1
|
Tallis J, Duncan MJ, Clarke ND, Morris RO, Tamilio RA. Are caffeine effects equivalent between different modes of administration: the acute effects of 3 mg.kg -1 caffeine on the muscular strength and power of male university Rugby Union players. J Int Soc Sports Nutr 2024; 21:2419385. [PMID: 39439175 PMCID: PMC11500557 DOI: 10.1080/15502783.2024.2419385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND There is growing interest in the potential of alternative modes of caffeine administration for enhancing sports performance. Given that alternative modes may evoke improved physical performance via distinct mechanisms, effects may not be comparable and studies directly comparing the erogenicity of alternative modes of caffeine administration are lacking. To address this knowledge gap, the present study evaluated the effect of 3 mg·kg-1 caffeine delivered in anhydrous form via capsule ingestion, chewing gum or mouth rinsing on measures of muscular strength, power, and strength endurance in male Rugby Union players. METHODS Twenty-seven participants completed the study (Mean ± SD: Age 20 ± 2 yrs; daily caffeine consumption 188 ± 88 mg). Following assessments and reassessment of chest press (CP), shoulder press (SP), Deadlift (DL), and Squat (SQ) 1-repetition maximum (1RM) and familiarization to the experimental procedures, participants completed six experimental trials where they were administered 3 mg.kg-1 caffeine (Caff) or placebo (Plac) capsule(CAP), chewing gum(GUM) or mouth rinse(RINSE) in a randomized, double-blind and counterbalanced fashion prior to force platform assessment of countermovement jump, drop jump and isometric mid-thigh pull performance. Strength endurance was measured across two sets of CP, SP, DL, and SQ at 70% 1RM until failure. Pre-exercise perceptions of motivation and arousal were also determined. RESULTS Caffeine increased perceived readiness to invest mental effort (p = .038; ηp2=.156), countermovement jump height (p = .035; ηp2=.160) and SQ repetitions until failure in the first set (p < .001; d = .481), but there was no effect of delivery mode (p > .687; ηp2<.015). Readiness to invest physical effort, felt arousal, drop jump height, countermovement jump, drop jump and isometric mid-thigh pull ground reaction force-time characteristics and repetitions until failure in CP, SP and DL were not affected by caffeine administration or mode of caffeine delivery (p > .0.052; ηp2< .136). CONCLUSION 3 mg.kg-1 caffeine administered via capsule, gum or mouth rinse had limited effects on muscular strength, power, and strength endurance. Small effects of caffeine on CMJ height could not be explained by changes in specific ground reaction force-time characteristics and were not transferable to DJ performance, and effects specific to the SQ RTP exercise underpin the complexity in understanding effects of caffeine on muscular function. Novel modes of caffeine administration proposed to evoke benefits via distinct mechanisms did not offer unique effects, and the small number of effects demonstrated may have little translation to a single performance trial when data examining direct comparison of each caffeine vehicle compared against a mode matched placebo is considered.
Collapse
Affiliation(s)
- Jason Tallis
- Coventry University, Centre for Physical Activity, Sport & Exercise Science, Coventry, UK
| | - Michael, J. Duncan
- Coventry University, Centre for Physical Activity, Sport & Exercise Science, Coventry, UK
| | - Neil, D. Clarke
- Birmingham City University, Research Centre for Life and Sport Science (CLaSS), School of Health Sciences, Birmingham, UK
| | - Rhys O. Morris
- Coventry University, Centre for Physical Activity, Sport & Exercise Science, Coventry, UK
| | - Ryan, A. Tamilio
- Coventry University, Centre for Physical Activity, Sport & Exercise Science, Coventry, UK
- University of Birmingham, School of Pharmacy, School of Health Sciences, College of Medicine and Health, Birmingham, UK
| |
Collapse
|
2
|
Balcı C, Toktaş N, Erman KA, Aktop A, Kavukçu E, Şahan A. The effects of caffeine mouth rinsing on selective attention as a function of different caffeine concentrations and perceived taste intensity in recreationally active males at rest: a randomized placebo-controlled cross-over trial. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06710-w. [PMID: 39495309 DOI: 10.1007/s00213-024-06710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
