1
|
Zhang D, Shi C, Wang Y, Guo J, Gong Z. Metabolic Dysregulation and Metabolite Imbalances in Acute-on-chronic Liver Failure: Impact on Immune Status. J Clin Transl Hepatol 2024; 12:865-877. [PMID: 39440217 PMCID: PMC11491507 DOI: 10.14218/jcth.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Liver failure encompasses a range of severe clinical syndromes resulting from the deterioration of liver function, triggered by factors both within and outside the liver. While the definition of acute-on-chronic liver failure (ACLF) may vary by region, it is universally recognized for its association with multiorgan failure, a robust inflammatory response, and high short-term mortality rates. Recent advances in metabolomics have provided insights into energy metabolism and metabolite alterations specific to ACLF. Additionally, immunometabolism is increasingly acknowledged as a pivotal mechanism in regulating immune cell functions. Therefore, understanding the energy metabolism pathways involved in ACLF and investigating how metabolite imbalances affect immune cell functionality are crucial for developing effective treatment strategies for ACLF. This review methodically examined the immune and metabolic states of ACLF patients and elucidated how alterations in metabolites impact immune functions, offering novel perspectives for immune regulation and therapeutic management of liver failure.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
New Insights into the Identification of Metabolites and Cytokines Predictive of Outcome for Patients with Severe SARS-CoV-2 Infection Showed Similarity with Cancer. Int J Mol Sci 2023; 24:ijms24054922. [PMID: 36902351 PMCID: PMC10003544 DOI: 10.3390/ijms24054922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
SARS-CoV-2 infection is characterized by several clinical manifestations, ranging from the absence of symptoms to severe forms that necessitate intensive care treatment. It is known that the patients with the highest rate of mortality develop increased levels of proinflammatory cytokines, called the "cytokine storm", which is similar to inflammatory processes that occur in cancer. Additionally, SARS-CoV-2 infection induces modifications in host metabolism leading to metabolic reprogramming, which is closely linked to metabolic changes in cancer. A better understanding of the correlation between perturbed metabolism and inflammatory responses is necessary. We evaluated untargeted plasma metabolomics and cytokine profiling via 1H-NMR (proton nuclear magnetic resonance) and multiplex Luminex assay, respectively, in a training set of a limited number of patients with severe SARS-CoV-2 infection classified on the basis of their outcome. Univariate analysis and Kaplan-Meier curves related to hospitalization time showed that lower levels of several metabolites and cytokines/growth factors, correlated with a good outcome in these patients and these data were confirmed in a validation set of patients with similar characteristics. However, after the multivariate analysis, only the growth factor HGF, lactate and phenylalanine retained a significant prediction of survival. Finally, the combined analysis of lactate and phenylalanine levels correctly predicted the outcome of 83.3% of patients in both the training and the validation set. We highlighted that the cytokines and metabolites involved in COVID-19 patients' poor outcomes are similar to those responsible for cancer development and progression, suggesting the possibility of targeting them by repurposing anticancer drugs as a therapeutic strategy against severe SARS-CoV-2 infection.
Collapse
|
3
|
Berber E, Sumbria D, Kokkaya S. A metabolic blueprint of COVID-19 and long-term vaccine efficacy. Drug Metab Pers Ther 2023; 38:15-29. [PMID: 36166711 DOI: 10.1515/dmpt-2022-0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Viruses are obligatory protein-coated units and often utilize the metabolic functions of the cells they infect. Viruses hijack cellular metabolic functions and cause consequences that can range from minor to devastating, as we have all witnessed during the COVID-19 pandemic. For understanding the virus-driven pathogenesis and its implications on the host, the cellular metabolism needs to be elucidated. How SARS-CoV-2 triggers metabolic functions and rewires the metabolism remains unidentified but the implications of the metabolic patterns are under investigation by several researchers. In this review, we have described the SARS-CoV-2-mediated metabolic alterations from in vitro studies to metabolic changes reported in victims of COVID-19. We have also discussed potential therapeutic targets to diminish the viral infection and suppress the inflammatory response, with respect to evidenced studies based on COVID-19 research. Finally, we aimed to explain how we could extend vaccine-induced immunity in people by targeting the immunometabolism.
