1
|
Álvarez S, Álvarez C, Mullen AM, O'Neill E, Gagaoua M. Impact of UV pre-treatment on the Longissimus thoracis et lumborum muscle proteomes of dry-aged beef cuts: A characterisation within two sampling locations. Meat Sci 2025; 221:109729. [PMID: 39667196 DOI: 10.1016/j.meatsci.2024.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
This research aimed to explore the changes in two sampling locations (internal and external) of the Longissimus thoracis et lumborum (LTL) beef muscle proteomes subjected to ultraviolet light before dry-aging. It further compared the biological processes and associated proteins at interplay at the external locations of UV pre-treated and control dry-aged samples. Before dry-aging, proteins related to external stimuli were differentially abundant between both locations possibly due to the early post-mortem energy metabolism attempting to compensate for energy deficiencies and stress derived from slaughter and processing. The biochemical status of muscle during chilling and hanging of the carcasses and the impact of the UV pre-treatment may have also influenced the abundance of these proteins before dry-aging. Proteins associated to muscle structure, energy and fatty acids metabolism were differentially abundant between locations after 21 days of dry-aging. These dynamic changes in the meat proteome and related biological processes suggested that both evolved differently between the two sampling locations during dry-aging, and these may underlie the development of dry-aged beef properties. The proteome of the external locations sampled from UV pre-treated beef loins was compared to control counterparts during dry-aging. The results show that aging time appeared to outweigh the effect of UV since the differentially abundant proteins between both groups decreased as dry-aging progressed. These proteins were associated with mRNA stabilization, the matrisome, energy pathways and heat shock proteins (HSPs). Further research is warranted to better understand the role of these proteins in the production of dry-aged beef and their relation to the UV pre-treatment.
Collapse
Affiliation(s)
- Sara Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland; School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | - Carlos Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland.
| | - Anne Maria Mullen
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | | |
Collapse
|
2
|
Bodmer JS, Beline M, Yen CN, Wicks JC, Amorim ST, Roth EC, Biase FH, Koohmaraie M, Matarneh S, Shi TH, Silva SL, Gerrard DE. In vitro proteolysis mirrors intact muscle maturation in beef carcasses. Meat Sci 2025; 220:109695. [PMID: 39577158 DOI: 10.1016/j.meatsci.2024.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
An in vitro assay was developed to study protease activity during the maturation of beef postmortem. Myofibrils were purified from the semitendinosus and used as a sentinel for assessing the activity of endogenous proteases in longissimus thoracis et lumborum (LTL) and the extensor carpi radialis (ER) over time postmortem in beef carcasses. Samples were collected from each muscle at 0, 1, 2, 7, and 14 d of aging and snap frozen. Samples were powdered and added to an in vitro proteolysis assay containing buffer and purified myofibrils. Aliquots were collected at 0, 2, 120, 480, and 1440 min of incubation, and intact desmin and troponin-T were quantified. Digestions at 0 and 1 d using either muscle had little desmin degradation during the entire digestion period. In contrast, LTL muscle collected at 2, 7, and 14 d had the greatest proteolytic capacity as indicated by disappearance of intact desmin by 480 and 1440 min incubation. Though degradation ensued using powdered ER muscle, disappearance of intact proteins was limited. Degradation in vitro paralleled that observed in intact muscle. Addition of ethylene glycol tetra-acetic acid (EGTA), a cysteine protease inhibitor, and calpastatin inhibited proteolysis and suggest proteolytic activity observed in muscles and detected in our proteolysis assays is due to an active calpain protease. Collectively, our data show an active protease is minimal in bovine muscle until 48 h postmortem in the LTL muscle and suggest an in vitro assay containing purified myofibrils is a potential tool for studying temporal changes in proteolysis during the maturation and tenderization of beef across muscles.
Collapse
Affiliation(s)
- J S Bodmer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - M Beline
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - C N Yen
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J C Wicks
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S T Amorim
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - E C Roth
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - F H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - M Koohmaraie
- IEH Laboratories and Consulting Group, Meat Division, Lake Forest Park, WA 98155, USA
| | - S Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, 84322, United States
| | - T H Shi
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S L Silva
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, São Paulo, Pirassununga 13635-900, SP, Brazil
| | - D E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
3
|
Liu Y, Li H, Li M, Liu L, Lu K, Bi S, Zhou M, Chen L, Lan L, Wei M, Zhou Y, Zhu Q. Study on protein hydrolysis and microbial community changes during the fermentation of pork loin ham mediated by electrical stimulation. Food Res Int 2025; 201:115640. [PMID: 39849783 DOI: 10.1016/j.foodres.2024.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study explored the effect of electrical stimulation (ES) and Pediococcus pentosaceus LL-07 (P. pentosaceus LL-07) and Staphylococcus simulans QB7 (S. simulans QB7) on the quality and microbial community of loin ham during the ripening. After the ES and starter culture treatments, the Aw and pH were decreased. Surface hydrophobicity, myogenic fiber fragmentation index (MFI), TCA-soluble peptide, amino nitrogen and free amino acids (FAAs) were also significantly higher than the control group (CK) (P < 0.05). This increase was more significant in the E-S group (electrical stimulation followed by inoculation with P. pentosaceus LL-07 and S. simulans QB7) than the rest of the experimental group (E、S、S-E group). Furthermore, the CK and E-S groups were subjected to a bacterial community comparison experiment. The microbial diversity of these two groups was increased. Pediococcus spp. and Staphylococcus spp. became the dominant bacteria in E-S groups during the ripening. Correlation analyses show a strong correlation between protein hydrolysis, microorganisms and FAAs. In conclusion, the combination of ES and starter culture could promote protein hydrolysis, the accumulation of FAAS, and improves the bacterial community of loin ham.
Collapse
Affiliation(s)
- Yehua Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Hongying Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Province Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Mingming Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Kuan Lu
- Guizhou Biotechnology Research and Development Base Co., Ltd., Guiyang 550002, Guizhou, China
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Mixin Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Li Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Lisha Lan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Minping Wei
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China.
| |
Collapse
|
4
|
Zhao X, Wu S, Ren C, Bai Y, Hou C, Li X, Wang Z, Zhang D. Revealing the Mechanism of Protein Degradation in Postmortem Meat: The Role of Phosphorylation and Ubiquitination. Foods 2025; 14:184. [PMID: 39856851 PMCID: PMC11764534 DOI: 10.3390/foods14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to investigate the possible effects of phosphorylation and ubiquitination on the degradation of myofibrillar proteins in mutton with different tenderness. The longissimus thoracis lumborum muscles were chosen and divided into tender and tough groups (n = 9), and then stored at 4 °C for 1 h, 12 h, 1 d, 3 d, and 5 d postmortem. Shear force, pH, myofibril fragmentation index, AMPK activity, E3 ubiquitin ligase abundance, protein phosphorylation, and the ubiquitination levels of muscle samples were measured. The results demonstrated that the meat of samples in the tender group had a higher degradation of desmin and a lower phosphorylation level of desmin at 1 d compared with the tough group. The ubiquitination level of desmin, AMPK activity, and E3 ubiquitin ligase abundance in the tender group were noticeably higher than those in the tough group at 12 h. There was a negative correlation between the shear force and desmin degradation. The desmin degradation was negatively correlated with desmin phosphorylation and ubiquitination levels. The phosphorylation level of desmin was positively correlated with its ubiquitination. In summary, this study suggests that AMPK and E3 ubiquitin ligase concurrently play significant roles in regulating meat tenderness by regulating phosphorylation and ubiquitination in meat postmortem.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (X.Z.); (S.W.); (C.R.); (Y.B.); (C.H.); (Z.W.); (D.Z.)
| | | | | |
Collapse
|
5
|
Ma C, Du T, Wang W, Liu Y, An Z, Hou Q, Xing L, Zhang W. Insights into the differences of caspase and apoptosis levels in pork longissimus thoracis muscles with different tenderness: A perspective on S-nitrosylation modification. Food Chem 2025; 471:142810. [PMID: 39793362 DOI: 10.1016/j.foodchem.2025.142810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/25/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
This study investigated the differences of caspase and apoptosis levels in pork with different tenderness from the perspective of S-nitrosylation and further explored their role during pork tenderization. Ten longissimus thoracis muscles selected from 36 individual carcasses based on shear force were divided into high (HT) and low (LT) tenderness groups (n = 5), respectively. Results demonstrated that total nitric oxide synthase activity and protein S-nitrosylation levels of LT group were higher than HT group, while myocyte apoptosis levels were lower in LT group (p < 0.05). Additionally, LT group possessed a lower caspase-3 activity while a higher abundance of intact caspase-3 and greater S-nitrosylation levels of cleaved caspase-3 (p < 0.05). However, none of the above differences were found in caspase-9 (p > 0.05). The lower tenderness in LT group might be associated with reduced caspase-3 activity resulted from increased S-nitrosylation levels of its active subunits, which delayed myocyte apoptosis and lowed the degradation of desmin and troponin T.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongyao Du
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Wenxuan Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenhong An
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Hou
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Lujuan Xing
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Lei X, Su W, Zhou R, Mu Y. TMT-based quantitative proteomics reveals the effects of electromagnetic field and freezing preservation techniques on mutton quality. Food Chem X 2024; 24:101889. [PMID: 39498251 PMCID: PMC11532641 DOI: 10.1016/j.fochx.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
This study investigated the effects of electromagnetic field preservation (EP) and freezing storage (FS) on the quality of northern Qianbei Ma mutton. Using tandem mass tagging (TMT)-labeled quantitative proteomics and bioinformatics, it was observed that EP more effectively inhibited pH increase and maintained a* and b* values compared to FS. Furthermore, the EP group was able to better maintain the water-holding capacity and tenderness of the mutton under prolonged storage. Proteomics analysis identified 397 differentially expressed proteins (DEPs) between the two storage methods at the same storage duration. GO and KEGG enrichment analyses indicated that proteins such as A0A452DSW4, A0A452E8M7, and D3JYV6 were involved in energy metabolism and redox processes, while A0A452EJ66, A0A452DSW4, and A0A452FJE8 played significant roles in protein binding. Overall, EP technology demonstrated superior benefits for maintaining mutton quality, suggesting a novel approach for mutton preservation.