RATIONALE The effect of caffeine mouth rinsing (CAF-MR) on cognitive performance has not been thoroughly investigated. OBJECTIVES To evaluate the effects of different concentrations of CAF-MR on selective attention in relation to perceived taste intensity. METHODS A total of 30 healthy and recreationally active male subjects were included in this randomized, double-blind, placebo-controlled crossover trial. Interventions included MR for 20 s at rest with three different caffeine solutions (0.24% [60 mg/25 mL], 0.6% [150 mg/25 mL], and 1.2% [300 mg/25 mL]), MR with 25 mL water (placebo), and no MR (control). Data on Victoria Stroop Test (VST) and the perceived taste intensity were recorded at five sessions. RESULTS CAF-MR-300 mg intervention significantly decreased completion time (from 62.93 ± 19.07 to 57.01 ± 16.74 s, p = 0.002 in Part D), while CAF-MR-150 mg intervention significantly decreased number of errors in Part D (7.00 ± 6.21 vs. 5.63 ± 5.76, p = 0.04) and Part C (8.77 ± 8.80 vs. 7.10 ± 7.11, p = 0.02). Perceived difficulty was significantly decreased both after CAF-MR with 150 mg (5.57 ± 1.65 vs. 4.77 ± 1.98, p = 0.006) and 300 mg (5.95 ± 1.77vs. 4.67 ± 1.96, p < 0.001). Perceived taste intensity for 300 mg of caffeine was negatively correlated with completion time (r: ranged, 0.37 to 0.46, p ranged, 0.045 to 0.009) after 300 mg, 150 mg (p ranged, 0.04 to 0.005) and placebo (p ranged 0.044 to 0.03) interventions. CONCLUSIONS This study is the first to demonstrate that CAF-MR shows dose-dependent effects on selective attention in healthy recreational males, such as improved speed (for 300 mg caffeine), reduced error rate (for 150 mg caffeine) and decrease in perceived difficulty (for 150 and 300 mg caffeine).
Collapse
Affiliation(s)
- Cemile Balcı
- Institute of Medical Science, Akdeniz University, Antalya, Turkey
| | - Neşe Toktaş
- Faculty of Sports Sciences, Akdeniz University, Antalya, 07058, Turkey.
| | | | - Abdurrahman Aktop
- Faculty of Sports Sciences, Akdeniz University, Antalya, 07058, Turkey
| | - Ethem Kavukçu
- Sports Medicine, Akdeniz University Hospital, Antalya, Turkey
| | - Asuman Şahan
- Faculty of Sports Sciences, Akdeniz University, Antalya, 07058, Turkey
| |
Collapse
|
3
|
Marinho AH, da Silva JM, Brandão VFDN, Jatobá SG, Júnior PB, Ataide-Silva T, Sousa FADB, Bastos-Silva VJ, de Araujo GG. Caffeine Mouth Rinse Plus Ingestion Improves the 10-Km Time Trial Compared to Caffeine Mouth Rinse Alone. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:617-624. [PMID: 38271741 DOI: 10.1080/02701367.2023.2293121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2023] [Indexed: 01/27/2024]
Abstract
Background: The benefits of caffeine to physical performance have been extensively demonstrated, however, it has recently been speculated that there is an effect of the administration route on its effectiveness. Purpose: The current study investigated the effect of caffeine mouth rinse in isolation or combined with ingestion on performance in a 30-minute constant-load exercise followed by a 10-km cycling time trial. Methods: Ten physically active men performed a 30-minute constant-load exercise at 50% of the graded test Wmax, followed by a 10-km cycling time trial. Before and at the middle points of the constant-load exercise and 10-km cycling time trial, the following conditions were administered: PLA (cellulose ingestion plus mouth rinsing with magnesium sulfate), ING (5 mg.kg-1 of caffeine ingestion plus mouth rinsing with magnesium sulfate), MR (cellulose ingestion plus mouth rinsing with 1.2% caffeine), and COMB (5 mg.kg-1 of caffeine ingestion plus mouth rinsing with 1.2% caffeine). Results: During the 30-minute constant-load exercise, COMB presented a lower rating of perceived exertion (RPE) than MR (p = .04). For the 10-km time trial, the COMB was faster than MR (MR = 1363 ± 345 vs. COMB = 1291 ± 308s, Δ% = 5.57, p = .05). Mean power output was higher in COMB than PLA, ING, and MR (234 ± 15 vs. 169 ± 29, 148 ± 11, and 145 ± 12 W, respectively). There were no differences between conditions for heart rate and RPE during the 10-km time trial. Conclusion: In summary, caffeine mouth rinsing potentiated the effects of caffeine ingestion during the 10-km time trial compared to caffeine mouth rinsing alone.
