathways that mediate cAMP-mediated axonal growth are less clear. This is partly because various key studies that explored the link between PKA and axonal outgrowth relied on the PKA inhibitors KT5720 and H89. More recent studies have shown that both of these drugs are less specific than initially thought and can inhibit a number of other signalling molecules including the Exchange Protein Activated by cAMP (EPAC). Consequently, it has recently been shown that a number of intracellular signalling pathways previously attributed to PKA can now be attributed solely to activation of EPAC specific pathways, or the simultaneous co-activation of PKA and EPAC specific pathways. These new studies open the door to new potential treatments for repairing the injured spinal cord.
Collapse
Affiliation(s)
- Nicholas J Batty
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada; Department of Physical Therapy, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada; Department of Physical Therapy, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada.
| |
Collapse
|
40
|
Electrical stimulation inhibits cytosine arabinoside-induced neuronal death by preventing apoptosis in dorsal root ganglion neurons. Neuroreport 2016; 27:1217-24. [PMID: 27603731 DOI: 10.1097/wnr.0000000000000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The current study aimed to investigate whether electrical stimulation could prevent apoptotic neuronal cell death during treatment with cytosine arabinoside (ara-C). From in-vitro experiments, the effects of electrical stimulation were assessed on neurite fragmentation and neuronal cell death in ara-C-treated dorsal root ganglion (DRG) explants. Ara-C treatment increased neurite fragmentation and neuronal cell death in DRG explants and activated caspase-3 by cleaving it, which could induce apoptosis. Electrical stimulation can significantly reduce neurite fragmentation and neuronal cell death compared with nonelectrically stimulated groups. Furthermore, electrical stimulation inhibited caspase-3 activation and reduced apoptotic neuronal death in DRG explants. It was suggested that the neuroprotective effect of electrical stimulation is likely mediated by the inhibition of caspase-3 activation and therefore the inhibition of apoptosis following ara-C treatment.
Collapse
|
41
|
Baameur F, Singhmar P, Zhou Y, Hancock JF, Cheng X, Heijnen CJ, Kavelaars A. Epac1 interacts with importin β1 and controls neurite outgrowth independently of cAMP and Rap1. Sci Rep 2016; 6:36370. [PMID: 27808165 PMCID: PMC5093460 DOI: 10.1038/srep36370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/14/2016] [Indexed: 01/23/2023] Open
Abstract
Exchange protein directly activated by cAMP-1 (Epac1) is a cAMP sensor that regulates multiple cellular functions including cellular migration, proliferation and differentiation. Classically, Epac1 is thought to exert its effects through binding of cAMP leading to a conformational change in Epac1 and its accumulation at the plasma membrane (PM) where it activates Rap1. In search for regulators of Epac1 activity, we show here that importin β1 (impβ1) is an Epac1 binding partner that prevents PM accumulation of Epac1. We demonstrate that in the absence of impβ1, endogenous as well as overexpressed Epac1 accumulate at the PM. Moreover, agonist-induced PM translocation of Epac1 leads to dissociation of Epac1 from impβ1. Localization of Epac1 at the PM in the absence of impβ1, requires residue R82 in its DEP domain. Notably, the PM accumulation of Epac1 in the absence of impβ1 does not require binding of cAMP to Epac1 and does not result in Rap1 activation. Functionally, PM accumulation of Epac1, an Epac1 mutant deficient in cAMP binding, or an Epac1 mutant tethered to the PM, is sufficient to inhibit neurite outgrowth. In conclusion, we uncover a cAMP-independent function of Epac1 at the PM and demonstrate that impβ1 controls subcellular localization of Epac1.
