1
|
Reynaert E, Steiner P, Yu Q, D'Olif L, Joller N, Schneider MY, Morgenroth E. Predicting microbial water quality in on-site water reuse systems with online sensors. WATER RESEARCH 2023; 240:120075. [PMID: 37263119 DOI: 10.1016/j.watres.2023.120075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Widespread implementation of on-site water reuse is hindered by the limited availability of monitoring approaches that ensure microbial quality during operation. In this study, we developed a methodology for monitoring microbial water quality in on-site water reuse systems using inexpensive and commercially available online sensors. An extensive dataset containing sensor and microbial water quality data for six of the most critical types of disruptions in membrane bioreactors with chlorination was collected. We then tested the ability of three typological machine learning algorithms - logistic regression, support-vector machine, and random forest - to predict the microbial water quality as "safe" or "unsafe" for reuse. The main criteria for model optimization was to ensure a low false positive rate (FPR) - the percentage of safe predictions when the actual condition is unsafe - which is essential to protect users health. This resulted in enforcing a fixed FPR ≤ 2%. Maximizing the true positive rate (TPR) - the percentage of safe predictions when the actual condition is safe - was given second priority. Our results show that logistic-regression-based models using only two out of the six sensors (free chlorine and oxidation-reduction potential) achieved the highest TPR. Including sensor slopes as engineered features allowed to reach similar TPRs using only one sensor instead of two. Analysis of the occurrence of false predictions showed that these were mostly early alarms, a characteristic that could be regarded as an asset in alarm management. In conclusion, the simplest algorithm in combination with only one or two sensors performed best at predicting the microbial water quality. This result provides useful insights for water quality modeling or for applications where small datasets are a common challenge and a general advantage might be gained by using simpler models that reduce the risk of overfitting, allow better interpretability, and require less computational power.
Collapse
Affiliation(s)
- Eva Reynaert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| | - Philipp Steiner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Qixing Yu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Ecole Polytechnique Fédérale de Lausanne (EPFL), Section of Environmental Sciences and Engineering, 1015 Lausanne, Switzerland
| | - Lukas D'Olif
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Noah Joller
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Mariane Y Schneider
- The University of Tokyo, Next Generation Artificial Intelligence Research Center & School of Information Science and Technology, 113-8656 Tokyo, Japan.
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Reynaert E, Gretener F, Julian TR, Morgenroth E. Sensor setpoints that ensure compliance with microbial water quality targets for membrane bioreactor and chlorination treatment in on-site water reuse systems. WATER RESEARCH X 2023; 18:100164. [PMID: 37250292 PMCID: PMC10214293 DOI: 10.1016/j.wroa.2022.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 05/31/2023]
Abstract
Widespread implementation of on-site water reuse systems is hindered by the limited ability to ensure the level of treatment and protection of human health during operation. In this study, we tested the ability of five commercially available online sensors (free chlorine (FC), oxidation-reduction potential (ORP), pH, turbidity, UV absorbance at 254 nm) to predict the microbial water quality in membrane bioreactors followed by chlorination using logistic regression-based and mechanism-based models. The microbial water quality was assessed in terms of removal of enteric bacteria from the wastewater, removal of enteric viruses, and regrowth of bacteria in the treated water. We found that FC and ORP alone could predict the microbial water quality well, with ORP-based models generally performing better. We further observed that prediction accuracy did not increase when data from multiple sensors were integrated. We propose a methodology to link online sensor measurements to risk-based water quality targets, providing operation setpoints protective of human health for specific combinations of wastewaters and reuse applications. For instance, we recommend a minimum ORP of 705 mV to ensure a virus log-removal of 5, and an ORP of 765 mV for a log-removal of 6. These setpoints were selected to ensure that the percentage of events where the water is predicted to meet the quality target but it does not remains below 5%. Such a systematic approach to set sensor setpoints could be used in the development of water reuse guidelines and regulations that aim to cover a range of reuse applications with differential risks to human health.
