1
|
Bajaj A, Blum K, Bowirrat A, Gupta A, Baron D, Fugel D, Nicholson A, Fitch T, Downs BW, Bagchi D, Dennen CA, Badgaiyan RD. DNA Directed Pro-Dopamine Regulation Coupling Subluxation Repair, H-Wave® and Other Neurobiologically Based Modalities to Address Complexities of Chronic Pain in a Female Diagnosed with Reward Deficiency Syndrome (RDS): Emergence of Induction of “Dopamine Homeostasis” in the Face of the Opioid Crisis. J Pers Med 2022; 12:jpm12091416. [PMID: 36143203 PMCID: PMC9503998 DOI: 10.3390/jpm12091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Addiction is a complex multifactorial condition. Established genetic factors can provide clear guidance in assessing the risk of addiction to substances and behaviors. Chronic stress can accumulate, forming difficult to recognize addiction patterns from both genetic and epigenetic (environmental) factors. Furthermore, psychological/physical/chemical stressors are typically categorized linearly, delaying identification and treatment. The patient in this case report is a Caucasian female, aged 36, who presented with chronic pain and partial disability following a surgically repaired trimalleolar fracture. The patient had a history of unresolved attention deficit disorder and an MRI scan of her brain revealed atrophy and functional asymmetry. In 2018, the patient entered the Bajaj Chiropractic Clinic, where initial treatment focused on re-establishing integrity of the spine and lower extremity biomechanics and graduated into cognitive behavior stabilization assisted by DNA pro-dopamine regulation guided by Genetic Addiction Risk Severity testing. During treatment (2018–2021), progress achieved included: improved cognitive clarity, focus, sleep, anxiety, and emotional stability in addition to pain reduction (75%); elimination of powerful analgesics; and reduced intake of previously unaddressed alcoholism. To help reduce hedonic addictive behaviors and pain, coupling of H-Wave with corrective chiropractic care seems prudent. We emphasize the importance of genetic assessment along with attempts at inducing required dopaminergic homeostasis via precision KB220PAM. It is hypothesized that from preventive care models, a new standard is emerging including self-awareness and accountability for reward deficiency as a function of hypodopaminergia. This case study documents the progression of a patient dealing with the complexities of an injury, pain management, cognitive impairment, anxiety, depression, and the application of universal health principles towards correction versus palliative care.
Collapse
Affiliation(s)
- Anish Bajaj
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, and Primary Care, (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA
- Correspondence:
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, and Primary Care, (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA
| | - David Fugel
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | | | - Taylor Fitch
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | - B. William Downs
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Southern University College of Pharmacy, Houston, TX 77004, USA
| | - Catherine A. Dennen
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Madigan MA, Gupta A, Bowirrat A, Baron D, Badgaiyan RD, Elman I, Dennen CA, Braverman ER, Gold MS, Blum K. Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116395. [PMID: 35681980 PMCID: PMC9180535 DOI: 10.3390/ijerph19116395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
This brief commentary aims to provide an overview of the available and relatively new precision management of reward deficiencies manifested as substance and behavioral disorders. Current and future advances, concepts, and the substantial evidential basis of this potential therapeutic and prophylactic treatment modality are presented. Precision Behavioral Management (PBM), conceptualized initially as Precision Addiction Management (PAM), certainly deserves consideration as an important modality for the treatment of impaired cognitive control in reward processing as manifested in people with neurobiologically expressed Reward Deficiency Syndrome (RDS).
Collapse
Affiliation(s)
- Margaret A. Madigan
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - David Baron
- Center for Psychiatry, Medicine, & Primary Care (Office of Provost), Division of Addiction Research & Education, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Catherine A. Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
- Center for Psychiatry, Medicine, & Primary Care (Office of Provost), Division of Addiction Research & Education, Western University Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton VA Medical Centre, Dayton, OH 45324, USA
- Correspondence:
| |
Collapse
|
3
|
Gold MS, Baron D, Bowirrat A, Blum K. Neurological correlates of brain reward circuitry linked to opioid use disorder (OUD): Do homo sapiens acquire or have a reward deficiency syndrome? J Neurol Sci 2020; 418:117137. [PMID: 32957037 PMCID: PMC7490287 DOI: 10.1016/j.jns.2020.117137] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The extant literature confirms that an array of polymorphic genes related to- neurotransmitters and second messengers govern the net release of dopamine in the Nucleus Accumbens (NAc) in the mesolimbic region of the brain. They are linked predominantly to motivation, anti-stress, incentive salience (wanting), and wellbeing. Notably, in 2000 the Nobel Prize was awarded to Carlsson, Greengard, and Kandel for their work on the molecular and cellular function of dopaminergic activity at neurons. This historical psychopharmacological work involved neurotransmission of serotonin, endorphins, glutamate, and dopamine, and the seminal work of Blum, Gold, Volkow, Nestler, and others related to neurotransmitter function and related behaviors. Currently, Americans are facing their second and worst opioid epidemic, prescribed opioids, and easy access drive this epidemic of overdoses, and opioid use disorders (OUDs). Presently the clinical consensus is to treat OUD, as if it were an opioid deficiency syndrome, with long-term to life-long opioid substitution therapy. Opioid agonist administration is seen as necessary to replace missing opioids, treat OUD, and prevent overdoses, like insulin is used to treat diabetes. Treatment of OUD and addiction, in general, is similar to the endocrinopathy conceptualization in that it views opioid agonist MATs as an essential core to therapy. Is this approach logical? Other than as harm reduction, is using opioids to treat OUD therapeutic or harmful in the long term? This historical Trieste provides a molecular framework to understand the current underpinnings of endorphinergic/dopaminergic mechanisms related to opioid deficiency syndrome and generalized reward processing depletion. WC 249.
Collapse
Affiliation(s)
- Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.
| | - David Baron
- Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, United States
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | - Kenneth Blum
- Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, United States
| |
Collapse
|
4
|
Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci Biobehav Rev 2020; 115:164-188. [PMID: 32360413 DOI: 10.1016/j.neubiorev.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Individuals with mood disorders or with addiction, impulsivity and some personality disorders can share in common a dysfunction in how the brain perceives reward, where processing of natural endorphins or the response to exogenous dopamine stimulants is impaired. Reward Deficiency Syndrome (RDS) is a polygenic trait with implications that suggest cross-talk between different neurological systems that include the known reward pathway, neuroendocrine systems, and motivational systems. In this review we evaluate well-characterized animal models for their construct validity and as potential models for RDS. Animal models used to study substance use disorder, major depressive disorder (MDD), early life stress, immune dysregulation, attention deficit hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), compulsive gambling and compulsive eating disorders are discussed. These disorders recruit underlying reward deficiency mechanisms in multiple brain centers. Because of the widespread and remarkable array of associated/overlapping behavioral manifestations with a common root of hypodopaminergia, the basic endophenotype recognized as RDS is indeed likened to a behavioral octopus. We conclude this review with a look ahead on how these models can be used to investigate potential therapeutics that target the underlying common deficiency.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States.
