1
|
Wang Z, Zhang W, Wang W, Wang P, Ni L, Wang S, Ma J, Cheng W. Amine-Modified ZIF Composite Membranes: Regulated Nanochannel Interactions for Enhanced Cation Transport and Precise Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4199-4209. [PMID: 39976453 DOI: 10.1021/acs.est.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Electromembrane water treatment technologies are attracting attention for their energy efficiency and precise separation of counterions. However, ion-exchange membranes exhibit low ionic conductance and selectivity for ions with similar charges. In this study, we developed a novel ZIF-8 composite membrane with amine-modified nanochannels through an in situ PEI-assisted seeding and secondary growth method. An integral and uniform selective layer was formed, and the amine-modified nanochannels induced differential transport of Li+, Na+, K+, and Mg2+ via the dehydration-hydration process. The composite membrane possessed a lower energy barrier for Na+ transport (Ea = 13 kJ mol-1) compared to Mg2+ (Ea = 17 kJ mol-1), showing a Na+ flux of 3.7 × 10-8 mol·cm-2·s-1 and a Na+/Mg2+ permselectivity of 52 (∼60 times higher than the commercial membrane). The physicochemical and electrochemical properties of the composite membranes were systematically characterized, revealing the significant role of the Mg2+ layer in increasing Mg2+ repulsion and facilitating Na+ diffusion. Besides, DFT simulation and interaction energy calculation elucidated that a moderate binding energy and compensation effect between ions and nanochannels, which can be precisely regulated by PEI incorporation, are crucial for the favorable passage of Na+ while maintaining high Mg2+ rejection. The membrane also demonstrated performance stability during a 5-day test and maintained high selectivity across varying salinity and pH conditions. This work advances the development of efficient cation separation membranes for sustainable desalination and resource recovery.
Collapse
Affiliation(s)
- Zhe Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Weifu Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Lei Ni
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Shaopo Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| |
Collapse
|
2
|
Zhang S, Wang J, Yaroshchuk A, Du Q, Xin P, Bruening ML, Xia F. Addressing Challenges in Ion-Selectivity Characterization in Nanopores. J Am Chem Soc 2024. [PMID: 38606686 DOI: 10.1021/jacs.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ion selectivity is the basis for designing smart nanopore/channel-based devices, e.g., ion separators and biosensors. Quantitative characterization of ion selectivities in nanopores often employs the Nernst or Goldman-Hodgkin-Katz (GHK) equation to interpret transmembrane potentials. However, the direction of the measured transmembrane potential drop is not specified in these equations, and selectivity values calculated using absolute values of transmembrane potentials do not directly reveal the ion for which the membrane is selective. Moreover, researchers arbitrarily choose whether to use the Nernst or GHK equation and overlook the significant differences between them, leading to ineffective quantitative comparisons between studies. This work addresses these challenges through (a) specifying the transmembrane potential (sign) and salt concentrations in terms of working and reference electrodes and the solutions in which they reside when using the Nernst and GHK equations, (b) reporting of both Nernst-selectivity and GHK-selectivity along with solution compositions and transmembrane potentials when comparing different nanopores/channels, and (c) performing simulations to define an ideal selectivity for nanochannels. Experimental and modeling studies provide significant insight into these fundamental equations and guidelines for the development of nanopore/channel-based devices.
Collapse
Affiliation(s)
- Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Jinfeng Wang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Andriy Yaroshchuk
- Department of Chemical Engineering, Polytechnic University of Catalonia-Barcelona Tech, Avenida Diagonal 647, Barcelona 08028, Spain
- ICREA, pg.L.Companys 23, 08010 Barcelona, Spain
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Normal University, Xinxiang 453007, China
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Manin A, Golubenko D, Novikova S, Yaroslavtsev A. Composite Anion Exchange Membranes Based on Quaternary Ammonium-Functionalized Polystyrene and Cerium(IV) Phosphate with Improved Monovalent-Ion Selectivity and Antifouling Properties. MEMBRANES 2023; 13:624. [PMID: 37504990 PMCID: PMC10386577 DOI: 10.3390/membranes13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
The possibility of targeted change of the properties of ion exchange membranes by incorporation of various nanoparticles into the membranes is attracting the attention of many research groups. Here we studied for the first time the influence of cerium phosphate nanoparticles on the physicochemical and transport properties of commercial anion exchange membranes based on quaternary ammonium-functionalized polystyrenes, such as heterogeneous Ralex® AM and pseudo-homogeneous Neosepta® AMX. The incorporation of cerium phosphate on one side of the membrane was performed by precipitation from absorbed cerium ammonium nitrate (CAN) anionic complex with ammonium dihydrogen phosphate or phosphoric acid. The structures of the obtained hybrid membranes and separately synthesized cerium phosphate were investigated using FTIR, P31 MAS NMR, EDX mapping, and scanning electron microscopy. The modification increased the membrane selectivity to monovalent ions in the ED desalination of an equimolar mixture of NaCl and Na2SO4. The highest selectivities of Ralex® AM and Neosepta® AMX-based hybrid membranes were 4.9 and 7.7, respectively. In addition, the modification of Neosepta® membranes also increased the resistance to a typical anionic surfactant, sodium dodecylbenzenesulfonate.
