1
|
Laojun S, Changbunjong T, Chaiphongpachara T. Integrating wing morphometrics and mitochondrial DNA analysis to assess the filaria vector Mansonia uniformis (Diptera: Culicidae) populations in Thailand. Parasitol Res 2024; 123:283. [PMID: 39042222 DOI: 10.1007/s00436-024-08295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Mansonia uniformis (Diptera: Culicidae) is recognized as a vector of Brugia malayi and has been reported to transmit Wuchereria bancrofti, both causing lymphatic filariasis in humans. This study employed geometric morphometrics (GM) to investigate wing shape variation and analyzed genetic diversity through cytochrome c oxidase subunit 1 (COI) gene analyses in Ma. uniformis populations across Thailand. Wing GM analyses indicated significant differences in wing shape based on Mahalanobis distances among nearly all population pairs (p < 0.05), with no significant correlation between wing shape and geographic distance (r = 0.210, p > 0.05). Genetic analyses identified 63 haplotypes and 49 polymorphic sites, with the overall population exhibiting a nucleotide diversity of 0.006 (± 0.001) and a haplotype diversity of 0.912 (± 0.017). Deviations from neutrality, as indicated by Tajima's D and Fu's FS tests for the overall Ma. uniformis populations in Thailand, were statistically significant and negative, suggesting population expansion (both p < 0.05). Analysis of molecular variance revealed no significant genetic structure when all populations were categorized based on collection sites and geographic regions. However, significant differences in FST values were observed between some populations. These findings enhance our understanding of the geographical and genetic factors influencing Ma. uniformis populations, which are crucial for developing effective control strategies in Thailand.
Collapse
Affiliation(s)
- Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand.
| |
Collapse
|
2
|
Zang C, Wang X, Cheng P, Liu L, Guo X, Wang H, Lou Z, Lei J, Wang W, Wang Y, Gong M, Liu H. Evaluation of the evolutionary genetics and population structure of Culex pipiens pallens in Shandong province, China based on knockdown resistance (kdr) mutations and the mtDNA-COI gene. BMC Genomics 2023; 24:145. [PMID: 36964519 PMCID: PMC10039558 DOI: 10.1186/s12864-023-09243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Mosquitoes are important vectors for a range of diseases, contributing to high rates of morbidity and mortality in the human population. Culex pipiens pallens is dominant species of Culex mosquito in northern China and a major vector for both West Nile virus and Bancroftian filariasis. Insecticide application were largely applied to control the mosquito-mediated spread of these diseases, contributing to increasing rates of resistance in the mosquito population. The voltage-gated sodium channel (Vgsc) gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). While these kdr mutations are known to be critical to pyrethroid resistance, their evolutionary origins remain poorly understood. Clarifying the origins of these mutations is potential to guide further vector control and disease prevention efforts. Accordingly, the present study was designed to study the evolutionary genetics of kdr mutations and their association with the population structure of Cx. p. pallens in Shandong province, China. METHODS Adult Culex females were collected from Shandong province and subjected to morphological identification under a dissection microscope. Genomic DNA were extracted from the collected mosquitoes, the Vgsc gene were amplified via PCR and sequenced to assess kdr allele frequencies, intron polymorphisms, and kdr codon evolution. In addition, population genetic diversity and related population characteristics were assessed by amplifying and sequencing the mitochondrial cytochrome C oxidase I (COI) gene. RESULTS Totally, 263 Cx. p. pallens specimens were used for DNA barcoding and sequencing analyses to assess kdr allele frequencies in nine Culex populations. The kdr codon L1014 in the Vgsc gene identified two non-synonymous mutations (L1014F and L1014S) in the analyzed population. These mutations were present in the eastern hilly area and west plain region of Shandong Province. However, only L1014F mutation was detected in the southern mountainous area and Dongying city of Shandong Province, where the mutation frequency was low. Compared to other cities, population in Qingdao revealed significant genetic differentiation. Spatial kdr mutation patterns are likely attributable to some combination of prolonged insecticide-mediated selection coupled with the genetic isolation of these mosquito populations. CONCLUSIONS These data suggest that multiple kdr alleles associated with insecticide resistance are present within the Cx. p. pallens populations of Shandong Province, China. The geographical distributions of kdr mutations in this province are likely that the result of prolonged and extensive insecticide application in agricultural contexts together with frequent mosquito population migrations. In contrast, the low-frequency kdr mutation detected in central Shandong Province populations may originate from the limited selection pressure in this area and the relative genetic isolation. Overall, the study compares the genetic patterns revealed by a functional gene with a neutral marker and demonstrates the combined impact of demographic and selection factors on population structure.
Collapse
Affiliation(s)
- Chuanhui Zang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Peng Cheng
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Lijuan Liu
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xiuxia Guo
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Haifang Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Ziwei Lou
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Jingjing Lei
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Wenqian Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Yiting Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Maoqing Gong
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| | - Hongmei Liu
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Zhang Y, Zhang C, Wu L, Luo C, Guo X, Yang R, Zhang Y. Population genetic structure and evolutionary genetics of Anopheles sinensis based on knockdown resistance (kdr) mutations and mtDNA-COII gene in China-Laos, Thailand-Laos, and Cambodia-Laos borders. Parasit Vectors 2022; 15:229. [PMID: 35754022 PMCID: PMC9233850 DOI: 10.1186/s13071-022-05366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vector control is still a pivotal method for preventing malaria, and its potency is weakened by the increasing resistance of vectors to chemical insecticides. As the most abundant and vital malaria vector in Southeast Asia, the chemical insecticide resistance status in Anopheles sinensis remains elusive in Laos, which makes it imperative to evaluate the true nature of chemical insecticide resistance-associated genetic mutations in An. sinensis in Laos. METHODS Adult An. sinensis were collected from three border regions in Laos. DNA was extracted from individual mosquitoes. PCR amplification and DNA sequencing of a fragment containing codon 1014 of the voltage-gated sodium channel (vgsc) gene were completed to study the kdr allele frequency distribution, kdr intron polymorphism, population genetic diversity, and the evolutionary status of the kdr codon. The mitochondrial cytochrome c oxidase subunit II gene (COII) was amplified and sequenced to examine population variations, genetic differentiation, spatial population structure, population expansion, and gene flow patterns. RESULTS Nine wild kdr haplotypes of the vgsc gene were detected in this study, and eight of them, namely 1014L1, 1014L2, 1014L4, 1014L7, 1014L9, 1014L10, 1014L11, and 1014L21, were discovered in the China-Laos border (northern Laos), while 1014L3 was only detected in the Thailand-Laos border (northwestern Laos) and Cambodia-Laos border (southern Laos). The newly identified haplotype, 1014L21, was uniquely distributed in the China-Laos border and was not identified in other countries. Based on sequence analysis of the mitochondrial COII genes, significant genetic differentiation and limited gene flow were detected between the China-Laos and Cambodia-Laos An. sinensis populations, which suggested that those two regions were genetically isolated. The distinct distribution of the kdr haplotype frequencies is probably the result of geographical isolation in mosquito populations. CONCLUSIONS Lack of kdr mutations in the vgsc gene was probably due to genetic isolation and the absence of intense selection pressure in the three border regions of Laos. This study reveals that pyrethroid-based chemical insecticides are still appropriate for battling An. sinensis in parts of Laos, and routine monitoring of chemical insecticide resistance should be continuously implemented and focused on more restricted areas as part of chemical insecticide resistance management.
Collapse
Affiliation(s)
- Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Canglin Zhang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Pu'er, 665099, China
| | - Linbo Wu
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Pu'er, 665099, China
| | - Chunhai Luo
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Pu'er, 665099, China
| | - Xiaofang Guo
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Pu'er, 665099, China
| | - Rui Yang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Pu'er, 665099, China.