Collapse
Affiliation(s)
- Alisson Henrique Marinho
- Federal University of Alagoas
- Federal University of Parana
- Federal University of Technology Parana
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pirmohammadi S, Hemmatinafar M, Nemati J, Imanian B, Abdollahi MH. Early absorption sources of caffeine can be a useful strategy for improving female table tennis players-specific performance. J Int Soc Sports Nutr 2023; 20:2282051. [PMID: 37974406 PMCID: PMC11018319 DOI: 10.1080/15502783.2023.2282051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The consumption of fast absorption sources containing caffeine, such as caffeinated gum and coffee mouth rinsing, has been considered a practical nutritional strategy among athletes. Therefore, this study aimed to determine the effect of early absorption sources containing caffeine on the performance of female table tennis players. METHOD Eighteen female table tennis players randomly participated in this randomized, double-blind, and crossover designed study. Before starting the test, the participants attended a familiarization session. In each test session, participants were randomly assigned to one of three conditions including chewing caffeinated gum (CG, n = 6), coffee mouth rinsing (CMR, n = 6) and placebo capsule (PLA, n = 6). All participants consumed caffeine with an average dose of ∼3 to 4.5 mg·kg-1. The one-week interval was considered a washout period for each condition. Each test session included measurement of functional, skill and cognitive tests. Skill tests included serve, forehand drive, backhand push and counter tests. The Cognitive function measured by color recognition test, and functional tests included agility, hand movement speed, the explosive power of the upper body and lower body, hand-eye coordination and hand grip strength tests. The collected data were analyzed (with SPSS Windows software) by repeated measure ANOVA analysis and Bonferroni post hoc test at P ≤ 0.05 level. RESULTS The findings of the present study illustrated that CG and CMR increased significantly agility and reduced the amounts of errors in the cognitive test compared to PLA (p < 0.05), While there was no significant difference between CG and CMR (p > 0.05). Also, CG and CMR compared to PLA and CMR compared to CG rose significantly hand movement speed and movement speed (p < 0.05), and CMR compared to PLA increased significantly hand-eye coordination, isometric hand strength, service accuracy and forehand drive (p < 0.05). However, CG compared to PLA and CMR had no significant effect on hand-eye coordination, isometric hand strength, service accuracy and forehand drive (p > 0.05). In addition, CG and CMR enhanced significantly the explosive power of the lower body compared to PLA (p < 0.05), While there was no significant difference between CG and CMR (p > 0.05). Also, CG and CMR compared to PLA and CG compared to CMR had no significant effect on the explosive power of the upper body, backhand, and counter skills (p > 0.05). Furthermore, CG increased significantly accuracy in the service test compared to PLA (p < 0.05). CONCLUSION According to the results, it seems that early absorption sources of caffeine (CMR and CG) are efficient strategies for improving the specific performance of female table tennis players. However, allegedly CMR and CG have a better effect on functional and cognitive tests compared to skill tests.
Collapse
Affiliation(s)
- Sepideh Pirmohammadi
- Department of Sport Sciences, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Mohammad Hemmatinafar
- Department of Sport Sciences, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Javad Nemati
- Department of Sport Sciences, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Babak Imanian
- Department of Sport Sciences, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
5
|
Taheri Karami G, Hemmatinafar M, Koushkie Jahromi M, Nemati J, Niknam A. Repeated mouth rinsing of coffee improves the specific-endurance performance and jump performance of young male futsal players. J Int Soc Sports Nutr 2023; 20:2214108. [PMID: 37190757 DOI: 10.1080/15502783.2023.2214108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Mouth-rinsing with ergogenic solutions such as carbohydrate and caffeinated drinks has been considered among athletes as a practical nutritional strategy. Therefore, this study aimed to determine the effect of repeated coffee mouth-rinsing (CMR) doses on specific performances of futsal players. METHOD Twenty-four male futsal players randomly participated in this randomized, double-blind, and crossover design study. During the intervention, participants were randomly placed in four different conditions including 1. low-dose CMR (LDC, n = 6, ~60 mg caffeine); 2. high-dose CMR (HDC, n = 6, ~125 mg caffeine); 3. decaffeinated CMR (PLA, n = 6, ~10 mg caffeine); and 4. no CMR (CON, n = 6). Vertical jump height was measured at baseline, baseline after CMR (baseline-CMR), immediately after the intermittent futsal endurance test (FIET) (IA-FIET), 5 min after the FIET (5"A-FIET) and 10 min after the FIET (10"A-FIET). Perceived fatigue was also measured by visual analogue scale (VAS) at baseline, IA-FIET, 5"A-FIET, and 10"A-FIET. CMR was also performed at baseline, during FIET (Repeated between levels), and 10'A-FIET. The collected data were analyzed (with SPSS software) by one- and two-way repeated measure ANOVA and Bonferroni post hoc test