1
|
Zadra N, Rizzoli A, Rota-Stabelli O. Comprehensive phylogenomic analysis of Zika virus: Insights into its origin, past evolutionary dynamics, and global spread. Virus Res 2024; 350:199490. [PMID: 39489463 PMCID: PMC11583807 DOI: 10.1016/j.virusres.2024.199490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Zika virus (ZIKV), a Flaviviridae family member, has been linked to severe neurological disorders. Despite detailed studies on recent outbreaks, the early evolutionary history of ZIKV remains partially unclear. This study elucidates ZIKV origin and evolutionary dynamics, focusing on recombination events, early lineage diversification, and virus spread across continents. METHODS We assessed recombination using multiple methods. We conducted Bayesian phylogenetic analyses to understand the evolutionary relationships and timing of key diversification events. Model selection was carried out to determine the most appropriate evolutionary model for our dataset. RESULTS Our phylogenies revealed recent recombination between Singaporean and African lineages, indicating the co-circulation of diverse lineages during outbreaks. Thailand was identified as a crucial hub in the spread across Asia. The phylogenetic analysis suggests that the ZIKV lineage dates back to the eleventh century, with the first significant diversification occurring in the nineteenth century. The timing of the re-introduction of the Asian lineage into Africa and the delay between probable introduction and outbreak onset were also determined. CONCLUSIONS This study provides novel insights into ZIKV's origin and early evolutionary dynamics, highlighting Thailand's role in the spread of the virus in Asia and recent recombination events between distant lineages. These findings emphasize the need for continuous surveillance and a better understanding of ZIKV biology to forecast and mitigate future outbreaks.
Collapse
Affiliation(s)
- Nicola Zadra
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Annapaola Rizzoli
- Applied Ecology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
2
|
Sinigaglia A, Squarzon L, Dal Molin E, Martignago L, Lucca C, Vogiatzis S, Panese S, Pacenti M, Barzon L. Asian lineage Zika virus infection in a traveler returning to Italy from Seychelles, April 2024. Travel Med Infect Dis 2024; 62:102783. [PMID: 39528059 DOI: 10.1016/j.tmaid.2024.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Affiliation(s)
| | - Laura Squarzon
- Molecular Diagnostics and Genetics Unit, Ospedale Dell'Angelo, Venice, Italy
| | | | - Luca Martignago
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Camilla Lucca
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Sandro Panese
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Dell'Angelo, Venice, Italy; Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile SS. Giovanni e Paolo, Venice, Italy
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy.
| |
Collapse
|
3
|
Kumar M, Kumar S, Kumar R, Jha MK, Tiwari SN, Gupta P. Serious Concern of Congenital Zika Syndrome (CZS) in India: A Narrative Review. J Pregnancy 2024; 2024:1758662. [PMID: 38961858 PMCID: PMC11221965 DOI: 10.1155/2024/1758662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Congenital Zika syndrome (CZS) is a major concern in India and highlights the multifaceted challenges posed by the Zika virus (ZIKV). The alarming increase in CZS cases in India, a condition that has serious effects on both public health and newborns, has raised concerns. This review highlights the importance of raising concern and awareness and taking preventive measures by studying the epidemiology, clinical symptoms, and potential long-term consequences of CZS. The review also contributes to worldwide research and information sharing to improve the understanding and prevention of CZS. As India deals with the changing nature of CZS, this thorough review is an important tool for policymakers, health workers, and researchers to understand what is happening now, plan for what to do in the future, and work together as a team, using medical knowledge, community involvement, and study projects to protect newborns' health and reduce the public health impact of these syndromes.
Collapse
Affiliation(s)
- Maneesh Kumar
- State-Viral Research and Diagnositic LaboratoryDepartment of MicrobiologyAll India Institute of Medical Sciences, Deoghar 814152, Jharkhand, India
| | - Suman Kumar
- Department of MicrobiologyAll India Institute of Medical Sciences, Deoghar 814152, Jharkhand, India
| | - Ratnesh Kumar
- Department of MicrobiologyAll India Institute of Medical Sciences, Deoghar 814152, Jharkhand, India
| | - Mithilesh Kumar Jha
- Department of MicrobiologyAll India Institute of Medical Sciences, Deoghar 814152, Jharkhand, India
| | - Shashank Nand Tiwari
- State-Viral Research and Diagnositic LaboratoryDepartment of MicrobiologyAll India Institute of Medical Sciences, Deoghar 814152, Jharkhand, India
| | - Pratima Gupta
- Department of MicrobiologyAll India Institute of Medical Sciences, Deoghar 814152, Jharkhand, India
| |
Collapse
|
4
|
Chen S, Saqib M, Khan HS, Bai Y, Ashfaq UA, Mansoor MK, Moming A, Liu J, Zhou M, Niazi SK, Wu Q, Sial AUR, Tang S, Sarfraz MH, Javed A, Hayat S, Khurshid M, Khan I, Athar MA, Taj Z, Zhang B, Deng F, Zohaib A, Shen S. Risk of infection with arboviruses in a healthy population in Pakistan based on seroprevalence. Virol Sin 2024; 39:369-377. [PMID: 38599520 PMCID: PMC11279719 DOI: 10.1016/j.virs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Infectious diseases caused by arboviruses are a public health concern in Pakistan. However, studies on data prevalence and threats posed by arboviruses are limited. This study investigated the seroprevalence of arboviruses in a healthy population in Pakistan, including severe fever with thrombocytopenia syndrome virus (SFTSV), Crimean-Congo hemorrhagic fever virus (CCHFV), Tamdy virus (TAMV), and Karshi virus (KSIV) based on a newly established luciferase immunoprecipitation system (LIPS) assays, and Zika virus (ZIKV) by enzyme-linked immunosorbent assays (ELISA). Neutralizing activities against these arboviruses were further examined from the antibody positive samples. The results showed that the seroprevalence of SFTSV, CCHFV, TAMV, KSIV, and ZIKV was 17.37%, 7.58%, 4.41%, 1.10%, and 6.48%, respectively, and neutralizing to SFTSV (1.79%), CCHFV (2.62%), and ZIKV (0.69%) were identified, as well as to the SFTSV-related Guertu virus (GTV, 0.83%). Risk factors associated with the incidence of exposure and levels of antibody response were analyzed. Moreover, co-exposure to different arboviruses was demonstrated, as thirty-seven individuals were having antibodies against multiple viruses and thirteen showed neutralizing activity. Males, individuals aged ≤40 years, and outdoor workers had a high risk of exposure to arboviruses. All these results reveal the substantial risks of infection with arboviruses in Pakistan, and indicate the threat from co-exposure to multiple arboviruses. The findings raise the need for further epidemiologic investigation in expanded regions and populations and the necessity to improve health surveillance in Pakistan.
Collapse
Affiliation(s)
- Shengyao Chen
- Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Saqib
- Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | | | - Yuan Bai
- Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Khalid Mansoor
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abulimti Moming
- Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Min Zhou
- Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Qiaoli Wu
- Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Awais-Ur-Rahman Sial
- Department of Clinical Studies, Faculty of Veterinary & Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Shuang Tang
- Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Muhammad Hassan Sarfraz
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iahtasham Khan
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore Sub-campus, Jhang 35200, Pakistan
| | - Muhammad Ammar Athar
- Department of Molecular Pathology, National Medical Center DHA Phase 1, Karachi 75500, Pakistan
| | - Zeeshan Taj
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fei Deng
- Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Ali Zohaib
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Shu Shen
- Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
5
|
Sapkal G, Deshpande GR, Gupta N, Deshpande K, Sharma S, Tandale B, Srivastava R, Vidhate S, Khutwad K, Tilekar BN. Harmonization of Zika serological assays and comparative evaluation of two commercial ZIKA IgG ELISA kits. Diagn Microbiol Infect Dis 2024; 109:116238. [PMID: 38554539 DOI: 10.1016/j.diagmicrobio.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024]
Abstract
The interpretation for Zika virus serology results is challenging due to high antibody cross reactivity with other flaviviruses. This limits availability of reliable and accurate methods for serosurveillance studies to understand the disease burden. Therefore, we conducted study to harmonize anti-Zika IgG antibody detection assays with 1st WHO International Standard (16/352) and working standard (16/320) for anti-Zika virus antibody.Additionally, evaluated NuGenTMZIKA-IgG and NovaLisa®ZIKA virus IgG-Capture ELISA using a panel of 278 seraFurther, 106 samples positive for other-flavi viruses were taken for assessing cross-reactivity of the assay, all serums were further tested by Zika-PRNT. The results of this study indicates satisfactory performance of both the assays. Serological and neutralization assays were calibrated according to the international standards. This will help in understanding antibody dynamics in serosurveillance and vaccine studies. However the performance of the kits with possibilities of cross-reactivity will have to be verified by coupling ZIKV and DENV specific ELISA.