| | - Rosemary Bassey
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, 500 Hofstra University, Hempstead, NY 11549, United States
| | - Kenneth Blum
- Western University Health Sciences, Graduate College of Biomedical Sciences, Pomona, California, United States
| |
Collapse
|
5
|
Abijo T, Blum K, Gondré-Lewis MC. Neuropharmacological and Neurogenetic Correlates of Opioid Use Disorder (OUD) As a Function of Ethnicity: Relevance to Precision Addiction Medicine. Curr Neuropharmacol 2020; 18:578-595. [PMID: 31744450 PMCID: PMC7457418 DOI: 10.2174/1570159x17666191118125702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Over 100 people die daily from opioid overdose and $78.5B per year is spent on treatment efforts, however, the real societal cost is multifold greater. Alternative strategies to eradicate/manage drug misuse and addiction need consideration. The perception of opioid addiction as a social/criminal problem has evolved to evidence-based considerations of them as clinical disorders with a genetic basis. We present evaluations of the genetics of addiction with ancestryspecific risk profiles for consideration. OBJECTIVE Studies of gene variants associated with predisposition to substance use disorders (SUDs) are monolithic, and exclude many ethnic groups, especially Hispanics and African Americans. We evaluate gene polymorphisms that impact brain reward and predispose individuals to opioid addictions, with a focus on the disparity of research which includes individuals of African and Hispanic descent. METHODOLOGY PubMed and Google Scholar were searched for: Opioid Use Disorder (OUD), Genome- wide association studies (GWAS); genetic variants; polymorphisms, restriction fragment length polymorphisms (RFLP); genomics, epigenetics, race, ethnic group, ethnicity, ancestry, Caucasian/ White, African American/Black, Hispanic, Asian, addictive behaviors, reward deficiency syndrome (RDS), mutation, insertion/deletion, and promotor region. RESULTS Many studies exclude non-White individuals. Studies that include diverse populations report ethnicity-specific frequencies of risk genes, with certain polymorphisms specifically associated with Caucasian and not African-American or Hispanic susceptibility to OUD or SUDs, and vice versa. CONCLUSION To adapt precision medicine-based addiction management in a blended society, we propose that ethnicity/ancestry-informed genetic variations must be analyzed to provide real precision- guided therapeutics with the intent to attenuate this uncontrollable fatal epidemic.
Collapse
Affiliation(s)
| | | | - Marjorie C. Gondré-Lewis
- Address correspondence to this author at the Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington DC 20059 USA; Tel/Fax: +1-202-806-5274; E-mail:
| |
Collapse
|
6
|
Baron D, Blum K, Chen A, Gold M, Badgaiyan RD. Conceptualizing Addiction From an Osteopathic Perspective: Dopamine Homeostasis. J Osteopath Med 2019; 118:115-118. [PMID: 29379966 DOI: 10.7556/jaoa.2018.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Addiction is a public health crisis in the United States. Understanding the cause and providing effective treatment for patients-in particular, those with substance use disorders-is challenging. Research has demonstrated that addiction is not a flaw in one's moral fiber or a disease of choice; rather, it is driven by alterations in neuronal mechanisms, especially those that involve the neurotransmitter dopamine, which plays a critical role in the brain's reward pathway. Much of osteopathic philosophy is based on the concept of total body homeostasis and allostasis. This article discusses the role of achieving dopamine homeostasis as part of a comprehensive biopsychosocial treatment strategy in the effective management of addiction. The authors aim to motivate osteopathic primary care physicians to incorporate osteopathic philosophy into the treatment of patients with substance use disorders.
Collapse
|
7
|
McLaughlin T, Blum K, Steinberg B, Modestino EJ, Fried L, Baron D, Siwicki D, Braverman ER, Badgaiyan RD. Pro-dopamine regulator, KB220Z, attenuates hoarding and shopping behavior in a female, diagnosed with SUD and ADHD. J Behav Addict 2018; 7:192-203. [PMID: 29316800 PMCID: PMC6035027 DOI: 10.1556/2006.6.2017.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Addictive-like behaviors (e.g., hoarding and shopping) may be the result of the cumulative effects of dopaminergic and other neurotransmitter genetic variants as well as elevated stress levels. We, therefore, propose that dopamine homeostasis may be the preferred goal in combating such challenging and unwanted behaviors, when simple dopaminergic activation through potent agonists may not provide any resolution. Case presentation C.J. is a 38-year-old, single, female, living with her mother. She has a history of substance use disorder as well as attention deficit hyperactivity disorder, inattentive type. She had been stable on buprenorphine/naloxone combination and amphetamine, dextroamphetamine mixed salts for many years when unexpectedly she lost her job for oversleeping and not calling into work. KB200z (a pro-dopamine compound) was added to her regimen for complaints of low drive and motivation. After taking this nutraceutical for 4 weeks, she noticed a marked improvement in her mental status and many behaviors. She noted that her shopping and hoarding addictions had appreciably decreased. Furthermore, her lifelong history of terrifying lucid dreams was eliminated. Finally, she felt more in control; her locus of control shifted from external to more internal. Discussion The hypothesis is that C.J.'s reported, behavioral, and psychological benefits resulted from the pro-dopamine-regulating effect of KB220Z across the brain reward system. Conclusions This effect, we surmise, could be the result of a new dopamine balance, across C.J.'s brain reward system. Dopamine homeostasis is an effect of KB220Z seen in both animal and human placebo-controlled fMRI experiments.
Collapse
Affiliation(s)
- Thomas McLaughlin
- 1 Department of Psychopharmacology, Center for Psychiatric Medicine , Lawrence, MA, USA
| | - Kenneth Blum
- 2 Department of Psychiatry, Boonshoft School of Medicine, Dayton VA Medical Center, Wright State University , Dayton, OH, USA
- 3 Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine , Gainesville, FL, USA
- 4 Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California , Los Angeles, CA, USA
- 5 Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC , North Kingstown, RI, USA
- 6 Department of Precision Medicine, Geneus Health LLC , San Antonio, TX, USA
- 7 Department of Addiction Research & Therapy, Nupathways Inc. , Innsbrook, MO, USA
- 8 Department of Clinical Neurology, Path Foundation , New York, NY, USA
- 9 Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center , Port Saint Lucie, FL, USA
- 10 Institute of Psychology, Eötvös Loránd University , Budapest, Hungary
| | - Bruce Steinberg
- 11 Department of Psychology, Curry College , Milton, MA, USA
| | | | - Lyle Fried
- 9 Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center , Port Saint Lucie, FL, USA
| | - David Baron
- 4 Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California , Los Angeles, CA, USA
| | - David Siwicki
- 6 Department of Precision Medicine, Geneus Health LLC , San Antonio, TX, USA
| | - Eric R Braverman
- 8 Department of Clinical Neurology, Path Foundation , New York, NY, USA
| | | |
Collapse
|
8
|
Febo M, Blum K, Badgaiyan RD, Perez PD, Colon-Perez LM, Thanos PK, Ferris CF, Kulkarni P, Giordano J, Baron D, Gold MS. Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z. PLoS One 2017; 12:e0174774. [PMID: 28445527 PMCID: PMC5405923 DOI: 10.1371/journal.pone.0174774] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/15/2017] [Indexed: 11/20/2022] Open
Abstract