Collapse
Affiliation(s)
- Faiza Baameur
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pooja Singhmar
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Inhibiting cortical protein kinase A in spinal cord injured rats enhances efficacy of rehabilitative training. Exp Neurol 2016; 283:365-74. [PMID: 27401133 DOI: 10.1016/j.expneurol.2016.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
Elevated levels of the second messenger molecule cyclic adenosine monophosphate (cAMP) are often associated with neuron sprouting and neurite extension (i.e., neuroplasticity). Phosphokinase A (PKA) is a prominent downstream target of cAMP that has been associated with neurite outgrowth. We hypothesized that rehabilitative motor training following spinal cord injuries promotes neuroplasticity via PKA activation. However, in two independent experiments, inhibition of cortical PKA using Rp-cAMPS throughout rehabilitative training robustly increased functional recovery and collateral sprouting of injured corticospinal tract axons, an indicator of neuroplasticity. Consistent with these in vivo findings, using cultured STHdh neurons, we found that Rp-cAMPS had no effect on the phosphorylation of CREB (cAMP response element-binding protein), a prominent downstream target of PKA, even with the concomitant application of the adenylate cyclase agonist forskolin to increase cAMP levels. Conversely, when cAMP levels were increased using the phosphodiesterase inhibitor IBMX, Rp-cAMPS potently inhibited CREB phosphorylation. Taken together, our results suggest that an alternate cAMP dependent pathway was involved in increasing CREB phosphorylation and neuroplasticity. This idea was supported by an in vitro neurite outgrowth assay, where inhibiting PKA did enhance neurite outgrowth. However, when PKA inhibition was combined with inhibition of EPAC2 (exchange protein directly activated by cAMP), another downstream target of cAMP in neurons, neurite outgrowth was significantly reduced. In conclusion, blocking PKA in cortical neurons of spinal cord injured rats increases neurite outgrowth of the lesioned corticospinal tract fibres and the efficacy of rehabilitative training, likely via EPAC.
Collapse
|
43
|
Cao S, Bian Z, Zhu X, Shen SR. Effect of Epac1 on pERK and VEGF Activation in Postoperative Persistent Pain in Rats. J Mol Neurosci 2016; 59:554-64. [DOI: 10.1007/s12031-016-0776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
|
44
|
Mitani K, Sekiguchi F, Maeda T, Tanaka Y, Yoshida S, Kawabata A. The prostaglandin E2/EP4 receptor/cyclic AMP/T-type Ca(2+) channel pathway mediates neuritogenesis in sensory neuron-like ND7/23 cells. J Pharmacol Sci 2016; 130:177-80. [PMID: 27032908 DOI: 10.1016/j.jphs.2016.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022] Open
Abstract
We investigated mechanisms for the neuritogenesis caused by prostaglandin E2 (PGE2) or intracellular cyclic AMP (cAMP) in sensory neuron-like ND7/23 cells. PGE2 caused neuritogenesis, an effect abolished by an EP4 receptor antagonist or inhibitors of adenylyl cyclase (AC) or protein kinase A (PKA) and mimicked by the AC activator forskolin, dibutyryl cAMP (db-cAMP), and selective activators of PKA or Epac. ND7/23 cells expressed both Cav3.1 and Cav3.2 T-type Ca(2+) channels (T-channels). The neuritogenesis induced by db-cAMP or PGE2 was abolished by T-channel blockers. T-channels were functionally upregulated by db-cAMP. The PGE2/EP4/cAMP/T-channel pathway thus appears to mediate neuritogenesis in sensory neurons.