Collapse
Affiliation(s)
- Gajanan Sapkal
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India.
| | | | - Nivedita Gupta
- Indian Council of Medical Research, New Delhi 110001,India
| | - Ketki Deshpande
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Sharada Sharma
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Babasaheb Tandale
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Rashi Srivastava
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Shankar Vidhate
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Kirtee Khutwad
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - B N Tilekar
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| |
Collapse
|
6
|
Anantharaj A, Agrawal T, Shashi PK, Tripathi A, Kumar P, Khan I, Pareek M, Singh B, Pattabiraman C, Kumar S, Pandey R, Chandele A, Lodha R, Whitehead SS, Medigeshi GR. Neutralizing antibodies from prior exposure to dengue virus negatively correlate with viremia on re-infection. COMMUNICATIONS MEDICINE 2023; 3:148. [PMID: 37857747 PMCID: PMC10587183 DOI: 10.1038/s43856-023-00378-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND India is hyperendemic to dengue and over 50% of adults are seropositive. There is limited information on the association between neutralizing antibody profiles from prior exposure and viral RNA levels during subsequent infection. METHODS Samples collected from patients with febrile illness was used to assess seropositivity by indirect ELISA. Dengue virus (DENV) RNA copy numbers were estimated by quantitative RT-PCR and serotype of the infecting DENV was determined by nested PCR. Focus reduction neutralizing antibody titer (FRNT) assay was established using Indian isolates to measure the levels of neutralizing antibodies and also to assess the cross-reactivity to related flaviviruses namely Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV). RESULTS In this cross-sectional study, we show that dengue seropositivity increased from 52% in the 0-15 years group to 89% in >45 years group. Antibody levels negatively correlate with dengue RNAemia on the day of sample collection and higher RNAemia is observed in primary dengue as compared to secondary dengue. The geometric mean FRNT50 titers for DENV-2 is significantly higher as compared to the other three DENV serotypes. We observe cross-reactivity with ZIKV and significantly lower or no neutralizing antibodies against JEV and WNV. The FRNT50 values for international isolates of DENV-1, DENV-3 and DENV-4 is significantly lower as compared to Indian isolates. CONCLUSIONS Majority of the adult population in India have neutralizing antibodies to all the four DENV serotypes which correlates with reduced RNAemia during subsequent infection suggesting that antibodies can be considered as a good correlate of protection.
Collapse
Affiliation(s)
- Anbalagan Anantharaj
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tanvi Agrawal
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Pooja Kumari Shashi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Alok Tripathi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Parveen Kumar
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Imran Khan
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Madhu Pareek
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Balwant Singh
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | | | - Saurabh Kumar
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guruprasad R Medigeshi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
7
|
Gupta N, Kodan P, Baruah K, Soneja M, Biswas A. Zika virus in India: past, present and future. QJM 2023; 116:644-649. [PMID: 31642501 DOI: 10.1093/qjmed/hcz273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne flavivirus that presents with acute febrile illness associated with rash, arthralgia and conjunctivitis. After years of sporadic reports in Africa, the three major outbreaks of this disease occurred in Yap Islands (2007), French Polynesia (2013-14) and South Americas (2015-16). Although, serological surveys suggested the presence of ZIKV in India in 1950s, cross-reactivity could not be ruled out. The first four proven cases of ZIKV from India were reported in 2017. This was followed by major outbreaks in the states of Rajasthan and Madhya Pradesh in 2018. Fortunately, the outbreaks in India were not associated with neurological complications. These outbreaks in India highlighted the spread of this disease beyond geographical barriers owing to the growing globalization, increased travel and ubiquitous presence of its vector, the Aedes mosquito. In this review, we discuss the epidemiology, clinical features and management of ZIKV in India.
Collapse
Affiliation(s)
- N Gupta
- From the Department of Medicine, All India Institute of Medical Sciences, 3rd Floor, Teaching Block, New Delhi 110029
| | - P Kodan
- From the Department of Medicine, All India Institute of Medical Sciences, 3rd Floor, Teaching Block, New Delhi 110029
| | - K Baruah
- National Vector Borne Disease Control Programme, Ministry of Health and Family Welfare, Government of India, 22 Shyam Nath Marg, New Delhi 110054, India
| | - M Soneja
- From the Department of Medicine, All India Institute of Medical Sciences, 3rd Floor, Teaching Block, New Delhi 110029
| | - A Biswas
- From the Department of Medicine, All India Institute of Medical Sciences, 3rd Floor, Teaching Block, New Delhi 110029
| |
Collapse
|
8
|
Soni S, Gill VJS, Anusheel, Singh J, Chhabra J, Gill GJS, Bakshi R. Dengue, Chikungunya, and Zika: The Causes and Threats of Emerging and Re-emerging Arboviral Diseases. Cureus 2023; 15:e41717. [PMID: 37575782 PMCID: PMC10422058 DOI: 10.7759/cureus.41717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
The recent emergence and re-emergence of viral infections transmitted by vectors, Zika, chikungunya, dengue, and others, is a cause for international concern. Here, we provide a summary of the current understanding of the transmission, clinical features, diagnosis, global burden, and the likelihood of future epidemics by these viruses. Arboviruses transmitted by mosquitoes are challenging to diagnose and can have surprising clinical complications. Dengue, chikungunya, and Zika are the most important diseases caused by arboviruses worldwide, especially in tropical and subtropical regions. These are transmitted to humans by day-biting Aedes aegypti and Aedes albopictus mosquitoes. In India, the increase in the incidence of dengue and chikungunya cases is primarily linked to the dissemination of Aedes aegypti. A rapid and accurate diagnosis is paramount for effectively controlling dengue outbreaks. As there is no vaccination or specific treatment available for these viruses, vector control is the only comprehensive solution available.
Collapse
Affiliation(s)
- Suha Soni
- Department of Public Health Sciences, University of Texas Health Science Center at Houston, Houston, USA
| | | | - Anusheel
- Department of Internal Medicine, Shanti Gopal Hospital, Ghaziabad, IND
| | - Jugraj Singh
- Department of Internal Medicine, Punjab Institute of Medical Sciences, Jalandhar, IND
| | - Jayksh Chhabra
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Gurparam Jeet Singh Gill
- Department of Otolaryngology, Head and Neck Surgery, Adesh Medical College and Hospital, Ambala, IND
| | - Rupinder Bakshi
- Department of Microbiology, Government Medical College, Patiala, IND
| |
Collapse
|
9
|
Chan YT, Cheok YY, Cheong HC, Tang TF, Sulaiman S, Hassan J, Looi CY, Tan KK, AbuBakar S, Wong WF. Immune Recognition versus Immune Evasion Systems in Zika Virus Infection. Biomedicines 2023; 11:biomedicines11020642. [PMID: 36831177 PMCID: PMC9952926 DOI: 10.3390/biomedicines11020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023] Open
Abstract
The reemergence of the Zika virus (ZIKV) infection in recent years has posed a serious threat to global health. Despite being asymptomatic or mildly symptomatic in a majority of infected individuals, ZIKV infection can result in severe manifestations including neurological complications in adults and congenital abnormalities in newborns. In a human host, ZIKV is primarily recognized by RIG-like receptors and Toll-like receptors that elicit anti-viral immunity through the secretion of type I interferon (IFN) to limit viral survival, replication, and pathogenesis. Intriguingly, ZIKV evades its host immune system through various immune evasion strategies, including suppressing the innate immune receptors and signaling pathways, mutation of viral structural and non-structural proteins, RNA modulation, or alteration of cellular pathways. Here, we present an overview of ZIKV recognition by the host immune system and the evasion strategies employed by ZIKV. Characterization of the host-viral interaction and viral disease mechanism provide a platform for the rational design of novel prophylactic and therapeutic strategies against ZIKV infection.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-(3)-7967-6672
| |
Collapse
|
10
|
Prediction of Conformational and Linear B-Cell Epitopes on Envelop Protein of Zika Virus Using Immunoinformatics Approach. Int J Pept Res Ther 2023; 29:17. [PMID: 36683612 PMCID: PMC9838338 DOI: 10.1007/s10989-022-10486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 01/10/2023]
Abstract
The current spread of Zika virus infection in India has become a public health issue due to the virus's possible link to birth abnormalities and neurological disorders. There is a need for enhanced vaccines or drugs as a result of its epidemic outbreak and the lack of potential medication. B-cell mediated adaptive immunity is capable of developing pathogen-specific memory that confers immunological protection. Therefore, in this study, the envelope protein of the Zika virus was retrieved from the NCBI protein database. The ABCpred and BepiPred software were used to discover linear B-cell epitopes on envelope protein. Conformational B-cell epitopes on envelope protein were identified using SEPPA 3.0 and Ellipro tools. Predicted B-cell epitopes were evaluated for allergenicity, toxicity, and antigenicity. Two consensus linear B-cell epitopes, envelope165-180 (AKVEITPNSPRAEATL) and envelope224-238 (PWHAGADTGTPHWNN) were identified using ABCpred and BepiPredtools. SEPPA 3.0 and Elliprotools predicted consensus conformational envelope98-110 (DRGWGNGCGLFGK) and envelope248-251 (AHAK) epitopes and one residue (75PRO) within envelope protein as a component of B-cell epitopes. These predicted linear and conformational B-cell epitopes will help in designing peptide vaccines that will activate the humoral response. However, in-vitro and in-vivo laboratory experimental confirmations are still needed to prove the application's feasibility.
