1
|
Odriozola A, González A, Álvarez-Herms J, Corbi F. Sleep regulation and host genetics. ADVANCES IN GENETICS 2024; 111:497-535. [PMID: 38908905 DOI: 10.1016/bs.adgen.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Due to the multifactorial and complex nature of rest, we focus on phenotypes related to sleep. Sleep regulation is a multifactorial process. In this chapter, we focus on those phenotypes inherent to sleep that are highly prevalent in the population, and that can be modulated by lifestyle, such as sleep quality and duration, insomnia, restless leg syndrome and daytime sleepiness. We, therefore, leave in the background those phenotypes that constitute infrequent pathologies or for which the current level of scientific evidence does not favour the implementation of practical approaches of this type. Similarly, the regulation of sleep quality is intimately linked to the regulation of the circadian rhythm. Although this relationship is discussed in the sections that require it, the in-depth study of circadian rhythm regulation at the molecular level deserves a separate chapter, and this is how it is dealt with in this volume.
Collapse
Affiliation(s)
- Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
2
|
Li HZ, Wang YF, Hu WF, Liu YL, Xu ZG, Guo ZY. Nanomolar range of FAM237B can activate receptor GPR83. Amino Acids 2023; 55:1557-1562. [PMID: 37689599 DOI: 10.1007/s00726-023-03328-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Our recent study confirmed that the mature neuropeptide FAM237A, also known as neurosecretory protein GL (NPGL), is an efficient agonist for GPR83. The paralog FAM237B was previously reported as a weak agonist for GPR83. In the present study, we prepared mature human FAM237B via an intein-fusion approach and demonstrated that it could cause a significant activation effect at the nanomolar range (1‒10 nM) in a NanoBiT-based β-arrestin recruitment assay. Thus, FAM237B appears to be another endogenous agonist for GPR83 and future in vivo studies will be required to confirm this.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya-Fen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen-Feng Hu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Giesecke Y, Asimi V, Stulberg V, Kleinau G, Scheerer P, Koksch B, Grötzinger C. Is the Neuropeptide PEN a Ligand of GPR83? Int J Mol Sci 2023; 24:15117. [PMID: 37894796 PMCID: PMC10606834 DOI: 10.3390/ijms242015117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
G protein-coupled receptor 83 (GPR83) is a class A G protein-coupled receptor with predominant expression in the cerebellum and proposed function in the regulation of food intake and in anxiety-like behavior. The neuropeptide PEN has been suggested as a specific GPR83 ligand. However, conflicting reports exist about whether PEN is indeed able to bind and activate GPR83. This study was initiated to evaluate PEN as a potential ligand of GPR83. Employing several second messenger and other GPCR activation assays as well as a radioligand binding assay, and using multiple GPR83 plasmids and PEN peptides from different sources, no experimental evidence was found to support a role of PEN as a GPR83 ligand.
Collapse
Affiliation(s)
- Yvonne Giesecke
- Tumor Targeting Group, Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Vahid Asimi
- Tumor Targeting Group, Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Valentina Stulberg
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gunnar Kleinau
- Group Structural Biology of Cellular Signaling, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Patrick Scheerer
- Group Structural Biology of Cellular Signaling, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carsten Grötzinger
- Tumor Targeting Group, Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| |
Collapse
|
4
|
Wang J, Wu S, Zhan H, Bi W, Xu Y, Liang Y, Ge Y, Peng L, Jin X, Lu K, Zhao J, Gao L, He Z. p38α in the preoptic area inhibits brown adipose tissue thermogenesis. Obesity (Silver Spring) 2022; 30:2242-2255. [PMID: 36321273 DOI: 10.1002/oby.23552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Elevation of energy expenditure through an increase of brown adipose tissue (BAT) thermogenesis is regarded as one of the most promising ways to prevent obesity development. The preoptic area (POA) of the hypothalamus is a critical area for control of BAT thermogenesis. However, the intracellular signaling cascades in the POA for regulation of BAT thermogenesis are poorly understood. METHODS Phosphorylation proteomics (phosphoproteomics) and bioinformatics approaches were used to disclose numerous hypothalamic signaling pathways involved in the regulation of BAT thermogenesis. Conditional manipulation of the p38α gene in mouse POA was performed by stereotaxic injection of adeno-associated virus 9 vector to explore the role of p38α in BAT thermogenesis. RESULTS Multiple hypothalamic signaling pathways were triggered by cold exposure, especially the mitogen-activated protein kinase (MAPK) signaling pathway. The p38α activation, but not extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2-terminal kinase (JNK), in the hypothalamus was significantly decreased during cold exposure. p38α deficiency in the POA dramatically elevated energy expenditure owing to a marked increase in BAT thermogenesis, resulting in significantly decreased body weight gain and fat mass. Overexpression of p38α in the POA led to a dramatic increase in weight gain. CONCLUSIONS These results demonstrate that p38α in the POA exacerbates obesity development, at least in part owing to a decrease in BAT thermogenesis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Shanshan Wu
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Huidong Zhan
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Wenkai Bi
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yang Xu
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yixiao Liang
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yueping Ge
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Li Peng