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Hernández-Valencia JC, Rincón DS, Marín A, Naranjo-Díaz N, Correa MM. Effect of land cover and landscape fragmentation on anopheline mosquito abundance and diversity in an important Colombian malaria endemic region. PLoS One 2020; 15:e0240207. [PMID: 33057442 PMCID: PMC7561141 DOI: 10.1371/journal.pone.0240207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
Landscape structure influences the distribution and abundance of anopheline mosquitoes and has an indirect impact on malaria transmission. This work aimed to determine the effect of land cover and landscape fragmentation on anopheline mosquito abundance and diversity in an important Colombian malaria endemic area, the Bajo Cauca region. Diversity indices were calculated for Anopheles mosquitoes collected in various localities of the region. Land cover types were characterized using orthorectified aerial photographs to estimate landscape metrics. The relationship between landscape fragmentation and species diversity was evaluated by regression analysis. The correlation between species abundance and land cover types was determined using canonical correspondence analyses. Results showed a statistically significant tendency for a lower diversity of the Anopheles community in landscapes with higher patch number, patch density and effective mesh size. For most species, there was evidence of a significant relationship between species abundance and land covers modified by anthropic activities which generate forest loss. These results indicate that activities that modify the landscape structure and land cover composition generate changes that affect the spatial distribution and composition of epidemiologically-important Anopheles species, which may impact malaria distribution in a region. This information is useful to guide control interventions that promote unfavorable landscapes for malaria vector propagation.
Collapse
Affiliation(s)
- Juan C. Hernández-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Daniel S. Rincón
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Alba Marín
- Universidad de Antioquia, Medellín, Colombia
| | - Nelson Naranjo-Díaz
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- * E-mail: ,
| |
Collapse
|
5
|
Munawar K, Saleh A, Afzal M, Qasim M, Khan KA, Zafar MI, Khater EI. Molecular characterization and phylogenetic analysis of anopheline (Anophelinae: Culicidae) mosquitoes of the Oriental and Afrotropical Zoogeographic zones in Saudi Arabia. Acta Trop 2020; 207:105494. [PMID: 32330453 DOI: 10.1016/j.actatropica.2020.105494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
The Kingdom of Saudi Arabia (KSA) has a diverse fauna due to its peculiar position bordering the Afrotropical, Oriental and Palaearctic zoogeographic zones. The present study reports the phylogenetics of five mosquito species belonging to five series of Anopheles (Cellia) . We collected mosquito larvae from eastern, western and southwestern regions of KSA. The sampled mosquitoes were morphologically identified using the pictorial keys of mosquitoes and characterized by using single and multi-locus analysis of -internal transcribed spacer 2 (ITS2) region and cytochrome oxidase c subunit I (COI). Based on the morphological and molecular data, five species were recognized, like An. stephensi (Neocellia) (Oriental), An. arabiensis (Pyretophorus) (Afrotropical), An. dthali (Myzomyia) (Oriental and Palaearctic), An. cinereus (Paramyzomyia) and An. rhodesiensis rupicola (Neomyzomyia) (Oriental and Palaearctic). The phylogenetic analysis showed that An. stephensi is a monophyletic species with different ecotypes found in different geographic regions. Comprehensive phylogenetics and population genetics studies are crucial for a better understanding of the role of these five mosquito species in malarial transmission across various zoogeographic zones of different ecological and demographic characteristics.
Collapse
|
6
|
Makanda M, Kemunto G, Wamuyu L, Bargul J, Muema J, Mutunga J. Diversity and Molecular Characterization of Mosquitoes (Diptera: Culicidae) in Selected Ecological Regions in Kenya. F1000Res 2019; 8:262. [PMID: 32518622 PMCID: PMC7255902 DOI: 10.12688/f1000research.18262.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Mosquitoes play a predominant role as leading agents in the spread of vector-borne diseases and the consequent mortality in humans. Despite reports on increase of new and recurrent mosquito borne-disease outbreaks such as chikungunya, dengue fever and Rift Valley fever in Kenya, little is known about the genetic characteristics and diversity of the vector species that have been incriminated in transmission of disease pathogens. In this study, mosquito species were collected from Kisumu city, Kilifi town and Nairobi city and we determined their genetic diversity and phylogenetic relationships. PCR was used to amplify the partial cytochrome oxidase subunit 1 (CO1) gene of mosquito samples. Molecular-genetic and phylogenetic analysis of the partial cytochrome oxidase subunit 1 (CO1) gene were employed to identify their relationship with known mosquito species. Fourteen (14) haplotypes belonging to genus
Aedes, nine (9) haplotypes belonging to genus
Anopheles and twelve (12) haplotypes belonging to genus
Culex were identified in this study. Findings from this study revealed a potentially new haplotype belonging to
Anopheles genus and reported the first molecular characterization of
Aedes cumminsii in Kenya. Sequence results revealed variation in mosquito species from Kilifi, Kisumu and Nairobi. Since vector competence varies greatly across species as well as species-complexes and is strongly associated with specific behavioural adaptations, proper species identification is important for vector control programs.
Collapse
Affiliation(s)
- Moni Makanda
- Institute for Basic Sciences Technology and Innovation, Pan African University, Nairobi, P.O. Box 62000-00200, Kenya
| | - Gladys Kemunto
- Zoology Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Lucy Wamuyu
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Joel Bargul
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Jackson Muema
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - James Mutunga
- Biological Sciences Department, Mount Kenya University, Thika, P.O. Box 342-01000, Kenya
| |
Collapse
|
7
|
Suesdek L. Microevolution of medically important mosquitoes - A review. Acta Trop 2019; 191:162-171. [PMID: 30529448 DOI: 10.1016/j.actatropica.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
Abstract
This review intends to discuss central issues regarding the microevolution of mosquito (Culicidae) vectors of several pathogens and how this process impacts vector biology, disease transmission, and vector control attempts. On the microevolutionary context, it comparatively discusses the current knowledge on the population genetics of representatives of the genera Aedes, Anopheles and Culex, and comments on insecticide resistance of culicids. It also discusses other biological aspects of culicids that are not usually addressed in microevolutionary studies, such as vectorial competence, endosymbiosis, and wing morphology. One conclusion is that mosquitoes are highly genetically variable, adaptable, fast evolving, and have versatile vectorial competence. Unveiling microevolutionary patterns is fundamental for the design and maintenance of all control programs. Sampling methods for assessing microevolution must be standardized and must follow meaningful guidelines, such as those of "landscape genetics". A good understanding of microevolution requires more than a collection of case studies on population genetics and resistance. Future research could deal not only with the microevolution sensu stricto, but also with evolutionarily meaningful issues, such as inheritable characters, epigenetics, physiological cost-free plasticity, vector immunity, symbiosis, pathogen-mosquito co-evolution and environmental variables. A genotyping panel for seeking adaptive phenotypes as part of the standardization of population genetics methods is proposed. The investigative paradigm should not only be retrospective but also prospective, despite the unpredictability of evolution. If we integrate all suggestions to tackle mosquito evolution, a global revolution to counter vector-borne diseases can be provoked.