Dopaminergic reward dysfunction in addictive behaviors is well supported in the literature. There is evidence that alterations in synchronous neural activity between brain regions subserving reward and various cognitive functions may significantly contribute to substance-related disorders. This study presents the first evidence showing that a pro-dopaminergic nutraceutical (KB220Z) significantly enhances, above placebo, functional connectivity between reward and cognitive brain areas in the rat. These include the nucleus accumbens, anterior cingulate gyrus, anterior thalamic nuclei, hippocampus, prelimbic and infralimbic loci. Significant functional connectivity, increased brain connectivity volume recruitment (potentially neuroplasticity), and dopaminergic functionality were found across the brain reward circuitry. Increases in functional connectivity were specific to these regions and were not broadly distributed across the brain. While these initial findings have been observed in drug naïve rodents, this robust, yet selective response implies clinical relevance for addicted individuals at risk for relapse, who show reductions in functional connectivity after protracted withdrawal. Future studies will evaluate KB220Z in animal models of addiction.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Psychiatry, Wright State University, Boonshoft School of Medicine, Dayton, Ohio, United States of America
- Department of Holistic Medicine, National Institute for Holistic Addiction Studies, North Miami Beach, Florida, United States of America
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, Rhode Island, United States of America
- Department of Psychiatry, Keck Medicine University of Southern California, Los Angeles, California, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Wright State University, Boonshoft School of Medicine, Dayton, Ohio, United States of America
| | - Pablo D. Perez
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Luis M. Colon-Perez
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Panayotis K. Thanos
- Research Institute on Addictions, University at Buffalo, Buffalo, New York, United States of America
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - John Giordano
- Department of Holistic Medicine, National Institute for Holistic Addiction Studies, North Miami Beach, Florida, United States of America
| | - David Baron
- Department of Psychiatry, Keck Medicine University of Southern California, Los Angeles, California, United States of America
| | - Mark S. Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Psychiatry, Keck Medicine University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Blum K, Febo M, Badgaiyan RD, Demetrovics Z, Simpatico T, Fahlke C, Li M, Dushaj K, Gold MS. Common Neurogenetic Diagnosis and Meso-Limbic Manipulation of Hypodopaminergic Function in Reward Deficiency Syndrome (RDS): Changing the Recovery Landscape. Curr Neuropharmacol 2017; 15:184-194. [PMID: 27174576 PMCID: PMC5327445 DOI: 10.2174/1570159x13666160512150918] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In 1990, Blum and associates provided the first confirmed genetic link between the DRD2 polymorphisms and alcoholism. This finding was based on an earlier conceptual framework, which served as a blueprint for their seminal genetic association discovery they termed "Brain Reward Cascade." These findings were followed by a new way of understanding all addictive behaviors (substance and non-substance) termed "Reward Deficiency Syndrome" (RDS). RDS incorporates a complex multifaceted array of inheritable behaviors that are polygenic. OBJECTIVE In this review article, we attempt to clarify these terms and provide a working model to accurately diagnose and treat these unwanted behaviors. METHOD We are hereby proposing the development of a translational model we term "Reward Deficiency Solution System™" that incorporates neurogenetic testing and meso-limbic manipulation of a "hypodopaminergic" trait/state, which provides dopamine agonistic therapy (DAT) as well as reduced "dopamine resistance," while embracing "dopamine homeostasis." RESULT The result is better recovery and relapse prevention, despite DNA antecedents, which could impact the recovery process and relapse. Understanding the commonality of mental illness will transform erroneous labeling based on symptomatology, into a genetic and anatomical etiology. WC: 184.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, USA
- Department of Nutrigenomics, RDSolutions, Inc., Salt Lake City, UT, USA
- Department of Psychology, Eotvos Lorand University, Budapest, Hungary
- PATH Foundation NY, New York, NY, USA
- Division of Neuroscience Research and Addiction Therapy, The Shores Treatment and Recovery, Port Saint Lucie, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, USA
| | - Rajendra D. Badgaiyan
- Division of Neuroimaging, Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA;
| | - Zsolt Demetrovics
- Department of Psychology, Eotvos Lorand University, Budapest, Hungary
| | - Thomas Simpatico
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Claudia Fahlke
- Department of Psychology, University of Gothenburg, Göteborg, Sweden;
| | - Oscar-Berman M
- Departments of Psychiatry and Anatomy & Neurobiology, Boston University School of Medicine and Boston VA Healthcare System, Boston, MA, USA
| | - Mona Li
- PATH Foundation NY, New York, NY, USA
| | | | | |
Collapse
|
10
|
Blum K, Atzmon G, Baron D, Badgaiyan RD. Hypothesizing Molecular Genetics of the Holocaust: Were Dopaminergic Genes Involved or Brain Wash? SOJ PSYCHOLOGY 2016; 3:1-5. [PMID: 34708151 PMCID: PMC8547313 DOI: 10.15226/2374-6874/3/2/00129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous studies indicated that the prevalence of certain alleles of the dopamine D2 receptor gene (DRD2) vary across different ethnic groups. Under adverse environmental conditions, these alleles can increase the risk of developing psychiatric symptoms. Thus, we hypothesized that the prevalence of the DRD2 gene Taq IA allele may serve to explain the horrific behaviours practiced by the Nazi regime. Hitler's 'Brain Washing' methods goaded his followers to carry out genocide at a time when carriers of the DRD2 TaqIA allele (the so called 'aggressive--genotype') were significantly higher among the Aryan Germans compared to resident German Jews. It would be of interest, to genotype the Jewish Holocaust survivors, to determine whether those with the Taq AI allele survived in greater numbers. The hypothesis being that, greater survival may result in enhanced frequency of not only the DRD2 AI allele but other reward gene polymorphisms among survivors. Understanding the molecular genetics of any population in terms of reward dependence and subsequent behaviours will be most beneficial in future human interaction whether negative (war) or positive (peace) in nature.
Collapse
Affiliation(s)
- Kenneth Blum
- Departments of Psychiatry and Behavioural Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH (IE)
| | - Gil Atzmon
- Departments of Medicine and Genetics, Albert Einstein School of Medicine, Bronx, New York, USA and Departments of Medical Sciences and Human biology Haifa University, Haifa, Israel
| | - David Baron
- Departments of Psychiatry and Behavioural Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - RD Badgaiyan
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH (IE)
| |
Collapse
|
11
|
Blum K, Marcelo F, Dushaj K, Fried L, Badgaiyan RD. "Pro-dopamine regulation (KB220Z™)" as a long-term therapeutic modality to overcome reduced resting state dopamine tone in opiate/opioid epidemic in America. JOURNAL OF SYSTEMS AND INTEGRATIVE NEUROSCIENCE 2016; 2:162-165. [PMID: 28491463 PMCID: PMC5421552 DOI: 10.15761/jsin.1000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since it is known that relapse, morality, and hospitalizations have been tied to the presence of the Dopamine D2 Receptor A1 allele, as one example, and carriers of this gene variant have a proclivity to favor amino-acid therapy, it seems intuitive that the incorporation of modalities to provide a balance and or restoration of hypodopaminergia should be considered as a front-line tactic to overcome the current American opiate/opioid epidemic, saving millions from death and unwanted locked-in-addiction. If we continue down the prim road path of fighting addiction to narcotics with narcotics, we are doomed to fail. This lesson can also have global interest.