at P < 0.05 level. RESULTS The findings of the present study illustrated that the perceived fatigue in IA-FIET increased significantly compared to the baseline which was accompanied by a significant decrease in 5"A-FIET and 10"A-FIET compared to IA-FIET (P < 0.05), and no significant difference was observed between conditions in the baseline, IA-FIET, 5"A-FIET, and 10"A-FIET (P > 0.05). However, HDC and LDC rose significantly the distance covered in FIET compared to CON and PLA (P < 0.05). In addition, HDC increased the FIET performance more than LDC (P < 0.05). Although there was no difference between any of the conditions at baseline (P > 0.05), baseline-CMR increased significantly the vertical jump height (P < 0.05). At IA-FIET, vertical jump height decreased to baseline levels in CMR conditions but increased in 5"A-FIET, which remained constant until 10"A-FIET (P < 0.05). In addition, vertical jump height in HDC and LDC conditions was significantly higher than CON in IA-FIET, 5"A-FIET, and 10"A-FIET. CONCLUSION This study showed that repeated CMR with low and high doses is a useful strategy to improve specific futsal performance. However, higher dose CMR appears to have more profound effects on performance improvement than lower doses.
Collapse
Affiliation(s)
- Ghasem Taheri Karami
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | | | - Alireza Niknam
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Nabuco LL, Mendes GF, Barreto G, Saunders B, Reis CEG. Spit It Out: Is Caffeine Mouth Rinse an Effective Ergogenic Aid? A Systematic Review and Meta-Analysis. Strength Cond J 2023. [DOI: 10.1519/ssc.0000000000000777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Tallis J, Guimaraes-Ferreira L, Clarke ND. Not Another Caffeine Effect on Sports Performance Study-Nothing New or More to Do? Nutrients 2022; 14:4696. [PMID: 36364958 PMCID: PMC9658326 DOI: 10.3390/nu14214696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
The performance-enhancing potential of acute caffeine consumption is firmly established with benefits for many aspects of physical performance and cognitive function summarised in a number of meta-analyses. Despite this, there remains near exponential growth in research articles examining the ergogenic effects of caffeine. Many such studies are confirmatory of well-established ideas, and with a wealth of convincing evidence available, the value of further investigation may be questioned. However, several important knowledge gaps remain. As such, the purpose of this review is to summarise key knowledge gaps regarding the current understanding of the performance-enhancing effect of caffeine and justify their value for future investigation. The review will provide a particular focus on ten research priorities that will aid in the translation of caffeine's ergogenic potential to real-world sporting scenarios. The discussion presented here is therefore essential in guiding the design of future work that will aid in progressing the current understanding of the effects of caffeine as a performance enhancer.
Collapse
Affiliation(s)
- Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | | | | |
Collapse
|
8
|
Crosby S, Butcher A, McDonald K, Berger N, Bekker PJ, Best R. Menthol Mouth Rinsing Maintains Relative Power Production during Three-Minute Maximal Cycling Performance in the Heat Compared to Cold Water and Placebo Rinsing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063527. [PMID: 35329209 PMCID: PMC8949398 DOI: 10.3390/ijerph19063527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
Abstract
Previous menthol studies have demonstrated ergogenic effects in endurance-based activity. However, there is a need for research in sports whose physiological requirements exceed maximal aerobic capacity. This study assessed the effects of 0.1% menthol mouth-rinsing upon a modified three-minute maximal test in the heat (33.0 ± 3.0 °C; RH 46.0 ± 5.0%). In a randomised crossover single blind placebo-controlled study, 11 participants completed three modified maximal tests, where each trial included a different mouth rinse: either menthol (MEN), cold water (WAT) or placebo (PLA). Participants were asked to rate their thermal comfort (TC), thermal sensation (TS) and rating of perceived exertion (RPE) throughout the test. Heart rate, core temperature, oxygen uptake (VO2), ventilation (VE) and respiratory exchange ratio (RER) were monitored continuously throughout the test, alongside cycling power variables (W; W/kg). A blood lactate (BLa) level was taken pre- and post- test. Small to moderate effects (Cohen's d and accompanying 90% confidence intervals) between solutions MEN, WAT and PLA were observed towards the end of the test in relation to relative power. Specifically, from 75-105 s between solutions MEN and WAT (ES: 0.795; 90% CI: 0.204 to 1.352) and MEN and PLA (ES: 1.059; 90% CI: 0.412 to 1.666), this continued between MEN and WAT (ES: 0.729; 90% CI: 0.152 to 1.276) and MEN and PLA (ES: 0.791; 90% CI: 0.202 to 1.348) from 105-135 s. Between 135-165 s there was a moderate difference between solutions MEN and WAT (ES: 1.058; 90% CI: 0.411 to 1.665). This indicates participants produced higher relative power for longer durations with the addition of the menthol mouth rinse, compared to cold water or placebo. The use of menthol (0.1%) as a mouth rinse showed small performance benefits for short duration high intensity exercise in the heat.