Collapse
Affiliation(s)
- Xing Lei
- School of Wine and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Livestock Product Storage and Processing Technology of Guizhou Province, Guiyang 550025, China
| | - Wei Su
- School of Wine and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Livestock Product Storage and Processing Technology of Guizhou Province, Guiyang 550025, China
| | - Rongmei Zhou
- School of Wine and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Livestock Product Storage and Processing Technology of Guizhou Province, Guiyang 550025, China
| | - Yingchun Mu
- School of Wine and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Livestock Product Storage and Processing Technology of Guizhou Province, Guiyang 550025, China
| |
Collapse
|
7
|
Zhang D, Yu H, Gu M, Zhang S, Ma X, Zhang W, Zhu Y, Al-Wraikat M, Abubaker MA, Zhang R, Liu Y. Unveils key proteins in Xinjiang goat muscle linked to post-mortem meat quality: A TMT-based proteomic analysis. Food Chem X 2024; 24:101847. [PMID: 39398871 PMCID: PMC11470461 DOI: 10.1016/j.fochx.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
An extensive proteomic analysis utilizing the tandem mass tag (TMT) method was conducted to investigate the changes in protein expression in the longissimus dorsi muscle of Xinjiang goats over various post-mortem intervals: immediately after death within 0 h, 12 h, 24 h and 48 h. The investigation carefully identified around 108 proteins that showed significant changes in expression during these intervals. Among these proteins, six were highlighted for their crucial roles in muscle growth and differentiation of muscle fibers post-mortem. These proteins, namely COL12A1, MRPL46, CTNNB1, MYH1, CAPZA1, and MYL9, have a direct effect on the meat's quality attributes, such as tenderness and color. Further discuss observed a progressive increase in the expression of proteins linked with oxidative metabolism (MSRB2, ENOX1, LOC102170282, GSTM1, and AOC3) as the post-mortem aging period extended, particularly between 24 h to 48 h. These proteins are instrumental in defining the color and flavor profiles of goat meat, underscoring the importance of precise processing and storage conditions to preserve meat quality during the critical aging phase. This enhanced understanding of protein expression dynamics offers significant implications for optimizing meat quality and provides a scientific basis for post-mortem handling practices in the goat meat industry.
Collapse
Affiliation(s)
- Duoduo Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Hong Yu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Minghui Gu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Shiquan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Xiaolin Ma
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Wei Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Yanlei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Rui Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| |
Collapse
|
8
|
Wu Y, Du Q, Dong R, Liao Y, Li C, Benjakul S, Zhang B. Role of the intestines on the muscle quality of Pacific white shrimp (Litopenaeus vannamei) during chilled storage: Physicochemical and label-free-based peptidomics analyses. Food Chem 2024; 460:140507. [PMID: 39068793 DOI: 10.1016/j.foodchem.2024.140507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
The effect of shrimp deveining on the quality of Pacific white shrimp muscle was investigated by analyzing the protein degradation during chilled storage via physicochemical and label-free peptidomics analyses. In this study, shrimp with intact intestines were in the control group (CS), while deveined shrimp (DS) were in the treatment group. The total viability count (TVC), total volatile base nitrogen (TVB-N) content, and trichloroacetic acid (TCA)-soluble peptide content in all of the shrimp groups gradually increased with prolonged chilled storage. However, in the later stages of chilled storage, the DS samples exhibited significantly lower TVB-N, total bacterial, and TCA-soluble peptide contents than the CS samples, indicating that deveining treatment effectively prolonged shrimp quality. The peptidomics analysis revealed varying degrees of protein hydrolysis in the DS and CS samples during chilled storage. A total of 396 differentially abundant peptides (DAPs) were identified in the DS compared with the CS, comprising 98 upregulated and 298 downregulated segments. This suggests that the removal of the intestine effectively inhibits protein hydrolysis. Gene ontology (GO) analysis suggested that the DAPs were mainly involved in catalytic activity, binding, and metabolic processes. The cluster of orthologous groups of protein (COG) analysis showed that the cytoskeleton dynamics of the muscle proteins underwent considerable alterations influenced by the shrimp's intestines during chilled storage.
Collapse
Affiliation(s)
- Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Ruyi Dong
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Yueqin Liao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, China.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China; Pisa Marine Graduate School, Zhejiang Ocean University, China.
| |
Collapse
|
9
|
Hematyar N, Policar T, Rustad T. Importance of proteins and mitochondrial changes as freshness indicators in fish muscle post-mortem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39614681 DOI: 10.1002/jsfa.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 12/01/2024]
Abstract
Evaluating protein and mitochondrial alterations post-mortem can contribute to determining correlations between fish-processing parameters and ultimate fish muscle quality. The myofibrillar protein alteration during rigor mortis directly affects the texture of fish muscle. To identify the mechanisms behind post-mortem softness and quality deterioration, it is crucial to understand the conditions linked to the breakdown of myofibrillar proteins in fish skeletal muscle. Therefore, monitoring protein breakdown at the molecular level and finding target proteins would be considered a marker for fish freshness. Mitochondria play an important role in executing and regulating cell death processes, including apoptosis and necrosis. The mitochondria are the seat of cellular respiration and experience significant alterations in post-mortem tissues. Processes used to reduce protein degradation, such as optimizing chilling and handling practices, would also minimize mitochondrial changes in fillet quality. Moreover, pH fluctuations are considered a critical point that influences both protein and mitochondrial changes. This review considered the implications of protein and mitochondrial alteration during post-mortem storage in fish fillets and the possible pathways of their interaction on fillet quality. Mitochondrial characteristics, such as membrane integrity, pH, and ATP levels, are important for post-mortem muscle cell changes, serving as an early indicator of fish freshness. Understanding the mechanisms behind protein degradation in fish muscle led to maintaining fillet quality and requires further experiments. Label-free proteomics combined with bioinformatics is crucial for comprehending protein degradation mechanisms to provide customers with safe and fresh fish products while minimizing economic losses associated with fillet deterioration. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Nima Hematyar
- Research Institute of Fish Culture and Hydrobiology, Zátiší, Czech Republic
| | - Tomas Policar
- Research Institute of Fish Culture and Hydrobiology, Zátiší, Czech Republic
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Dai Y, Chen Y, Lin X, Zhang S. Recent Applications and Prospects of Enzymes in Quality and Safety Control of Fermented Foods. Foods 2024; 13:3804. [PMID: 39682876 DOI: 10.3390/foods13233804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Fermented foods have gained global attention for their unique flavor and immense health benefits. These flavor compounds and nutrients result from the metabolic activities of microorganism during fermentation. However, some unpleasant sensory characteristics and biohazard substances could also be generated in fermentation process. These quality and safety issues in fermented foods could be addressed by endogenous enzymes. In this review, the applications of enzymes in quality control of fermented foods, including texture improvement, appearance stability, aroma enhancement, and debittering, are discussed. Furthermore, the enzymes employed in eliminating biohazard compounds such as ethyl carbamate, biogenic amines, and nitrites, formed during fermentation, are reviewed. Advanced biological methods used for enhancing the enzymatic activity and stability are also summarized. This review focused on the applications and future prospects of enzymes in the improvement quality and safety qualities of fermented foods.
Collapse
Affiliation(s)
- Yiwei Dai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Škrlep M, Poklukar K, Vrecl M, Brankovič J, Čandek-Potokar M. Growth Performance, Carcass Quality, and Lipid Metabolism in Krškopolje Pigs and Modern Hybrid Pigs: Comparison of Genotypes and Evaluation of Dietary Protein Reduction. Animals (Basel) 2024; 14:3331. [PMID: 39595384 PMCID: PMC11591021 DOI: 10.3390/ani14223331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
This study compared the performance, meat quality and adipose tissue characteristics of Krškopolje pigs and modern hybrid pigs under identical rearing conditions, besides examining the effects of dietary protein reduction in both genotypes. A total of 29 pigs (14 Krškopolje and 15 hybrids) were assigned to litter into two dietary groups (high and low protein). The low-protein diet for hybrid pigs corresponded to the high-protein diet for Krškopolje pigs. All diets were iso-energetic. Dietary protein reduction decreased growth rate and muscle development in modern hybrids but had no significant impact on performance, quality or metabolic traits in Krškopolje pigs. Genotype differences revealed that Krškopolje pigs had lower growth rates, less lean and more fat deposition, as reflected in thicker subcutaneous and higher intramuscular fat compared to modern hybrids. Krškopolje pigs also exhibited higher myoglobin concentration and fatty acid saturation. Lipogenic enzyme activity and histo-morphological traits behaved in a tissue-specific manner but still indicated a greater lipogenic potential in Krškopolje pigs. This study provides valuable insights into breed-specific responses to dietary changes and highlights the unique characteristics of Krškopolje pigs.
Collapse
Affiliation(s)
- Martin Škrlep
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (M.Š.); (K.P.)
| | - Klavdija Poklukar
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (M.Š.); (K.P.)
| | - Milka Vrecl
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (M.V.); (J.B.)
| | - Jana Brankovič
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (M.V.); (J.B.)
| | - Marjeta Čandek-Potokar
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (M.Š.); (K.P.)
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoče, Slovenia
| |
Collapse
|
12
|
Liu S, Shao L, Gong J, Sheng J, Ning Z, Xu X, Wang H. Discovery of a temperature-dependent protease spoiling meat from Pseudomonas fragi: Target to myofibrillar and sarcoplasmic proteins rather than collagen. Food Chem 2024; 457:140155. [PMID: 38908241 DOI: 10.1016/j.foodchem.2024.140155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Chilled meat frequently suffered microbial spoilage because bacteria can secrete various proteases that break down the proteins. In this study, Pseudomonas fragi NMC 206 exhibited a temperature-dependent secretion pattern, with the ability to release the specific protease only below 25 °C. It was identified as alkaline protease AprA by LC-MS/MS, with the molecular weight of 50.4 kDa, belonging to the Serralysin family metalloprotease. Its significant potential for meat spoilage in situ resulted in alterations in meat color and sensory evaluation, as well as elevated pH, total volatile basic nitrogen (TVB-N) and the formation of volatile organic compounds (VOCs). The hydrolysis of meat proteins in vitro showed that AprA possessed a considerable proteolysis activity and degradation preferences on meat proteins, especially its ability to degrade myofibrillar and sarcoplasmic proteins, rather than collagen. These observations demonstrated temperatures regulated the secretion of AprA, which was closely related to chilled chicken spoilage caused by bacteria. These will provide a new basis for the preservation of meat products at low temperatures.
Collapse
Affiliation(s)
- Silu Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liangting Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junming Gong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junsheng Sheng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenzhen Ning
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Hou Q, Ma C, Liu R, Kang Z, Zhang W. Exploring the Effects of S-Nitrosylation on Caspase-3 Modification and Myofibril Degradation of Beef In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21772-21780. [PMID: 39295075 DOI: 10.1021/acs.jafc.4c06663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
This study aimed to explore the effects of S-nitrosylation on caspase-3 modification and its subsequent effects on beef myofibril degradation in vitro. Recombinant caspase-3 was reacted with different concentrations of S-nitrosoglutathione (GSNO, nitric oxide donor) at 37 °C for 30 min and subsequently incubated with purified myofibrillar protein from bovine semimembranosus muscle. Results indicated that the activity of caspase-3 was significantly reduced after GSNO treatments (P < 0.05) and showed a dose-dependent inhibitory effect, which was attributed to the increased S-nitrosylation extent of caspase-3. LC-MS/MS analysis revealed that caspase-3 was S-nitrosylated at cysteine sites 116, 170, 184, 220, and 264. Moreover, the degradation of desmin and troponin-T was notably suppressed by S-nitrosylated caspase-3 (P < 0.05). To conclude, protein S-nitrosylation could modify the cysteine residues of caspase-3, which accounts for the reduced caspase-3 activity and further represses its proteolytic ability on beef myofibrillar protein.