Collapse
|
8
|
Loaiza JR, Miller MJ. Historical and contemporary forces combine to shape patterns of genetic differentiation in two species of MesoamericanAnophelesmosquitoes. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jose R Loaiza
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Clayton, Republic of Panama
- Smithsonian Tropical Research Institute, Balboa Ancón, Republic of Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Republic of Panama
| | - Matthew J Miller
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
9
|
Saraiva JF, Souto RNP, Scarpassa VM. Molecular taxonomy and evolutionary relationships in the Oswaldoi-Konderi complex (Anophelinae: Anopheles: Nyssorhynchus) from the Brazilian Amazon region. PLoS One 2018; 13:e0193591. [PMID: 29505595 PMCID: PMC5837296 DOI: 10.1371/journal.pone.0193591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown that Anopheles oswaldoi sensu lato comprises a cryptic species complex in South America. Anopheles konderi, which was previously raised to synonymy with An. oswaldoi, has also been suggested to form a species complex. An. oswaldoi has been incriminated as a malaria vector in some areas of the Brazilian Amazon, Colombia, Peru and Venezuela, but was not recognized as a vector in the remaining regions in its geographic distribution. The role of An. konderi as a malaria vector is unknown or has been misattributed to An. oswaldoi. The focus of this study was molecular identification to infer the evolutionary relationships and preliminarily delimit the geographic distribution of the members of these complexes in the Brazilian Amazon region. The specimens were sampled from 18 localities belonging to five states in the Brazilian Amazon and sequenced for two molecular markers: the DNA barcode region (COI gene of mitochondrial DNA) and Internal Transcribed Spacer 2 (ITS2 ribosomal DNA). COI (83 sequences) and ITS2 (27 sequences) datasets generated 43 and 10 haplotypes, respectively. Haplotype networks and phylogenetic analyses generated with the barcode region (COI gene) recovered five groups corresponding to An. oswaldoi s.s., An. oswaldoi B, An. oswaldoi A, An. konderi and An. sp. nr. konderi; all pairwise genetic distances were greater than 3%. The group represented by An. oswaldoi A exhibited three strongly supported lineages. The molecular dating indicated that the diversification process in these complexes started approximately 2.8 Mya, in the Pliocene. These findings confirm five very closely related species and present new records for these species in the Brazilian Amazon region. The paraphyly observed for the An. oswaldoi complex suggests that An. oswaldoi and An. konderi complexes may comprise a unique species complex named Oswaldoi-Konderi. Anopheles oswaldoi B may be a potential malaria vector in the extreme north of the Brazilian Amazon, whereas evidence of sympatry for the remaining species in other parts of the Brazilian Amazon (Acre, Amazonas, Pará and Rondônia) precluded identification of probable vectors in those areas.
Collapse
Affiliation(s)
- José Ferreira Saraiva
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Raimundo Nonato Picanço Souto
- Laboratório de Arthropoda, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
10
|
de Rezende Dias G, Fujii TTS, Fogel BF, Lourenço-de-Oliveira R, Silva-do-Nascimento TF, Pitaluga AN, Carvalho-Pinto CJ, Carvalho AB, Peixoto AA, Rona LDP. Cryptic diversity in an Atlantic Forest malaria vector from the mountains of South-East Brazil. Parasit Vectors 2018; 11:36. [PMID: 29335015 PMCID: PMC5769553 DOI: 10.1186/s13071-018-2615-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles (Kerteszia) cruzii is the primary vector of human and simian malarias in Brazilian regions covered by the Atlantic Rainforest. Previous studies found that An. cruzii presents high levels of behavioural, chromosomal and molecular polymorphisms, which led to the hypothesis that it may be a complex of cryptic species. Here, An. cruzii specimens were collected in five sites in South-East Brazil located at different altitudes on the inner and coastal slopes of two mountain ranges covered by Atlantic Rainforest, known as Serra do Mar and Serra da Mantiqueria. Partial sequences for two genes (Clock and cpr) were generated and compared with previously published sequences from Florianópolis (southern Brazil). Genetic diversity was analysed with estimates of population structure (F ST ) and haplotype phylogenetic trees in order to understand how many species of the complex may occur in this biome and how populations across the species distribution are related. RESULTS The sequences from specimens collected at sites located on the lower coastal slopes of Serra do Mar (Guapimirim, Tinguá and Sana) clustered together in the phylogenetic analysis, while the major haplotypes from sites located on higher altitude and at the continental side of the same mountains (Bocaina) clustered with those from Serra da Mantiqueira (Itatiaia), an inner mountain range. These two An. cruzii lineages showed statistically significant genetic differentiation and fixed characters, and have high F ST values typical of between species comparisons. Finally, in Bocaina, where the two lineages occur in sympatry, we found deviations from Hardy-Weinberg equilibrium due to a deficit of heterozygotes, indicating partial reproductive isolation. These results strongly suggest that at least two distinct lineages of An. cruzii (provisorily named "Group 1" and "Group 2") occur in the mountains of South-East Brazil. CONCLUSIONS At least two genetically distinct An. cruzii lineages occur in the Atlantic Forest covered mountains of South-East Brazil. The co-occurrence of distinct lineages of An. cruzii (possibly incipient species) in those mountains is an interesting biological phenomenon and may have important implications for malaria prevalence, Plasmodium transmission dynamics and control.
Collapse
Affiliation(s)
| | - Thais Tenorio Soares Fujii
- Universidade Federal do Rio de Janeiro, Polo de Xerém, Duque de Caxias, RJ, Brazil.,Laboratório de Biologia Molecular de Insetos, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Bernardo Fernandes Fogel
- Universidade Federal do Rio de Janeiro, Polo de Xerém, Duque de Caxias, RJ, Brazil.,Laboratório de Biologia Molecular de Insetos, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM, CNPq), Rio de Janeiro, RJ, Brazil
| | | | - André Nóbrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM, CNPq), Rio de Janeiro, RJ, Brazil
| | - Carlos José Carvalho-Pinto
- Universidade Federal de Santa Catarina, MIP, CCB, Florianópolis, SC, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM, CNPq), Rio de Janeiro, RJ, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM, CNPq), Rio de Janeiro, RJ, Brazil
| | - Alexandre Afrânio Peixoto
- Laboratório de Biologia Molecular de Insetos, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM, CNPq), Rio de Janeiro, RJ, Brazil
| | - Luísa Damazio Pitaluga Rona
- Department of Life Sciences, Imperial College London, London, UK. .,Universidade Federal de Santa Catarina, BEG, CCB, Florianópolis, SC, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM, CNPq), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Altamiranda-Saavedra M, Conn JE, Correa MM. Genetic structure and phenotypic variation of Anopheles darlingi in northwest Colombia. INFECTION GENETICS AND EVOLUTION 2017; 56:143-151. [PMID: 29138079 DOI: 10.1016/j.meegid.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/26/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022]
Abstract
This study evaluated the influence of environmental heterogeneity on Anopheles darlingi genetic and morphometric traits at a microgeographic level. Specimens of An. darlingi collected from multiple municipalities in the Colombian malaria endemic region Urabá-Bajo Cauca and Alto Sinú (UCS) were analyzed using 13 microsatellite loci. Spatial genetic structure, population variation and wing geometric morphometric analyses were performed. Microsatellite results showed low genetic differentiation and high gene flow among populations; four highly admixed subpopulations were detected with no particular association to the municipalities. Wing geometric morphometrics analysis showed a subtle but significant difference in wing shape for El Bagre vs. Mutatá populations, possibly influenced by geographical distance. Discrimination among populations in the morphospace showed a slight separation of the Tierralta population. There was no significant correlation between the genetic and geographic or genetic and environmental distances. We hypothesize that environmental heterogeneity in the UCS region does not reach a threshold to affect population structure of An. darlingi. Another possibility is that microsatellites are not sensitive enough to detect existing structure. It remains to be determined which local factors govern phenotypic variation among these populations and how, or whether these may affect mosquito biology and transmission capacity.
Collapse
Affiliation(s)
- Mariano Altamiranda-Saavedra
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA.