Collapse
Affiliation(s)
- Eva Reynaert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Flavia Gretener
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4055 Basel, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Whitton R, Fane S, Jarvis P, Tupper M, Raffin M, Coulon F, Nocker A. Flow cytometry-based evaluation of the bacterial removal efficiency of a blackwater reuse treatment plant and the microbiological changes in the associated non-potable distribution network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1620-1629. [PMID: 30248879 DOI: 10.1016/j.scitotenv.2018.07.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The study evaluated the changes in bacterial numbers across a full-scale membrane bioreactor (MBR) blackwater reuse system. Flow cytometry was used to quantify total and intact bacterial concentrations across the treatment train and during distribution of the recycled water. Membrane passage reduced bacterial numbers by up to 5-log units resulting in coliform-free permeate. A 2-log increase in bacterial cell concentration was subsequently observed after the granular activated carbon unit followed by a reduction in intact cells after chlorination, which corresponds to an overall intact bacteria removal of 3.4-log units. In the distribution network, the proportion of intact cells greatly depended on the free chlorine residual, with decreasing residual enabling regrowth. An initial target of 0.5 mg L-1 free chlorine ensured sufficient suppression of intact cells for up to 14 days (setting the time intervals for system flushes at times of low water usage). Bacterial regrowth was only observed when the free chlorine concentration was below 0.34 mg L-1. Such loss of residual chlorine mainly applied to distant points in the distribution network from the blackwater reuse treatment plant (BRTP). Flushing these network points for 5 min did not substantially reduce cell numbers. At points closer to the BRTP, on the other hand, flushing reduced cell numbers by up to 1.5-log units concomitant with a decreasing proportion of intact cells. Intact cell concentrations did not correlate with DOC, total nitrogen, or soluble reactive phosphate, but it was shown that dead biomass could be efficiently converted into new biomass within seven days.
Collapse
Affiliation(s)
- Rachel Whitton
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Sarah Fane
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Peter Jarvis
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Martyn Tupper
- Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB, United Kingdom
| | - Marie Raffin
- Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB, United Kingdom
| | - Frédéric Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Andreas Nocker
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany.
| |
Collapse
|
4
|
Schoen ME, Jahne MA, Garland J. Human health impact of non-potable reuse of distributed wastewater and greywater treated by membrane bioreactors. MICROBIAL RISK ANALYSIS 2018; 9:72-81. [PMID: 35280215 PMCID: PMC8914979 DOI: 10.1016/j.mran.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We assessed the annual probability of infection resulting from non-potable exposures to distributed greywater and domestic wastewater treated by an aerobic membrane bioreactor (MBR) followed by chlorination. A probabilistic quantitative microbial risk assessment was conducted for both residential and office buildings and a residential district using Norovirus, Rotavirus, Campylobacter jejuni, and Cryptosporidium spp. as reference pathogens. A Monte Carlo approach captured variation in pathogen concentration in the collected water and pathogen (or microbial surrogate) treatment performance, when available, for various source water and collection scale combinations. Uncertain inputs such as dose-response relationships and the volume ingested were treated deterministically and explored through sensitivity analysis. The predicted 95th percentile annual risks for non-potable indoor reuse of distributed greywater and domestic wastewater at district and building scales were less than the selected health benchmark of 10-4 infections per person per year (ppy) for all pathogens except Cryptosporidium spp., given the selected exposure (which included occasional, accidental ingestion), dose-response, and treatment performance assumptions. For Cryptosporidium spp., the 95th percentile annual risks for reuse of domestic wastewater (for all selected collection scenarios) and district-collected greywater were greater than the selected health benchmark when using the limited, available MBR treatment performance data; this finding is counterintuitive given the large size of Cryptosporidium spp. relative to the MBR pores. Therefore, additional data on MBR removal of protozoa is required to evaluate the proposed MBR treatment process for non-potable reuse. Although the predicted Norovirus annual risks were small across scenarios (less than 10-7 infections ppy), the risks for Norovirus remain uncertain, in part because the treatment performance is difficult to interpret given that the ratio of total to infectious viruses in the raw and treated effluents remains unknown. Overall, the differences in pathogen characterization between collection type (i.e., office vs. residential) and scale (i.e., district vs. building) drove the differences in predicted risk; and, the accidental ingestion event (although modeled as rare) determined the annual probability of infection. The predicted risks resulting from treatment malfunction scenarios indicated that online, real-time monitoring of both the MBR and disinfection processes remains important for non-potable reuse at distributed scales. The resulting predicted health risks provide insight on the suitability of MBR treatment for distributed, non-potable reuse at different collection scales and the potential to reduce health risks for non-potable reuse.