Collapse
Affiliation(s)
- Seana Crosby
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Anna Butcher
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Kerin McDonald
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Nicolas Berger
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Petrus J. Bekker
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
- Correspondence:
| |
Collapse
|
9
|
Virdinli SG, Kutlay E, Yuzbasioglu Y, Vollaard NBJ, Rudarli Nalcakan G. The effect of mouth rinsing with different concentrations of caffeine solutions on reaction time. J Sports Sci 2022; 40:928-933. [PMID: 35193478 DOI: 10.1080/02640414.2022.2038893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Caffeine mouth rinsing (CAF-MR) has been shown to improve reaction time (RT). CAF-MR studies have generally used 1.2% CAF concentrations, but the effect of using different concentrations is unknown. Therefore, we compared the effect of different concentrations of CAF-MR on RT. Forty-five trained male athletes (age: 18 ± 3 y) volunteered to participate in this double-blind, randomized controlled crossover study. Participants completed five testing sessions (Control, Placebo (water)-MR, and 1.2%, 1.8%, and 2.4% CAF-MR), with hand and foot RTs assessed immediately after MR. All CAF-MR conditions resulted in significantly faster hand and foot RT compared to Control and Placebo (all p < 0.001, except for foot RT with 1.8% CAF-MR vs. Placebo: NS). For both hand and foot RT, 1.2% and 1.8% CAF-MR did not significantly differ, but RT for 2.4% CAF-MR was significantly faster than both (p < 0.001). Improvements in RT for 2.4% CAF-MR vs. Placebo were 22% for hand RT and 21% for foot RT. In conclusion, these findings demonstrate that higher CAF-MR concentrations than those typically used can result in greater improvements in RT. This has implications for the practical use of CAF-MR to enhance performance in sports in which optimal RT is a factor of success.
Collapse
Affiliation(s)
| | - Emine Kutlay
- Faculty of Sport Sciences, Ege University, Izmir, Turkey
| | | | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | | |
Collapse
|
10
|
Acute caffeine mouth rinse does not affect attention and hand-eye coordination in recreationally active adults. BIOMEDICAL HUMAN KINETICS 2022. [DOI: 10.2478/bhk-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Study aim: The purpose of this study was to evaluate the acute effect of different four caffeine mouth rinse intervention (caffeinated coffee, decaffeinated coffee, placebo, control) on attention and hand-eye coordination.
Material and methods: Sixty-five healthy, recreationally active female (n = 41) (age 22.89 ± 3.94 years; body mass index 20.87 ± 2.63 kg/m2) and male (n = 24) (age 29.91 ± 12.06 years; body mass index 22.56 ± 2.21 kg/m2) volunteered to participate in this randomized, single-blind, placebo-controlled, crossover study. The Stroop Color-Word Test (SCWT) and Mirror-Tracing Test (MTT) was used. Participants first completed a SCWT or MTT, then rinsed and expectorated 25 ml of caffeinated coffee (containing 0.13% caffeine) or decaffeinated coffee or placebo (water) or control that did not rinse for 10 s, followed by SCWT or MTT again. Data were analyzed using a 4 (mouth rinse interventions) × 2 (pre-test and post-test) repeated measures ANOVA.
Results: SCWT time, MTT draw time and MTT number of error measures were not significantly different between four mouth rinse interventions (p > 0.05).
Conclusions: Caffeinated coffee or decaffeinated coffee mouth rinse for 10 s provided immediately prior to SCWT or MTT did not affect attention and hand-eye coordination.