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
12
|
Phunngam P, Chareonviriyaphap T, Bangs MJ, Arunyawat U. Phylogenetic Relationships Among Malaria Vectors and Closely Related Species in Thailand Using Multilocus DNA Sequences. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:91-102. [PMID: 28590228 DOI: 10.2987/17-6637.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The evolutionary and taxonomic status is important for understanding speciation events and phylogenetic relationships between closely related vector and nonvector species. This information is useful for targeting important disease vector species groups for the development of novel genetic-based vector and pathogen control methods. In this study, different phylogenetic analyses were performed to reconstruct phylogenetic trees for the primary malaria vectors in Thailand based on sequence information of 4 DNA fragments from the nuclear and mitochondrial regions. The primary Anopheles species in the subgenus Cellia involved in malaria transmission in Thailand separate clearly into 3 distinct clades: the Leucosphyrus group, Minimus subgroup, and Maculatus group. The phylogenetic trees based on different reconstructed algorithms and different gene regions provided congruent phylogenetic status of the mosquito species studied. The phylogenetic relationships of malaria vector species examined followed similar patterns based on morphological characters. An estimate of the divergence time among the Anopheles species infers that they were present during the Eocene and Miocene periods (>41 million years ago). Congruent phylogenetic analysis of malaria vectors is presented with different algorithms and gene regions. The nuclear TOLL6 fragment appears useful for molecular phylogenetic, species DNA barcode, and Anopheles population genetic analyses.
Collapse
|
13
|
Kohl A, Pondeville E, Schnettler E, Crisanti A, Supparo C, Christophides GK, Kersey PJ, Maslen GL, Takken W, Koenraadt CJM, Oliva CF, Busquets N, Abad FX, Failloux AB, Levashina EA, Wilson AJ, Veronesi E, Pichard M, Arnaud Marsh S, Simard F, Vernick KD. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathog Glob Health 2016; 110:164-72. [PMID: 27677378 PMCID: PMC5072118 DOI: 10.1080/20477724.2016.1211475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations.
Collapse
Affiliation(s)
- Alain Kohl
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Emilie Pondeville
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Esther Schnettler
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Andrea Crisanti
- b Department of Life Sciences , Imperial College London , London , UK
| | - Clelia Supparo
- b Department of Life Sciences , Imperial College London , London , UK
| | | | - Paul J Kersey
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Gareth L Maslen
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Willem Takken
- d Laboratory of Entomology , Wageningen University and Research Centre , Wageningen , The Netherlands
| | | | - Clelia F Oliva
- e Polo d'Innovazione di Genomica, Genetica e Biologia , Perugia , Italy
| | - Núria Busquets
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - F Xavier Abad
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - Anna-Bella Failloux
- g Arboviruses and Insect Vectors Unit, Department of Virology , Institut Pasteur , Paris cedex 15 , France
| | - Elena A Levashina
- h Department of Vector Biology , Max-Planck-Institut für Infektionsbiologie, Campus Charité Mitte , Berlin , Germany
| | - Anthony J Wilson
- i Integrative Entomology Group, Vector-borne Viral Diseases Programme , The Pirbright Institute , Surrey , UK
| | - Eva Veronesi
- j Swiss National Centre for Vector Entomology, Institute of Parasitology , University of Zürich , Zürich , Switzerland
| | - Maëlle Pichard
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Sarah Arnaud Marsh
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Frédéric Simard
- l MIVEGEC "Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle" , UMR IRD224-CNRS5290-Université de Montpellier , Montpellier France
| | - Kenneth D Vernick
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France.,m CNRS Unit of Hosts, Vectors and Pathogens (URA3012) , Institut Pasteur , Paris cedex 15 , France
| |
Collapse
|
14
|
Abstract
Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression.
Collapse
|
15
|
Scarpassa VM, Cunha-Machado AS, Saraiva JF. Evidence of new species for malaria vector Anopheles nuneztovari sensu lato in the Brazilian Amazon region. Malar J 2016; 15:205. [PMID: 27068120 PMCID: PMC4828892 DOI: 10.1186/s12936-016-1217-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles nuneztovari sensu lato comprises cryptic species in northern South America, and the Brazilian populations encompass distinct genetic lineages within the Brazilian Amazon region. This study investigated, based on two molecular markers, whether these lineages might actually deserve species status. METHODS Specimens were collected in five localities of the Brazilian Amazon, including Manaus, Careiro Castanho and Autazes, in the State of Amazonas; Tucuruí, in the State of Pará; and Abacate da Pedreira, in the State of Amapá, and analysed for the COI gene (Barcode region) and 12 microsatellite loci. Phylogenetic analyses were performed using the maximum likelihood (ML) approach. Intra and inter samples genetic diversity were estimated using population genetics analyses, and the genetic groups were identified by means of the ML, Bayesian and factorial correspondence analyses and the Bayesian analysis of population structure. RESULTS The Barcode region dataset (N = 103) generated 27 haplotypes. The haplotype network suggested three lineages. The ML tree retrieved five monophyletic groups. Group I clustered all specimens from Manaus and Careiro Castanho, the majority of Autazes and a few from Abacate da Pedreira. Group II clustered most of the specimens from Abacate da Pedreira and a few from Autazes and Tucuruí. Group III clustered only specimens from Tucuruí (lineage III), strongly supported (97 %). Groups IV and V clustered specimens of A. nuneztovari s.s. and A. dunhami, strongly (98 %) and weakly (70 %) supported, respectively. In the second phylogenetic analysis, the sequences from GenBank, identified as A. goeldii, clustered to groups I and II, but not to group III. Genetic distances (Kimura-2 parameters) among the groups ranged from 1.60 % (between I and II) to 2.32 % (between I and III). Microsatellite data revealed very high intra-population genetic variability. Genetic distances showed the highest and significant values (P = 0.005) between Tucuruí and all the other samples, and between Abacate da Pedreira and all the other samples. Genetic distances, Bayesian (Structure and BAPS) analyses and FCA suggested three distinct biological groups, supporting the barcode region results. CONCLUSIONS The two markers revealed three genetic lineages for A. nuneztovari s.l. in the Brazilian Amazon region. Lineages I and II may represent genetically distinct groups or species within A. goeldii. Lineage III may represent a new species, distinct from the A. goeldii group, and may be the most ancestral in the Brazilian Amazon. They may have differences in Plasmodium susceptibility and should therefore be investigated further.
Collapse
Affiliation(s)
- Vera Margarete Scarpassa
- />Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Avenida André Araujo, 2936. Bairro Petrópolis, Manaus, Amazonas 69067-375 Brazil
- />Programa de Pós–Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia (INPA), Avenida André Araujo, 2936. Bairro Petrópolis, Manaus, Amazonas 69067-375 Brazil
| | - Antonio Saulo Cunha-Machado
- />Programa de Pós–Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia (INPA), Avenida André Araujo, 2936. Bairro Petrópolis, Manaus, Amazonas 69067-375 Brazil
| | - José Ferreira Saraiva
- />Programa de Pós–Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia (INPA), Avenida André Araujo, 2936. Bairro Petrópolis, Manaus, Amazonas 69067-375 Brazil
| |
Collapse
|
16
|
Kang S, Jung J, Kim W. Population Genetic Structure of the Malaria Vector Anopheles sinensis (Diptera: Culicidae) Sensu Stricto and Evidence for Possible Introgression in the Republic of Korea. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1270-1281. [PMID: 26336253 DOI: 10.1093/jme/tjv114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
Anopheles sinensis Wiedemann sensu stricto (s.s.) is a dominant mosquito and considered a secondary malaria vector in the Republic of Korea (ROK). Despite the potential significance for malaria control, population genetics studies have been conducted using only mitochondrial DNA (mtDNA), and studies of the genetics of hybridization have never been attempted. In this study, 346 specimens from 23 localities were subject to experiments. Among them, 305 An. sinensis s.s. specimens from 20 localities were used for mtDNA analysis, and 346 specimens comprising 341 An. sinensis s.s. from 22 localities and five Anopheles kleini Rueda from one locality were examined in the microsatellite study. Neighbor-joining analysis of pairwise FST and RST based on microsatellite results showed that the populations are divided into two groups, as did the mtDNA results. However, the Bayesian analysis and factorial correspondence analysis plots showed three distinct clusters. Among the mtDNA and microsatellite results, only microsatellites represented small but positive and significant isolation-by-distance patterns. Both molecular markers show the Taebaek and Sobaek Mountain ranges as barriers between the northern and southern parts of the ROK. The newly recognized third group suggests possible introgressive hybridization of An. sinensis s.s. with closely related species. The slightly different composition of populations in each group based on different markers is probably because of different population dynamics in each group. These results imply that there is restricted gene flow of epidemiologically important malaria-related genes between the northern and southern parts of the ROK.