Collapse
|
11
|
Durgam L, Guruprasad L. Molecular mechanism of ATP and RNA binding to Zika virus NS3 helicase and identification of repurposed drugs using molecular dynamics simulations. J Biomol Struct Dyn 2022; 40:12642-12659. [PMID: 34516356 DOI: 10.1080/07391102.2021.1973909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Congenital Zika virus syndrome has caused a public health emergency of international concern. So far, there are no drugs available to prevent or treat the infection caused by Zika virus. The Zika virus NS3 helicase is a potential protein target for drug discovery due to its vital role in viral genome replication. NS3 helicase unwinds the viral RNA to enable the reproduction of the viral genome by the NS5 protein. NS3 helicase has two crucial binding sites; the ATP binding site and the RNA binding site. We used molecular docking and molecular dynamics (MD) simulations to study the structural behavior of Zika virus NS3 helicase in its apo form and in the presence of ATP, single-stranded RNA, and both ATP-RNA to understand their potential implications in NS3 helicase activity. Further, we have carried out virtual screening of FDA approved drugs, followed by molecular docking to identify the ATP-competitive hit molecules as probable Zika virus NS3 helicase inhibitors. The MD simulations trajectories were analyzed using normal mode analysis and principal component analysis that reveals fluctuations in the R-loop. These findings aid in understanding the molecular mechanisms of the simultaneous binding of ATP and RNA, and guide the design and discovery of new inhibitors of the Zika virus NS3 helicase as a promising drug target to treat the Zika virus infection. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laxman Durgam
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
12
|
Zu S, Li C, Li L, Deng YQ, Chen X, Luo D, Ye Q, Huang YJ, Li XF, Zhang RR, Sun N, Zhang X, Aliyari SR, Nielsen-Saines K, Jung JU, Yang H, Qin CF, Cheng G. TRIM22 suppresses Zika virus replication by targeting NS1 and NS3 for proteasomal degradation. Cell Biosci 2022; 12:139. [PMID: 36042495 PMCID: PMC9429444 DOI: 10.1186/s13578-022-00872-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Recognition of viral invasion by innate antiviral immune system triggers activation of the type I interferon (IFN-I) and proinflammatory signaling pathways. Subsequently, IFN-I induction regulates expression of a group of genes known as IFN-I-stimulated genes (ISGs) to block viral infection. The tripartite motif containing 22 (TRIM22) is an ISG with strong antiviral functions. Results Here we have shown that the TRIM22 has been strongly upregulated both transcriptionally and translationally upon Zika virus (ZIKV) infection. ZIKV infection is associated with a wide range of clinical manifestations in human from mild to severe symptoms including abnormal fetal brain development. We found that the antiviral function of TRIM22 plays a crucial role in counterattacking ZIKV infection. Overexpression of TRIM22 protein inhibited ZIKV growth whereas deletion of TRIM22 in host cells increased ZIKV infectivity. Mechanistically, TRIM22, as a functional E3 ubiquitin ligase, promoted the ubiquitination and degradation of ZIKV nonstructural protein 1 (NS1) and nonstructural protein 3 (NS3). Further studies showed that the SPRY domain and Ring domain of TRIM22 played important roles in protein interaction and degradation, respectively. In addition, we found that TRIM22 also inhibited other flaviviruses infection including dengue virus (DENV) and yellow fever virus (YFV). Conclusion Thus, TRIM22 is an ISG with important role in host defense against flaviviruses through binding and degradation of the NS1 and NS3 proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00872-w.
Collapse
|
13
|
Akhtar N, Gupta SK, Singh H. Surveillance of Zika and Dengue viruses in field-collected Aedes aegypti mosquitoes from different states of India. Virology 2022; 574:96-101. [DOI: 10.1016/j.virol.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 10/16/2022]
|
14
|
Apoptosis during ZIKA Virus Infection: Too Soon or Too Late? Int J Mol Sci 2022; 23:ijms23031287. [PMID: 35163212 PMCID: PMC8835863 DOI: 10.3390/ijms23031287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cell death by apoptosis is a major cellular response in the control of tissue homeostasis and as a defense mechanism in the case of cellular aggression such as an infection. Cell self-destruction is part of antiviral responses, aimed at limiting the spread of a virus. Although it may contribute to the deleterious effects in infectious pathology, apoptosis remains a key mechanism for viral clearance and the resolution of infection. The control mechanisms of cell death processes by viruses have been extensively studied. Apoptosis can be triggered by different viral determinants through different pathways as a result of virally induced cell stresses and innate immune responses. Zika virus (ZIKV) induces Zika disease in humans, which has caused severe neurological forms, birth defects, and microcephaly in newborns during the last epidemics. ZIKV also surprised by revealing an ability to persist in the genital tract and in semen, thus being sexually transmitted. Mechanisms of diverting antiviral responses such as the interferon response, the role of cytopathic effects and apoptosis in the etiology of the disease have been widely studied and debated. In this review, we examined the interplay between ZIKV infection of different cell types and apoptosis and how the virus deals with this cellular response. We illustrate a duality in the effects of ZIKV-controlled apoptosis, depending on whether it occurs too early or too late, respectively, in neuropathogenesis, or in long-term viral persistence. We further discuss a prospective role for apoptosis in ZIKV-related therapies, and the use of ZIKV as an oncolytic agent.
Collapse
|
15
|
OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:974-977. [DOI: 10.1093/trstmh/trac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/28/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
|
16
|
Sukla S, Mondal P, Biswas S, Ghosh S. A Rapid and Easy-to-Perform Method of Nucleic-Acid Based Dengue Virus Diagnosis Using Fluorescence-Based Molecular Beacons. BIOSENSORS 2021; 11:bios11120479. [PMID: 34940236 PMCID: PMC8699591 DOI: 10.3390/bios11120479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022]
Abstract
Detecting dengue virus (DENV) infection in patients as early as possible makes the disease management convenient. Conventionally, DENV infection is diagnosed by ELISA-based methods, but sensitivity and specificity are major concerns. Reverse-transcription-PCR (RT-PCR)-based detection confirms the presence of DENV RNA; however, it is expensive, time-consuming, and skilled personnel are required. A fluorescence-based detection system that detects DENV RNA in patient’s serum directly, without any nucleic acid amplification step, has been developed. The method uses target-specific complementary sequence in the molecular beacon, which would specifically bind to the DENV RNA. The molecular beacons are approximately 40 bases long hairpin structures, with a fluorophore-quencher system attached at the terminal ends of the stem. These probes are biotinylated in the stem region, so that they can be immobilized on the streptavidin-tagged magnetic beads. These magnetic beads, coupled with biotinylated molecular beacons, are used for the detection of the target RNA in the serum by incubating the mixture. After incubation, beads are separated and re-suspended in a buffer. The measurement of fluorescence is taken in fluorometer after 15 min incubation at 50 °C. The whole work is carried out in a single tube. This rapid method can precisely detect dengue RNA within two hours, confirming ongoing DENV replication in the patient.