Collapse
Affiliation(s)
- Qin Hou
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225127, China
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Ma
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
14
|
Huang Y, Xu C, Huang X, Tan Y, Li S, Yin Z. Metabolome and Transcriptome Profiling Reveals Age-Associated Variations in Meat Quality and Molecular Mechanisms of Taihe Black-Bone Silky Fowls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21946-21956. [PMID: 39354852 DOI: 10.1021/acs.jafc.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
To explore the changes in meat quality and molecular mechanisms during the growth and development of Taihe black-bone silky fowl, this study employed liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics to elucidate the dynamic changes of key differential metabolites (DMs) affecting meat quality, indicating that chicken at D120 had higher levels of ω-3 polyunsaturated fatty acids (PUFAs), creatine, anserine, and homocarnosine, while D150 had the most stachydrine and D210 had the most acylcarnitines. Additionally, D120 and D180 had more umami and sweet compounds. Furthermore, key metabolic pathways influenced by age included purine metabolism, the pentose phosphate pathway, nicotinate and nicotinamide metabolism, and taurine and hypotaurine metabolism. Transcriptomic identified differential expression genes (DEGs) are predominantly enriched in focal adhesion, the TGF-β signaling pathway, and the MAPK signaling pathway. Integrated metabolomics and transcriptomics revealed complex regulatory networks of DEGs and DMs in key metabolic pathways. This research enhanced our understanding of the biology of Taihe black-bone silky fowl meat quality, revealing possible biomarkers.
Collapse
Affiliation(s)
- Yunyan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Xuan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Yuting Tan
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Shibao Li
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
15
|
Hou Q, Gao T, Liu R, Ma C, Zhang W. S-nitrosoproteomics profiling elucidates the regulatory mechanism of S-nitrosylation on beef quality. Meat Sci 2024; 216:109580. [PMID: 38941777 DOI: 10.1016/j.meatsci.2024.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This study aimed to quantitively profile the S-nitrosylation in beef semimembranosus (SM) with different treatments (nitric oxide donor or nitric oxide synthase inhibitor) by applying iodoTMT-based nitrosoproteomics. Results showed that 2096 S-nitrosylated cysteine sites in 368 proteins were detected in beef SM. Besides, differential SNO-modified proteins were screened, some of which were involved in crucial biochemical pathways, including calcium-releasing-related proteins, energy metabolic enzymes, myofibrils, and cytoskeletal proteins. GO analysis indicated that differential proteins were localized in a wide range of cellular compartments, such as cytoplasm, organelle, and mitochondrion, providing a prerequisite for S-nitrosylation exerting broad roles in post-mortem muscles. Furthermore, KEGG analysis validated that these proteins participated in the regulation of diverse post-mortem metabolic processes, especially glycolysis. To conclude, changes of S-nitrosylation levels in post-mortem muscles could impact the structure and function of crucial muscle proteins, which lead to different levels of muscle metabolism and ultimately affect beef quality.
Collapse
Affiliation(s)
- Qin Hou
- School of Tourism and Cuisine, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, Jiangsu 225127, China; Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Tianyi Gao
- School of Tourism and Cuisine, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Chao Ma
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
16
|
Bormon CC, Akib G, Rifat A, Hossain M, Uddin N, Hossain FMA, Azzam MM, Farouk MH, Das R, Mahfuz SU. Effects of oyster mushroom (Pleurotus ostreatus) stem residue supplementation on growth performance, meat quality and health status of broilers. Poult Sci 2024; 103:104054. [PMID: 39067124 PMCID: PMC11337655 DOI: 10.1016/j.psj.2024.104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Oyster mushroom stem residue, a by-product with medicinal and nutritive values, might be a prospective feed supplement in poultry nutrition. The study focused on evaluating the impact of oyster mushroom (Pleurotus ostreatus) stem residue (OMSR) powder supplementation on growth performance, carcass traits, meat quality, blood characteristics, and the cecal bacterial count in Arbor Acres broilers raised 35 d. A total of 144 day-old chicks, with an average weight of 40.27± 2.45 g, were divided into 3 groups: control (received a standard basal diet), antibiotic (basal diet + 75 mg/kg chlortetracycline), and OMSR (fed a basal diet with 300 mg/kg OMSR), where each group comprises 8 replications of 6 chicks. Supplementation of 300 mg/kg of OMSR powder in the broiler diet significantly (P < 0.05) enhanced the average daily gain (ADG) and final body weight as opposed to the control and antibiotic treatments, though the average daily feed intake was not influenced by OMSR supplementation during the whole experimental period. However, in comparison to the control and antibiotic groups, OMSR significantly reduced the postmortem breast meat drip loss percentage (P < 0.05) at 24 hours and on the seventh d. Furthermore, the OMSR group reported significantly elevated levels of Hb and RBC counts (P < 0.05), and decreased levels of serum triglyceride (TG) and total cholesterol (TC) concentrations (P < 0.05) on d 35 in comparison to broilers in the control and antibiotic groups. Additionally, the OMSR group exhibited an improved Heterophil/Lymphocytes (H/L) ratio (P < 0.05) relative to the broilers of the control and antibiotic groups. In contrast, the inclusion of OMSR in the broiler diet did not significantly (P > 0.05) influence other serum biochemical and hematological values tested. Broilers in OMSR group had reduced number (P < 0.05) of E. coli and Salmonella spp., but higher presence of Lactobacillus spp. (P < 0.05) in contrast to the control broilers. To summarize, the study's findings revealed that 300 mg of OMSR powder supplementation per kg of basal diet could be act as a natural growth promoter, and confer favorable effects on health and meat quality of broilers.
Collapse
Affiliation(s)
- C C Bormon
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - G Akib
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - A Rifat
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - M Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - N Uddin
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - F M A Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - M M Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - M H Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt
| | - R Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - S U Mahfuz
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| |
Collapse
|
17
|
Li J, Wang Q, Liang R, Mao Y, Hopkins DL, Li K, Yang X, Luo X, Zhu L, Zhang Y. Effects and mechanism of sub-freezing storage on water holding capacity and tenderness of beef. Meat Sci 2024; 215:109540. [PMID: 38795696 DOI: 10.1016/j.meatsci.2024.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
In order to explore the effect of sub-freezing storage on water holding capacity and tenderness of beef, four treatments were compared in this study: sub-freezing (-7 °C) fast sub-freezing (-38 °C until the core temperature achieved to -7 °C), superchilling (-1 °C) and fast frozen (-38 °C until the core temperature achieved to -18 °C) with the latter two treatments serving as the controls. The differences in muscle fiber structure, water distribution, protein oxidation and cytoskeletal protein degradation were studied. The results demonstrated that compared with other treatments, the fast sub-freezing treatment resulted in less structural damage to the muscle fibers and had better water holding capacity. Both sub-freezing and fast sub-freezing treatments inhibited protein oxidation compared with superchilling, but the former treatment's level of protein oxidation was higher than that in fast sub-freezing treatment during long-term storage (42 weeks). In addition, the structural proteins in the sub-freezing and fast sub-freezing treatments underwent faster degradation during long-term storage and therefore the meat was more tender compared with the fast frozen treatment. The results indicate that the fast sub-freezing treatment can be potentially applied in beef storage.
Collapse
Affiliation(s)
- Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Qiantong Wang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - David L Hopkins
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China; Canberra, Australian Capital Territory, 2903, Australia
| | - Ke Li
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China.
| |
Collapse
|
18
|
Han S, Jo K, Jeong SKC, Jeon H, Kim S, Woo M, Jung S, Lee S. Comparative Study on the Postmortem Proteolysis and Shear Force during Aging of Pork and Beef Semitendinosus Muscles. Food Sci Anim Resour 2024; 44:1055-1068. [PMID: 39246540 PMCID: PMC11377210 DOI: 10.5851/kosfa.2024.e37] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 09/10/2024] Open
Abstract
The differences in the proteolytic patterns and shear force of pork and beef during aging were evaluated. Pork and beef semitendinosus muscles were obtained at 24 and 48 h postmortem, respectively, and aged at 4°C for 0 (Day 0), 7 (Day 7), and 14 days (Day 14). Changes in the electrical conductivity were observed in pork on Day 7 and beef on Day 14. The calpain activity increased in pork (p<0.05) after 14 days of aging, whereas that of beef decreased on Day 7 (p<0.05). The cathepsin B activity in pork and beef increased between Day 7 and 14 (p<0.05). The content of α-amino group in the 10% trichloroacetic acid-soluble fraction increased between Day 7 and 14 in pork (p<0.05), but increased steadily in beef throughout aging (p<0.05). The electrophoretogram of the myofibrillar proteins revealed a 30 kDa protein band only in the beef lane on Day 14. The cooked pork had no significant changes in the shear force during aging periods (p>0.05), while the gradual decrease in the shear force with the increasing aging periods was shown in the cooked beef (p<0.05). Circular dichroism analysis of myosin extracts from pork and beef revealed thermal denaturation temperatures of 55°C and 58°C, respectively. This study highlights the different post-mortem proteolytic patterns and thermal denaturation temperatures of myosin in pork and beef semitendinosus muscles, which contribute to distinct changes in the shear force during aging between pork and beef.
Collapse
Affiliation(s)
- Seokhee Han
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Soeun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Minkyung Woo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
19
|
Hu X, Xiang X, Ju Q, Li S, Julian McClements D. Impact of lipid droplet characteristics on the rheology of plant protein emulsion gels: Droplet size, concentration, and interfacial properties. Food Res Int 2024; 191:114734. [PMID: 39059965 DOI: 10.1016/j.foodres.2024.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Plant-based meat analogs are being developed to address environmental, sustainability, health, and animal welfare concerns associated with real meat products. However, it is challenging to mimic the desirable physicochemical, functional, and sensory properties of real meat products using plant-based ingredients. Emulsion gels consisting of lipid droplets embedded in biopolymer matrices are commonly used to create products with appearances, textures, and sensory attributes like meat products. In this study, the impact of soybean oil droplet characteristics (concentration, size, and charge) on the physicochemical properties of potato protein gels was studied. The oil droplets were either coated by a non-ionic surfactant (Tween 20) or a plant protein (patatin) to obtain different surface properties. The introduction of the oil droplets caused the protein gels to change from mauve to off-white, which was attributed to increased light scattering. Increasing the oil droplet concentration in the emulsion gels decreased their shear modulus and Young's modulus, which was mainly attributed to the fact that the oil droplets were less rigid than the surrounding protein network. Moreover, increasing the oil droplet size made this effect more pronounced, which was attributed to their greater deformability. Competitive adsorption of proteins and surfactants at the oi-water interface in the Tween emulsion promoted emulsion instability. This research highlights the complexity of the interactions between oil droplets and protein networks in emulsion gels. These insights are important for the utilization of emulsion gels in the formulation of plant-based foods with improved quality attributes.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaoke Xiang
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Qian Ju
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Sisheng Li
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
20
|
Fan X, Ma M, Liu P, Deng X, Zhang J. Hydroxyl Radical-Induced Oxidation on the Properties of Cathepsin H and Its Influence in Myofibrillar Proteins Degradation of Coregonus peled In Vitro. Foods 2024; 13:2531. [PMID: 39200458 PMCID: PMC11354168 DOI: 10.3390/foods13162531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
The most frequently occurring protein modification in fish postmortem is oxidization, which further affects meat quality through multiple biochemical pathways. To investigate how hydroxyl radicals affect the structure of cathepsin H and its ability to break down myofibrillar proteins in Coregonus peled, cathepsin H was oxidized with 0, 0.1, 0.5, 1, 5, and 10 mM H2O2 and subsequently incubated with isolated myofibrillar proteins. The results showed that as the H2O2 concentration increased, the carbonyl and sulfhydryl contents of cathepsin H significantly increased and decreased, respectively. There were noticeable changes in the α-helix structures and a gradual reduction in UV absorbance and fluorescence intensity, indicating that oxidation can induce the cross-linking and aggregation of cathepsin H. These structural changes further reduced the activity of cathepsin H, reaching its lowest at 10 mM H2O2, which was 53.63% of the activity at 0 mM H2O2. Moreover, desmin and troponin-T all degraded at faster rates when cathepsin H and myofibrillar proteins were oxidized concurrently as opposed to when cathepsin H was oxidized alone. These findings provide vital insights into the interaction mechanism between oxidation, cathepsin H, as well as myofibrillar protein degradation, laying a groundwork for understanding the molecular mechanisms underlying changes in fish meat quality after slaughter and during processing.