Collapse
Affiliation(s)
- Seunghyun Kang
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Jongwoo Jung
- Department of Science Education, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
17
|
Sarma NP, Singh S, Sarma DK, Bhattacharyya DR, Kalita MC, Mohapatra PK, Dohutia C, Mahanta J, Prakash A. Mitochondrial DNA-based genetic diversity of Anopheles nivipes in North East India. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4236-4239. [PMID: 25812055 DOI: 10.3109/19401736.2015.1022757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Malaria is a major public health problem in north-east India mainly transmitted by Anopheles baimai and An. minimus while Anopheles nivipes plays an important supportive role. The genetic diversity of An. nivipes in north-east India was investigated by employing two mitochondrial DNA markers namely NADH dehydrogenase 5 (ND5) and cytochrome oxidase sub unit II (COII). High genetic diversity in An. nivipes was observed by the detection of 16 haplotypes among 30 sequences of ND5 gene and 29 haplotypes among 29 COII sequences. Anopheles nivipes of north-east India was significantly differentiated genetically with that of neighboring South-east Asian An. nivipes as revealed by pairwise FST values of 0.127 (p < 0.01) and 0.044 (p < 0.001) for ND5 and COII genes, respectively, suggesting geographical barriers to gene flow in this species between the two geographical areas resulting in significant population structuring.
Collapse
Affiliation(s)
- N P Sarma
- a Regional Medical Research Centre, NE (Indian Council of Medical Research) , Dibrugarh , Assam , India
| | - S Singh
- a Regional Medical Research Centre, NE (Indian Council of Medical Research) , Dibrugarh , Assam , India.,b IDSP Office , Tinsukia , Assam , India
| | - D K Sarma
- a Regional Medical Research Centre, NE (Indian Council of Medical Research) , Dibrugarh , Assam , India
| | - D R Bhattacharyya
- a Regional Medical Research Centre, NE (Indian Council of Medical Research) , Dibrugarh , Assam , India
| | - M C Kalita
- c Department of Biotechnology , Gauhati University , Guwahati , Assam , India , and
| | - P K Mohapatra
- a Regional Medical Research Centre, NE (Indian Council of Medical Research) , Dibrugarh , Assam , India
| | - C Dohutia
- a Regional Medical Research Centre, NE (Indian Council of Medical Research) , Dibrugarh , Assam , India
| | - J Mahanta
- a Regional Medical Research Centre, NE (Indian Council of Medical Research) , Dibrugarh , Assam , India
| | - A Prakash
- a Regional Medical Research Centre, NE (Indian Council of Medical Research) , Dibrugarh , Assam , India.,d Laboratory Division , National Institute for Research in Environmental Health (Indian Council of Medical Research) , Bhopal , MP , India
| |
Collapse
|
18
|
Gómez GF, Bickersmith SA, González R, Conn JE, Correa MM. Molecular taxonomy provides new insights into anopheles species of the neotropical arribalzagia series. PLoS One 2015; 10:e0119488. [PMID: 25774795 PMCID: PMC4361172 DOI: 10.1371/journal.pone.0119488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors.
Collapse
Affiliation(s)
- Giovan F. Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Sara A. Bickersmith
- Griffin Laboratory, Wadsworth Center, New York State Department of Health, Singerlands, New York, United States of America
| | - Ranulfo González
- Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Jan E. Conn
- Griffin Laboratory, Wadsworth Center, New York State Department of Health, Singerlands, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Antioquia, Colombia
| |
Collapse
|
19
|
Scarpassa VM, Figueiredo ADS, Alencar RB. Genetic diversity and population structure in the Leishmania guyanensis vector Lutzomyia anduzei (Diptera, Psychodidae) from the Brazilian Amazon. INFECTION GENETICS AND EVOLUTION 2015; 31:312-20. [PMID: 25701124 DOI: 10.1016/j.meegid.2015.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
Lutzomyia (Nyssomyia) anduzei has been recognized as a secondary vector of Leishmania guyanensis in the Brazilian Amazon region. Since L. anduzei is anthropophilic, co-exists in areas of high leishmaniasis transmission and has been found infected with L. guyanensis, the understanding of the vector population structure and of the process responsible for it is paramount to the vector management and control efforts. In this study we analyzed 74 and 67 sequences of the COI and Cytb loci, respectively, from mitochondrial DNA, aiming to estimate the intra-population genetic variability and population structure in six L. anduzei samples from the Brazilian Amazon region. For COI, we found 58 haplotypes, low to high (FST=0.0310-0.4128) and significant (P=0.0033) genetic structure, and reduced gene flow among populations. The haplotype network yielded many reticulations that likely resulted from hypervariability in the locus. For Cytb, we observed 27 haplotypes, low to moderate (FST=0.0077-0.1954) and nonsignificant (P>0.05) genetic structure for the majority of comparisons and extensive gene flow among populations, in line with the haplotypes network data. AMOVA analysis indicated that most of the variation occurred within populations (83.41%, 90.94%); nevertheless, there were significant differences (ΦST=0.0906-0.1659; P=0.00098; P=0.00000) among them for both loci. The Mantel test showed that the genetic structure is not associated to an isolation-by-distance (IBD) model in either of both loci. These data suggest that L. anduzei is genetically very diverse. The genetic structure lacking IBD may be due to adaptation to local habitats and the low dispersal capacity of the sandflies, and both could lead to population fragmentation and geographic isolation. These findings have important implications for epidemiology, surveillance and vector control and may be a first step in understanding the evolutionary history of this species.