Collapse
|
11
|
Burke LM. Nutritional approaches to counter performance constraints in high-level sports competition. Exp Physiol 2021; 106:2304-2323. [PMID: 34762329 PMCID: PMC9299184 DOI: 10.1113/ep088188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
New Findings What is the topic of this review? The nutritional strategies that athletes use during competition events to optimize performance and the reasons they use them. What advances does it highlight? A range of nutritional strategies can be used by competitive athletes, alone or in combination, to address various event‐specific factors that constrain event performance. Evidence for such practices is constantly evolving but must be combined with understanding of the complexities of real‐life sport for optimal implementation.
Abstract High‐performance athletes share a common goal despite the unique nature of their sport: to pace or manage their performance to achieve the highest sustainable outputs over the duration of the event. Periodic or sustained decline in the optimal performance of event tasks, involves an interplay between central and peripheral phenomena that can often be reduced or delayed in onset by nutritional strategies. Contemporary nutrition practices undertaken before, during or between events include strategies to ensure the availability of limited muscle fuel stores. This includes creatine supplementation to increase muscle phosphocreatine content and consideration of the type, amount and timing of dietary carbohydrate intake to optimize muscle and liver glycogen stores or to provide additional exogenous substrate. Although there is interest in ketogenic low‐carbohydrate high‐fat diets and exogenous ketone supplements to provide alternative fuels to spare muscle carbohydrate use, present evidence suggests a limited utility of these strategies. Mouth sensing of a range of food tastants (e.g., carbohydrate, quinine, menthol, caffeine, fluid, acetic acid) may provide a central nervous system derived boost to sports performance. Finally, despite decades of research on hypohydration and exercise capacity, there is still contention around their effect on sports performance and the best guidance around hydration for sporting events. A unifying model proposes that some scenarios require personalized fluid plans while others might be managed by an ad hoc approach (ad libitum or thirst‐driven drinking) to fluid intake.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
12
|
Karayigit R, Koz M, Sánchez-Gómez A, Naderi A, Yildirim UC, Domínguez R, Gur F. High Dose of Caffeine Mouth Rinse Increases Resistance Training Performance in Men. Nutrients 2021; 13:3800. [PMID: 34836058 PMCID: PMC8617760 DOI: 10.3390/nu13113800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
Caffeine mouth rinsing (CMR) has been shown to enhance exercise performance. However, no studies have analyzed the effects of different dosages of CMR on muscular performance. Therefore, the purpose of this study was to examine the effects of different dosages of CMR on strength (bench press 1 repetition maximum (1-RM)) and muscular endurance (60% of 1-RM repetitions to failure) in resistance-trained males. Fourteen resistance-trained males (age: 23 ± 2 years, height: 179 ± 3 cm, body mass: 83 ± 4 kg, BMI: 17 ± 2 kg/m2) completed four conditions in random order. The four conditions consisted of a mouth rinse with 25 mL solutions containing either 1% (250 mg) of CMR (low dose of CMR: LCMR), 2% (500 mg) of CMR (moderate dose of CMR: MCMR), 3% (750 mg) of CMR (high dose of CMR: HCMR) and sweetened water (placebo: PLA) for 5 s prior to a bench press strength and muscular endurance test. Maximal strength, muscular endurance, heart rate (HR) and ratings of perceived exertion (RPE) were recorded for each condition. There were no significant differences in strength (p = 0.30) and HR (p = 0.83) between conditions. HCMR significantly increased muscular endurance performance (p = 0.01) and decreased RPE values (p = 0.01). In conclusion, CMR did not affect bench press 1-RM strength performance, but muscular endurance responses to CMR seems to be dose-dependent.
Collapse
Affiliation(s)
- Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.K.); (U.C.Y.)
| | - Mitat Koz
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.K.); (U.C.Y.)
| | - Angela Sánchez-Gómez
- Department of Nursing Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14000 Córdoba, Spain;
| | - Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd 6915136111, Iran;
| | - Ulas Can Yildirim
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.K.); (U.C.Y.)