Collapse
Affiliation(s)
- Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Mengjie Ma
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
21
|
Sabzi F, Varidi MJ, Varidi M, Asnaashari M. Effect of verjuice ( Vitis vinifera L.) on physicochemical and textural properties of beef M. biceps femoris. Food Sci Nutr 2024; 12:5497-5517. [PMID: 39139932 PMCID: PMC11317659 DOI: 10.1002/fsn3.4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/17/2024] [Accepted: 04/13/2024] [Indexed: 08/15/2024] Open
Abstract
The objective of this study was to investigate the effect of verjuice on beef M. biceps femoris (BF). BF blocks were marinated with 30%, 70%, and 100% verjuice solutions containing 2% NaCl, for different marination times (12, 24, 48, and 72 h). Verjuice marination reduced the pH values of BF samples from 6.77 in control sample to 3.66 in 100% of verjuice for 72 h. The decreased values of water holding capacity (from 54.06% to 47.46%) with increasing verjuice concentration (from 30% to 100% for 72 h) confirmed the drop of proteins isoelectric point of the muscle due to salt presence preventing fibers swelling. Less cookout was observed with increasing acid concentration. Marination time had no significant effect on L* and a* coordinates of uncooked samples while acidification made the samples lighter and less red. Enzymatic proteolysis of myosin and troponin-T concomitant with increase in myofibrillar fragmentation index contributed to the decrease of shear force in a way dependent on verjuice concentration and marination time. Sensory panelists gave the highest score to cooked samples marinated with 70% verjuice solution.
Collapse
Affiliation(s)
- Fereshteh Sabzi
- Department of Food Science and TechnologyCollege of Agriculture, Ferdowsi University of MashhadMashhadIran
- Innovative Medical Research Center, Faculty of Medicine, Mashhad Medical ScienceIslamic Azad UniversityMashhadIran
| | - Mohammad Javad Varidi
- Department of Food Science and TechnologyCollege of Agriculture, Ferdowsi University of MashhadMashhadIran
| | - Mehdi Varidi
- Department of Food Science and TechnologyCollege of Agriculture, Ferdowsi University of MashhadMashhadIran
| | - Maryam Asnaashari
- Department of Animal ProcessingAnimal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| |
Collapse
|
22
|
Fan X, Gao X, Zhou C. l-arginine and l-lysine supplementation to NaCl tenderizes porcine meat by promoting myosin extraction and actomyosin dissociation. Food Chem 2024; 446:138809. [PMID: 38402768 DOI: 10.1016/j.foodchem.2024.138809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
This study investigated the individual and combined effects of l-arginine, l-lysine, and NaCl on the ultrastructure of porcine myofibrils to uncover the mechanism underlying meat tenderization. Arg or Lys alone shortened A-bands and damaged M-lines, while NaCl alone destroyed M- and Z-lines. Overall, Arg and Lys cooperated with NaCl to destroy the myofibrillar ultrastructure. Moreover, these two amino acids conjoined with NaCl to increase myosin solubility, actin band intensity, and the protein concentration of the actomyosin supernatant. However, they decreased the turbidity and particle size of both myosin and actomyosin solutions, and the remaining activities of Ca2+- and Mg2+-ATPase. The current results revealed that Arg/Lys combined with NaCl to extract myosin and dissociate actomyosin, thereby aggravating the destruction of the myofibrillar ultrastructure. The present results provide a good explanation for the previous phenomenon that Arg and Lys cooperated with NaCl to improve meat tenderness.
Collapse
Affiliation(s)
- Xiaokang Fan
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xun Gao
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Cunliu Zhou
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
23
|
Wu Y, Xia Y, Hu A, Xiong G, Wu W, Shi L, Chen L, Guo X, Qiao Y, Liu C, Yin T, Wang L, Chen S. Difference in muscle metabolism caused by metabolism disorder of rainbow trout liver exposed to ammonia stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171576. [PMID: 38461997 DOI: 10.1016/j.scitotenv.2024.171576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Ammonia pollution is an important environmental stress factors in water eutrophication. The intrinsic effects of ammonia stress on liver toxicity and muscle quality of rainbow trout were still unclear. In this study, we focused on investigating difference in muscle metabolism caused by metabolism disorder of rainbow trout liver at exposure times of 0, 3, 6, 9 h at 30 mg/L concentrations. Liver transcriptomic analysis revealed that short-term (3 h) ammonia stress inhibited carbohydrate metabolism and glycerophospholipid production but long-term (9 h) ammonia stress inhibited the biosynthesis and degradation of fatty acids, activated pyrimidine metabolism and mismatch repair, lead to DNA strand breakage and cell death, and ultimately caused liver damage. Metabolomic analysis of muscle revealed that ammonia stress promoted the reaction of glutamic acid and ammonia to synthesize glutamine to alleviate ammonia toxicity, and long-term (9 h) ammonia stress inhibited urea cycle, hindering the alleviation of ammonia toxicity. Moreover, it accelerated the consumption of flavor amino acids such as arginine and aspartic acid, and increased the accumulation of bitter substances (xanthine) and odorous substances (histamine). These findings provide valuable insights into the potential risks and hazards of ammonia in eutrophic water bodies subject to rainbow trout.
Collapse
Affiliation(s)
- Yiwen Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yuting Xia
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Ao Hu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
24
|
Wicks JC, Wivell AL, Beline M, Zumbaugh MD, Bodmer JS, Yen CN, Johnson-Schuster C, Wilson TB, Greiner SP, Johnson SE, Shi TH, Silva SL, Gerrard DE. Determining muscle plasticity and meat quality development of low-input extended fed market-ready steers. Transl Anim Sci 2024; 8:txae064. [PMID: 38770036 PMCID: PMC11103109 DOI: 10.1093/tas/txae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
In March 2020, the World Health Organization declared COVID-19 a pandemic, which ultimately led to many meat processors temporarily shutting down or reducing processing capacity. This backlog in processing capacity forced many feedlots to retain cattle for longer periods of time and assume the risk of major market fluctuations. The aim of this study was to understand how a dietary insult affects meat quality and muscle metabolism in market-ready steers (590 kg). Sixteen market-ready (590 kg) commercial Angus crossbred steers were subjected to a maintenance diet of either forage or grain for 60 d. Longissimus lumborum (LL) muscle samples were collected immediately postmortem and processed for characteristics reflecting the underlying muscle fiber type and energy state of the tissue. Despite cattle being subjected to a 60-d feeding period, there were no detectable differences (P > 0.05) in carcass characteristics, color of lean, or ultimate pH (pHu). Moreover, our data show that muscle plasticity is rather resilient, as reflected by lack of significance (P > 0.05) in oxidative and glycolytic enzymes, myosin heavy chain isoforms (MyHC), myoglobin, and mitochondrial DNA (mtDNA) contents. These data show that market-ready steers are capable of withstanding a low-input feeding strategy up to 60 d without dramatically impacting underlying muscle characteristics and meat quality development.
Collapse
Affiliation(s)
- Jordan C Wicks
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alexis L Wivell
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mariane Beline
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Morgan D Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jocelyn S Bodmer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Con-Ning Yen
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Chantal Johnson-Schuster
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Thomas B Wilson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Scott P Greiner
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Saulo Luz Silva
- Department of Animal Science and Food Engineering, College of Animal Science and Food Engineering, University of SaoPaulo, Pirassununga, SP, 13635-900, Brazil
| | - David E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
25
|
Muroya S, Horiuchi Y, Iguchi K, Higuchi T, Sakamoto S, Ojima K, Matsukawa K. Depth of Interbreed Difference in Postmortem Bovine Muscle Determined by CE-FT/MS and LC-FT/MS Metabolomics. Metabolites 2024; 14:261. [PMID: 38786738 PMCID: PMC11123161 DOI: 10.3390/metabo14050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Japanese Brown (JBR) cattle have moderately marbled beef compared to the highly marbled beef of Japanese Black (JBL) cattle; however, their skeletal muscle properties remain poorly characterized. To unveil interbreed metabolic differences over the previous results, we explored the metabolome network changes before and after postmortem 7-day aging in the trapezius muscle of the two cattle breeds by employing a deep and high-coverage metabolomics approach. Using both capillary electrophoresis (CE) and ultra-high-performance liquid chromatography (UHPLC)-Fourier transform mass spectrometry (FT/MS), we detected 522 and 384 annotated peaks, respectively, across all muscle samples. The CE-based results showed that the cattle were clearly separated by breed and postmortem age in multivariate analyses. The metabolism related to glutathione, glycolysis, vitamin K, taurine, and arachidonic acid was enriched with differentially abundant metabolites in aged muscles, in addition to amino acid (AA) metabolisms. The LC-based results showed that the levels of bile-acid-related metabolites, such as tauroursodeoxycholic acid (TUDCA), were high in fresh JBR muscle and that acylcarnitines were enriched in aged JBR muscle, compared to JBL muscle. Postmortem aging resulted in an increase in fatty acids and a decrease in acylcarnitine in the muscles of both cattle breeds. In addition, metabolite set enrichment analysis revealed that JBR muscle was distinctive in metabolisms related to pyruvate, glycerolipid, cardiolipin, and mitochondrial energy production, whereas the metabolisms related to phosphatidylethanolamine, nucleotide triphosphate, and AAs were characteristic of JBL. This suggests that the interbreed differences in postmortem trapezius muscle are associated with carnitine/acylcarnitine transport, β-oxidation, tricarboxylic acid cycle, and mitochondrial membrane stability, in addition to energy substrate and AA metabolisms. These interbreed differences may characterize beef quality traits such as the flavor intensity and oxidative stability.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
- Faculty of Veterinary Medicine, Kagoshima University, Korimoto 890-0065, Kagoshima, Japan
| | - Yuta Horiuchi
- Human Metabolome Technologies Inc., Tsuruoka 997-0052, Yamagata, Japan
| | - Kazuki Iguchi
- Human Metabolome Technologies Inc., Tsuruoka 997-0052, Yamagata, Japan
| | - Takuma Higuchi
- Science Research Center, Kochi University, Nankoku 783-8505, Kochi, Japan
| | - Shuji Sakamoto
- Science Research Center, Kochi University, Nankoku 783-8505, Kochi, Japan
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Kazutsugu Matsukawa
- Department of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan
| |
Collapse
|
26
|
Sanah I, Kahina H, Fairouz D, Romeila B, Ghania Z, Zakaria K, Abdelghani B, Miguel Angel S, Samira B. Physicochemical properties and sensory profile of some breeds of rabbits in Algeria. FOOD SCI TECHNOL INT 2024:10820132241238790. [PMID: 38515337 DOI: 10.1177/10820132241238790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The objective of this study was to compare physicochemical traits and sensory profile of meat from rabbits of both sexes belonging to two genotypes, local population and new line (ITELV 2006) which exhibited better characteristics due to its genetic potential. A total of 60 rabbits at 90 days of age were used in the experiment. At slaughter, meat physicochemical and sensory characteristics were measured on Longissimus lumborum muscle. Differences related to genotype were found in most of the physicochemical characteristics studied like Cooking Losses (P < 0.001), Percentage of Released Water (P < 0.001), Myofibril Fragmentation Index (P < 0.001) and a* value (P < 0.001). However, in some of the traits, the differences were related to interaction of sex and genotype (S*G) as in the case of Cooking Losses (P < 0.001) and b* value (P < 0.01). Regarding SDS-PAGE analysis results, the comparison between two breeds has not shown any particular distinction in the myofibrillar and sarcoplasmic protein profiles in relation to the number and the intensity of bands. No significant differences in the sensory characteristics of the meat were noted (P > 0.05). Interestingly, no relevant differences were found between meat from male and female rabbits in all the variables studied (P > 0.05). It was concluded that meat quality was mainly affected by genotype. Thus, the new line exhibited good physicochemical characteristics compared to the local one. This study is the first to analyse and compare the physicochemical and sensory properties of Algerian rabbit meat.