Collapse
Affiliation(s)
- Soumi Sukla
- CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; (S.S.); (P.M.)
- National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Prasenjit Mondal
- CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; (S.S.); (P.M.)
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Subhajit Biswas
- CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; (S.S.); (P.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: (S.B.); (S.G.)
| | - Surajit Ghosh
- CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; (S.S.); (P.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
- Correspondence: (S.B.); (S.G.)
| |
Collapse
|
17
|
Kumar NP, Kumar A, Panneer D, Abidha S, Muthukumaravel S, Sankari T, Ajithlal PM, Mathew J, Koothradan S, Paramasivan R, Muniyaraj M, Singh H, Saxena R, Vijayachari P, Sunish IP, Shriram AN, Dutta P, Patgiri SJ, Bhattacharyya DR, Hoti SL, Chattopadhyay D, Roy S, Mahapatra N, Pati S, Chand G, Mishra AK, Barde P, Jambulingam P. Nation-wide vector surveillance on Zika and Dengue did not indicate transmission of the American lineage-pandemic Zika virus in India. Int J Infect Dis 2021; 113:119-124. [PMID: 34601144 DOI: 10.1016/j.ijid.2021.09.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Following the Public Health Emergency of International Concern declared on Zika by the World Health Organization during 2016, the Indian Council of Medical Research carried out nationwide vector surveillance for Zika and Dengue viruses (ZIKV and DENV) in India as a preparedness measure in 2016-19. METHODS High-risk zones distributed to 49 Districts in 14 states/union territories were included in the study. Seven ICMR institutions participated, following a standard operating protocol. Aedes specimens sampled weekly were processed by multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) for ZIKV/DENV and random samples crosschecked with real-time RT-PCR for ZIKV. RESULTS Altogether, 79 492 Aedes specimens in 6492 pools were processed; 3 (0.05%) and 63 (0.97%) pools, respectively, were found positive for ZIKV and DENV. ZIKV infections were recorded in Aedes aegypti sampled during the 2018 sporadic Zika outbreak in Jaipur, Rajasthan. However, these belonged to the Asian lineage of the virus, already circulating in the country. Both Ae. aegypti and Aedes albopictus distributed to 8 states/union territories were found to be infected with DENV. Both sexes of Ae. albopictus were infected, indicating transovarial transmission. CONCLUSION This investigation evinced no active transmission of the American lineage-pandemic Zika virus in India during the pandemic period.
Collapse
Affiliation(s)
- N Pradeep Kumar
- ICMR-Vector Control Research Centre Field Station, Kottayam, Kerala, India.
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry, India
| | - D Panneer
- ICMR-Vector Control Research Centre, Puducherry, India
| | - S Abidha
- ICMR-Vector Control Research Centre Field Station, Kottayam, Kerala, India
| | | | - T Sankari
- ICMR-Vector Control Research Centre, Puducherry, India
| | - P M Ajithlal
- ICMR-Vector Control Research Centre Field Station, Kottayam, Kerala, India
| | - Jessu Mathew
- ICMR-Vector Control Research Centre Field Station, Kottayam, Kerala, India
| | - Suhana Koothradan
- ICMR-Vector Control Research Centre Field Station, Kottayam, Kerala, India
| | - R Paramasivan
- ICMR-Vector Control Research Centre Field Station, Madurai, Tamil Nadu, India
| | - M Muniyaraj
- ICMR-Vector Control Research Centre Field Station, Madurai, Tamil Nadu, India
| | - Himmat Singh
- ICMR- National Institute for Malaria Research, New Delhi, India
| | - Rekha Saxena
- ICMR- National Institute for Malaria Research, New Delhi, India
| | - P Vijayachari
- ICMR- Regional Medical Research Centre, Port Blair, Andaman Nicobar Islands, India
| | - I P Sunish
- ICMR- Regional Medical Research Centre, Port Blair, Andaman Nicobar Islands, India
| | - A N Shriram
- ICMR-Vector Control Research Centre, Puducherry, India
| | - Prafulla Dutta
- ICMR-Regional Medical Research Centre (NE), Dibrugarh, Assam, India
| | | | | | - S L Hoti
- ICMR-National Institute of Medicinal Plants Research, Belagavi, Karnataka, India
| | - D Chattopadhyay
- ICMR-National Institute of Medicinal Plants Research, Belagavi, Karnataka, India
| | - Subarna Roy
- ICMR-National Institute of Medicinal Plants Research, Belagavi, Karnataka, India
| | - Namita Mahapatra
- ICMR- Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR- Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Gyan Chand
- ICMR- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - A K Mishra
- ICMR- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Pradip Barde
- ICMR- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - P Jambulingam
- ICMR-Vector Control Research Centre, Puducherry, India
| |
Collapse
|
18
|
The epidermal growth factor receptor is a relevant host factor in the early stages of Zika virus life cycle in vitro. J Virol 2021; 95:e0119521. [PMID: 34379506 DOI: 10.1128/jvi.01195-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Zika virus (ZIKV) is a flavivirus well-known for the epidemic in the Americas in 2015-2016, where microcephaly in newborns and other neurological complications were connected to ZIKV infection. Many aspects of the viral life cycle, including binding and entry into the host cell, are still enigmatic. Based on the observation that CHO cells lack the expression of EGFR and are not permissive for various ZIKV strains, the relevance of EGFR for the viral life cycle was analyzed. Infection of A549 cells by ZIKV leads to a rapid internalization of EGFR that colocalizes with the endosomal marker EEA1. Moreover, the infection by different ZIKV strains is associated with an activation of EGFR and subsequent activation of the MAPK/ERK signaling cascade. However, treatment of the cells with MβCD, which on the one hand leads to an activation of EGFR but on the other hand prevents EGFR internalization, impairs ZIKV infection. Specific inhibition of EGFR or of the RAS-RAF-MEK-ERK signal transduction cascade hinders ZIKV infection by inhibition of ZIKV entry. In accordance to this, knockout of EGFR expression impedes ZIKV entry. In case of an already established infection, inhibition of EGFR or of downstream signaling does not affect viral replication. Taken together, these data demonstrate the relevance of EGFR in the early stages of ZIKV infection and identify EGFR as a target for antiviral strategies. Importance These data deepen the knowledge about the ZIKV infection process and demonstrate the relevance of EGFR for ZIKV entry. In light of the fact that a variety of specific and efficient inhibitors of EGFR and of EGFR-dependent signaling were developed and licensed, repurposing of these substances could be a helpful tool to prevent the spreading of ZIKV infection in an epidemic outbreak.
Collapse
|
19
|
Kulkarni R, Shrivastava S, Patil HP, Tiraki D, Mishra AC, Arankalle VA. Correlation of serostatus and viraemia levels among Indian dengue patients at the time of first diagnosis. Trans R Soc Trop Med Hyg 2021; 114:513-520. [PMID: 32484863 DOI: 10.1093/trstmh/traa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/03/2020] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dengue is a public health problem worldwide. Therapeutic monoclonal antibodies (MAbs) against dengue virus (DENV) are likely to be available soon. In view of the feasibility issues pertaining to pretreatment viraemia quantitation for therapy decisions, we conducted this study for investigation of a correlation between patient serostatus (NS1/immunoglobulin M [IgM]/IgG) and viraemia levels among Indian dengue patients at the time of first diagnosis. METHODS The study included 297 serum samples from dengue patients in Pune, India. The samples were tested for NS1, IgM and IgG (capture enzyme-linked immunosorbent assay [ELISA] for identifying secondary dengue) using Panbio ELISAs. Quantitation of viraemia was conducted using an NS1 ELISA-based 50% tissue culture infectious dose (TCID50) test in Vero cells. RESULTS Viraemia was detectable only among NS1-positive patients (n = 229, range 0.5-8.3 logTCID50/ml) with a mean titre of 1.9 logTCID50/ml. Among the NS1-positive patients, DENV titres were higher in IgM-negative than IgM-positive patients (p < 0.0001) and in primary (IgG < 18 Panbio units) versus secondary (IgG > 22 Panbio units) dengue patients (p = 0.002). Virus titres were higher during the first 3 days of illness and decreased later (p = 0.005). CONCLUSIONS The study provides a range of infectious DENV titres in relation to serologic status among dengue patients in India. The data suggest the possibility of using serological markers (NS1/IgM) as a basis for treatment decisions.