Collapse
Affiliation(s)
- Andrey Manin
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova str., 7, Moscow 119048, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
| | - Svetlana Novikova
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova str., 7, Moscow 119048, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
| |
Collapse
|
4
|
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. MEMBRANES 2023; 13:368. [PMID: 37103795 PMCID: PMC10146247 DOI: 10.3390/membranes13040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| |
Collapse
|
5
|
Ahmad M, Ahmed M. Characterization and applications of ion-exchange membranes and selective ion transport through them: a review. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
6
|
Designing monovalent selective anion exchange membranes for the simultaneous separation of chloride and fluoride from sulfate in an equimolar ternary mixture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Zhao Z, Li X, Zhang H, Sheng F, Xu T, Zhu Y, Zhang H, Ge L, Xu T. Polyamide-Based Electronanofiltration Membranes for Efficient Anion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hao Zhang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, People’s Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
9
|
Ion and Molecular Transport in Solid Electrolytes Studied by NMR. Int J Mol Sci 2022; 23:ijms23095011. [PMID: 35563404 PMCID: PMC9103273 DOI: 10.3390/ijms23095011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
NMR is the method of choice for molecular and ionic structures and dynamics investigations. The present review is devoted to solvation and mobilities in solid electrolytes, such as ion-exchange membranes and composite materials, based on cesium acid sulfates and phosphates. The applications of high-resolution NMR, solid-state NMR, NMR relaxation, and pulsed field gradient 1H, 7Li, 13C, 19F, 23Na, 31P, and 133Cs NMR techniques are discussed. The main attention is paid to the transport channel morphology, ionic hydration, charge group and mobile ion interaction, and translation ions and solvent mobilities in different spatial scales. Self-diffusion coefficients of protons and Li+, Na+, and Cs+ cations are compared with the ionic conductivity data. The microscopic ionic transfer mechanism is discussed.
Collapse
|
10
|
Zhang D, Wang Y, Wang X, Chen B, Wang Y, Jiang C, Xu T. Physical and chemical synergistic strategy: A facile approach to fabricate monovalent ion permselective membranes. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Evdochenko E, Kamp J, Dunkel R, Nikonenko V, Wessling M. Charge distribution in polyelectrolyte multilayer nanofiltration membranes affects ion separation and scaling propensity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Zou Z, Wu L, Luo T, Yan Z, Wang X. Assessment of anion exchange membrane selectivity with ionic membrane conductivity, revised with Manning's theory or the Kohlrausch's law. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
14
|
Multilayered surface modification of anion exchange membrane by MoS2 flakes for improved antifouling performance. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Zhan ZM, Tang YJ, Zhu KK, Xue SM, Ji CH, Tang CY, Xu ZL. Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119073] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Stenina IA, Yaroslavtsev AB. Ionic Mobility in Ion-Exchange Membranes. MEMBRANES 2021; 11:198. [PMID: 33799886 PMCID: PMC7998860 DOI: 10.3390/membranes11030198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Membrane technologies are widely demanded in a number of modern industries. Ion-exchange membranes are one of the most widespread and demanded types of membranes. Their main task is the selective transfer of certain ions and prevention of transfer of other ions or molecules, and the most important characteristics are ionic conductivity and selectivity of transfer processes. Both parameters are determined by ionic and molecular mobility in membranes. To study this mobility, the main techniques used are nuclear magnetic resonance and impedance spectroscopy. In this comprehensive review, mechanisms of transfer processes in various ion-exchange membranes, including homogeneous, heterogeneous, and hybrid ones, are discussed. Correlations of structures of ion-exchange membranes and their hydration with ion transport mechanisms are also reviewed. The features of proton transfer, which plays a decisive role in the membrane used in fuel cells and electrolyzers, are highlighted. These devices largely determine development of hydrogen energy in the modern world. The features of ion transfer in heterogeneous and hybrid membranes with inorganic nanoparticles are also discussed.