Collapse
Affiliation(s)
- Ibtissem Sanah
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Hafid Kahina
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Djeghim Fairouz
- Équipe TEPA, Laboratoire de Nutrition et Technologie Alimentaire. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Bader Romeila
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Zitouni Ghania
- Institut Technique des Elevages (ITELV), Baba Ali, Birtouta, Alger, Algérie
| | - Khalfaoui Zakaria
- Institut Technique des Elevages (ITELV), Hamma Bouziane, Constantine, Algérie
| | - Boudjellal Abdelghani
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Sentandreu Miguel Angel
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Severo Ochoa Center of Excellence, Paterna (Valencia), Spain
| | - Becila Samira
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| |
Collapse
|
27
|
Luzardo S, Saadoun A, Cabrera MC, Terevinto A, Brugnini G, Rodriguez J, de Souza G, Rovira P, Rufo C. Effect of beef long-storage under different temperatures and vacuum-packaging conditions on meat quality, oxidation processes and microbial growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1143-1153. [PMID: 37737475 DOI: 10.1002/jsfa.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/09/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The global beef market demands the meat industry to ensure product quality and safety in markets that are often very distant. The present study aimed to evaluate the effects of chilled (CH, 120 d) and chilled-then-frozen (CHF, 28 d + 92 d) storage conditions of beef vacuum packaged (VP) and vacuum packaged with antimicrobial (VPAM) on meat quality, oxidative status and microbial loads. Treatments resulted from the combination of storage condition and packaging type: VP + CH, VP + CHF, VPAM + CH and VPAM + CHF. RESULTS Warner-Bratzler shear force values decreased in all treatments after 28 d of chilling. Except for VP + CH, L* values (lightness) of meat color did not differ in each treatment as the storage time increased. Meat from VP + CH had greater a* values than CHF treatments on day 120 of storage. A consumer panel did not detect differences in tenderness, flavor and overall liking between VP and VPAM beef, but they preferred CHF steaks rather than CH beef. TBARS values did not differ between VP and VPAM and between CH and CHF at any time during the storage period. At the end of storage time, all treatments except VP + CHF presented a greater concentration of thiols than at 48 h post-mortem. On day 120 of storage, VP + CH had greater catalase enzyme activity than CHF treatments while VP + CH and VP + CHF showed a greater superoxide dismutase activity than VPAM + CHF. Storage condition (CH or CHF) had a greater impact on microbial counts than the type of packaging. CONCLUSION Freezing meat after an ageing period represents a suitable strategy to extend beef storage life without a detrimental impact on its quality. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Santiago Luzardo
- Sistema Ganadero Extensivo y Agroalimentos, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Tacuarembó, Tacuarembó, Uruguay
| | - Ali Saadoun
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María C Cabrera
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alejandra Terevinto
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Giannina Brugnini
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Pando, Uruguay
| | - Jesica Rodriguez
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Pando, Uruguay
| | - Guillermo de Souza
- Sistema Ganadero Extensivo y Agroalimentos, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Tacuarembó, Tacuarembó, Uruguay
| | - Pablo Rovira
- Sistema Ganadero Extensivo y Arroz-Ganadería, Instituto Nacional de Investigación Agropecuaria (INIA), Treinta y Tres, Uruguay
| | - Caterina Rufo
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Pando, Uruguay
| |
Collapse
|
28
|
Schulte MD, Hochmuth KG, Steadham EM, Lonergan SM, Hansen SL, Huff-Lonergan E. Early postmortem beef muscle proteome and metabolome variations due to supranutritional zinc and ractopamine hydrochloride supplementation. J Anim Sci 2024; 102:skae272. [PMID: 39279203 PMCID: PMC11491740 DOI: 10.1093/jas/skae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024] Open
Abstract
It was hypothesized that the longissimus thoracis (LT) muscle proteome, phosphoproteome, and metabolome could explain postmortem metabolism and tenderness differences in muscle from cattle supplemented zinc (Zn) and/or ractopamine hydrochloride (RH). High percentage Angus steers (N = 20) were fed in a 2 × 2 factorial assigned to Zn and RH treatments: control (CON; n = 10; analyzed 36 mg Zn/kg dry matter [DM]) or supranutritional Zn supplementation (SUPZN; n = 10; control diet + 60 mg Zn/kg DM [from ZnSO4] + 60 mg Zn/kg DM [from Zn-amino acid complex]) for the entire 89-d trial. During the 28 d before harvest, steers were blocked by body weight within Zn treatments to RH treatments of 0 (NO; n = 10) or 300 mg (RAC; n = 10) per steer per day. Steers were harvested at the Iowa State Meat Laboratory, where pH decline (1, 3, 6, and 24 h postmortem) was measured. At 24 h postmortem, LT muscle sections were removed from carcasses, and steaks were analyzed for Warner-Bratzler shear force (WBSF) values at 1, 3, 7, and 14 d postmortem. Muscle samples were taken at 1 h, 1, 3, 7, and 14 d postmortem for the following analysis: troponin-T degradation (1, 3, 7, and 14 d postmortem), myosin heavy chain analysis (1 h postmortem), sarcoplasmic proteome analysis through tandem mass tagging analysis (1 h and 1 d postmortem), metabolome analysis (1 h and 1 d postmortem), and phosphoproteome analysis (1 h postmortem). SUPZN-NO tended to have a lower (P = 0.06) pH at 6 h postmortem and a lower WBSF value (P = 0.06) at 1 d postmortem. CON-RAC had a higher (P = 0.04) pH at 6 h postmortem and WBSF value (P < 0.01) at 1 d postmortem. A lower pH at 6 h postmortem and lower WBSF value at 1 d postmortem in the SUPZN-NO treatment was accompanied by more sorbitol and fructose at 1 d postmortem, and less myosin regulatory light chain 2 at 1 h postmortem, and less adenosine monophosphate deaminase 1 (AMPD1) at 1 d postmortem than all other treatments. A higher pH at 6 h postmortem and higher WBSF value at 1 d postmortem in CON-RAC and SUPZN-RAC was accompanied by more soluble structural proteins (troponin-T and myosin-7) at 1 h postmortem than CON-NO. At 1 h postmortem, CON-RAC had more glyceraldehyde-3-phosphate dehydrogenase than CON-NO or SUPZN-RAC. Differences in energy metabolism enzymes, metabolites, and structural proteins may affect ATP production, rigor development, and lactate buildup which may explain the differences in postmortem metabolism and tenderness development at 1 d postmortem.
Collapse
Affiliation(s)
- Matthew D Schulte
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | | - Edward M Steadham
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Stephanie L Hansen
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
29
|
Song S, Cheng H, Park J, Kim GD. Relationship between peptides and the change in quality characteristics of beef strip loin (M. longissimus lumborum) and tenderloin (M. psoas major). Food Chem 2024; 430:137036. [PMID: 37536066 DOI: 10.1016/j.foodchem.2023.137036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Peptides in fresh and aged beef strip loin (M. longissimus lumborum) and tenderloin (M. psoas major) were quantified to investigate the relationship between proteolysis-induced peptides and beef quality characteristics. A total of 409 and 450 peptides were quantified from strip loin and tenderloin, respectively, and found to be significantly correlated to beef quality characteristics. Changes in redness and yellowness were significantly correlated to the peptides derived from G3P, ENOB, and KCRM in both muscles during 14 days of storage. The peptides produced from MYG, ENOB, HBA, PGK1, and TPIS were strongly associated with improved tenderness, while those derived from major myofibrillar proteins, such as MYH1, MYH2, ACTS, and DESM, were associated with changes in tenderloin color. These results improve our understanding of the association between peptides and changes in meat quality during cold storage, indicating that proteolysis-induced peptides can be indicators of the quality characteristics of fresh and aged meat.
Collapse
Affiliation(s)
- Sumin Song
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Huilin Cheng
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Junyoung Park
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
30
|
Ramos PM, Scheffler TL, Beline M, Bodmer J, Gerrard DE, Silva SL. Challenges and opportunities of using Bos indicus cattle to meet consumers' demand for quality beef. Meat Sci 2024; 207:109375. [PMID: 37924645 DOI: 10.1016/j.meatsci.2023.109375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Beef consumption is expected to increase worldwide, which necessitates the use of Bos indicus cattle that are well-adapted to harsher climates, like the tropics. Yet, beef from these cattle is considered inferior to that of Bos taurus breeds, primarily due to lowered tenderness values and reduced intramuscular fat content. However, the benefits of using Bos indicus genetics are numerous and undeniable. Herein, we explore how decreases in meat quality in these cattle may be offset by increases in livability. Further, we review the knowledge surrounding beef tenderness and explore the processes occurring during the early events of the transformation of muscle to meat that are different in this biological type and may be altered by stress. Growth rate, calpastatin activity and mitochondrial function will be discussed as they relate to tenderness. The opportunities of using Bos indicus cattle are of great interest to the beef industry worldwide, especially given the pressures for enhancing the overall sustainability and carbon footprint of this sector. Delivering a consistently high-quality product for consumers by exploiting Bos indicus genetics in a more sustainable manner will be proposed. Information on novel factors that influence the conversion of muscle to meat is explored to provide insights into opportunities for maximizing beef tenderization and maturation across all cattle. Exploring the use of Bos indicus cattle in modern production schemes, while addressing the mechanisms undergirding meat tenderness should provide the industry with a path forward for building greater demand through producing higher quality beef.