Collapse
Affiliation(s)
- Ruta Kulkarni
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Shubham Shrivastava
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Divya Tiraki
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Akhilesh Chandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| |
Collapse
|
20
|
Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021; 41:2039-2108. [PMID: 33559917 DOI: 10.1002/med.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) has emerged as a particularly notorious mosquito-borne flavivirus, which can lead to a devastating congenital syndrome in the fetuses of pregnant mothers (e.g., microcephaly, spasticity, craniofacial disproportion, miscarriage, and ocular abnormalities) and cause the autoimmune disorder Guillain-Barre' syndrome of adults. Due to its severity and rapid dispersal over several continents, ZIKV has been acknowledged to be a global health concern by the World Health Organization. Unfortunately, the ZIKV has recently resurged in India with the potential for devastating effects. Researchers from all around the world have worked tirelessly to develop effective detection strategies and vaccines for the prevention and control of ZIKV infection. In this review, we comprehensively summarize the most recent research into ZIKV, including the structural biology and evolution, historical overview, pathogenesis, symptoms, and transmission. We then focus on the detection strategies for ZIKV, including viral isolation, serological assays, molecular assays, sensing methods, reverse transcription loop mediated isothermal amplification, transcription-mediated amplification technology, reverse transcription strand invasion based amplification, bioplasmonic paper-based device, and reverse transcription isothermal recombinase polymerase amplification. To conclude, we examine the limitations of currently available strategies for the detection of ZIKV, and outline future opportunities and research challenges.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Niu Zhu
- Department of Public Health, Xi'an Medical University, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
21
|
Sun H, Dickens BL, Jit M, Cook AR, Carrasco LR. Mapping the cryptic spread of the 2015-2016 global Zika virus epidemic. BMC Med 2020; 18:399. [PMID: 33327961 PMCID: PMC7744256 DOI: 10.1186/s12916-020-01845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/06/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) emerged as a global epidemic in 2015-2016 from Latin America with its true geographical extent remaining unclear due to widely presumed underreporting. The identification of locations with potential and unknown spread of ZIKV is a key yet understudied component for outbreak preparedness. Here, we aim to identify locations at a high risk of cryptic ZIKV spread during 2015-2016 to further the understanding of the global ZIKV epidemiology, which is critical for the mitigation of the risk of future epidemics. METHODS We developed an importation simulation model to estimate the weekly number of ZIKV infections imported in each susceptible spatial unit (i.e. location that did not report any autochthonous Zika cases during 2015-2016), integrating epidemiological, demographic, and travel data as model inputs. Thereafter, a global risk model was applied to estimate the weekly ZIKV transmissibility during 2015-2016 for each location. Finally, we assessed the risk of onward ZIKV spread following importation in each susceptible spatial unit to identify locations with a high potential for cryptic ZIKV spread during 2015-2016. RESULTS We have found 24 susceptible spatial units that were likely to have experienced cryptic ZIKV spread during 2015-2016, of which 10 continue to have a high risk estimate within a highly conservative scenario, namely, Luanda in Angola, Banten in Indonesia, Maharashtra in India, Lagos in Nigeria, Taiwan and Guangdong in China, Dakar in Senegal, Maputo in Mozambique, Kinshasa in Congo DRC, and Pool in Congo. Notably, among the 24 susceptible spatial units identified, some have reported their first ZIKV outbreaks since 2017, thus adding to the credibility of our results (derived using 2015-2016 data only). CONCLUSION Our study has provided valuable insights into the potentially high-risk locations for cryptic ZIKV circulation during the 2015-2016 pandemic and has also laid a foundation for future studies that attempt to further narrow this key knowledge gap. Our modelling framework can be adapted to identify areas with likely unknown spread of other emerging vector-borne diseases, which has important implications for public health readiness especially in resource-limited settings.
Collapse
Affiliation(s)
- Haoyang Sun
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Republic of Singapore.
| | - Borame L Dickens
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Republic of Singapore
| | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Modelling and Economics Unit, Public Health England, London, UK
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Republic of Singapore.
| | - L Roman Carrasco
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Republic of Singapore
| |
Collapse
|
22
|
Kojom LP, Singh V. A Review on Emerging Infectious Diseases Prioritized Under the 2018 WHO Research and Development Blueprint: Lessons from the Indian Context. Vector Borne Zoonotic Dis 2020; 21:149-159. [PMID: 33316200 DOI: 10.1089/vbz.2020.2661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: This review describes the current scenario of a priority group of emerging infectious diseases (EIDs) listed by World Health Organization (WHO), and their main determinants and drivers for the emergence/spread of the diseases. The gaps and strategies developed by India to meet the WHO guidelines on the effective control of epidemic-prone diseases and outbreaks are also presented in the review. Methods: Epidemiologic information of EIDs, namely Crimean-Congo hemorrhagic fever (CCHF), Ebola and Marburg viruses (EboV and MarV), Zika virus (ZIKAV), Rift Valley fever (RVF), Middle East respiratory syndrome, severe acute respiratory syndrome (SARS), Nipah and Hendra virus (NiV and HeV), and Lassa fever virus (LASV), was drawn from international and national electronic databases to assess the situation. A brief view on the novel coronavirus disease 2019 (COVID-19) in India is also included. Results: There are no reports for human infection of EboV, MarV, RVF, and LASV in India. CCHF, SARS, ZIKAV, and NiV have been involved in outbreaks in eight states of India, while COVID-19 is currently reported from majority of states. India has deeply strengthened its surveillance and response system of outbreaks and epidemic-prone diseases. Conclusions: Despite its enormous improvements made in the anticipation of such threats, still more efforts are needed in sensitization of populations as well as hospital management in the context to EIDs, as addressed in the review. Furthermore, there is still a need for more research and development activities to efficiently control EIDs.
Collapse
Affiliation(s)
- Loick Pradel Kojom
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New-Delhi, India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New-Delhi, India
| |
Collapse
|
23
|
Clinico-epidemiological and genomic profile of first Zika Virus outbreak in India at Jaipur city of Rajasthan state. J Infect Public Health 2020; 13:1920-1926. [PMID: 33172818 DOI: 10.1016/j.jiph.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND First Zika virus (ZIKV) positive case from North India was detected on routine surveillance of Dengue-Like Illness in an 85-year old female. Objective of the study was to conduct an investigation for epidemiological, clinical and genomic analysis of first ZIKV outbreak in Rajasthan, North India and enhance routine ZIKV surveillance. METHOD Outbreak investigation was performed in 3 Km radius of the index case among patient contacts, febrile cases, and pregnant women. Routine surveillance was enhanced to include samples from various districts of Rajasthan. Presence of ZIKV in serum and urine samples was detected by real time PCR test and CDC trioplex kit. Few ZIKV positive samples were sequenced using the next-generation sequencing method for genomic analysis. RESULT On outbreak investigation 153/2043 (7.48%) cases were found positive: 1/153 (0.65%) among contacts, 90/153 (58.8%) in fever cases, 62/153(40.5%) in pregnant females. In routine surveillance, 6/4722 (0.12%) serum samples were ZIKV positive.Majority of patients had mild signs and symptoms, no case of microcephaly and Guillain- Barre Syndrome was seen, 25 (40.3%) pregnant females delivered healthy babies, four (6.4%) reported abortion and three (4.8%) had intrauterine death, one (1.6%) child had colorectal malformation and died after few days of birth. ZIKV was found to belong to Asian lineage, mutation related to enhanced neuro-virulence and transmission in animal models was not found. CONCLUSION ZIKV was endogenous to India belonging to Asian Lineage. Disease profile of the ZIKV was asymptomatic to mild. No major anomaly was observed in infants born to ZIKV positive mothers; however, long term follow up of these children is required. There is need to scale up surveillance in the virology lab network of India for early detection and control. SUMMARY LINE Zika virus infection was endogenous due to Asian Lineage with mild disease, no case of microcephaly or Guillain- Barre Syndrome was seen but children need to be followed for anomalies and surveillance of ZIKV needs to be enhanced in the country.