Collapse
Affiliation(s)
- Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil.
| | - Adrya da Silva Figueiredo
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | | |
Collapse
|
20
|
Lorenz C, Marques TC, Sallum MAM, Suesdek L. Altitudinal population structure and microevolution of the malaria vector Anopheles cruzii (Diptera: Culicidae). Parasit Vectors 2014; 7:581. [PMID: 25511160 PMCID: PMC4334843 DOI: 10.1186/s13071-014-0581-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Brazil, the autochthonous transmission of extra-Amazonian malaria occurs mainly in areas of the southeastern coastal Atlantic Forest, where Anopheles cruzii is the primary vector. In these locations, the population density of the mosquito varies with altitude (5-263 m above sea level), prompting us to hypothesise that gene flow is also unevenly distributed. Describing the micro-geographical and temporal biological variability of this species may be a key to understanding the dispersion of malaria in the region. We explored the homogeneity of the An. cruzii population across its altitudinal range of distribution using wing shape and mtDNA gene analysis. We also assessed the stability of wing geometry over time. METHODS Larvae were sampled from lowland (5-20 m) and hilltop (81-263 m) areas in a primary Atlantic Forest region, in the municipality of Cananéia (State of São Paulo, Brazil). The right wings of males and females were analysed by standard geometric morphometrics. Eighteen landmarks were digitised for each individual and a discriminant analysis was used to compare samples from the hilltop and lowland. A 400-bp DNA fragment of the mitochondrial cytochrome oxidase gene subunit I (CO-I) was PCR-amplified and sequenced. RESULTS Wing shapes were distinct between lowland and hilltop population samples. Results of cross-validated tests based on Mahalanobis distances showed that the individuals from both micro-environments were correctly reclassified in a range of 54-96%. The wings of hilltop individuals were larger. The CO-I gene was highly polymorphic (haplotypic diversity = 0.98) and altitudinally structured (Фst = 0.085 and Jaccard = 0.033). We found 60 different haplotypes but only two were shared by the lowland and hilltop populations. Wing shape changed over the brief study period (2009-2013). CONCLUSIONS Wing geometry and CO-I gene analysis indicated that An. cruzii is vertically structured. Wing shape varied rapidly, but altitude structure was maintained. Future investigations should identify the biotic/abiotic causes of these patterns and their implications in the local epidemiology of malaria.
Collapse
Affiliation(s)
- Camila Lorenz
- Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, CEP 05509-300, Brazil.
- Biologia da Relação Patógeno-Hospedeiro, Instituto de Ciências Biomédicas, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, CEP 05508-000, Brazil.
| | - Tatiani Cristina Marques
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, 1500, São Paulo, CEP 05509-300, Brazil.
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, 1500, São Paulo, CEP 05509-300, Brazil.
| | - Lincoln Suesdek
- Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, CEP 05509-300, Brazil.
- Instituto de Medicina Tropical, Avenida Dr. Enéas Carvalho de Aguiar 470, São Paulo, CEP 05403-000, Brazil.
| |
Collapse
|
21
|
McKeon SN, Moreno M, Sallum MA, Povoa MM, Conn JE. Distinct population structure for co-occurring Anopheles goeldii and Anopheles triannulatus in Amazonian Brazil. Mem Inst Oswaldo Cruz 2014; 108:605-15. [PMID: 23903977 PMCID: PMC3970595 DOI: 10.1590/0074-0276108052013012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 05/16/2013] [Indexed: 01/01/2023] Open
Abstract
To evaluate whether environmental heterogeneity contributes to the
genetic heterogeneity in Anopheles triannulatus, larval habitat
characteristics across the Brazilian states of Roraima and Pará and genetic
sequences were examined. A comparison with Anopheles goeldii
was utilised to determine whether high genetic diversity was unique to
An. triannulatus. Student t test and
analysis of variance found no differences in habitat characteristics between the
species. Analysis of population structure of An. triannulatus
and An. goeldii revealed distinct demographic histories in a
largely overlapping geographic range. Cytochrome oxidase I
sequence parsimony networks found geographic clustering for both species;
however nuclear marker networks depicted An. triannulatus with
a more complex history of fragmentation, secondary contact and recent
divergence. Evidence of Pleistocene expansions suggests both species are more
likely to be genetically structured by geographic and ecological barriers than
demography. We hypothesise that niche partitioning is a driving force for
diversity, particularly in An. triannulatus.
Collapse
Affiliation(s)
- Sascha Naomi McKeon
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA.
| | | | | | | | | |
Collapse
|
22
|
Chavshin AR, Oshaghi MA, Vatandoost H, Hanafi-Bojd AA, Raeisi A, Nikpoor F. Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran. Asian Pac J Trop Biomed 2014; 4:47-51. [PMID: 24144130 DOI: 10.1016/s2221-1691(14)60207-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/20/2013] [Accepted: 12/12/2013] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran. METHODS Wild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested-PCR method. RESULTS Results showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples. CONCLUSIONS Presence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region.
Collapse
Affiliation(s)
- Ali Reza Chavshin
- Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences (UMSU), Urmia, Iran; Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | | | | | | | | |
Collapse
|
23
|
Gómez GF, Márquez EJ, Gutiérrez LA, Conn JE, Correa MM. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Trop 2014; 135:75-85. [PMID: 24704285 DOI: 10.1016/j.actatropica.2014.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 01/24/2023]
Abstract
Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats.
Collapse
Affiliation(s)
- Giovan F Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Edna J Márquez
- Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia.
| | - Lina A Gutiérrez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Slingerlands, 12159 NY, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, 12222 NY, USA.
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
24
|
Paredes-Esquivel CC, Townson H. Functional constraints and evolutionary dynamics of the repeats in the rDNA internal transcribed spacer 2 of members of the Anopheles barbirostris group. Parasit Vectors 2014; 7:106. [PMID: 24646478 PMCID: PMC3994965 DOI: 10.1186/1756-3305-7-106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Anopheles barbirostris group is widely distributed in Southeast Asia. Although seven species have been formally described, a molecular analysis of the rDNA ITS2 and the mitochondrial cytochrome oxidase I gene suggests that the group includes species that are morphologically very similar or identical.We have previously shown that species in the Anopheles barbirostris Subgroup have an exceptionally large ITS2 (>1.5 kb), greater than in any other Anopheline group. However, the molecular processes responsible for generating such a large ITS2 have not previously been explored. METHODS To determine the processes by which this large ITS2 is generated, we examined the sequence and secondary structure of the ITS2 of 51 specimens from five species of the Anopheles barbirostris Subgroup. These include the anthropophilic species An. campestris and three morphospecies of the Barbirostris Complex: An. vanderwulpi, An. barbirostris I and III, together with a previously undescribed member of this group (Clade IV). RESULTS AND CONCLUSIONS All the specimens were found to have an ITS2 greater than 1.5 kb in length. The possibility that the spacer sequences amplified were pseudogenes was examined and discarded. The large size of ITS2 in the species studied is due to the presence of internal repeats of approximately 110 bp in length, confined to the central region of the spacer. Repeats varied markedly between the species examined, with respect to their organization, number and sequence similarity. The nucleotide diversity increased in direct relation to size variation and the presence of non-repeated elements.A secondary structure analysis showed that the repeats form hairpin structures with a wide range of free energy values. These hairpin structures are known to facilitate the subsequent processing of mature rRNA. An analysis of the repeats from the different species suggests they originate from a common ancestor, with the repeats appearing before speciation of the Barbirostris Group.
Collapse
Affiliation(s)
- Claudia Caterina Paredes-Esquivel
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA United Kingdom
- Current address: Laboratory of Zoology. University of the Balearic Islands, Ctra de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Harold Townson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA United Kingdom
| |
Collapse
|
25
|
James S, Takken W, Collins FH, Gottlieb M. Needs for monitoring mosquito transmission of malaria in a pre-elimination world. Am J Trop Med Hyg 2013; 90:6-10. [PMID: 24277786 DOI: 10.4269/ajtmh.13-0175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As global efforts to eliminate malaria intensify, accurate information on vector populations and transmission dynamics is critical for directing control efforts, developing new control tools, and predicting the effects of these interventions under various conditions. Currently available sampling tools for mosquito population monitoring suffer from well-recognized limitations. As reported in this workshop summary, a recent gathering of medical entomologists, modelers, and malaria experts reviewed these issues and agreed that efforts are needed to improve methods to monitor key transmission parameters. Identified needs include standardized methods for sampling of both mosquito adults and larvae, improved tools for mosquito species identification and age-grading, and a better means for determining the entomological inoculation rate.