Collapse
Affiliation(s)
- Patricia M Ramos
- Animal Science Department, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Tracy L Scheffler
- Animal Science Department, University of Florida, Gainesville, FL, USA
| | - Mariane Beline
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jocelyn Bodmer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - David E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Saulo Luz Silva
- Animal Science Department, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
31
|
Kim J, Choi DS, Kim YH, Park CW, Kim HW. Optimal conditions for beef tenderization through radiofrequency heating with cold air. J Food Sci 2024; 89:370-389. [PMID: 37983872 DOI: 10.1111/1750-3841.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
High-temperature (15-37°C) aging can shorten the tenderizing time of beef; however, the use of constant temperature heating can lead to microbial spoilage. This study tested radiofrequency (RF) tenderization (RF-T) to find the appropriate conditions for the aging-like effect of beef without microbial spoilage. After subjecting beef to 22 h RF-T with four different cooling temperatures (15, 5, -10, and -20°C), the proliferated aerobic bacteria on the surface showed a concentration of 6-6.2 log CFU/g at -10 and -20°C, lower than 7-7.5 log CFU/g at 15 and 5°C. When beef was treated with 25 W/kg RF heating power for 48 h RF-T, the estimated reduction rate of the sliced shear force (SSF) and the increase rate of glutamic acid based on the weight before RF-T were 22.6% and 1.51-fold, which were greater than 19.6% and 1.37-fold with 20 W/kg, and 11.0% and 1.11-fold with 15 W/kg. The optimal specific RF heating power was calculated as 30 W/kg from the results' extrapolation. When processed for 48 h under optimal conditions (30 W/kg specific RF heating power, -20°C cooling air), the tenderization rate and the increased rates of free amino acids based on the weight before RF-T of beef reached over 20% and 1.5-fold with 5.22 log CFU/g aerobic bacteria, which was lesser than the Korean regulation value of 6.7 log CFU/g (5 × 106 CFU/g). Therefore, RF-T could be proposed as a promising high-temperature tenderization method with lowered risk of microbial spoilage. PRACTICAL APPLICATION: We showed that lowering the chamber temperature during RF-T was effective in surface drying and inhibiting aerobic bacteria. RF-T for 24-48 h with 30 W/kg specific RF heating power had an aging-like effect given tenderization and increase in FAAs. Moreover, by providing the matching circuit and impedance during RF-T, this method could be industrially reproducible.
Collapse
Affiliation(s)
- Jinse Kim
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do, Republic of Korea
| | - Dong Soo Choi
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do, Republic of Korea
| | - Yong Hoon Kim
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do, Republic of Korea
| | - Chun Wan Park
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do, Republic of Korea
| | - Hyun Wook Kim
- Department of Animal Biotechnology & Environment, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
32
|
Ma C, Zhang W, Zhang J, Du T. Modification-Specific Proteomic Analysis Reveals Cysteine S-Nitrosylation Mediated the Effect of Preslaughter Transport Stress on Pork Quality Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20260-20273. [PMID: 38085829 DOI: 10.1021/acs.jafc.3c05254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
This study aimed to explore the effects of preslaughter transport stress on protein S-nitrosylation levels and S-nitrosylated proteome in post-mortem pork longissimus thoracis (LT) muscle. Pigs (N= 16) were randomly divided into 3 h transport (high-stress group, HS) and 3 h transport followed by 3 h resting treatments (low-stress control group, LS). Results demonstrated that high transport stress levels induced nitric oxide (NO) overproduction by promoting NO synthase (NOS) activity and neuronal NOS (nNOS) expression, which thereby notably increased protein S-nitrosylation levels in post-mortem muscle (p < 0.05). Proteomic analysis indicated that 133 S-nitrosylation-modified cysteines belonging to 85 proteins were significantly differential, of which 101 cysteines of 63 proteins were higher in the HS group (p < 0.05). Differential proteins including cytoskeletal and calcium-handling proteins, glycolytic enzymes, and oxidoreductase were mainly involved in the regulation of muscle contraction and energy metabolism that might together mediate meat quality development. Overall, this study provided direct evidence for changes in S-nitrosylation levels and proteome in post-mortem muscle in response to preslaughter transport stress and revealed the potential impact of S-nitrosylated proteins on meat quality.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongyao Du
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Wu G, Qiu X, Jiao Z, Yang W, Pan H, Li H, Bian Z, Geng Q, Wu H, Jiang J, Chen Y, Cheng Y, Chen Q, Chen S, Man C, Du L, Li L, Wang F. Integrated Analysis of Transcriptome and Metabolome Profiles in the Longissimus Dorsi Muscle of Buffalo and Cattle. Curr Issues Mol Biol 2023; 45:9723-9736. [PMID: 38132453 PMCID: PMC10741837 DOI: 10.3390/cimb45120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Buffalo meat is gaining popularity for its nutritional properties, such as its low fat and cholesterol content. However, it is often unsatisfactory to consumers due to its dark color and low tenderness. There is currently limited research on the regulatory mechanisms of buffalo meat quality. Xinglong buffalo are raised in the tropical Hainan region and are undergoing genetic improvement from draught to meat production. For the first time, we evaluated the meat quality traits of Xinglong buffalo using the longissimus dorsi muscle and compared them to Hainan cattle. Furthermore, we utilized a multi-omics approach combining transcriptomics and metabolomics to explore the underlying molecular mechanism regulating meat quality traits. We found that the Xinglong buffalo had significantly higher meat color redness but lower amino acid content and higher shear force compared to Hainan cattle. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, with them being significantly enriched in nicotinic acid and nicotinamide metabolic and glycine, serine, and threonine metabolic pathways. The correlation analysis revealed that those genes and metabolites (such as: GAMT, GCSH, PNP, L-aspartic acid, NADP+, and glutathione) are significantly associated with meat color, tenderness, and amino acid content, indicating their potential as candidate genes and biological indicators associated with meat quality. This study contributes to the breed genetic improvement and enhancement of buffalo meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lianbin Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.W.); (X.Q.); (Z.J.); (W.Y.); (H.P.); (Q.G.); (H.W.); (Y.C.); (S.C.); (L.D.)
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.W.); (X.Q.); (Z.J.); (W.Y.); (H.P.); (Q.G.); (H.W.); (Y.C.); (S.C.); (L.D.)
| |
Collapse
|
34
|
Li J, Zhao Y, Liang R, Mao Y, Zuo H, Hopkins DL, Yang X, Luo X, Zhu L, Zhang Y. Effects of different protein phosphorylation levels on the tenderness of different ultimate pH beef. Food Res Int 2023; 174:113512. [PMID: 37986506 DOI: 10.1016/j.foodres.2023.113512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/24/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the relationship between tenderness and protein phosphorylation levels of normal ultimate pH (pHu, 5.4-5.8, NpHu), intermediate pHu (5.8-6.2, IpHu) and high pHu (≥6.2, HpHu) Longissimus lumborum from beef. During 21 d of ageing, the HpHu group had the lowest Warner-Bratzler shear force (WBSF) values, while the IpHu group showed the highest and even after 21 days of ageing still had high levels. In the late stage of the 24 h post-mortem period the faster degradation rate of troponin T and earlier activation of caspase 9 in the HpHu group were the key reasons for the lower WBSF compared with the NpHu and IpHu groups. The activity of caspase 3 cannot explain the tenderness differences between IpHu and HpHu groups, since their activities did not show any difference. At 24 h post-mortem, 17 common differential phosphorylated peptides were detected among pHu groups, of which nine were associated with pHu and WBSF. The higher phosphorylation level of glycogen synthase may have caused the delay of meat tenderization in the IpHu group.
Collapse
Affiliation(s)
- Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yan Zhao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Huixin Zuo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - David L Hopkins
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; Canberra ACT, 2903, Australia.
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
35
|
Wang Z, Guo L, Ding X, Li F, Xu H, Li S, Wang X, Li K, Yue X. Supplementation of chestnut tannins in diets can improve meat quality and antioxidative capability in Hu lambs. Meat Sci 2023; 206:109342. [PMID: 37729859 DOI: 10.1016/j.meatsci.2023.109342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Chestnut tannins (CNT), as a source of hydrolyzable tannins, positively affect the antioxidant status of livestock. In the current study, 90 male Hu lambs were used to investigate the effect of dietary CNT intake on growth performance, nutrient digestibility, meat quality and oxidative stability, rumen microbial, and the transcriptomes of muscle and liver. A completely randomized design with three CNT intake levels (0, 0.3%, and 0.6%) was used. Rumen microbial and nutrient digestibility were not significantly altered by CNT intake. Diets with 0.3% CNT intake significantly reduced the shear force, yellowness at 24 h, and C20:2 polyunsaturated fatty acids of lamb meat and malondialdehyde in serum and longissimus thoracis (LT) muscle. Meanwhile, the 0.3% CNT diet significantly increased average daily gain during the 1- 21 days and 64- 90 days, dry matter intake during the 1- 21 days, the slaughter weight, and liver index of lambs. The 0.3% CNT diet significantly increased C26:0 saturated fatty acids, total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase in LT muscle. The meat shelf life of 0.3% CNT and 0.6% CNT groups was prolonged by 8.7 h and 5.4 h, respectively. Transcriptomic analysis revealed that CNT supplementation can induce the expression of antioxidant enzyme gene (CAT, SOD1), and the differentially expressed genes were mainly involved in antioxidant activity, transferase activity, and adenosine triphosphate binding. These results suggest that 0.3% CNT intake can relieve the oxidative stress of lambs, and improve the stability of meat color and meat tenderness, due to the enhanced antioxidative capacity.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Xing Ding
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Hui Xu
- Minqin Defu Agricultural Science and Technology Co., LTD, Minqin County, Gansu Province 733399, PR China.
| | - Shirong Li
- Animal Husbandry and Veterinary Extension Station of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Xinji Wang
- Animal Husbandry and Veterinary Extension Station of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Kaidong Li
- Animal Husbandry and Veterinary Extension Station in Chongxing Town of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| |
Collapse
|
36
|
Koulicoff LA, Heilman T, Vitanza L, Welter A, Jeneske H, O'Quinn TG, Hansen S, Huff-Lonergan E, Schulte MD, Chao MD. Matrix metalloproteinase- 9 may contribute to collagen structure modification during postmortem aging of beef. Meat Sci 2023; 205:109321. [PMID: 37643525 DOI: 10.1016/j.meatsci.2023.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Matrix metalloproteinases (MMPs) are responsible for the turnover of intramuscular connective tissue in live animals. We hypothesize that MMPs may play a role in postmortem aging of beef muscles for the degradation of connective tissues. Four different experiments were performed to: 1) characterize MMP activity during postmortem aging of beef; 2) determine if the native beef MMP can contribute to connective tissue degradation in a simulated standard industry postmortem aging condition; 3) explore approaches to improve the native beef MMP activity and 4) characterize MMP activity in beef from cattle supplemented with supranutritional level of Zn. In experiment 1, MMP was active throughout the entire aging periods (3, 21, 42 and 63 d) for beef muscles Longissimus lumborum, Gluteus medius and Gastrocnemius, and the unknown MMP responsible for the collagen degradation was identified as MMP-9 by Western Blot. In experiment 2 and 3, MMP-9 activity was noticeable in the gels after 42 d of storage in the cooler. Moreover, the addition of ZnCl2 in the model system significantly increased MMP-9 activity when compared to the control (P < 0.01). In experiment 4, Longissimus thoracis from animals supplemented with a supranutritional Zn level had increased Zn availability and MMP-9 activity than those from animals fed with a control diet (P < 0.05). Further research is needed better understand MMP-9 mechanism during postmortem aging of meat. With a better understanding of MMP-9 in the aging process, the beef industry can provide better connective tissue management strategies for lower-quality beef cuts.