Collapse
|
24
|
Xing M, Ji M, Hu J, Zhu T, Chen Y, Bai X, Mwangi J, Mo G, Lai R, Jin L. Snake Cathelicidin Derived Peptide Inhibits Zika Virus Infection. Front Microbiol 2020; 11:1871. [PMID: 32849457 PMCID: PMC7417475 DOI: 10.3389/fmicb.2020.01871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus belonging to the genus Flavivirus and has reemerged in recent years with epidemic potential. ZIKV infection may result in severe syndromes such as neurological complications and microcephaly in newborns. Therefore, ZIKV has become a global public health threat and currently there is no approved specific drug for its treatment. Animal venoms are important resources of novel drugs. Cathelicidin-BF (BF-30) is a defensive peptide identified from Bungarus fasciatus snake venom and has been shown to be an excellent template for applicable peptide design. In this study, we found that ZY13, one of the peptidic analogs of BF-30, inhibits ZIKV infection in vitro and in vivo. Mechanistic studies revealed that ZY13 can directly inactivate ZIKV and reduce the production of infectious virions. Further studies also indicated that administration of ZY13 strengthen the host antiviral immunity via AXL-SOCS (suppressor of cytokine signaling protein) pathway. Additionally, the results of mouse experiment suggest that ZY13 efficiently restrict ZIKV infection and improve the growth defects of ZIKV-infected mouse pups. Together, our findings not only demonstrate that ZY13 might be a candidate for anti-ZIKV drug, but also indicated the importance of animal venom peptides as templates for antivirals development.
Collapse
Affiliation(s)
- Meichen Xing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengyao Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingmei Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengyu Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaoyao Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuewei Bai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ren Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
Agarwal A, Chaurasia D. The expanding arms of Zika virus: An updated review with recent Indian outbreaks. Rev Med Virol 2020; 31:1-9. [PMID: 33216418 DOI: 10.1002/rmv.2145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) outbreaks and their adverse clinical consequences have raised concerns throughout the world. ZIKV was little known during the initial outbreaks in Yap islands and French Polynesia, but it came to attention after the series of Brazil outbreaks in which severe complications like microcephaly in newborn babies was detected. During 2018, outbreaks of ZIKV occurred in two states of India which, being a tropical country, has congenial climatic conditions, abundance of highly competent mosquito vectors such as Aedes aegypti and Aedes albopictus, and an immunologically naïve population. In this review, we will briefly discuss the history, epidemiology, evolution, transmission (vector-borne and non-vector borne), pathogenesis, clinical signs and unusual presentations, laboratory diagnosis, treatment, prevention and control of ZIKV. Finally, we suggest priorities for urgent research required to address unanswered questions about Zika infections and help bring this virus under control.
Collapse
Affiliation(s)
- Ankita Agarwal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, India
| | - Deepti Chaurasia
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, India
| |
Collapse
|
26
|
Biswas A, Kodan P, Gupta N, Soneja M, Baruah K, Sharma KK, Meena S. Zika outbreak in India in 2018. J Travel Med 2020; 27:5733644. [PMID: 32044958 DOI: 10.1093/jtm/taaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/26/2019] [Accepted: 01/15/2019] [Indexed: 11/13/2022]
Affiliation(s)
- Ashutosh Biswas
- Department of Medicine, AIIMS, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi 110029, India
| | - Parul Kodan
- Infectious diseases, AIIMS, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi 110029, India
| | - Nitin Gupta
- Infectious diseases, AIIMS, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi 110029, India
| | - Manish Soneja
- Department of Medicine, AIIMS, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi 110029, India
| | - Kalpana Baruah
- National Vector-borne Diseases Control Programme, Directorate General Health Services, Ministry of Health and Family Welfare, Government of India, Maulana Azad Rd, New Delhi, 110011, India
| | - K K Sharma
- Department of Medical, Health and Family Welfare, Jaipur, 302001, Rajasthan, India
| | - Sheela Meena
- IDSP, Directorate of Health Services, 6th Floor, Satpura Bahawan, Bhopal - 462004
| |
Collapse
|
27
|
Kushwah RBS, Kaur T, Dykes CL, Ravi Kumar H, Kapoor N, Singh OP. A new knockdown resistance (kdr) mutation, F1534L, in the voltage-gated sodium channel of Aedes aegypti, co-occurring with F1534C, S989P and V1016G. Parasit Vectors 2020; 13:327. [PMID: 32600469 PMCID: PMC7325290 DOI: 10.1186/s13071-020-04201-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aedes aegypti is a primary vector of dengue, chikungunya and Zika infections in India. In the absence of specific drugs or safe and effective vaccines for these infections, their control relies mainly on vector control measures. The emergence of insecticide resistance in vectors, especially against pyrethroids, is a serious threat to the insecticide-based vector control programme. This study reports the presence of multiple knockdown resistance (kdr) mutations present in an Ae. aegypti population from Bengaluru (India), including a new mutation F1534L. METHODS Aedes aegypti collected from Bengaluru were subjected to insecticide susceptibility tests with DDT, deltamethrin and permethrin. The DNA sequencing of partial domain II, III and IV of the voltage-gated sodium channel (VGSC) was performed to screen kdr mutations present in the population and PCR-based assays were developed for their detection. Genotyping of kdr mutations was done using PCR-based assays, allelic frequencies were determined, and tests of genetic association of kdr mutations with the insecticide resistance phenotype were performed. RESULTS The Ae. aegypti population was resistant to DDT, deltamethrin and permethrin. The DNA sequencing of the VGSC revealed the presence of four kdr mutations, i.e. S989P and V1016G in domain II and two alternative kdr mutations F1534C and F1534L in domain III. Allele-specific PCR assays (ASPCR) were developed for the detection of kdr mutations S989P and V1016G and an existing PCR-RFLP based strategy was modified for the genotyping of all three known kdr mutations in domain III (F1534L, F1534C and T1520I). Genotyping of Ae. aegypti samples revealed a moderate frequency of S989P/V1016G (18.27%) and F1534L (17.48%), a relatively high frequency of F1534C (50.61%) and absence of T1520I in the population. Mutations S989P and V1016G were in complete linkage disequilibrium in this population while they were in linkage equilibrium with kdr mutations F1534C and F1534L. The alleles F1534C and F1534L are genetically associated with permethrin resistance. CONCLUSIONS A new kdr mutation, F1534L, was found in an Ae. aegypti population from Bengaluru (India), co-occurring with the other three mutations S989P, V1016G and F1534C. The findings of a new mutation have implications for insecticide resistance management.
Collapse
Affiliation(s)
| | - Taranjeet Kaur
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077 India
| | - Cherry L. Dykes
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077 India
| | - H. Ravi Kumar
- Department of Life Sciences, Jnanabharathi Campus, Bangalore University, Bengaluru, 560056 India
| | - Neera Kapoor
- School of Life Sciences, Indira Gandhi National Open University, Maidangarhi, Delhi, 110068 India
| | - Om P. Singh
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077 India
| |
Collapse
|
28
|
Gupta N, Yadav PD, Patil DY, Sapkal G. Preparedness of public health-care system for Zika virus outbreak: An Indian perspective. J Infect Public Health 2020; 13:949-955. [PMID: 32340832 DOI: 10.1016/j.jiph.2020.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 11/20/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus that has emerged recently and affected in many countries. Since its discovery in Uganda in 1947, two major outbreaks were reported from Yap Islands in 2007 and French Polynesia in 2013. In 2015, the first case of ZIKV infection was confirmed from Brazil followed by a report of cases from American and Caribbean countries. In February 2016, the World Health Organization declared ZIKV infection a Public Health Emergency of International Concern. India reported the first Zika case in 2017. Subsequently, 157 laboratory-confirmed cases of ZIKV including 63 pregnant women were reported from Rajasthan, India in 2018. Since 2014, many countries took initiatives to boost their public health system to combat ZIKV. However, there is still scope for the improvement. This review describes ZIKV outbreaks, diagnostic challenges, surveillance and control measures in India and the future perspective to deal with the ZIKV outbreak in India.