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Sevilla, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Fatih Gur
- Faculty of Sport Science, Pamukkale University, Pamukkale, Denizli 20000, Turkey;
| |
Collapse
|
13
|
Rodak K, Kokot I, Kratz EM. Caffeine as a Factor Influencing the Functioning of the Human Body-Friend or Foe? Nutrients 2021; 13:3088. [PMID: 34578966 PMCID: PMC8467199 DOI: 10.3390/nu13093088] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Nowadays, caffeine is one of the most commonly consumed substances, which presents in many plants and products. It has both positive and negative effects on the human body, and its activity concerns a variety of systems including the central nervous system, immune system, digestive system, respiratory system, urinary tract, etc. These effects are dependent on quantity, the type of product in which caffeine is contained, and also on the individual differences among people (sex, age, diet etc.). The main aim of this review was to collect, present, and analyze the available information including the latest discoveries on the impact of caffeine on human health and the functioning of human body systems, taking into account the role of caffeine in individual disease entities. We present both the positive and negative sides of caffeine consumption and the healing properties of this purine alkaloid in diseases such as asthma, Parkinson's disease, and others, not forgetting about the negative effects of excess caffeine (e.g., in people with hypertension, children, adolescents, and the elderly). In summary, we can conclude, however, that caffeine has a multi-directional influence on various organs of the human body, and because of its anti-oxidative properties, it was, and still is, an interesting topic for research studies including those aimed at developing new therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Rodak
- Student Research Club, “Biomarkers in Medical Diagnostics”, Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
14
|
Caffeine Mouth Rinse Does Not Improve Time to Exhaustion in Male Trained Cyclists. Int J Sport Nutr Exerc Metab 2021; 31:412-419. [PMID: 34311440 DOI: 10.1123/ijsnem.2020-0360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 11/18/2022]
Abstract
This study investigated the effects of caffeine mouth rinse on cycling time to exhaustion (TTE) and physiological responses in trained cyclists. In a double-blinded randomized counterbalanced cross-over design, 10 recreationally trained male cyclists (mean ± SD: 32 ± 3 years, 72.8 ± 5.3 kg, 1.78 ± 0.06 m, 13.9% ± 3.3% body fat, peak power output = 289.4 ± 24.7 W) completed two TTE tests cycling at 75% of peak aerobic power following 24 hr of dietary and exercise standardization. Cyclists were administered 25-ml mouth rinses for 5 s containing either 85 mg of caffeine or control (water) every 5 min throughout the exercise tests. No significant improvement in TTE was shown with caffeine mouth rinse compared with control (33:24 ± 12:47 vs. 28:08 ± 10:18 min; Cohen's dz effect size: 0.51, p = .14). Caffeine mouth rinse had no significant effect on ratings of perceived exertion (p = .31) or heart rate (p = .35) throughout the cycling TTE protocol. These data indicate that a repeated dose of caffeinated mouth rinse for 5 s does not improve cycling TTE in recreationally trained male cyclists. However, these findings should be taken with caution due to the small sample size and blinding ineffectiveness, while further well-design studies with larger samples are warranted.
Collapse
|
15
|
da Silva WF, Lopes-Silva JP, Camati Felippe LJ, Ferreira GA, Lima-Silva AE, Silva-Cavalcante MD. Is caffeine mouth rinsing an effective strategy to improve physical and cognitive performance? A systematic review. Crit Rev Food Sci Nutr 2021; 63:438-446. [PMID: 34275371 DOI: 10.1080/10408398.2021.1949576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to perform a systematic review on the effects of caffeine mouth rinsing on physical and cognitive performance. Following a search through 4 databases, 18 studies were found meeting the inclusion criteria (15 for physical performance and 3 for cognitive performance). All selected studies found an improvement in cognitive performance with caffeine mouth rinse. Four studies found positive effects of caffeine mouthwash on physical performance when repeated during exercise, while one study detected a positive effect with a single mouthwash before exercise, but only in a fasted state. Among these studies that showed positive effects, however, three (2 for physical performance and 1 for cognitive performance) presented fair methodological quality. There was also a variety of methodological approaches in the studies that showed no improvement in physical performance with caffeine mouth rinse, which may have influenced the potential to detect the ergogenic effect of caffeine mouth rinse. Thus, the effects of caffeine mouth rinse on physical performance are mixed, but a potential ergogenic effect might be present in a fasted state and when mouthwash is repeated during exercise. Concerning cognitive performance, caffeine mouth rinse seems to be a beneficial strategy.