Collapse
Affiliation(s)
- K Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC., North Kingstown, RI, USA
- Synaptamine, Inc., Austin, TX, USA
- Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA
- Division of Personalized Medicine, IGENE, LLC., Austin, TX, USA
- Division of Molecular Neurobiology, LaVitaRDS, Salt Lake City, UT, USA
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
- Department of Clinical Psychology and Addiction, Eötvös Loránd University, Hungary
| | - F Marcelo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - K Dushaj
- Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - L Fried
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
| | - R D Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University at Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Blum K, Whitney D, Fried L, Febo M, Waite RL, Braverman ER, Dushaj K, Li M, Giordano J, Demetrovics Z, Badgaiyan RD. Hypothesizing that a Pro-Dopaminergic Regulator (KB220z ™ Liquid Variant) can Induce "Dopamine Homeostasis" and Provide Adjunctive Detoxification Benefits in Opiate/Opioid Dependence. CLINICAL MEDICAL REVIEWS AND CASE REPORTS 2016; 3:125. [PMID: 29034323 PMCID: PMC5638455 DOI: 10.23937/2378-3656/1410125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to explore the initiation of detoxification of addictive patients to opiates/opioids (along with some other anti-withdrawal agents), we developed a protocol to be utilized in treatment centers particularly with heavily dependent opiate/opioid subjects. Out of 17 subjects, only three received Buprenorphine/Naloxone (Bup/nx) along with KB220Z. In this pilot, we first used a dose of KB220Z of 2 oz twice daily before meals along with clonidine and benzodiazepines and other anti-nausea and sleep aids including Gabapentin. The dose of KB220Z was maintained for 6 days in five individuals. In a second scenario, we utilized a higher dose of 4 oz every 6 hours, over a 6-day period. The higher dose was employed in another 12 patients. It is noteworthy that only 3 people have relapsed utilizing these two protocols during the first two weeks of the study, allowing for the remaining 82% to be maintained on KB220Z. The patients have been maintained without any additional Bup/nx for a minimum of 120 days and in one subject, 214 days. We are in the process of testing this hypothesis in multiple treatment centers across the United Sates utilizing data from the Clinical opiate Withdrawal Scale (COWS) pre and post KB220Z. We are in the process of testing this hypothesis in multiple treatment centers across the United Sates. While this does not constitute an acceptable controlled experiment, it does provide some preliminary evidence that agrees with an earlier study. Moreover, because of the utilization of standard detoxifying agents in this detoxification protocol, we cannot make any inference to KB220Z's effects. However, out of 17 subjects, only three required Bup/nx suggesting an interesting finding. If further confirmed in larger studies, the utilization for opiate/opioid detoxification may provide a novel way to eliminate the need for addictive opioids during withdrawal and detoxification. This paradigm shift may translate to a reduction in utilizing powerful and addictive opioids like buprenorphine and methadone (especially in these patients at high genetic risk for addiction) as not only detoxifying agents, but also maintenance drugs. While extensive research is required, this pilot paves the way for future investigations that could assist in the reduction of addictive opiate/opioid use and mortalities amongst both the young and old in America.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, USA
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, USA
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, USA
- Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, USA
- Division of Clinical Neurology, Path Foundation New York, USA
- Division of Personalized Medicine, IGENE, LLC, USA
- Division of Molecular Neurobiology, LaVitaRDS, USA
- National Institute for Holistic Studies in Addiction, USA
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, USA
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Hungary
| | - Debra Whitney
- Division of Clinical Addiction Medicine, Pure Recovery, USA
| | - Lye Fried
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, USA
| | - Marcelo Febo
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, USA
| | - Roger L Waite
- National Institute for Holistic Studies in Addiction, USA
| | | | | | - Mona Li
- Division of Personalized Medicine, IGENE, LLC, USA
| | - John Giordano
- National Institute for Holistic Studies in Addiction, USA
| | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Hungary
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University at Minnesota, USA
| |
Collapse
|
13
|
Vitali M, Napolitano C, Berman MO, Minuto SF, Battagliese G, Attilia ML, Braverman ER, Romeo M, Blum K, Ceccanti M. Neurophysiological Measures and Alcohol Use Disorder (AUD): Hypothesizing Links between Clinical Severity Index and Molecular Neurobiological Patterns. ACTA ACUST UNITED AC 2016; 5. [PMID: 28090374 PMCID: PMC5231399 DOI: 10.4172/2155-6105.1000181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background In 1987, Cloninger proposed a clinical description and classification of different personality traits genetically defined and independent from each other. Moreover, he elaborated a specific test the TCI to investigate these traits/states. The study of craving in Alcohol Use Disorder (AUD) assumed a greater significance, since ever more data seems to suggest a direct correlation between high levels of craving and a higher risk of relapse in alcoholics. Thus, our study aim is to explore the possible correlations among TCI linked molecular neurobiological pattern (s), craving and alcohol addiction severity measures in a sample of Italian alcoholics. Materials and Methods 191 alcoholics were recruited in a Day Hospital (DH) setting at the Alcohol Addiction Program Latium Region Referral Center, Sapienza University of Rome. After 7 days detoxification treatment a psychodiagnostic protocol was administered, including TCI, VAS-C, ASI and SADQ. All patients signed an Institutional Review Board (IRB) approved informed consent. Results Principally, we detected a significant positive correlation between HA-scale scores and the VAS scale: increasing in HA-scale corresponds to an increase in craving perception for both intensity (r=0.310; p ≤ 0.001) and frequency (r=0.246; p ≤ 0.001). Moreover, perception of dependence severity, measured with SADQ was also found to be significantly associated positively to both HA-scale (r=0.246; p ≤ 0.001) and NS-scale (r=0.224; p ≤ 0.01). While, for character scales, Persistence (r=−0.195; p=.008) and Self-directedness (r=−0.294; p ≤ 0.001) was negatively associated with ASI linked to alcohol problems. Self-directedness was also negatively correlated with ASI linked to family and social problems (r=−0.349; p ≤ 0.001), employment and support problems (r=−0.220; p=0.003) and psychiatric problems (r=−0.358; p ≤ 0.001). Cooperativeness was a negative correlate with Legal Problems (r=−0.173; p=0.019). and Self-Transcendence was positive correlated with Medical Problems (r=0.276; p ≤ 0.001) Conclusions In view of recent addiction neurobiological theories, such as the “Reward Deficiency Syndrome (RDS)” and the Koob model, our data could suggest that our cohort of patients could possibly be in a particular stage of the course of their addiction history. Thus, if our hypothesis will be confirmed, the TCI-based assessment of alcoholics would allow an optimization of the treatment. Clinicians understanding these newer concepts will be able to translate this information to their patients and potentially enhance clinical outcome (s), because it could suggest a functional hypothesis of neurotransmitter circuits that helps to frame the patient in his/her history of addiction.
Collapse
Affiliation(s)
- Mario Vitali
- Alcohol Addiction Program Latium Region Referral Center, Sapienza University of Rome
| | - Carmen Napolitano
- Alcohol Addiction Program Latium Region Referral Center, Sapienza University of Rome
| | - Marlene Oscar Berman
- Department of Psychiatry and Neurology, Boston University School of Medicine and Veterans Administration System, Boston, Massachusetts, USA
| | | | - Gemma Battagliese
- Alcohol Addiction Program Latium Region Referral Center, Sapienza University of Rome
| | - Maria Luisa Attilia
- Alcohol Addiction Program Latium Region Referral Center, Sapienza University of Rome
| | - Eric R Braverman
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida, USA; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA
| | - Marina Romeo
- Alcohol Addiction Program Latium Region Referral Center, Sapienza University of Rome
| | - Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida, USA; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA; Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California, USA; Department of Psychiatry & Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, Vermont, USA; Department of Nutrigenomics, RD Solutions, LLC, La Jolla, California, USA; Department of Personalized Medicine, IGENE, LLC, Austin, Texas, USA; Dominion Diagnostics, LLC, North Kingstown, Rhode Island, USA; Basic & Clinical Research Center, Victory Nutrition, LLC., Austin, Texas, USA
| | - Mauro Ceccanti
- Alcohol Addiction Program Latium Region Referral Center, Sapienza University of Rome
| |
Collapse
|
14
|
Gold MS, Badgaiyan RD, Blum K. A Shared Molecular and Genetic Basis for Food and Drug Addiction: Overcoming Hypodopaminergic Trait/State by Incorporating Dopamine Agonistic Therapy in Psychiatry. Psychiatr Clin North Am 2015; 38:419-62. [PMID: 26300032 DOI: 10.1016/j.psc.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This article focuses on the shared molecular and neurogenetics of food and drug addiction tied to the understanding of reward deficiency syndrome. Reward deficiency syndrome describes a hypodopaminergic trait/state that provides a rationale for commonality in approaches for treating long-term reduced dopamine function across the reward brain regions. The identification of the role of DNA polymorphic associations with reward circuitry has resulted in new understanding of all addictive behaviors.