Collapse
Affiliation(s)
- Kenji Mitani
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Takashi Maeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Yukari Tanaka
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Shigeru Yoshida
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, (formerly Kinki University), Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
45
|
Zhou Z, Tanaka KF, Matsunaga S, Iseki M, Watanabe M, Matsuki N, Ikegaya Y, Koyama R. Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis. Sci Rep 2016; 5:19679. [PMID: 26795422 PMCID: PMC4726437 DOI: 10.1038/srep19679] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/16/2015] [Indexed: 01/17/2023] Open
Abstract
Spatiotemporal regulation of axonal branching and elongation is essential in the development of refined neural circuits. cAMP is a key regulator of axonal growth; however, whether and how intracellular cAMP regulates axonal branching and elongation remain unclear, mainly because tools to spatiotemporally manipulate intracellular cAMP levels have been lacking. To overcome this issue, we utilized photoactivated adenylyl cyclase (PAC), which produces cAMP in response to blue-light exposure. In primary cultures of dentate granule cells transfected with PAC, short-term elevation of intracellular cAMP levels induced axonal branching but not elongation, whereas long-term cAMP elevation induced both axonal branching and elongation. The temporal dynamics of intracellular cAMP levels regulated axonal branching and elongation through the activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), respectively. Thus, using PAC, our study for the first time reveals that temporal cAMP dynamics could regulate axonal branching and elongation via different signaling pathways.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | - Shigeru Matsunaga
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi Hamakita-ku, Hamamatsu, Shizuoka, Japan
| | - Mineo Iseki
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, Japan
| | - Masakatsu Watanabe
- The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishiku, Hamamatsu, Shizuoka, Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
46
|
Simon K, Hennen S, Merten N, Blättermann S, Gillard M, Kostenis E, Gomeza J. The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Gαi/o and Its Downstream Effector Molecules. J Biol Chem 2015; 291:705-18. [PMID: 26620557 DOI: 10.1074/jbc.m115.683953] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 01/08/2023] Open
Abstract
Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.
Collapse
Affiliation(s)
- Katharina Simon
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | - Stephanie Hennen
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | - Nicole Merten
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | - Stefanie Blättermann
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | | | - Evi Kostenis
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | - Jesus Gomeza
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| |
Collapse
|
47
|
Exchange Protein Directly Activated by cAMP (EPAC) Regulates Neuronal Polarization through Rap1B. J Neurosci 2015; 35:11315-29. [PMID: 26269639 DOI: 10.1523/jneurosci.3645-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Acquisition of neuronal polarity is a complex process involving cellular and molecular events. The second messenger cAMP is involved in axonal specification through activation of protein kinase A. However, an alternative cAMP-dependent mechanism involves the exchange protein directly activated by cAMP (EPAC), which also responds to physiological changes in cAMP concentration, promoting activation of the small Rap GTPases. Here, we present evidence that EPAC signaling contributes to axon specification and elongation. In primary rat hippocampal neurons, EPAC isoforms were expressed differentially during axon specification. Furthermore, 8-pCPT, an EPAC pharmacological activator, and genetic manipulations of EPAC in neurons induced supernumerary axons indicative of Rap1b activation. Moreover, 8-pCPT-treated neurons expressed ankyrin G and other markers of mature axons such as synaptophysin and axonal accumulation of vGLUT1. In contrast, pharmacological inhibition of EPAC delayed neuronal polarity. Genetic manipulations to inactivate EPAC1 using either shRNA or neurons derived from EPAC1 knock-out (KO) mice led to axon elongation and polarization defects. Interestingly, multiaxonic neurons generated by 8-pCPT treatments in wild-type neurons were not found in EPAC1 KO mice neurons. Altogether, these results propose that EPAC signaling is an alternative and complementary mechanism for cAMP-dependent axon determination. SIGNIFICANCE STATEMENT This study identifies the guanine exchange factor responsible for Rap1b activation during neuronal polarization and provides an alternate explanation for cAMP-dependent acquisition of neuronal polarity.
Collapse
|
48
|
Sugawara K, Shibasaki T, Takahashi H, Seino S. Structure and functional roles of Epac2 (Rapgef4). Gene 2015; 575:577-83. [PMID: 26390815 DOI: 10.1016/j.gene.2015.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/13/2015] [Accepted: 09/15/2015] [Indexed: 10/24/2022]
Abstract
Epac (exchange protein activated by cyclic-AMP) 2 is a direct target of 3'-5'-cyclic adenosine monophosphate (cAMP) and is involved in cAMP-mediated signal transduction through activation of the Ras-like small GTPase Rap. Crystallographic analyses revealed that activation of Epac2 by cAMP is accompanied by dynamic structural changes. Epac2 is expressed mainly in brain, neuroendocrine and endocrine tissues, and is involved in diverse cellular functions in the tissues. In this review, we summarize the structure and function of Epac2. We also discuss the physiological and pathophysiological roles of Epac2, and the possibility of Epac2 as a therapeutic target.