Collapse
Affiliation(s)
- Engin Berber
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Deepak Sumbria
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Bathinda, India
| | - Serkan Kokkaya
- Faculty of Veterinary Medicine, Bozok University, Yozgat, Turkey
| |
Collapse
|
4
|
Śliż D, Wiecha S, Ulaszewska K, Gąsior JS, Lewandowski M, Kasiak PS, Mamcarz A. COVID-19 and athletes: Endurance sport and activity resilience study-CAESAR study. Front Physiol 2022; 13:1078763. [PMID: 36589442 PMCID: PMC9800893 DOI: 10.3389/fphys.2022.1078763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background: The COVID-19 pandemic and imposed restrictions influenced athletic societies, although current knowledge about mild COVID-19 consequences on cardiopulmonary and physiologic parameters remains inconclusive. This study aimed to assess the impact of mild COVID-19 inflection on cardiopulmonary exercise test (CPET) performance among endurance athletes (EA) with varied fitness level. Materials and Methods: 49 EA (nmale = 43, nfemale = 6, mean age = 39.94 ± 7.80 yr, height = 178.45 cm, weight = 76.62 kg; BMI = 24.03 kgm-2) underwent double treadmill or cycle ergometer CPET and body analysis (BA) pre- and post-mild COVID-19 infection. Mild infection was defined as: (1) without hospitalization and (2) without prolonged health complications lasting for >14 days. Speed, power, heart rate (HR), oxygen uptake (VO2), pulmonary ventilation, blood lactate concentration (at the anaerobic threshold (AT)), respiratory compensation point (RCP), and maximum exertion were measured before and after COVID-19 infection. Pearson's and Spearman's r correlation coefficients and Student t-test were applied to assess relationship between physiologic or exercise variables and time. Results: The anthropometric measurements did not differ significantly before and after COVID-19. There was a significant reduction in VO2 at the AT and RCP (both p < 0.001). Pre-COVID-19 VO2 was 34.97 ± 6.43 ml kg·min-1, 43.88 ± 7.31 ml kg·min-1 and 47.81 ± 7.81 ml kg·min-1 respectively for AT, RCP and maximal and post-COVID-19 VO2 was 32.35 ± 5.93 ml kg·min-1, 40.49 ± 6.63 ml kg·min-1 and 44.97 ± 7.00 ml kg·min-1 respectively for AT, RCP and maximal. Differences of HR at AT (p < 0.001) and RCP (p < 0.001) was observed. The HR before infection was 145.08 ± 10.82 bpm for AT and 168.78 ± 9.01 bpm for RCP and HR after infection was 141.12 ± 9.99 bpm for AT and 165.14 ± 9.74 bpm for RCP. Time-adjusted measures showed significance for body fat (r = 0.46, p < 0.001), fat mass (r = 0.33, p = 0.020), cycling power at the AT (r = -0.29, p = 0.045), and HR at RCP (r = -0.30, p = 0.036). Conclusion: A mild COVID-19 infection resulted in a decrease in EA's CPET performance. The most significant changes were observed for VO2 and HR. Medical Professionals and Training Specialists should be aware of the consequences of a mild COVID-19 infection in order to recommend optimal therapeutic methods and properly adjust the intensity of training.
Collapse
Affiliation(s)
- Daniel Śliż
- 3rd Department of Internal Diseases and Cardiology, Medical University of Warsaw, Warsaw, Poland,Students’ Scientific Group of Lifestyle Medicine, 3rd Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland,Polish Society of Lifestyle Medicine, Warsaw, Poland,School of Public Health, Postgraduate Medical Education Center, Warsaw, Poland
| | - Szczepan Wiecha
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, Biala Podlaska, Poland,*Correspondence: Szczepan Wiecha, ; Przemysław Seweryn Kasiak,
| | - Katarzyna Ulaszewska
- Students’ Scientific Group of Lifestyle Medicine, 3rd Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Lewandowski
- Department of Pharmacology and Clinical Pharmacology Collegium Medicum, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Przemysław Seweryn Kasiak
- 3rd Department of Internal Diseases and Cardiology, Medical University of Warsaw, Warsaw, Poland,Students’ Scientific Group of Lifestyle Medicine, 3rd Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland,*Correspondence: Szczepan Wiecha, ; Przemysław Seweryn Kasiak,
| | - Artur Mamcarz
- 3rd Department of Internal Diseases and Cardiology, Medical University of Warsaw, Warsaw, Poland,Polish Society of Lifestyle Medicine, Warsaw, Poland
| |
Collapse
|
5
|
Gupta GS. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022; 45:2091-2123. [PMID: 35588340 PMCID: PMC9117991 DOI: 10.1007/s10753-022-01680-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) is a terminating enzyme in the metabolic pathway of anaerobic glycolysis with end product of lactate from glucose. The lactate formation is crucial in the metabolism of glucose when oxygen is in inadequate supply. Lactate can also be formed and utilised by different cell types under fully aerobic conditions. Blood LDH is the marker enzyme, which predicts mortality in many conditions such as ARDS, serious COVID-19 and cancer patients. Lactate plays a critical role in normal physiology of humans including an energy source, a signaling molecule and a pH regulator. Depending on the pH, lactate exists as the protonated acidic form (lactic acid) at low pH or as sodium salt (sodium lactate) at basic pH. Lactate can affect the immune system and act as a signaling molecule, which can provide a "danger" signal for life. Several reports provide evidence that the serum lactate represents a chemical marker of severity of disease similar to LDH under inflammatory conditions. Since the mortality rate is much higher among COVID-19 patients, associated with high serum LDH, this article is aimed to review the LDH as a therapeutic target and lactate as potential marker for monitoring treatment response of inflammatory diseases. Finally, the review summarises various LDH inhibitors, which offer potential applications as therapeutic agents for inflammatory diseases, associated with high blood LDH. Both blood LDH and blood lactate are suggested as risk factors for the mortality of patients in serious inflammatory diseases.