Collapse
Affiliation(s)
- Larissa A Koulicoff
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Terra Heilman
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Lauren Vitanza
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Amelia Welter
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Haley Jeneske
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Travis G O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Stephanie Hansen
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| | | | - Matthew D Schulte
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| | - Michael D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA.
| |
Collapse
|
37
|
Zhang R, Realini CE, Kim YHB, Farouk MM. Challenges and processing strategies to produce high quality frozen meat. Meat Sci 2023; 205:109311. [PMID: 37586162 DOI: 10.1016/j.meatsci.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Freezing is an effective means to extend the shelf-life of meat products. However, freezing and thawing processes lead to physical (e.g., ice crystals formation and freezer burn) and biochemical changes (e.g., protein denaturation and lipid oxidation) in meat resulting in loss of quality. Over the last two decades, several attempts have been made to produce thawed meat with qualities similar to that of fresh meat to no avail. This is due to the fact that no single technique exists to date that can mitigate all the quality challenges caused by freezing and thawing. This is further confounded by the consumer perception of frozen meat as lower quality compared to equivalent fresh-never-frozen meat cuts. Therefore, it remains challenging for the meat industry to produce high quality frozen meat and increase consumer acceptability of frozen products. This review aimed to provide an overview of the applications of novel freezing and thawing technologies that could improve the quality of thawed meat including deep freezing, high pressure, radiofrequency, electro-magnetic resonance, electrostatic field, immersion solution, microwave, ohmic heating, and ultrasound. This review will also discuss the development in processing strategies such as optimising the ageing of meat pre- or post-freezing, and the integration of freezing and thawing in one process/regime to collapse the difference in quality between thawed meat and fresh-never-frozen equivalents.
Collapse
Affiliation(s)
- Renyu Zhang
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand.
| | - Carolina E Realini
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand
| | - Yuan H Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mustafa M Farouk
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand.
| |
Collapse
|
38
|
Joo ST, Lee EY, Son YM, Hossain MJ, Kim CJ, Kim SH, Hwang YH. Aging mechanism for improving the tenderness and taste characteristics of meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1151-1168. [PMID: 38616883 PMCID: PMC11007300 DOI: 10.5187/jast.2023.e110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 04/16/2024]
Abstract
Tenderness and taste characteristics of meat are the key determinants of the meat choices of consumers. This review summarizes the contemporary research on the molecular mechanisms by which postmortem aging of meat improves the tenderness and taste characteristics. The fundamental mechanism by which postmortem aging improves the tenderness of meat involves the operation of the calpain system due to apoptosis, resulting in proteolytic enzyme-induced degradation of cytoskeletal myofibrillar proteins. The improvement of taste characteristics by postmortem aging is mainly explained by the increase in the content of taste-related peptides, free amino acids, and nucleotides produced by increased hydrolysis activity. This review improves our understanding of the published research on tenderness and taste characteristics of meat and provides insights to improve these attributes of meat through postmortem aging.
Collapse
Affiliation(s)
- Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Yu-Min Son
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Md. Jakir Hossain
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - So-Hee Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
39
|
Álvarez S, Mullen AM, Álvarez C, Hamill RM, O'Neill E, Gagaoua M. Impact of sampling location and aging on the Longissimus thoracis et lumborum muscle proteome of dry-aged beef. Meat Sci 2023; 205:109315. [PMID: 37625354 DOI: 10.1016/j.meatsci.2023.109315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
This study aimed to explore the differences in the proteome and molecular pathways between two sampling locations (external, internal) of bovine Longissimus thoracis et lumborum (LTL) muscles at 0, 21, and 28 days of dry-aging (i.e. 3, 24, and 31 days post-mortem). It further assessed the impact of post-mortem aging on the meat proteome changes and the biological processes at interplay. Proteins related to defence response to bacterium and regulation of viral entry into host cell were identified to be more abundant on the external location before dry-aging, which may be associated to the oxidative conditions and microbial activity to which post-mortem muscle is exposed during dressing, chilling, and/or quartering of the carcasses. This highlights the relevance of sampling from interior tissues when searching for meat quality biomarkers. As dry-aging progressed, the meat proteome and related biological processes changed differently between sampling locations; proteins related to cell-cell adhesion and ATP metabolic processes pathways were revealed in the external location at 21 and 28 days, respectively. On the other hand, the impact of aging on the proteome of the interior meat samples, evidenced that muscle contraction and structure together with energy metabolism were the major pathways driving dry-aging. Additionally, aging impacted other pathways in the interior tissues, such as regulation of calcium import, neutrophil activation, and regeneration. Overall, the differences in the proteome allowed discriminating the three dry-aging times, regardless of the sampling location. Several proteins were proposed for validation as robust biomarkers to monitor the aging process (tenderization) of dry-aged beef: TTN, GRM4, EEF1A1, LDB3, CILP2, TNNT3, GAPDH, SERPINI1, and OMD.
Collapse
Affiliation(s)
- Sara Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland; School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | - Anne Maria Mullen
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Carlos Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Ruth M Hamill
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | | |
Collapse
|
40
|
Yuan PQ, Lin S, Peng JY, Li YX, Liu YH, Wang P, Zhong HJ, Yang XM, Che LQ, Feng B, Batonon-Alavo DI, Mercier Y, Zhang XL, Lin Y, Xu SY, Li J, Zhuo Y, Wu D, Fang ZF. Effects of dietary methionine supplementation from different sources on growth performance and meat quality of barrows and gilts. Animal 2023; 17:100986. [PMID: 37820406 DOI: 10.1016/j.animal.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Methionine is indispensable for growth and meat formation in pigs. However, it is still unclear that increasing dietary sulphur-containing amino acid (SAA) levels using different methionine sources affects the growth performance and meat quality of barrows and gilts. To investigate this, 144 pigs (half barrows and half gilts) were fed the control (100% SAA, CON), DL-Methionine (125% SAA, DL-Met)-supplemented, or OH-Methionine (125% SAA, OH-Met)-supplemented diets during the 11-110 kg period. The results showed that plasma methionine levels varied among treatments during the experimental phase, with increased plasma methionine levels observed following increased SAA consumption during the 25-45 kg period. In contrast, pigs fed the DL-Met diet had lower plasma methionine levels than those fed the CON diet (95-110 kg). Additionally, gilts fed the DL-Met or OH-Met diets showed decreased drip loss in longissimus lumborum muscle (LM) compared to CON-fed gilts. OH-Met-fed gilts had higher pH45min values than those fed the CON or DL-Met diets, whereas OH-Met-fed barrows had higher L45min values than those fed the CON or DL-Met diets. Moreover, increased consumption of SAA, regardless of the methionine source, tended to decrease the shear force of the LM in pigs. In conclusion, this study indicates that increasing dietary levels of SAA (+25%) appeared to improve the meat quality of gilts by decreasing drip loss and increasing meat tenderness.
Collapse
Affiliation(s)
- P Q Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairsand, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - S Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Urban Agriculture in South China, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - J Y Peng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y X Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y H Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - P Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - H J Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - X M Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - L Q Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - B Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | | | - Y Mercier
- Adisseo France S.A.S, CERN, Commentry, France
| | - X L Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - S Y Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - J Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - D Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Z F Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairsand, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China.
| |
Collapse
|
41
|
Silva IG, Giometti IC, Castilho C, Soriano GAM, Santos AO, Guimarães LJ, Sena GC, Rêgo FCA, Zundt M. Different nutritional systems influence the tenderness and lipid oxidation of ewe lamb meat without altering gene expression. AN ACAD BRAS CIENC 2023; 95:e20220562. [PMID: 37909606 DOI: 10.1590/0001-3765202320220562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/07/2023] [Indexed: 11/03/2023] Open
Abstract
Feeding is a determining factor in the various characteristics of sheep meat and animal performance, the objectives were to evaluate the effect of supplementation of ewe lambs finished in different nutritional planes on the gene expression of CASP3, CAPN1, CAPN2 and CAST and its possible association with meat quality. Samples of the Longissimus lumborum muscle of 24 ewe lambs were used, distributed in 3 groups (n=8): P (pasture), PS (pasture and supplement) and F (feedlot). Physicochemical analyses were performed for centesimal analysis, pH, lipid oxidation, Warner-Bratzler shear force and RT-qPCR for the analysis of relative gene expression of the following genes: CASP3, CAPN1, CAPN2 and CAST. There is an increase in daily weight gain and ethereal extract values in the meat of confined animals, due to the greater energy intake in the nutrition of these animals. Animals kept only on pasture have lower lipid oxidation in meat than other treatments because of the lower percentage of lipids. The Warner-Bratzler shear force is considerably higher in the meat of animals kept only on pasture but is still considered tender. The different nutritional systems do not interfere with the gene expression of CASP3, CAPN1, CAPN2 and CAST in ewe lambs.
Collapse
Affiliation(s)
- Isabella G Silva
- Programa de Pós-Graduação em Zootecnia, Universidade do Oeste Paulista, Rod. Raposo Tavares, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| | - Ines Cristina Giometti
- Programa de Pós-Graduação em Zootecnia, Universidade do Oeste Paulista, Rod. Raposo Tavares, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| | - Caliê Castilho
- Programa de Pós-Graduação em Zootecnia, Universidade do Oeste Paulista, Rod. Raposo Tavares, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| | - Gabriela A M Soriano
- Programa de Pós-Graduação em Zootecnia, Universidade do Oeste Paulista, Rod. Raposo Tavares, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| | - Aline O Santos
- Programa de Pós-Graduação em Zootecnia, Universidade do Oeste Paulista, Rod. Raposo Tavares, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| | - Leticia J Guimarães
- Programa de Pós-Graduação em Zootecnia, Universidade do Oeste Paulista, Rod. Raposo Tavares, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| | - Gabriella C Sena
- Pós-Graduação em Medicina Veterinária, Universidade do Oeste Paulista, Faculdade de Ciências Agrárias, Rod. Raposo Tavares, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| | - Fabiola C A Rêgo
- Universidade Pitágoras, Rod. Pr 218, Km 01, s/n, 86702-670 Arapongas, PN, Brazil
| | - Marilice Zundt
- Programa de Pós-Graduação em Zootecnia, Universidade do Oeste Paulista, Rod. Raposo Tavares, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| |
Collapse
|
42
|
Du T, Ma C, Wang Z, Hao Y, Zhang W. Distribution and Degradation of Pork Filamin during Postmortem Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15287-15295. [PMID: 37788342 DOI: 10.1021/acs.jafc.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The filamin C (FLNC) was hypothesized to be colocalized with its certain binding partners in pork tissues and calpain as well as caspase was assumed responsible for the postmortem degradation of FLNC. Therefore, the specific distribution of pork FLNC and its degradation pattern during postmortem aging were investigated in this study. The longissimus thoracis muscles from 12 pigs were removed from the carcasses and then aged at 4 °C for 1, 6, 12, 24, 72, and 168 h, respectively. The FLNC signals appeared to localize in subsarcolemmal areas by cross-sectional images, while the localization was found surrounding the myofibrils at the level of the Z-discs in longitudinal sections. FLNC displayed a highly overlapped spatial colocalization with actin or integrin. Western blot results showed that the intact 290 kDa FLNC was rapidly degraded to produce an approximately 280 kDa band. An almost overlapped distribution pattern was observed between FLNC and μ-calpain or caspase-3 in porcine skeletal muscle cells. Moreover, both the μ-calpain inhibitor and the caspase-3 inhibitor could inhibit the degradation of FLNC in porcine LT muscles during postmortem aging.