Collapse
Affiliation(s)
- Kenji Sugawara
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadao Shibasaki
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
49
|
Fields DP, Springborn SR, Mitchell GS. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling. J Neurophysiol 2015; 114:2015-22. [PMID: 26269554 DOI: 10.1152/jn.00374.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/06/2015] [Indexed: 01/22/2023] Open
Abstract
Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage.
Collapse
Affiliation(s)
- D P Fields
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin; and
| | - S R Springborn
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin; and
| | - G S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin; and Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
50
|
Mohan S, Narumiya S, Doré S. Neuroprotective role of prostaglandin PGE2 EP2 receptor in hemin-mediated toxicity. Neurotoxicology 2015; 46:53-9. [PMID: 25451967 PMCID: PMC4681391 DOI: 10.1016/j.neuro.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/18/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023]
Abstract
Heme (Fe(2+) protoporphyrin IX) and hemin (Fe(3+)), the prosthetic group of hemoprotein, are cytotoxic due to their ability to contribute to the production of reactive oxygen species, increased intracellular calcium levels, and stimulate glutamate-mediated excitotoxicity. Previous work by our group showed that blockade of the prostaglandin E2 (PGE2)-EP1 receptor reduced hemin-induced cytotoxicity in primary cortical neuronal cultures. However, the role of the prostaglandin E2 (PGE2)-EP2 receptor in hemin neurotoxicity remains unclear. Activation of the EP2 receptor in neurons results in increased cyclic AMP (cAMP) and protein kinase A signaling; therefore, we hypothesized that the activation of the EP2 receptor decreases hemin neurotoxicity. Using postnatal primary cortical neurons cultured from wildtype-control (WT) and EP2(-/-) mice, we investigated the role of the EP2 receptor in hemin neurotoxicity by monitoring cell survival with the Calcein-AM live-cell and lactate dehydrogenase assays. MitoTracker staining was also performed to determine how mitochondria were affected by hemin. Hemin neurotoxicity in EP2(-/-) neurons was 37.2 ± 17.0% greater compared to WT neurons. Of interest, cotreatment with the EP2 receptor agonist, butaprost (1 and 10 μM), significantly attenuated hemin neurotoxicity by 55.7 ± 21.1% and 60.1 ± 14.8%, respectively. To further investigate signaling mechanisms related to EP2 receptor mediating cytoprotection, neurons were cotreated with hemin and activators/inhibitors of both the cAMP-protein kinase A/exchange protein directly activated by cAMP (Epac) pathways. Forskolin, a cAMP activator, and 8-pCPT-cAMP, an Epac activator, both attenuated hemin neurotoxicity by 78.8 ± 22.2% and 58.4 ± 9.8%, respectively, as measured using the lactate dehydrogenase assay. Together, the results reveal that activation of the EP2 receptor is protective against hemin neurotoxicity in vitro and these findings suggest that neuroprotection occurs through the cAMP-Epac pathway in neuronal cultures. Therefore, activation of the EP2 receptor could be used to minimize neuronal damage following exposure to supraphysiological levels of hemin.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Analysis of Variance
- Animals
- Animals, Newborn
- Cell Survival/drug effects
- Cerebral Cortex/cytology
- Colforsin/pharmacology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/pharmacology
- Hemin/toxicity
- L-Lactate Dehydrogenase/metabolism
- Mice
- Mice, Knockout
- Neurons/drug effects
- Neuroprotective Agents/pharmacology
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University, Kyoto, Japan
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA; Departments of Neurology, Psychiatry, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|