Collapse
Affiliation(s)
- G S Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
7
|
Yang K, Holt M, Fan M, Lam V, Yang Y, Ha T, Williams DL, Li C, Wang X. Cardiovascular Dysfunction in COVID-19: Association Between Endothelial Cell Injury and Lactate. Front Immunol 2022; 13:868679. [PMID: 35401579 PMCID: PMC8984030 DOI: 10.3389/fimmu.2022.868679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious respiratory disease propagated by a new virus known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has resulted in global healthcare crises. Emerging evidence from patients with COVID-19 suggests that endothelial cell damage plays a central role in COVID-19 pathogenesis and could be a major contributor to the severity and mortality of COVID-19. Like other infectious diseases, the pathogenesis of COVID-19 is closely associated with metabolic processes. Lactate, a potential biomarker in COVID-19, has recently been shown to mediate endothelial barrier dysfunction. In this review, we provide an overview of cardiovascular injuries and metabolic alterations caused by SARS-CoV-2 infection. We also propose that lactate plays a potential role in COVID-19-driven endothelial cell injury.
Collapse
Affiliation(s)
- Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Holt
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Victor Lam
- College of Arts and Science, New York University, New York City, NY, United States
| | - Yong Yang
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
8
|
Caterino M, Costanzo M, Fedele R, Cevenini A, Gelzo M, Di Minno A, Andolfo I, Capasso M, Russo R, Annunziata A, Calabrese C, Fiorentino G, D’Abbraccio M, Dell’Isola C, Fusco FM, Parrella R, Fabbrocini G, Gentile I, Castaldo G, Ruoppolo M. The Serum Metabolome of Moderate and Severe COVID-19 Patients Reflects Possible Liver Alterations Involving Carbon and Nitrogen Metabolism. Int J Mol Sci 2021; 22:9548. [PMID: 34502454 PMCID: PMC8431319 DOI: 10.3390/ijms22179548] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a global threat that has spread since the end of 2019, causing severe clinical sequelae and deaths, in the context of a world pandemic. The infection of the highly pathogenetic and infectious SARS-CoV-2 coronavirus has been proven to exert systemic effects impacting the metabolism. Yet, the metabolic pathways involved in the pathophysiology and progression of COVID-19 are still unclear. Here, we present the results of a mass spectrometry-based targeted metabolomic analysis on a cohort of 52 hospitalized COVID-19 patients, classified according to disease severity as mild, moderate, and severe. Our analysis defines a clear signature of COVID-19 that includes increased serum levels of lactic acid in all the forms of the disease. Pathway analysis revealed dysregulation of energy production and amino acid metabolism. Globally, the variations found in the serum metabolome of COVID-19 patients may reflect a more complex systemic perturbation induced by SARS-CoV-2, possibly affecting carbon and nitrogen liver metabolism.
Collapse
Affiliation(s)
- Marianna Caterino
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Michele Costanzo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Roberta Fedele
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
| | - Armando Cevenini
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Alessandro Di Minno
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Farmacia, Università Degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Immacolata Andolfo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Mario Capasso
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Roberta Russo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Anna Annunziata
- Fisiopatologia e Riabilitazione Respiratoria-1 Utsir COVID, Azienda Ospedaliera Specialistica dei Colli-Napoli, 80137 Napoli, Italy; (A.A.); (G.F.)
| | - Cecilia Calabrese
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Napoli, Italy;
| | - Giuseppe Fiorentino
- Fisiopatologia e Riabilitazione Respiratoria-1 Utsir COVID, Azienda Ospedaliera Specialistica dei Colli-Napoli, 80137 Napoli, Italy; (A.A.); (G.F.)
| | - Maurizio D’Abbraccio
- COVID Unit—Azienda Ospedaliera Specialistica dei Colli—Napoli, Dipartimento di Malattie Infettive ed Urgenze Infettivologiche, 80137 Napoli, Italy; (M.D.); (C.D.); (F.M.F.); (R.P.)
| | - Chiara Dell’Isola
- COVID Unit—Azienda Ospedaliera Specialistica dei Colli—Napoli, Dipartimento di Malattie Infettive ed Urgenze Infettivologiche, 80137 Napoli, Italy; (M.D.); (C.D.); (F.M.F.); (R.P.)
| | - Francesco Maria Fusco
- COVID Unit—Azienda Ospedaliera Specialistica dei Colli—Napoli, Dipartimento di Malattie Infettive ed Urgenze Infettivologiche, 80137 Napoli, Italy; (M.D.); (C.D.); (F.M.F.); (R.P.)
| | - Roberto Parrella
- COVID Unit—Azienda Ospedaliera Specialistica dei Colli—Napoli, Dipartimento di Malattie Infettive ed Urgenze Infettivologiche, 80137 Napoli, Italy; (M.D.); (C.D.); (F.M.F.); (R.P.)
| | - Gabriella Fabbrocini
- Dipartimento di Medicina Clinica e Chirurgica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (G.F.); (I.G.)
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (G.F.); (I.G.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| |
Collapse
|