Collapse
Affiliation(s)
- Tongyao Du
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuejing Hao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
43
|
Ren C, Song X, Dong Y, Hou C, Chen L, Wang Z, Li X, Schroyen M, Zhang D. Protein Phosphorylation Induced by Pyruvate Kinase M2 Inhibited Myofibrillar Protein Degradation in Post-Mortem Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15280-15286. [PMID: 37776280 DOI: 10.1021/acs.jafc.3c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Myofibrillar protein degradation is primarily related to meat tenderness through protein phosphorylation regulation. Pyruvate kinase M2 (PKM2), a glycolytic rate-limiting enzyme, is also regarded as a protein kinase to catalyze phosphorylation. The objective of this study was to investigate the relationship between myofibrillar protein degradation and phosphorylation induced by PKM2. Myofibrillar proteins were incubated with PKM2 at 4, 25, and 37 °C. The global phosphorylation level of myofibrillar proteins in the PKM2 group was significantly increased, but it was sensitive to temperature (P < 0.05). Compared with 4 and 25 °C, PKM2 significantly increased the myofibrillar protein phosphorylation level from 0.5 to 6 h at 37 °C (P < 0.05). In addition, the degradation of desmin and actin was inhibited after they were phosphorylated by PKM2 when incubated at 37 °C. These results demonstrate that phosphorylation of myofibrillar proteins catalyzed by PKM2 inhibited protein degradation and provided a possible pathway for meat tenderization through glycolytic enzyme regulation.
Collapse
Affiliation(s)
- Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Precision Livestock and Nutrition Unit, Gembloux Agra-Bio Tech, University of LièGe, Passage des Déport́s 2, Gembloux 5030, Belgium
| | - Xubo Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Yu Dong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agra-Bio Tech, University of LièGe, Passage des Déport́s 2, Gembloux 5030, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| |
Collapse
|
44
|
Latoch A, Moczkowska-Wyrwisz M, Sałek P, Czarniecka-Skubina E. Effect of Marinating in Dairy-Fermented Products and Sous-Vide Cooking on the Protein Profile and Sensory Quality of Pork Longissimus Muscle. Foods 2023; 12:3257. [PMID: 37685190 PMCID: PMC10486606 DOI: 10.3390/foods12173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of the study was to evaluate the effect of marinating (3 or 6 days) in kefir (KE), yogurt (YO) and buttermilk (BM) and sous-vide cooking (SV) at 60 or 80 °C on changes in the protein profile of pork in relation to its sensory quality. In the marinated raw meat, an increased share of some fractions of myofibrillar and cytoskeletal proteins and calpains were found. The greatest degradation of proteins, regardless of time, was caused by marinating in YO and KE and cooking SV at 80 °C. The lowest processing losses were in samples marinated in KE and YO and cooked SV at 60 °C, with marinating time having no significant effect. The odor, flavor, tenderness and juiciness of meat marinated in BM was better than in KE and YO. Meat marinated and cooked SV at 60 °C was rated better by the panelists. Changes in proteins significantly affect the formation of meat texture, tenderness and juiciness, which confirms the correlations. This is also reflected in the sensory evaluation. During the process of marinating and cooking meat, protein degradation should be taken into account, which can be a good tool for shaping the sensory quality of cooked pork.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| |
Collapse
|
45
|
Lee DK, Kim M, Jeong J, Lee YS, Yoon JW, An MJ, Jung HY, Kim CH, Ahn Y, Choi KH, Jo C, Lee CK. Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat. Curr Res Food Sci 2023; 7:100551. [PMID: 37575132 PMCID: PMC10412782 DOI: 10.1016/j.crfs.2023.100551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Cellular agriculture is an emerging research field of agribiotechnology that aims to produce agricultural products using stem cells, without sacrificing animals or cultivating crops. Cultivated meat, as a representative cellular product of cellular agriculture, is being actively researched due to global food insecurity, environmental, and ethical concerns. This review focuses on the application of stem cells, which are the seeds of cellular agriculture, for the production of cultivated meat, with emphasis on deriving and culturing muscle and adipose stem cells for imitating fresh meat. Establishing standards and safety regulations for culturing stem cells is crucial for the market entry of cultured muscle tissue-based biomaterials. Understanding stem cells is a prerequisite for creating reliable cultivated meat and other cellular agricultural biomaterials. The techniques and regulations from the cultivated meat industry could pave the way for new cellular agriculture industries in the future.
Collapse
Affiliation(s)
- Dong-Kyung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Seok Lee
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Ji Won Yoon
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Min-Jeong An
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Hyun Young Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cho Hyun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yelim Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| |
Collapse
|
46
|
Zou B, Jia F, Ji L, Li X, Dai R. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr 2023; 64:11239-11262. [PMID: 37452658 DOI: 10.1080/10408398.2023.2235435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meat quality holds significant importance for both consumers and meat producers. Various factors influence meat quality, and among them, mitochondria play a crucial role. Recent studies have indicated that mitochondria can sustain their functions and viability for a certain duration in postmortem muscles. Consequently, mitochondria have an impact on oxygen consumption, energy metabolism, and apoptotic processes, which in turn affect myoglobin levels, oxidative stress, meat tenderness, fat oxidation, and protein oxidation. Ultimately, these factors influence the color, tenderness, and flavor of meat. However, there is a dearth of comprehensive summaries addressing the effects of mitochondria on postmortem muscle physiology and meat quality. Therefore, this review aims to describe the characteristics of muscle mitochondria and their potential influence on muscle. Additionally, a suitable method for isolating mitochondria is presented. Lastly, the review emphasizes the regulation of oxygen consumption, energy metabolism, and apoptosis by postmortem muscle mitochondria, and provides an overview of relevant research and recent advancements. The ultimate objective of this review is to elucidate the underlying mechanisms through which mitochondria impact meat quality.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lin Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
47
|
Xing B, Zhou T, Gao H, Wu L, Zhao D, Wu J, Li C. Flavor evolution of normal- and low-fat Chinese sausage during natural fermentation. Food Res Int 2023; 169:112937. [PMID: 37254361 DOI: 10.1016/j.foodres.2023.112937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/26/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
This work compared the flavor evolution of normal-fat (NF) with that of low-fat (LF) Chinese sausage during natural fermentation. Higher degree of lipid oxidation occurred in NF sausages, resulting in its faster formation of stable volatile profiles. Faster formation of esters occurred in NF sausage in the initial 10 days, whereas prolonged fermentation reduced the level of ethyl lactate-M, ethyl heptanoate, ethyl hexanoate-D and ethyl pentanoate-D. Gradual reduction of alcohols was observed in both groups, and surge in aldehydes occurred in LF samples during day 20-30 period. Faster formation of taste characteristics and larger amount of 2-methylfuran as well as 2,3-dimethylpyrazine were found in LF sausages, since more free amino acids were liberated in LF sausages. Umami and aftertaste tastes formed in the first 20 days, whereas prolonged fermentation reduced these favorable taste. These results highlight that the choice of proper fermentation duration should largely depend on the fat content in Chinese sausages.
Collapse
Affiliation(s)
- Baofang Xing
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianming Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haotian Gao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Longxia Wu
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Juqing Wu
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
48
|
Li N, Xie J, Chu YM. Degradation and evaluation of myofibril proteins induced by endogenous protease in aquatic products during storage: a review. Food Sci Biotechnol 2023; 32:1005-1018. [PMID: 37215253 PMCID: PMC10195969 DOI: 10.1007/s10068-023-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myofibril proteins degradation constitutes an important factor in quality deterioration, procedural activation or inhibition of endogenous protease potential regulates autolytic proteolysis-induced softening of post mortem fish muscle. Based on the brief introduction of myofibril proteins degradation in fish skeletal muscle, a detailed description of the main myofibril degradation properties and the distinct role played by endogenous proteases were proposed, which reflects the limitations and challenges of the current research on myofibril hydrolysis mechanisms based on the varied surrounding conditions. In addition, the latest researches on the evaluation method of myofibril proteins degradation were comprehensively reviewed. The potential use of label-free proteomics combined with bioinformatics was also emphasized and has become an important means to in-depth understand protein degradation mechanism.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai, 201415 China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
- Shanghai Engineering Research Center of Aquatic Product Processing and
Preservation, Shanghai, 201306 China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment
Performance and Energy Saving Evaluation, Shanghai, 201306 China
| | - Yuan Ming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
49
|
Effect of titin phosphorylation on degradation of titin from skeletal muscles. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Kim JY, Lee B, Kim EJ, Choi YM. Effects of apoptotic factor levels on palatability variation during postmortem aging of Holstein longissimus thoracis muscles classified as Warner-Bratzler shear force change value. Food Chem 2023; 428:136741. [PMID: 37423112 DOI: 10.1016/j.foodchem.2023.136741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
This study compared the caspase levels and myofibrillar protein degradation of longissimus thoracis muscles between the two groups with varying extents of tenderization during postmortem aging to investigate the cause of tenderness variation between aged beef from Holstein-Friesian steers. The change value (CV) of Warner-Bratzler shear force (WBS) was determined as the difference in WBS between 0 and 14 d of aging. The higher change (HC) value group exhibited lower WBS and higher initial tenderness values than the lower change (LC) value group aged 14 and 28 d (P < 0.05), even though there was no difference between the CV groups aged 0 d (P > 0.05). The higher tenderness improvement in the HC group at 14 d might be related to the lower cytochrome C and caspase values and higher degradation of desmin and troponin T compared to the LC group (P < 0.05).
Collapse
Affiliation(s)
- Jae Yeong Kim
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju-si 37224, South Korea
| | - Boin Lee
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju-si 37224, South Korea
| | - Eun Joong Kim
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju-si 37224, South Korea
| | - Young Min Choi
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju-si 37224, South Korea.
| |
Collapse
|