Collapse
Affiliation(s)
- Mark S Gold
- Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Rivermend Health Scientific Advisory Board, 2300 Windy Ridge Parkway South East, Suite 210S, Atlanta, GA 30339, USA; Drug Enforcement Administration (DEA) Educational Foundation, Washington, DC, USA.
| | - Rajendra D Badgaiyan
- Laboratory of Advanced Radiochemistry and Molecular and Functioning Imaging, Department of Psychiatry, College of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA; Department of Psychiatry, Center for Clinical & Translational Science, Community Mental Health Institute, University of Vermont College of Medicine, University of Vermont, Burlington, VT, USA; Division of Applied Clinical Research, Dominion Diagnostics, LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA; Rivermend Health Scientific Advisory Board, Atlanta, GA, USA
| |
Collapse
|
15
|
Blum K, Thompson B, Demotrovics Z, Femino J, Giordano J, Oscar-Berman M, Teitelbaum S, Smith DE, Roy AK, Agan G, Fratantonio J, Badgaiyan RD, Gold MS. The Molecular Neurobiology of Twelve Steps Program & Fellowship: Connecting the Dots for Recovery. JOURNAL OF REWARD DEFICIENCY SYNDROME 2015; 1:46-64. [PMID: 26306329 PMCID: PMC4545669 DOI: 10.17756/jrds.2015-008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are some who suggest that alcoholism and drug abuse are not diseases at all and that they are not consequences of a brain disorder as espoused recently by the American Society of Addiction Medicine (ASAM). Some would argue that addicts can quit on their own and moderate their alcohol and drug intake. When they present to a treatment program or enter the 12 Step Program & Fellowship, many addicts finally achieve complete abstinence. However, when controlled drinking fails, there may be successful alternatives that fit particular groups of individuals. In this expert opinion, we attempt to identify personal differences in recovery, by clarifying the molecular neurobiological basis of each step of the 12 Step Program. We explore the impact that the molecular neurobiological basis of the 12 steps can have on Reward Deficiency Syndrome (RDS) despite addiction risk gene polymorphisms. This exploration has already been accomplished in part by Blum and others in a 2013 Springer Neuroscience Brief. The purpose of this expert opinion is to briefly, outline the molecular neurobiological and genetic links, especially as they relate to the role of epigenetic changes that are possible in individuals who regularly attend AA meetings. It begs the question as to whether "12 steps programs and fellowship" does induce neuroplasticity and continued dopamine D2 receptor proliferation despite carrying hypodopaminergic type polymorphisms such as DRD2 A1 allele. "Like-minded" doctors of ASAM are cognizant that patients in treatment without the "psycho-social-spiritual trio," may not be obtaining the important benefits afforded by adopting 12-step doctrines. Are we better off with coupling medical assisted treatment (MAT) that favors combining dopamine agonist modalities (DAM) as possible histone-deacetylase activators with the 12 steps followed by a program that embraces either one or the other? While there are many unanswered questions, at least we have reached a time when "science meets recovery," and in doing so, can further redeem joy in recovery.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Addiction Research and Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- IGENE, LLC., Austin, TX, USA
- RDSolutions, Del Mar, CA, USA
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Benjamin Thompson
- Behavioral Neuroscience Program, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Zsolt Demotrovics
- Eötvös Loránd University, Institute of Psychology, Budapest, Hungary
| | - John Femino
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Meadows Edge Recovery Center, North Kingstown, RI, USA
| | - John Giordano
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Scott Teitelbaum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David E. Smith
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Institute of Health & Aging, University of California at San Francisco, San Francisco, CA, USA
| | | | - Gozde Agan
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
| | | | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA
| | - Mark S. Gold
- Director of Research, Drug Enforcement Administration (DEA) Educational Foundation, Washington, D.C, USA
- Departments of Psychiatry & Behavioral Sciences at the Keck, University of Southern California, School of Medicine, CA, USA
| |
Collapse
|
16
|
Blum K, Thanos PK, Badgaiyan RD, Febo M, Oscar-Berman M, Fratantonio J, Demotrovics Z, Gold MS. Neurogenetics and gene therapy for reward deficiency syndrome: are we going to the Promised Land? Expert Opin Biol Ther 2015; 15:973-85. [PMID: 25974314 DOI: 10.1517/14712598.2015.1045871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Addiction is a substantial health issue with limited treatment options approved by the FDA and as such currently available. The advent of neuroimaging techniques that link neurochemical and neurogenetic mechanisms to the reward circuitry brain function provides a framework for potential genomic-based therapies. AREAS COVERED Through candidate and genome-wide association studies approaches, many gene polymorphisms and clusters have been implicated in drug, food and behavioral dependence linked by the common rubric reward deficiency syndrome (RDS). The results of selective studies that include the role of epigenetics, noncoding micro RNAs in RDS behaviors especially drug abuse involving alcohol, opioids, cocaine, nicotine, pain and feeding are reviewed in this article. New targets for addiction treatment and relapse prevention, treatment alternatives such as gene therapy in animal models, and pharmacogenomics and nutrigenomics methods to manipulate transcription and gene expression are explored. EXPERT OPINION The recognition of the clinical benefit of early genetic testing to determine addiction risk stratification and dopaminergic agonistic, rather than antagonistic therapies are potentially the genomic-based wave of the future. In addition, further development, especially in gene transfer work and viral vector identification, could make gene therapy for RDS a possibility in the future.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine , Gainesville, FL , USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Stanfill AG, Conley Y, Cashion A, Thompson C, Homayouni R, Cowan P, Hathaway D. Neurogenetic and Neuroimaging Evidence for a Conceptual Model of Dopaminergic Contributions to Obesity. Biol Res Nurs 2015; 17:413-21. [PMID: 25576324 DOI: 10.1177/1099800414565170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the incidence of obesity continues to rise, clinicians and researchers alike are seeking explanations for why some people become obese while others do not. While caloric intake and physical activity most certainly play a role, some individuals continue to gain weight despite careful attention to these factors. Increasing evidence suggests that genetics may play a role, with one potential explanation being genetic variability in genes within the neurotransmitter dopamine pathway. This variability can lead to a disordered experience with the rewarding properties of food. This review of literature examines the extant knowledge about the relationship between obesity and the dopaminergic reward pathways in the brain, with particularly strong evidence provided from neuroimaging and neurogenetic data. Pubmed, Google Scholar, and Cumulative Index to Nursing and Allied Health Literature searches were conducted with the search terms dopamine, obesity, weight gain, food addiction, brain regions relevant to the mesocortical and mesolimbic (reward) pathways, and relevant dopaminergic genes and receptors. These terms returned over 200 articles. Other than a few sentinel articles, articles were published between 1993 and 2013. These data suggest a conceptual model for obesity that emphasizes dopaminergic genetic contributions as well as more traditional risk factors for obesity, such as demographics (age, race, and gender), physical activity, diet, and medications. A greater understanding of variables contributing to weight gain and obesity is imperative for effective clinical treatment.