Collapse
Affiliation(s)
| | - Andrey B. Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky pr. 31, 119991 Moscow, Russia;
| |
Collapse
|
17
|
Li M, Li W, Zhang X, Wu C, Han X, Chen Y. Polyvinyl alcohol-based monovalent anion selective membranes with excellent permselectivity in selectrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Liang Y, Gao F, Wang L, Lin S. In-situ monitoring of polyelectrolytes adsorption kinetics by electrochemical impedance spectroscopy: Application in fabricating nanofiltration membranes via layer-by-layer deposition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Ahmad M, Yaroshchuk A, Bruening ML. Moderate pH changes alter the fluxes, selectivities and limiting currents in ion transport through polyelectrolyte multilayers deposited on membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Water Splitting and Transport of Ions in Electromembrane System with Bilayer Ion-Exchange Membrane. MEMBRANES 2020; 10:membranes10110346. [PMID: 33207651 PMCID: PMC7697576 DOI: 10.3390/membranes10110346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022]
Abstract
Bilayer ion-exchange membranes are mainly used for separating single and multiply charged ions. It is well known that in membranes in which the layers have different charges of the ionogenic groups of the matrix, the limiting current decreases, and the water splitting reaction accelerates in comparison with monolayer (isotropic) ion-exchange membranes. We study samples of bilayer ion-exchange membranes with very thin cation-exchange layers deposited on an anion-exchange membrane-substrate in this work. It was revealed that in bilayer membranes, the limiting current’s value is determined by the properties of a thin surface film (modifying layer). A linear regularity of the dependence of the non-equilibrium effective rate constant of the water-splitting reaction on the resistance of the bipolar region, which is valid for both bilayer and bipolar membranes, has been revealed. It is shown that the introduction of the catalyst significantly reduces the water-splitting voltage, but reduces the selectivity of the membrane. It is possible to regulate the fluxes of salt ions and water splitting products (hydrogen and hydroxyl ions) by changing the current density. Such an ability makes it possible to conduct a controlled process of desalting electrolytes with simultaneous pH adjustment.
Collapse
|
21
|
Golubenko D, Yaroslavtsev A. Development of surface-sulfonated graft anion-exchange membranes with monovalent ion selectivity and antifouling properties for electromembrane processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118408] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Affiliation(s)
- Chao Tang
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
23
|
Zabolotsky V, Achoh A, Lebedev K, Melnikov S. Permselectivity of bilayered ion-exchange membranes in ternary electrolyte. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Stenina I, Golubenko D, Nikonenko V, Yaroslavtsev A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. Int J Mol Sci 2020; 21:E5517. [PMID: 32752236 PMCID: PMC7432390 DOI: 10.3390/ijms21155517] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Nowadays, ion-exchange membranes have numerous applications in water desalination, electrolysis, chemistry, food, health, energy, environment and other fields. All of these applications require high selectivity of ion transfer, i.e., high membrane permselectivity. The transport properties of ion-exchange membranes are determined by their structure, composition and preparation method. For various applications, the selectivity of transfer processes can be characterized by different parameters, for example, by the transport number of counterions (permselectivity in electrodialysis) or by the ratio of ionic conductivity to the permeability of some gases (crossover in fuel cells). However, in most cases there is a correlation: the higher the flux density of the target component through the membrane, the lower the selectivity of the process. This correlation has two aspects: first, it follows from the membrane material properties, often expressed as the trade-off between membrane permeability and permselectivity; and, second, it is due to the concentration polarization phenomenon, which increases with an increase in the applied driving force. In this review, both aspects are considered. Recent research and progress in the membrane selectivity improvement, mainly including a number of approaches as crosslinking, nanoparticle doping, surface modification, and the use of special synthetic methods (e.g., synthesis of grafted membranes or membranes with a fairly rigid three-dimensional matrix) are summarized. These approaches are promising for the ion-exchange membranes synthesis for electrodialysis, alternative energy, and the valuable component extraction from natural or waste-water. Perspectives on future development in this research field are also discussed.