Collapse
Affiliation(s)
- Mary E. Schoen
- Soller Environmental, LLC, 3022 King St., Berkeley, CA 94703, USA
- Corresponding author. (M.E. Schoen)
| | - Michael A. Jahne
- U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Jay Garland
- U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| |
Collapse
|
5
|
Bagheri M, Mirbagheri SA. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. BIORESOURCE TECHNOLOGY 2018; 258:318-334. [PMID: 29548641 DOI: 10.1016/j.biortech.2018.03.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 05/24/2023]
Abstract
The current research was an effort to critically review all approaches used for membrane fouling control in the membrane bioreactors treating water and wastewater. The first generation of antifouling methods tried to optimize operational conditions, or used chemical agents to control membrane fouling. Despite their positive impacts on the fouling mitigation, these methods did not provide a sustainable solution for the problem. Moreover, chemical agents may affect microorganisms in bioreactors and has some environmental drawbacks. The improved knowledge of membrane fouling mechanism and effective factors has directed the attention of researchers to novel methods that focus on disrupting fouling mechanism through affecting fouling causing bacteria. Employing nanomaterials, cell entrapment, biologically- and electrically-based methods are the latest efforts. The results of this review indicate that sustainable control of membrane fouling requires employing more than one single approach. Large scale application of fouling mitigation strategies should be the focus of future studies.
Collapse
Affiliation(s)
- Majid Bagheri
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States.
| | | |
Collapse
|
6
|
Abstract
Broad and increasing interest in sustainable wastewater treatment has led a paradigm shift towards more efficient means of treatment system operation. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. Anaerobic membrane bioreactors (AnMBRs) have been identified as an attractive option for producing high quality and nutrient-rich effluents during the treatment of municipal wastewaters. The introduction of direct effluent reuse does, however, raise several safety concerns related to its application. Among those concerns are the microbial threats associated with pathogenic bacteria as well as the emerging issues associated with antibiotic-resistant bacteria and the potential for proliferation of antibiotic resistance genes. Although there is substantial research evaluating these topics from the perspectives of anaerobic digestion and membrane bioreactors separately, little is known regarding how AnMBR systems can contribute to pathogen and antibiotic resistance removal and propagation in wastewater effluents. The aim of this review is to provide a current assessment of existing literature on anaerobic and membrane-based treatment systems as they relate to these microbial safety issues and utilize this assessment to identify areas of potential future research to evaluate the suitability of AnMBRs for direct effluent reuse.
Collapse
|
7
|
Chaudhry RM, Hamilton KA, Haas CN, Nelson KL. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E635. [PMID: 28608808 PMCID: PMC5486321 DOI: 10.3390/ijerph14060635] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022]
Abstract
Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0-100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0-100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10-4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10-4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.
Collapse
Affiliation(s)
- Rabia M Chaudhry
- Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA.
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), Berkeley, CA 94720-1710, USA.
| | - Kerry A Hamilton
- Drexel University Department of Civil, Architectural, and Environmental Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Charles N Haas
- Drexel University Department of Civil, Architectural, and Environmental Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA.
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), Berkeley, CA 94720-1710, USA.
| |
Collapse
|
8
|
Wu B, Wang R, Fane AG. The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review. WATER RESEARCH 2017; 110:120-132. [PMID: 27998784 DOI: 10.1016/j.watres.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/20/2016] [Accepted: 12/04/2016] [Indexed: 05/04/2023]
Abstract
Membrane filtration processes have been widely applied in water and wastewater treatment for many decades. Concerns related to membrane treatment effectiveness, membrane lifespan, and membrane fouling control have been paid great attention. To achieve sustainable membrane operation with regards to low energy and maintenance cost, monitoring membrane performance and applying suitable membrane control strategies are required. As the most abundant species in water and wastewater, bacteriophages have shown great potential to be employed in membrane processes as (1) indicators to assess membrane performance considering their similar properties to human pathogenic waterborne viruses; (2) surrogate particles to monitor membrane integrity due to their nano-sized nature; and (3) biological agents to alleviate membrane fouling because of their antimicrobial properties. This study aims to provide a comprehensive review on the roles of bacteriophages in membrane-based water and wastewater treatment processes, with focuses on their uses for membrane performance examination, membrane integrity monitoring, and membrane biofouling control. The advantages, limitations, and influencing factors for bacteriophage-based applications are reported. Finally, the challenges and prospects of bacteriophage-based applications in membrane processes for water treatment are highlighted.
Collapse
Affiliation(s)
- Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
9
|
Near Real-Time Flow Cytometry Monitoring of Bacterial and Viral Removal Efficiencies during Water Reclamation Processes. WATER 2016. [DOI: 10.3390/w8100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|