Collapse
Affiliation(s)
- Ansley Grimes Stanfill
- University of Pittsburgh, School of Nursing, Pittsburgh, PA, USA University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Ann Cashion
- National Institutes of Health, Bethesda, MD, USA
| | | | | | - Patricia Cowan
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Donna Hathaway
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
18
|
Blum K, Schoenthaler SJ, Oscar-Berman M, Giordano J, Madigan MA, Braverman ER, Han D. Drug abuse relapse rates linked to level of education: can we repair hypodopaminergic-induced cognitive decline with nutrient therapy? PHYSICIAN SPORTSMED 2014; 42:130-45. [PMID: 24875980 DOI: 10.3810/psm.2014.05.2065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is well known that athletes and other individuals who have suffered painful injuries are at increased risk for all reward deficiency syndrome (RDS) behaviors, including substance use disorder (SUD). Comparing patient demographics and relapse rates in chemical dependence programs is pertinent because demographics may affect outcomes. Increased risk for relapse and lower academic achievement were found to have a significant association in recent outcome data from a holistic treatment center (HTC) located in North Miami Beach, FL. Relapse outcomes from the Drug Addiction Treatment Outcome Study (DATOS; n = 1738) and HTC (n = 224) were compared for a 12-month period. Post-discharge relapse was reported by 26% of HTC patients and 58% of patients in DATOS. When broken out by education level-less than high school, high school diploma, college degree, and graduate degree-HTC patient relapse was 50%, 36%, 33%, and 16%, respectively, and demonstrated an inverse linear association (F = 5.702; P = 0.017). Looking at DATOS patient relapse rates broken down by educational grades/years completed, patients who attended school between 7th grade and 4 years of college also demonstrated an inverse linear association (F = 5.563; P = 0.018). Additionally, the lowest performers, patients who reported their academic performance as "not so good," had the highest relapse (F = 4.226; P = 0.04). Albeit certain limitations, compared with DATOS patients, HTC patients produced significantly larger net differences in relapse rates (X 2 = 84.09; P = 0.0001), suggesting that other variables, such as the treatment model may also affect patient relapse. Our results implicate the use of vitamin and mineral supplements coupled with a well-researched natural dopamine agonist nutrient therapy; both have been shown to improve cognition and behavior, and thus academic achievement. That relapse is highest among addicts who have less education and who report lower grades is a factor that can be useful when considering treatment type and controlled for when comparing treatment outcomes.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL.
| | | | | | | | | | | | | |
Collapse
|
19
|
White MP, Shirer WR, Molfino MJ, Tenison C, Damoiseaux JS, Greicius MD. Disordered reward processing and functional connectivity in trichotillomania: a pilot study. J Psychiatr Res 2013; 47:1264-72. [PMID: 23777938 DOI: 10.1016/j.jpsychires.2013.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/27/2013] [Accepted: 05/16/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The neurobiology of Trichotillomania is poorly understood, although there is increasing evidence to suggest that TTM may involve alterations of reward processing. The current study represents the first exploration of reward processing in TTM and the first resting state fMRI study in TTM. We incorporate both event-related fMRI using a monetary incentive delay (MID) task, and resting state fMRI, using two complementary resting state analysis methodologies (functional connectivity to the nucleus accumbens and dual regression within a reward network) in a pilot study to investigate differences in reward processing between TTM and healthy controls (HC). METHODS 21 unmedicated subjects with TTM and 14 HC subjects underwent resting state fMRI scans. A subset (13 TTM and 12 HC) also performed the MID task. RESULTS For the MID task, TTM subjects showed relatively decreased nucleus accumbens (NAcc) activation to reward anticipation, but relative over-activity of the NAcc to both gain and loss outcomes. Resting state functional connectivity analysis showed decreased connectivity of the dorsal anterior cingulate (dACC) to the NAcc in TTM. Dual regression analysis of a reward network identified through independent component analysis (ICA) also showed decreased dACC connectivity and more prominently decreased basolateral amygdala connectivity within the reward network in TTM. CONCLUSIONS Disordered reward processing at the level of NAcc, also involving decreased modulatory input from the dACC and the basolateral amygdala may play a role in the pathophysiology of TTM.
Collapse
Affiliation(s)
- Matthew P White
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Medical Center, 401 Quarry Road, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Mclaughlin T, Oscar-Berman M, Simpatico T, Giordano J, Jones S, Barh D, Downs WB, Waite RL, Madigan M, Dushaj K, Lohmann R, Braverman ER, Han D, Blum K. Hypothesizing repetitive paraphilia behavior of a medication refractive Tourette's syndrome patient having rapid clinical attenuation with KB220Z-nutrigenomic amino-acid therapy (NAAT). J Behav Addict 2013; 2:117-24. [PMID: 26165932 DOI: 10.1556/jba.2.2013.2.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background and aims Many patients presenting multiple behaviors including drug and food abuse as well as other pathological repetitive unwanted activities such as gambling, self-mutilation and paraphilias may not be appropriately diagnosed. Here we present a case of a male presenting many of these seemingly diverse behaviors and finally diagnosed with reward deficiency syndrome (RDS) by his attending physician. Methods The use of the dopamine agonist, ropinirole after two weeks showed improvement in terms of sexual behavior but tolerance set in and was discontinued especially when an infraction occurred with the patient's insurance. In this article, we carefully explore the potential of ropinirole to downregulate dopamine receptors causing adenylate cyclase receptor supersensitivity and tolerance a feature of neurotransmitter cross-talk. Based on previous scientific evidence showing KB220Znutrigenomic amino-acid therapy (NAAT) to rapidly (post one-hour) activate dopaminergic pathways in both the pre-frontal cortex cingulate gyrus (relapse loci) and ventral tegmental area-caudate-accumbens-putamen (craving and emotion loci) the patient was prescribed NAAT. Results and discussion Within one week of utilization the repetitive paraphilia was eliminated. There were also a number of other positive effects such as enhanced focus that persisted even after the patient stopped using KB220Z suggesting neuroplasticity (e.g. altruistic thoughts). However, these observed profound benefits require more in-depth study, especially in a large cohort against a placebo. While this report focused on a rapid response rather than long-term benefits previously associated with NAAT, it is somewhat encouraging and longer term required follow-up and larger placebo controlled studies are warranted before any definitive conclusions could be gleaned from this case report.
Collapse
|
21
|
Blum K, Oscar-Berman M, Barh D, Giordano J, Gold MS. Dopamine Genetics and Function in Food and Substance Abuse. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2013; 4:1000121. [PMID: 23543775 PMCID: PMC3609029 DOI: 10.4172/2157-7412.1000121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Having entered the genomics era with confidence in the future of medicine, including psychiatry, identifying the role of DNA and polymorphic associations with brain reward circuitry has led to a new understanding of all addictive behaviors. It is noteworthy that this strategy may provide treatment for the millions who are the victims of "Reward Deficiency Syndrome" (RDS) a genetic disorder of brain reward circuitry. This article will focus on drugs and food being mutuality addictive, and the role of dopamine genetics and function in addictions, including the interaction of the dopamine transporter, and sodium food. We will briefly review our concept that concerns the genetic antecedents of multiple-addictions (RDS). Studies have also shown that evaluating a panel of established reward genes and polymorphisms enables the stratification of genetic risk to RDS. The panel is called the "Genetic Addiction Risk Score (GARS)", and is a tool for the diagnosis of a genetic predisposition for RDS. The use of this test, as pointed out by others, would benefit the medical community by identifying at risk individuals at a very early age. We encourage, in depth work in both animal and human models of addiction. We encourage further exploration of the neurogenetic correlates of the commonalities between food and drug addiction and endorse forward thinking hypotheses like "The Salted Food Addiction Hypothesis".