Collapse
Affiliation(s)
- Nivedita Gupta
- Epidemiology and Communicable Diseases, Indian Council of Medical Research, V. Ramalingaswami Bhawan, P.O. Box No. 4911, Ansari Nagar, New Delhi 110029, India.
| | - Pragya D Yadav
- ICMR-National Institute of Virology, Sus-Pashan Road, Pune, Maharashtra 411021, India
| | - Deepak Y Patil
- ICMR-National Institute of Virology, Sus-Pashan Road, Pune, Maharashtra 411021, India
| | - Gajanan Sapkal
- ICMR-National Institute of Virology, Sus-Pashan Road, Pune, Maharashtra 411021, India
| |
Collapse
|
29
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Udenze D, Trus I, Berube N, Gerdts V, Karniychuk U. The African strain of Zika virus causes more severe in utero infection than Asian strain in a porcine fetal transmission model. Emerg Microbes Infect 2019; 8:1098-1107. [PMID: 31340725 PMCID: PMC6711198 DOI: 10.1080/22221751.2019.1644967] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies in mice showed that African Zika virus (ZIKV) strains cause more damage in embryos. These studies, however, were limited to the mouse-adapted African MR766 strain or infection at early gestation. Here, we compared infection of Asian and African strains in the fetal pig model at midgestation. Both strains caused fetal infection. ZIKV was detected in placenta, amniotic membrane, amniotic fluid, fetal blood, and brain. The African strain produced more vigorous in utero infection as represented by more efficient virus transmission between siblings, and higher viral loads in fetal organs and membranes. Infection with both strains was associated with reduced fetal brain weight and increased number of placental CD163-positive cells, as well as elevated in utero interferon alpha and cortisol levels. This is the first large animal model study which demonstrated that African strain of ZIKV, with no passage history in experimental animals, can cause persistent infection in fetuses and fetal membranes at midgestation. Our studies also suggest that similar to Asian strains, ZIKV of African lineage might cause silent pathology which is difficult to identify in deceptively healthy fetuses. The findings emphasize the need for further studies to highlight the impact of ZIKV heterogeneity on infection outcomes during pregnancy.
Collapse
Affiliation(s)
- Daniel Udenze
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada.,b School of Public Health, University of Saskatchewan , Saskatoon , Canada
| | - Ivan Trus
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada
| | - Nathalie Berube
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada
| | - Volker Gerdts
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada.,c Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| | - Uladzimir Karniychuk
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada.,b School of Public Health, University of Saskatchewan , Saskatoon , Canada.,c Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
31
|
Hossain MG, Nazir KHMNH, Saha S, Rahman MT. Zika virus: A possible emerging threat for Bangladesh! J Adv Vet Anim Res 2019; 6:575-582. [PMID: 31819889 PMCID: PMC6882728 DOI: 10.5455/javar.2019.f385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Zika virus, a member of Flaviviridae is the etiology of Zika or Zika fever or Zika virus (ZIKV) disease characterized by mild symptoms similar to very mild form of Dengue or Chikungunya. The virus transmits through Aedes mosquitoes, particularly by Aedes aegypti. The most dangerous effect of ZIKV infection is the ability of the virus to cause microcephaly and congenital malformation to the newborn baby if the mother is infected. The neurological disorders including Guillain-Barré syndrome might be associated with adults and children due to ZIKV infections. Zika has emerged as a serious global public health problem as it has been found in 87 countries, particularly in Africa, America, and Asia and has no vaccine and treatment so far. Bangladesh is at a high risk of ZIKV infection and we consider ZIKV as a possible emerging threat for Bangladesh. This short review summarizes the insights of ZIKV infection, present status of the disease in Bangladesh and its neighboring countries, and recommendations for necessary preparations and strategies to be taken for effective controlling of the ZIKV infection in Bangladesh before getting any havoc.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Japan
| | - K H M Nazmul Hussain Nazir
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
32
|
Singh H, Singh OP, Akhtar N, Sharma G, Sindhania A, Gupta N, Valecha N. First report on the transmission of Zika virus by Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) during the 2018 Zika outbreak in India. Acta Trop 2019; 199:105114. [PMID: 31442386 DOI: 10.1016/j.actatropica.2019.105114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
In a recent outbreak of Zika virus (ZIKV) infection in Jaipur city (Rajasthan, India), a total of 159 cases were reported in September 2018. In order to identify vector responsible for Zika transmission, mosquitoes were collected from houses with reported Zika cases and nearby houses. A total of 108 pools containing 522 mosquitoes were tested for presence of ZIKV using RT-PCR and Real Time RT-PCR. We detected presence of ZIKV in three pools of Aedes (Stegomyia) aegypti (L.), out of a total of 79 pools with 383 Ae. aegypti through RT-PCR as well as real-time RT-PCR. The presence of ZIKV in Ae. aegypti was further confirmed by DNA sequencing of the partial envelope region of ZIKV. Homology search of DNA sequence revealed highest identity (100%) with a ZIKV isolate from human from the study area which support the role of Ae. aegypti acting as a ZIKV vector. All other mosquitoes (Aedes vittatus and Culex quinquefasciatus) were negative for ZIKV. None of the F1 generation mosquito pools (276 mosquitoes in 43 pools) were found positive. This is the first report of presence of ZIKV in Ae. aegypti from the Indian subcontinent.
Collapse
|
33
|
Austin AL, Galasso B, Nickens C, Knollmann-Ritschel B, Sharma A. Inactivation of Zika Virus by Photoactive Iodonaphthyl Azide Preserves Immunogenic Potential of the Virus. Pathogens 2019; 8:pathogens8040188. [PMID: 31614887 PMCID: PMC6963691 DOI: 10.3390/pathogens8040188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus's (ZIKV) emergence as a pathogen of significant public health importance has accelerated efforts to develop a ZIKV vaccine. To date, the need for an effective ZIKV vaccine is unmet. In this study, we report inactivation of ZIKV using a hydrophobic photoactive compound: 1, 5 iodonaphthyl azide (INA). 50 and 100 µM of INA completely inactivated ZIKV (INA-ZIKV). Western blot and ELISA analysis show some loss of the binding capacity of INA-iZIKV to anti-ZIKV monoclonal antibodies; however, immunization of mice with INA-iZIKV demonstrated seroconversion and ZIKV-neutralizing antibody response. RNA isolated from INA-iZIKV did not induce productive infection in Vero cells, suggesting inactivation of ZIKV RNA. These results suggest that in the absence of an approved ZIKV vaccine, INA-iZIKV can be pursued as a viable ZIKV vaccine candidate.
Collapse
Affiliation(s)
- Amy L Austin
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20853, USA.
| | - Bianca Galasso
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20853, USA.
| | - Caitlin Nickens
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20853, USA.
| | | | - Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20853, USA.
| |
Collapse
|
34
|
An Antiviral Peptide from Alopecosa nagpag Spider Targets NS2B-NS3 Protease of Flaviviruses. Toxins (Basel) 2019; 11:toxins11100584. [PMID: 31658707 PMCID: PMC6832551 DOI: 10.3390/toxins11100584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
Flaviviruses are single-stranded RNA viruses predominantly transmitted by the widely distributed Aedes mosquitoes in nature. As important human pathogens, the geographic reach of Flaviviruses and their threats to public health are increasing, but there is currently no approved specific drug for treatment. In recent years, the development of peptide antivirals has gained much attention. Natural host defense peptides which uniquely evolved to protect the hosts have been shown to have antiviral properties. In this study, we firstly collected the venom of the Alopecosa nagpag spider from Shangri-La County, Yunnan Province. A defense peptide named Av-LCTX-An1a (Antiviral-Lycotoxin-An1a) was identified from the spider venom, and its anti-dengue serotype-2 virus (DENV2) activity was verified in vitro. Moreover, a real-time fluorescence-based protease inhibition assay showed that An1a functions as a DENV2 NS2B-NS3 protease inhibitor. Furthermore, we also found that An1a restricts zika virus (ZIKV) infection by inhibiting the ZIKV NS2B-NS3 protease. Together, our findings not only demonstrate that An1a might be a candidate for anti-flavivirus drug but also indicate that spider venom is a potential resource library rich in antiviral precursor molecules.