Collapse
Affiliation(s)
- Stephanie James
- Science Division, Foundation for the National Institutes of Health, Bethesda, Maryland; Laboratory of Entomology, Wageningen University and Research Center, Wageningen, The Netherlands; University of Notre Dame, Notre Dame, Indiana
| | | | | | | |
Collapse
|
26
|
Loaiza JR, Scott ME, Bermingham E, Sanjur OI, Rovira JR, Dutari LC, Linton YM, Bickersmith S, Conn JE. Novel genetic diversity within Anopheles punctimacula s.l.: phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Acta Trop 2013; 128:61-9. [PMID: 23806568 PMCID: PMC3810288 DOI: 10.1016/j.actatropica.2013.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 11/25/2022]
Abstract
Anopheles punctimacula s.l. is a regional malaria vector in parts of Central America, but its role in transmission is controversial due to its unresolved taxonomic status. Two cryptic species, An. malefactor and An. calderoni, have been previously confused with this taxon, and evidence for further genetic differentiation has been proposed. In the present study we collected and morphologically identified adult female mosquitoes of An. punctimacula s.l. from 10 localities across Panama and one in Costa Rica. DNA sequences from three molecular regions, the three prime end of the mitochondrial cytochrome c oxidase I gene (3' COI), the Barcode region in the five prime end of the COI (5' COI), and the rDNA second internal transcribed spacer (ITS2) were used to test the hypothesis of new molecular lineages within An. punctimacula s.l. Phylogenetic analyses using the 3' COI depicted six highly supported molecular lineages (A-F), none of which was An. malefactor. In contrast, phylogenetic inference with the 5' COI demonstrated paraphyly. Tree topologies based on the combined COI regions and ITS2 sequence data supported the same six lineages as the 3' COI alone. As a whole this evidence suggests that An. punctimacula s.l. comprises two geographically isolated lineages, but it is not clear whether these are true species. The phylogenetic structure of the An. punctimacula cluster as well as that of other unknown lineages (C type I vs C type II; D vs E) appears to be driven by geographic partition, because members of these assemblages did not overlap spatially. We report An. malefactor for the first time in Costa Rica, but our data do not support the presence of An. calderoni in Panama.
Collapse
Affiliation(s)
- Jose R. Loaiza
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Clayton, Panamá, República de Panamá
- Programa Centroamericano de Maestría en Entomología, Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, República de Panamá
| | | | - Eldredge Bermingham
- Smithsonian Tropical Research Institute, Balboa Ancon, Unit 0948, Republic of Panama
| | - Oris I. Sanjur
- Smithsonian Tropical Research Institute, Balboa Ancon, Unit 0948, Republic of Panama
| | - Jose R. Rovira
- Smithsonian Tropical Research Institute, Balboa Ancon, Unit 0948, Republic of Panama
| | - Larissa C. Dutari
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Clayton, Panamá, República de Panamá
- Smithsonian Tropical Research Institute, Balboa Ancon, Unit 0948, Republic of Panama
| | - Yvonne-Marie Linton
- Natural History Museum, Cromwell Road, London, SW75BD, England
- Walter Reed Army Institute of Research, Entomology Branch, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500 USA
| | - Sara Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY, 12205 USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, 12205 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, 12202 USA
| |
Collapse
|
27
|
Rona LDP, Carvalho-Pinto CJ, Peixoto AA. Evidence for the occurrence of two sympatric sibling species within the Anopheles (Kerteszia) cruzii complex in southeast Brazil and the detection of asymmetric introgression between them using a multilocus analysis. BMC Evol Biol 2013; 13:207. [PMID: 24063651 PMCID: PMC3850420 DOI: 10.1186/1471-2148-13-207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 08/21/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Anopheles (Kerteszia) cruzii (Diptera: Culicidae) is a primary vector of human and simian malaria parasites in southern and southeastern Brazil. Earlier studies using chromosome inversions, isoenzymes and a number of molecular markers have suggested that An. cruzii is a species complex. RESULTS In this study, a multilocus approach using six loci, three circadian clock genes and three encoding ribosomal proteins, was carried out to investigate in more detail the genetic differentiation between the An. cruzii populations from Florianópolis-Santa Catarina (southern Brazil) and Itatiaia-Rio de Janeiro States (southeastern Brazil). The analyses were performed first comparing Florianópolis and Itatiaia, and then comparing the two putative sympatric incipient species from Itatiaia (Itatiaia A and Itatiaia B). The analysis revealed high FST values between Florianópolis and Itatiaia (considering Itatiaia A and B together) and also between the sympatric Itatiaia A and Itatiaia B, irrespective of their function. Also, using the IM program, no strong indication of migration was found between Florianópolis and Itatiaia (considering Itatiaia A and B together) using all loci together, but between Itatiaia A and Itatiaia B, the results show evidence of migration only in the direction of Itatiaia B. CONCLUSIONS The results of the multilocus analysis indicate that Florianópolis and Itatiaia represent different species of the An. cruzii complex that diverged around 0.6 Mya, and also that the Itatiaia sample is composed of two sympatric incipient species A and B, which diverged around 0.2 Mya. Asymmetric introgression was found between the latter two species despite strong divergence in some loci.
Collapse
Affiliation(s)
- Luísa D P Rona
- Universidade Federal do Rio de Janeiro, Polo de Xerém, Estrada de Xerém 27, Duque de Caxias 25245-390, RJ, Brazil.