Collapse
Affiliation(s)
- K Blum
- Department of Psychiatry & McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
- Department of Nutrigenomics, LifeGen, Inc., Austin, Texas, USA
| | - M Oscar-Berman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, USA
| | - D Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - J Giordano
- Department of Holistic Medicine, G & G Health Care Services LLC, North Miami Beach, FL, USA
| | - MS Gold
- Department of Psychiatry & McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Archer T, Oscar-Berman M, Blum K, Gold M. Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry. ACTA ACUST UNITED AC 2012; 3:1000115. [PMID: 23264884 DOI: 10.4172/2157-7412.1000115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms are involved in impulsive behaviors, a polymorphism by itself may not translate to the development of a particular behavioral disorder unless it is impacted by epigenetic effects. Brain-derived neurotrophic factor (BDNF) affects the development and integrity of the noradrenergic, dopaminergic, serotonergic, glutamatergic, and cholinergic neurotransmitter systems, and plasma levels of the neurotrophin are associated with both cognitive and aggressive impulsiveness. Epigenetic mechanisms associated with a multitude of environmental factors, including premature birth, low birth weight, prenatal tobacco exposure, non-intact family, young maternal age at birth of the target child, paternal history of antisocial behavior, and maternal depression, alter the developmental trajectories for several neuropsychiatric disorders. These mechanisms affect brain development and integrity at several levels that determine structure and function in resolving the final behavioral expressions.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, SE-40530 Gothenburg, Sweden
| | | | | | | |
Collapse
|
23
|
Blum K, Bailey J, Gonzalez AM, Oscar-Berman M, Liu Y, Giordano J, Braverman E, Gold M. Neuro-Genetics of Reward Deficiency Syndrome (RDS) as the Root Cause of "Addiction Transfer": A New Phenomenon Common after Bariatric Surgery. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2011; 2012:S2-001. [PMID: 23483116 PMCID: PMC3593106 DOI: 10.4172/2157-7412.s2-001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Now after many years of successful bariatric (weight-loss) surgeries directed at the obesity epidemic clinicians are reporting that some patients are replacing compulsive overeating with newly acquired compulsive disorders such as alcoholism, gambling, drugs, and other addictions like compulsive shopping and exercise. This review article explores evidence from psychiatric genetic animal and human studies that link compulsive overeating and other compulsive disorders to explain the phenomenon of addiction transfer. Possibly due to neurochemical similarities, overeating and obesity may act as protective factors reducing drug reward and addictive behaviors. In animal models of addiction withdrawal from sugar induces imbalances in the neurotransmitters, acetylcholine and dopamine, similar to opiate withdrawal. Many human neuroimaging studies have supported the concept of linking food craving to drug craving behavior. Previously our laboratory coined the term Reward Deficiency Syndrome (RDS) for common genetic determinants in predicting addictive disorders and reported that the predictive value for future RDS behaviors in subjects carrying the DRD2 Taq A1 allele was 74%. While poly genes play a role in RDS, we have also inferred that disruptions in dopamine function may predispose certain individuals to addictive behaviors and obesity. It is now known that family history of alcoholism is a significant obesity risk factor. Therefore, we hypothesize here that RDS is the root cause of substituting food addiction for other dependencies and potentially explains this recently described Phenomenon (addiction transfer) common after bariatric surgery.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, Mcknight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
- Department of Holistic Medicine, G & G Holistic Addiction Treatment Center, North Miami Beach, Florida, USA
- Department of Clinical Neurology, PATH Foundation NY, New York, USA
| | - John Bailey
- Department of Psychiatry, Mcknight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Anthony M Gonzalez
- Department of General and Bariatric Surgery, South Miami Hospital, Miami, Florida, USA
| | - Marlene Oscar-Berman
- Department of Veterans Affairs Healthcare System, and Boston University School of Medicine, Boston, MA, USA
| | - Yijun Liu
- Department of Psychiatry, Mcknight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - John Giordano
- Department of Holistic Medicine, G & G Holistic Addiction Treatment Center, North Miami Beach, Florida, USA
| | - Eric Braverman
- Department of Clinical Neurology, PATH Foundation NY, New York, USA
- Department of Neurosurgery, Weill Cornell College of Medicine, New York, USA
| | - Mark Gold
- Department of Psychiatry, Mcknight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
24
|
Gabrielsen M, Sylte I, Dahl SG, Ravna AW. A short update on the structure of drug binding sites on neurotransmitter transporters. BMC Res Notes 2011; 4:559. [PMID: 22192271 PMCID: PMC3259071 DOI: 10.1186/1756-0500-4-559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The dopamine (DAT), noradrenalin (NET) and serotonin (SERT) transporters are molecular targets for different classes of psychotropic drugs. Cocaine and the SSRI (S)-citalopram block neurotransmitter reuptake competitively, but while cocaine is a non-selective reuptake inhibitor, (S)-citalopram is a selective SERT inhibitor. FINDINGS Here we present comparisons of the binding sites and the electrostatic potential surfaces (EPS) of DAT, NET and SERT homology models based on two different LeuTAa templates; with a substrate (leucine) in an occluded conformation (PDB id 2a65), and with an inhibitor (tryptophan) in an open-to-out conformation (PDB id 3f3a). In the occluded homology models, two conserved aromatic amino acids (tyrosine and phenylalanine) formed a gate between the putative binding pockets, and this contact was interrupted in the open to out conformation. The EPS of DAT and NET were generally negative in the vestibular area, whereas the EPS of the vestibular area of SERT was more neutral. CONCLUSIONS The findings presented here contribute as an update on the structure of the binding sites of DAT, NET and SERT. The updated models, which have larger ligand binding site areas than models based on other templates, may serve as improved tools for virtual ligand screening.
Collapse
Affiliation(s)
- Mari Gabrielsen
- Medical Pharmacology and Toxicology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
25
|
Blum K, Chen ALC, Oscar-Berman M, Chen TJH, Lubar J, White N, Lubar J, Bowirrat A, Braverman E, Schoolfield J, Waite RL, Downs BW, Madigan M, Comings DE, Davis C, Kerner MM, Knopf J, Palomo T, Giordano JJ, Morse SA, Fornari F, Barh D, Femino J, Bailey JA. Generational association studies of dopaminergic genes in reward deficiency syndrome (RDS) subjects: selecting appropriate phenotypes for reward dependence behaviors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:4425-59. [PMID: 22408582 PMCID: PMC3290972 DOI: 10.3390/ijerph8124425] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/26/2022]
Abstract
UNLABELLED Abnormal behaviors involving dopaminergic gene polymorphisms often reflect an insufficiency of usual feelings of satisfaction, or Reward Deficiency Syndrome (RDS). RDS results from a dysfunction in the "brain reward cascade," a complex interaction among neurotransmitters (primarily dopaminergic and opioidergic). Individuals with a family history of alcoholism or other addictions may be born with a deficiency in the ability to produce or use these neurotransmitters. Exposure to prolonged periods of stress and alcohol or other substances also can lead to a corruption of the brain reward cascade function. We evaluated the potential association of four variants of dopaminergic candidate genes in RDS (dopamine D1 receptor gene [DRD1]; dopamine D2 receptor gene [DRD2]; dopamine transporter gene [DAT1]; dopamine beta-hydroxylase gene [DBH]). METHODOLOGY We genotyped an experimental group of 55 subjects derived from up to five generations of two independent multiple-affected families compared to rigorously screened control subjects (e.g., N = 30 super controls for DRD2 gene polymorphisms). Data related to RDS behaviors were collected on these subjects plus 13 deceased family members. RESULTS Among the genotyped family members, the DRD2 Taq1 and the DAT1 10/10 alleles were significantly (at least p < 0.015) more often found in the RDS families vs. controls. The TaqA1 allele occurred in 100% of Family A individuals (N = 32) and 47.8% of Family B subjects (11 of 23). No significant differences were found between the experimental and control positive rates for the other variants. CONCLUSIONS Although our sample size was limited, and linkage analysis is necessary, the results support the putative role of dopaminergic polymorphisms in RDS behaviors. This study shows the importance of a nonspecific RDS phenotype and informs an understanding of how evaluating single subset behaviors of RDS may lead to spurious results. Utilization of a nonspecific "reward" phenotype may be a paradigm shift in future association and linkage studies involving dopaminergic polymorphisms and other neurotransmitter gene candidates.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, W University Ave., Gainesville, FL 32601, USA;
- Department of Nutrigenomics, LifeGen, Inc., P.O. Box 366, 570 Lederach Stattion Way, Lederach, PA 19450, USA; (R.L.W.); (B.W.D.); (M.M.)