Collapse
|
35
|
Zika Virus Pathogenesis: From Early Case Reports to Epidemics. Viruses 2019; 11:v11100886. [PMID: 31546589 PMCID: PMC6832697 DOI: 10.3390/v11100886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023] Open
Abstract
For the first 60 years following its isolation, Zika virus (ZIKV) remained a relatively poorly described member of the Flaviviridae family. However, since 2007, it has caused a series of increasingly severe outbreaks and is now associated with neurological symptoms such as Guillain-Barré syndrome and congenital Zika syndrome (CZS). A number of reports have improved our understanding of rare complications that may be associated with ZIKV infection in adults, the areas of the body to which it spreads, and viral persistence in various tissues. Likewise, studies on the effect of ZIKV infection during pregnancy have identified risk factors for CZS and the impact this syndrome has on early childhood. Understanding these outcomes and the factors that drive ZIKV pathogenesis are key to developing vaccination and therapeutic approaches to avoid these severe and potentially debilitating symptoms.
Collapse
|
36
|
Grubaugh ND, Saraf S, Gangavarapu K, Watts A, Tan AL, Oidtman RJ, Ladner JT, Oliveira G, Matteson NL, Kraemer MUG, Vogels CBF, Hentoff A, Bhatia D, Stanek D, Scott B, Landis V, Stryker I, Cone MR, Kopp EW, Cannons AC, Heberlein-Larson L, White S, Gillis LD, Ricciardi MJ, Kwal J, Lichtenberger PK, Magnani DM, Watkins DI, Palacios G, Hamer DH, Gardner LM, Perkins TA, Baele G, Khan K, Morrison A, Isern S, Michael SF, Andersen KG. Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell 2019; 178:1057-1071.e11. [PMID: 31442400 PMCID: PMC6716374 DOI: 10.1016/j.cell.2019.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/15/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
Abstract
The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Sharada Saraf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander Watts
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Amanda L Tan
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA; Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL 33612, USA
| | - Rachel J Oidtman
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jason T Ladner
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Glenn Oliveira
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathaniel L Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moritz U G Kraemer
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK; Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Aaron Hentoff
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Deepit Bhatia
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Danielle Stanek
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL 32399, USA
| | - Blake Scott
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL 32399, USA
| | - Vanessa Landis
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL 32399, USA
| | - Ian Stryker
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL 33612, USA
| | - Marshall R Cone
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL 33612, USA
| | - Edgar W Kopp
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL 33612, USA
| | - Andrew C Cannons
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL 33612, USA
| | - Lea Heberlein-Larson
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL 33612, USA
| | - Stephen White
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Miami, FL 33125, USA
| | - Leah D Gillis
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Miami, FL 33125, USA
| | - Michael J Ricciardi
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jaclyn Kwal
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paola K Lichtenberger
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Diogo M Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; MassBiologics, University of Massachusetts Medical School, Boston, MA 02126, USA
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gustavo Palacios
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Boston, MA 02118, USA; Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Lauren M Gardner
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kamran Khan
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Andrea Morrison
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL 32399, USA
| | - Sharon Isern
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Scott F Michael
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA.
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Research Translational Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Vieira CJDSP, Machado LC, Pena LJ, de Morais Bronzoni RV, Wallau GL. Spread of two Zika virus lineages in Midwest Brazil. INFECTION GENETICS AND EVOLUTION 2019; 75:103974. [PMID: 31340185 DOI: 10.1016/j.meegid.2019.103974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Accepted: 07/19/2019] [Indexed: 01/25/2023]
Abstract
Zika virus (ZIKV) has been intensively studied in South America and across the globe since 2015-2016 epidemics. However, in Brazil - the largest and the most affected country in terms of human infection by this virus, most of the viral molecular information is restricted to metropolitan centers distributed along the Brazilian coast and almost no information is known about the virus spread in most difficult access areas such as the Midwest region of the country. Here, we report two ZIKV complete genomes from samples obtained during arboviral surveillance at the Sinop city, southern border of the Amazonian forest, Midwest Brazil in 2015. Our results show that the virus was introduced in this region through two independent introductions: one occurred at the end of 2014, around the period that the virus was already distributed in other regions of the country and abroad, and a second at the end of 2015. Moreover, these genomes were clustered with other viral strains sampled at distant Brazilian states in line with other findings about the rapid spread of the virus throughout the country.
Collapse
Affiliation(s)
| | - Laís Ceschini Machado
- Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Lindomar José Pena
- LaVITE - Laboratory of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | - Gabriel Luz Wallau
- Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil.
| |
Collapse
|
38
|
Pomar L, Musso D, Malinger G, Vouga M, Panchaud A, Baud D. Zika virus during pregnancy: From maternal exposure to congenital Zika virus syndrome. Prenat Diagn 2019; 39:420-430. [PMID: 30866073 DOI: 10.1002/pd.5446] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Léo Pomar
- Department "Woman-Mother-Child", Lausanne University Hospital, Materno-Fetal and Obstetrics Research Unit, Lausanne, Switzerland
| | - Didier Musso
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée infection, Marseille, France
- Private practitioner, Punaauia, Tahiti, French Polynesia
| | - Gustavo Malinger
- Division of Ultrasound in Obstetrics & Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center & Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Manon Vouga
- Department "Woman-Mother-Child", Lausanne University Hospital, Materno-Fetal and Obstetrics Research Unit, Lausanne, Switzerland
| | - Alice Panchaud
- School of Pharmaceutical Sciences, Geneva University and Service of Pharmacy, Lausanne University Hospital, Lausanne, Switzerland
| | - David Baud
- Department "Woman-Mother-Child", Lausanne University Hospital, Materno-Fetal and Obstetrics Research Unit, Lausanne, Switzerland
| |
Collapse
|
39
|
Rolph MS, Mahalingam S. Zika's passage to India. THE LANCET. INFECTIOUS DISEASES 2019; 19:469-470. [DOI: 10.1016/s1473-3099(19)30169-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
40
|
Dandabathula G, Bhardwaj P, Burra M, Rao PVVP, Rao SS. Impact assessment of India's Swachh Bharat Mission - Clean India Campaign on acute diarrheal disease outbreaks: Yes, there is a positive change. J Family Med Prim Care 2019; 8:1202-1208. [PMID: 31041274 PMCID: PMC6482782 DOI: 10.4103/jfmpc.jfmpc_144_19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Enough evidence exists to attribute the occurrence of diarrheal disease outbreaks due to open defecation practice and unsafe sanitation methods. Open defecation enables pathogens such as virus, bacteria, and protozoa to infect humans by means of fecal-oral transmission methods through contaminated fluids, water, and fomites. To curb the malefic effects of open defecation, the Indian government had initiated pro sanitation program namely Swachh Bharat Mission (SBM) in 2014. SBM became the world's largest toilet-building initiative. More than 95 million toilets have been built across rural and urban India since the launch of this mission. This articulation summarizes the trend analysis of acute diarrheal disease (ADD) outbreaks over a 9-year period with emphasis on changes due to the building of toilets under the clean India campaign. METHODS Weekly ADD outbreaks data from national-level Integrated Disease Surveillance Program between 2010 and 2018 were used for trend analysis along with the number of toilets constructed in rural areas under SBM from the year 2014. RESULTS ADD outbreaks were analyzed from 2010 to 2018. The number of ADD outbreaks per year during the past 2 years (i.e., 2017 and 2018) of SBM regime was lesser than in any year during the investigation period. Seasonal variations during the months of May, June, July, and August account for 55%-60% of ADD outbreaks in any of the years; but for 2018, the total outbreaks were 46%, which is significantly lower than that of regular range of outbreaks in the peak season. CONCLUSION The recent pattern of ADD outbreaks exhibits a declining rate.
Collapse
Affiliation(s)
| | - Pankaj Bhardwaj
- Department of Community Medicine and Family Medicine, AIIMS, Jodhpur, Rajasthan, India
| | - Mithilesh Burra
- Department of General Medicine, Zaporozhye State Medical University, Ukraine
| | | | - Srinivasa S. Rao
- Regional Remote Sensing Centre – West, NRSC/ISRO, Jodhpur, Rajasthan, India
| |
Collapse
|