| | | | | |
Collapse
|
28
|
Zhong D, Lo E, Hu R, Metzger ME, Cummings R, Bonizzoni M, Fujioka KK, Sorvillo TE, Kluh S, Healy SP, Fredregill C, Kramer VL, Chen X, Yan G. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS One 2013; 8:e68586. [PMID: 23861921 PMCID: PMC3702605 DOI: 10.1371/journal.pone.0068586] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/05/2013] [Indexed: 11/26/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is an anthropophilic aggressive daytime-biting nuisance and an efficient vector of certain arboviruses and filarial nematodes. Over the last 30 years, this species has spread rapidly through human travel and commerce from its native tropical forests of Asia to every continent except Antarctica. In 2011, a population of Asian tiger mosquito (Aedes albopictus) was discovered in Los Angeles (LA) County, California. To determine the probable origin of this invasive species, the genetic structure of the population was compared against 11 populations from the United States and abroad, as well as preserved specimens from a 2001 introduction into California using the mitochondrial cytochrome c oxidase 1 (CO1) gene. A total of 66 haplotypes were detected among samples and were divided into three main groups. Aedes albopictus collected in 2001 and 2011 from LA County were genetically related and similar to those from Asia but distinct from those collected in the eastern and southeastern United States. In view of the high genetic similarities between the 2001 and 2011 LA samples, it is possible that the 2011 population represents in part the descendants of the 2001 introduction. There remains an imperative need for improved surveillance and control strategies for this species.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Eugenia Lo
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Renjie Hu
- Vector-Borne Disease Section, California Department of Public Health, Ontario, California, United States of America
| | - Marco E. Metzger
- Vector-Borne Disease Section, California Department of Public Health, Ontario, California, United States of America
| | - Robert Cummings
- Orange County Vector Control District, Orange, California, United States of America
| | - Mariangela Bonizzoni
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Kenn K. Fujioka
- San Gabriel Valley Mosquito and Vector Control District, West Covina, California, United States of America
| | - Teresa E. Sorvillo
- San Gabriel Valley Mosquito and Vector Control District, West Covina, California, United States of America
| | - Susanne Kluh
- Greater Los Angeles County Vector Control District, Santa Fe Springs, California, United States of America
| | - Sean P. Healy
- Monmouth County Mosquito Extermination Commission, Tinton Falls, New Jersey, United States of America
| | - Chris Fredregill
- Harris County Public Health and Environmental Services, Mosquito Control Division, Houston, Texas, United States of America
| | - Vicki L. Kramer
- Vector-Borne Disease Section, California Department of Public Health, Ontario, California, United States of America
| | - Xiaoguang Chen
- Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Moreno M, Bickersmith S, Harlow W, Hildebrandt J, McKeon SN, Silva-do-Nascimento TF, Loaiza JR, Ruiz F, Lourenço-de-Oliveira R, Sallum MAM, Bergo ES, Fritz GN, Wilkerson RC, Linton YM, Juri MJD, Rangel Y, Póvoa MM, Gutiérrez-Builes LA, Correa MM, Conn JE. Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns. Parasit Vectors 2013; 6:47. [PMID: 23433428 PMCID: PMC3606328 DOI: 10.1186/1756-3305-6-47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/13/2013] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated. METHODS The mitochondrial COI gene, the nuclear white gene and rDNA ITS2 of samples that include the known geographic distribution of these taxa were analyzed. Phylogenetic analyses were performed using Bayesian inference, Maximum parsimony and Maximum likelihood approaches. RESULTS Each data set analyzed septely yielded a different topology but none provided evidence for the seption of An. halophylus and An. triannulatus C, consistent with the hypothesis that the two are undergoing incipient speciation. The phylogenetic analyses of the white gene found three main clades, whereas the statistical parsimony network detected only a single metapopulation of Anopheles triannulatus s.l. Seven COI lineages were detected by phylogenetic and network analysis. In contrast, the network, but not the phylogenetic analyses, strongly supported three ITS2 groups. Combined data analyses provided the best resolution of the trees, with two major clades, Amazonian (clade I) and trans-Andean + Amazon Delta (clade II). Clade I consists of multiple subclades: An. halophylus + An. triannulatus C; trans-Andean Venezuela; central Amazonia + central Bolivia; Atlantic coastal lowland; and Amazon delta. Clade II includes three subclades: Panama; cis-Andean Colombia; and cis-Venezuela. The Amazon delta specimens are in both clades, likely indicating local sympatry. Spatial and molecular variance analyses detected nine groups, corroborating some of subclades obtained in the combined data analysis. CONCLUSION Combination of the three molecular markers provided the best resolution for differentiation within An. triannulatus s.s. and An. halophylus and C. The latest two species seem to be very closely related and the analyses performed were not conclusive regarding species differentiation. Further studies including new molecular markers would be desirable to solve this species status question. Besides, results of the study indicate a trans-Andean origin for An. triannulatus s.l. The potential implications for malaria epidemiology remain to be investigated.
Collapse
Affiliation(s)
- Marta Moreno
- New York State Department of Health, Wadsworth Center, Griffin Laboratory, Albany, NY, USA
- Present address: Division Infectious Diseases University of California San Diego, George Palade Labs, School of Medicine, 92093, 9500 Gilman Drive, MC 0741, La Jolla, CA, USA
| | - Sara Bickersmith
- New York State Department of Health, Wadsworth Center, Griffin Laboratory, Albany, NY, USA
| | - Wesley Harlow
- New York State Department of Health, Wadsworth Center, Griffin Laboratory, Albany, NY, USA
| | - Jessica Hildebrandt
- New York State Department of Health, Wadsworth Center, Griffin Laboratory, Albany, NY, USA
| | - Sascha N McKeon
- New York State Department of Health, Wadsworth Center, Griffin Laboratory, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| | | | - Jose R Loaiza
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Clayton, Panamá, República de Panamá
| | - Freddy Ruiz
- Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Maria AM Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo S Bergo
- Superintendência de Controle de Endemias, SUCEN, São Paulo, Brazil
| | - Gary N Fritz
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA
| | - Richard C Wilkerson
- Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Yvonne M Linton
- Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Maria J Dantur Juri
- Instituto Superior de Entomología "Dr. Abraham Willink", Facultad de Ciencias, Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Yadira Rangel
- Laboratorio de Biologia de Vectores, Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Lina A Gutiérrez-Builes
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Jan E Conn
- New York State Department of Health, Wadsworth Center, Griffin Laboratory, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| |
Collapse
|
30
|
Islam N, Bonovas S, Nikolopoulos GK. An epidemiological overview of malaria in Bangladesh. Travel Med Infect Dis 2013; 11:29-36. [PMID: 23434288 DOI: 10.1016/j.tmaid.2013.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/17/2012] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Bangladesh is one of the four major malaria-endemic countries in South-East Asia having approximately 34% of its population at risk of malaria. This paper aims at providing an overview of the malaria situation in this country. Relevant information was retrieved from published articles and reports in PubMed and Google Scholar. Malaria in Bangladesh is concentrated in 13 districts with a prevalence ranging between 3.1% and 36%, and is mostly caused by Plasmodium falciparum. Geographical conditions pose a potential risk for Plasmodium knowlesi malaria. Resistance to a number of drugs previously recommended for treatment has been reported. Low socio-economic status, poor schooling and close proximity to water bodies and forest areas comprise important risk factors. Despite the significant steps in Long Lasting Insecticide Net (LLIN)/Insecticide Treated Net (ITN) coverage in Bangladesh, there are still many challenges including the extension of malaria support to the remote areas of Bangladesh, where malaria prevalence is higher, and further improvements in the field of referral system and treatment.
Collapse
Affiliation(s)
- Nazrul Islam
- Cyprus International Institute for Environmental and Public Health, Limassol, Cyprus
| | | | | |
Collapse
|
31
|
Scarpassa VM, Alencar RB. Lutzomyia umbratilis, the main vector of Leishmania guyanensis, represents a novel species complex? PLoS One 2012; 7:e37341. [PMID: 22662146 PMCID: PMC3356248 DOI: 10.1371/journal.pone.0037341] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Lutzomyia umbratilis is an important Leishmania guyanensis vector in South America. Previous studies have suggested differences in the vector competence between L. umbratilis populations situated on opposite banks of the Amazonas and Negro Rivers in the central Amazonian Brazil region, likely indicating a species complex. However, few studies have been performed on these populations and the taxonomic status of L. umbratilis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Phylogeographic structure was estimated for six L. umbratilis samples from the central Amazonian region in Brazil by analyzing mtDNA using 1181 bp of the COI gene to assess whether the populations on opposite banks of these rivers consist of incipient or distinct species. The genetic diversity was fairly high and the results revealed two distinct clades ( = lineages) with 1% sequence divergence. Clade I consisted of four samples from the left bank of the Amazonas and Negro Rivers, whereas clade II comprised two samples from the right bank of Negro River. No haplotypes were shared between samples of two clades. Samples within clades exhibited low to moderate genetic differentiation (F(ST) = -0.0390-0.1841), whereas samples between clades exhibited very high differentiation (F(ST) = 0.7100-0.8497) and fixed differences. These lineages have diverged approximately 0.22 Mya in the middle Pleistocene. Demographic expansion was detected for the lineages I and II approximately 30,448 and 15,859 years ago, respectively, in the late Pleistocene. CONCLUSIONS/SIGNIFICANCE The two genetic lineages may represent an advanced speciation stage suggestive of incipient or distinct species within L. umbratilis. These findings suggest that the Amazonas and Negro Rivers may be acting as effective barriers, thus preventing gene flow between populations on opposite sides. Such findings have important implications for epidemiological studies, especially those related to vector competence and anthropophily, and for vector control strategies. In addition, L. umbratilis represents an interesting example in speciation studies.
Collapse
Affiliation(s)
- Vera Margarete Scarpassa
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil.
| | | |
Collapse
|