- Department of Integrative Medicine, PATH Medical Research Foundation, 304 Park Ave. South, New York, NY 10010, USA; (M.M.K.); (J.K.)
- Department of Holistic Medicine, G&G Holistic Addiction Treatment, Inc., 1590 Northeast 162nd Street, North Miami Beach, FL 33162, USA;
- Department of Research, National Institute for Holistic Addiction Studies, 1590 Northeast 162nd Street, North Miami Beach, FL 33162, USA;
- Dominion Diagnostics, Inc., 211 Circuit Road, North Kingstown, RI 02852, USA;
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India;
| | - Amanda L. C. Chen
- Department of Engineering Management Advanced Technology, Chang Jung Christian University, No. 396, Sec. 1, Changrong Road, Tainan 71101, Taiwan
| | - Marlene Oscar-Berman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA;
| | - Thomas J. H. Chen
- Department of Occupational Safety and Health, Chang Jung Christian University, No. 396, Sec. 1, Changrong Road, Tainan 71101, Taiwan;
| | - Joel Lubar
- Emeritus, Department of Physiology, University of Tennessee, 719 Andy Holt Tower, Knoxville, TN 37996, USA;
| | - Nancy White
- Unique Mindcare, Inc., 1900 Saint James Place, Houston, TX 77056, USA;
| | - Judith Lubar
- Department of Neurofeedback, Southeastern Biofeedback and Neurobehavioral Clinic, 101 Westwood Road, Knoxville, TN 37919, USA;
| | - Abdalla Bowirrat
- Department of Neuroscience & Population Genetics, EMMS Nazareth Hospital, Nazareth, Israel;
| | - Eric Braverman
- Department of Neurosurgery, Weill Cornell College of Medicine, 1300 York Ave., New York, NY 10065, USA;
- Department of Integrative Medicine, PATH Medical Research Foundation, 304 Park Ave. South, New York, NY 10010, USA; (M.M.K.); (J.K.)
| | - John Schoolfield
- Department of Academic Informatics Services, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA;
| | - Roger L. Waite
- Department of Nutrigenomics, LifeGen, Inc., P.O. Box 366, 570 Lederach Stattion Way, Lederach, PA 19450, USA; (R.L.W.); (B.W.D.); (M.M.)
| | - Bernard W. Downs
- Department of Nutrigenomics, LifeGen, Inc., P.O. Box 366, 570 Lederach Stattion Way, Lederach, PA 19450, USA; (R.L.W.); (B.W.D.); (M.M.)
| | - Margaret Madigan
- Department of Nutrigenomics, LifeGen, Inc., P.O. Box 366, 570 Lederach Stattion Way, Lederach, PA 19450, USA; (R.L.W.); (B.W.D.); (M.M.)
| | - David E. Comings
- Department of Genomic Research, Carlsbad Science Foundation, Department of Medical Genetics, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA 91010, USA;
| | - Caroline Davis
- Department of Kinesiology and Health Sciences, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada;
| | - Mallory M. Kerner
- Department of Integrative Medicine, PATH Medical Research Foundation, 304 Park Ave. South, New York, NY 10010, USA; (M.M.K.); (J.K.)
| | - Jennifer Knopf
- Department of Integrative Medicine, PATH Medical Research Foundation, 304 Park Ave. South, New York, NY 10010, USA; (M.M.K.); (J.K.)
| | - Tomas Palomo
- Hospital Universitario 12 de Octubre, Servicio de Psiquiatria, Av. Cordoba SN, Madrid 28041, Spain;
| | - John J. Giordano
- Department of Holistic Medicine, G&G Holistic Addiction Treatment, Inc., 1590 Northeast 162nd Street, North Miami Beach, FL 33162, USA;
- Department of Research, National Institute for Holistic Addiction Studies, 1590 Northeast 162nd Street, North Miami Beach, FL 33162, USA;
| | - Siobhan A. Morse
- Department of Holistic Medicine, G&G Holistic Addiction Treatment, Inc., 1590 Northeast 162nd Street, North Miami Beach, FL 33162, USA;
- Department of Research, National Institute for Holistic Addiction Studies, 1590 Northeast 162nd Street, North Miami Beach, FL 33162, USA;
| | - Frank Fornari
- Dominion Diagnostics, Inc., 211 Circuit Road, North Kingstown, RI 02852, USA;
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India;
| | - John Femino
- Meadows Edge Recovery Center, 580 10 Rod Road, North Kingstown, RI 02852, USA;
| | - John A. Bailey
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, W University Ave., Gainesville, FL 32601, USA;
| |
Collapse
|
26
|
Blum K, Chen TJH, Bailey J, Bowirrat A, Femino J, Chen ALC, Simpatico T, Morse S, Giordano J, Damle U, Kerner M, Braverman ER, Fornari F, Downs BW, Rector C, Barh D, Oscar-Berman M. Can the chronic administration of the combination of buprenorphine and naloxone block dopaminergic activity causing anti-reward and relapse potential? Mol Neurobiol 2011; 44:250-68. [PMID: 21948099 DOI: 10.1007/s12035-011-8206-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/07/2011] [Indexed: 01/21/2023]
Abstract
Opiate addiction is associated with many adverse health and social harms, fatal overdose, infectious disease transmission, elevated health care costs, public disorder, and crime. Although community-based addiction treatment programs continue to reduce the harms of opiate addiction with narcotic substitution therapy such as methadone maintenance, there remains a need to find a substance that not only blocks opiate-type receptors (mu, delta, etc.) but also provides agonistic activity; hence, the impetus arose for the development of a combination of narcotic antagonism and mu receptor agonist therapy. After three decades of extensive research, the federal Drug Abuse Treatment Act 2000 (DATA) opened a window of opportunity for patients with addiction disorders by providing increased access to options for treatment. DATA allows physicians who complete a brief specialty-training course to become certified to prescribe buprenorphine and buprenorphine/naloxone (Subutex, Suboxone) for treatment of patients with opioid dependence. Clinical studies indicate that buprenorphine maintenance is as effective as methadone maintenance in retaining patients in substance abuse treatment and in reducing illicit opioid use. With that stated, we must consider the long-term benefits or potential toxicity attributed to Subutex or Suboxone. We describe a mechanism whereby chronic blockade of opiate receptors, in spite of only partial opiate agonist action, may ultimately block dopaminergic activity causing anti-reward and relapse potential. While the direct comparison is not as yet available, toxicity to buprenorphine can be found in the scientific literature. In considering our cautionary note in this commentary, we are cognizant that, to date, this is what we have available, and until such a time when the real magic bullet is discovered, we will have to endure. However, more than anything else this commentary should at least encourage the development of thoughtful new strategies to target the specific brain regions responsible for relapse prevention.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|