Collapse
Affiliation(s)
- Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| |
Collapse
|
25
|
Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review. MEMBRANES 2020; 10:membranes10080160. [PMID: 32707798 PMCID: PMC7463669 DOI: 10.3390/membranes10080160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/13/2023]
Abstract
Reverse electrodialysis (RED) technology represents a promising electro-membrane process for renewable energy harvesting from aqueous streams with different salinity. However, the performance of the key components of the system, that is, the ion exchange membranes, is limited by both the presence of multivalent ions and fouling phenomena, thus leading to a reduced generated net power density. In this context, the behavior of anion exchange membranes (AEMs) in RED systems is more severely affected, due to the undesirable interactions between their positively charged fixed groups and, mostly negatively charged, foulant materials present in natural streams. Therefore, controlling both the monovalent anion permselectivity and the membrane surface hydrophilicity is crucial. In this respect, different surface modification procedures were considered in the literature, to enhance the above-mentioned properties. This review reports and discusses the currently available approaches for surface modifications of AEMs, such as graft polymerization, dip coating, and layer-by-layer, among others, mainly focusing on preparing monovalent permselective AEMs with antifouling characteristics, but also considering hydrophilicity aspects and identifying the most promising modifying agents to be utilized. Thus, the present study aimed at providing new insights for the further design and development of selective, durable, and cost-effective modified AEMs for an enhanced RED process performance, which is indispensable for a practical implementation of this electro-membrane technology at an industrial scale.
Collapse
|
26
|
Luo H, Agata WAS, Geise GM. Connecting the Ion Separation Factor to the Sorption and Diffusion Selectivity of Ion Exchange Membranes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongxi Luo
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| | - Wendy-Angela Saringi Agata
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| | - Geoffrey M. Geise
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| |
Collapse
|
27
|
Liao J, Chen Q, Pan N, Yu X, Gao X, Shen J, Gao C. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116793] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
|
29
|
Korzhova E, Déon S, Koubaa Z, Fievet P, Lopatin D, Baranov O. Modification of commercial UF membranes by electrospray deposition of polymers for tailoring physicochemical properties and enhancing filtration performances. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Yaroslavtsev AB, Stenina IA, Golubenko DV. Membrane materials for energy production and storage. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ion exchange membranes are widely used in chemical power sources, including fuel cells, redox batteries, reverse electrodialysis devices and lithium-ion batteries. The general requirements for them are high ionic conductivity and selectivity of transport processes. Heterogeneous membranes are much cheaper but less selective due to the secondary porosity with large pore size. The composition of grafted membranes is almost identical to heterogeneous ones. But they are more selective due to the lack of secondary porosity. The conductivity of ion exchange membranes can be improved by their modification via nanoparticle incorporation. Hybrid membranes exhibit suppressed transport of co-ions and fuel gases. Highly selective composite membranes can be synthesized by incorporating nanoparticles with modified surface. Furthermore, the increase in the conductivity of hybrid membranes at low humidity is a significant advantage for fuel cell application. Proton-conducting membranes in the lithium form intercalated with aprotic solvents can be used in lithium-ion batteries and make them more safe. In this review, we summarize recent progress in the synthesis, and modification and transport properties of ion exchange membranes, their transport properties, methods of preparation and modification. Their application in fuel cells, reverse electrodialysis devices and lithium-ion batteries is also reviewed.
Collapse
Affiliation(s)
- A. B. Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of RAS , Leninsky Prospekt 31 , 119991 Moscow , Russian Federation
- National Research University “Higher School of Economics” , Myasnitskaya Street 20 , 101000 Moscow , Russian Federation
| | - I. A. Stenina
- Kurnakov Institute of General and Inorganic Chemistry of RAS , Leninsky Prospekt 31 , 119991 Moscow , Russian Federation
- Institute of Problems of Chemical Physics of RAS , Academician Semenov Avenue 1 , 142432 Chernogolovka, Moscow Region , Russian Federation
| | - D. V. Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of RAS , Leninsky Prospekt 31 , 119991 Moscow , Russian Federation
- National Research University “Higher School of Economics” , Myasnitskaya Street 20 , 101000 Moscow , Russian Federation
| |
Collapse
|