Collapse
Affiliation(s)
- Widemar Ferraz da Silva
- Post-Graduation program Nutrition, Physical Activity and Phenotypic Plasticity Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | - Leandro José Camati Felippe
- Post-graduation Program of Electrical Engineering, Federal University of Pernambuco, Recife, Brazil.,Human Performance Research Group, Federal University of Technology Parana, Curitiba, Brazil
| | - Guilherme Assunção Ferreira
- Post-Graduation program Nutrition, Physical Activity and Phenotypic Plasticity Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | - Marcos David Silva-Cavalcante
- Post-Graduation program Nutrition, Physical Activity and Phenotypic Plasticity Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil.,Faculty of nutrition, Federal University of Alagoas, Maceio, Brazil
| |
Collapse
|
16
|
Pickering C, Grgic J. A time and a place: A framework for caffeine periodization throughout the sporting year. Nutrition 2020; 82:111046. [PMID: 33277148 DOI: 10.1016/j.nut.2020.111046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023]
Abstract
Caffeine is a well-established ergogenic aid, with its performance-enhancing effects demonstrated across a variety of sports and exercise types. As a result of these ergogenic properties, caffeine is widely used by athletes at all levels around both competition and training. Caffeine exerts its performance benefits through a variety of mechanisms, each of which may be of increased importance at a given stage of training or competition. Additionally, regular caffeine use may diminish the performance-enhancing effects of a subsequent dose of caffeine. Recently, interest in the concept of nutritional periodization has grown. Here we propose a framework for the periodization of caffeine through the sporting year, balancing its training and competition performance-enhancing effects, along with the need to mitigate any negative effects of habituation. Furthermore, the regular use of caffeine within training may support the development of positive beliefs toward caffeine by athletes-potentially serving to enhance future performance through placebo and expectancy mechanisms-as well as allowing for the optimization of individual athlete caffeine strategies. Although future work is required to validate some of the suggestions made, the framework proposed here represents a starting point for athletes to maximize caffeine's performance benefits across the sporting year.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, UK.
| | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
17
|
The Effects of Caffeine Mouth Rinsing on Exercise Performance: A Systematic Review. Int J Sport Nutr Exerc Metab 2020; 30:362-373. [DOI: 10.1123/ijsnem.2020-0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022]
Abstract
Caffeine ingestion can improve performance across a variety of exercise modalities but can also elicit negative side effects in some individuals. Thus, there is a growing interest in the use of caffeine mouth rinse solutions to improve sport and exercise performance while minimizing caffeine’s potentially adverse effects. Mouth rinse protocols involve swilling a solution within the oral cavity for a short time (e.g., 5–10 s) before expectorating it to avoid systemic absorption. This is believed to improve performance via activation of taste receptors and stimulation of the central nervous system. Although reviews of the literature indicate that carbohydrate mouth rinsing can improve exercise performance in some situations, there has been no attempt to systematically review the available literature on caffeine mouth rinsing and its effects on exercise performance. To fill this gap, a systematic literature search of three databases (PubMed, SPORTDiscus, and Web of Science) was conducted by two independent reviewers. The search resulted in 11 randomized crossover studies that were appraised and reviewed. Three studies found significant positive effects of caffeine mouth rinsing on exercise performance, whereas the remaining eight found no improvements or only suggestive benefits. The mixed results may be due to heterogeneity in the methods across studies, interindividual differences in bitter tasting, and differences in the concentrations of caffeine solutions. Future studies should evaluate how manipulating the concentration of caffeine solutions, habitual caffeine intake, and genetic modifiers of bitter taste influence the efficacy of caffeine mouth rinsing as an ergogenic strategy.
Collapse
|
18
|
Abstract
Taste is a homeostatic function that conveys valuable information, such as energy density, readiness to eat, or toxicity of foodstuffs. Taste is not limited to the oral cavity but affects multiple physiological systems. In this review, we outline the ergogenic potential of substances that impart bitter, sweet, hot and cold tastes administered prior to and during exercise performance and whether the ergogenic benefits of taste are attributable to the placebo effect. Carbohydrate mouth rinsing seemingly improves endurance performance, along with a potentially ergogenic effect of oral exposure to both bitter tastants and caffeine although subsequent ingestion of bitter mouth rinses is likely required to enhance performance. Hot and cold tastes may prove beneficial in circumstances where athletes' thermal state may be challenged. Efficacy is not limited to taste, but extends to the stimulation of targeted receptors in the oral cavity and throughout the digestive tract, relaying signals pertaining to energy availability and temperature to appropriate neural centres. Dose, frequency and timing of tastant application likely require personalisation to be most effective, and can be enhanced or confounded by factors that relate to the placebo effect, highlighting taste as a critical factor in designing and administering applied sports science interventions.
Collapse
|
19
|
Pickering C, Grgic J. Authors’ Reply to Painelli et al.: Comment on “Caffeine and Exercise: What Next?”. Sports Med 2020; 50:1219-1221. [DOI: 10.1007/s40279-020-01279-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|