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Xinchen Jin
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Keke Lu
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiajun Zhao
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhao He
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Mouat MA, Wilkins BP, Ding E, Govindaraju H, Coleman JLJ, Graham RM, Turner N, Smith NJ. Metabolic Profiling of Mice with Deletion of the Orphan G Protein-Coupled Receptor, GPR37L1. Cells 2022; 11:cells11111814. [PMID: 35681509 PMCID: PMC9180194 DOI: 10.3390/cells11111814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the neurogenic causes of obesity may reveal novel drug targets to counter the obesity crisis and associated sequelae. Here, we investigate whether the deletion of GPR37L1, an astrocyte-specific orphan G protein-coupled receptor, affects whole-body energy homeostasis in mice. We subjected male Gpr37l1−/− mice and littermate wildtype (Gpr37l1+/+, C57BL/6J background) controls to either 12 weeks of high-fat diet (HFD) or chow feeding, or to 1 year of chow diet, with body composition quantified by EchoMRI, glucose handling by glucose tolerance test and metabolic rate by indirect calorimetry. Following an HFD, Gpr37l1−/− mice had similar glucose handling, body weight and fat mass compared with wildtype controls. Interestingly, we observed a significantly elevated respiratory exchange ratio in HFD- and chow-fed Gpr37l1−/− mice during daylight hours. After 1 year of chow feeding, we again saw no differences in glucose and insulin tolerance or body weight between genotypes, nor in energy expenditure or respiratory exchange ratio. However, there was significantly lower fat mass accumulation, and higher ambulatory activity in the Gpr37l1−/− mice during night hours. Overall, these results indicate that while GPR37L1 may play a minor role in whole-body metabolism, it is not a viable clinical target for the treatment of obesity.
Collapse
Affiliation(s)
- Margaret A. Mouat
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Brendan P. Wilkins
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
| | - Eileen Ding
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
| | - Hemna Govindaraju
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
| | - James L. J. Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Robert M. Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Nigel Turner
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Correspondence: (N.T.); (N.J.S.)
| | - Nicola J. Smith
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
- Correspondence: (N.T.); (N.J.S.)
| |
Collapse
|
6
|
Fakira AK, Lueptow LM, Trimbake NA, Devi LA. PEN Receptor GPR83 in Anxiety-Like Behaviors: Differential Regulation in Global vs Amygdalar Knockdown. Front Neurosci 2021; 15:675769. [PMID: 34512237 PMCID: PMC8427670 DOI: 10.3389/fnins.2021.675769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are prevalent across the United States and result in a large personal and societal burden. Currently, numerous therapeutic and pharmaceutical treatment options exist. However, drugs to classical receptor targets have shown limited efficacy and often come with unpleasant side effects, highlighting the need to identify novel targets involved in the etiology and treatment of anxiety disorders. GPR83, a recently deorphanized receptor activated by the abundant neuropeptide PEN, has also been identified as a glucocorticoid regulated receptor (and named GIR) suggesting that this receptor may be involved in stress-responses that underlie anxiety. Consistent with this, GPR83 null mice have been found to be resistant to stress-induced anxiety. However, studies examining the role of GPR83 within specific brain regions or potential sex differences have been lacking. In this study, we investigate anxiety-related behaviors in male and female mice with global knockout and following local GPR83 knockdown in female mice. We find that a global knockdown of GPR83 has minimal impact on anxiety-like behaviors in female mice and a decrease in anxiety-related behaviors in male mice. In contrast, a local GPR83 knockdown in the basolateral amygdala leads to more anxiety-related behaviors in female mice. Local GPR83 knockdown in the central amygdala or nucleus accumbens (NAc) showed no significant effect on anxiety-related behaviors. Finally, dexamethasone administration leads to a significant decrease in receptor expression in the amygdala and NAc of female mice. Together, our studies uncover a significant, but divergent role for GPR83 in different brain regions in the regulation of anxiety-related behaviors, which is furthermore dependent on sex.
Collapse
Affiliation(s)
| | | | | | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Sallee NA, Lee E, Leffert A, Ramirez S, Brace AD, Halenbeck R, Kavanaugh WM, Sullivan KMC. A Pilot Screen of a Novel Peptide Hormone Library Identified Candidate GPR83 Ligands. SLAS DISCOVERY 2020; 25:1047-1063. [PMID: 32713278 DOI: 10.1177/2472555220934807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The identification of novel peptide hormones by functional screening is challenging because posttranslational processing is frequently required to generate biologically active hormones from inactive precursors. We developed an approach for functional screening of novel potential hormones by expressing them in endocrine host cells competent for posttranslational processing. Candidate preprohormones were selected by bioinformatics analysis, and stable endocrine host cell lines were engineered to express the preprohormones. The production of mature hormones was demonstrated by including the preprohormones insulin and glucagon, which require the regulated secretory pathway for production of the active forms. As proof of concept, we screened a set of G-protein-coupled receptors (GPCRs) and identified protein FAM237A as a specific activator of GPR83, a GPCR implicated in central nervous system and regulatory T-cell function. We identified the active form of FAM237A as a C-terminally cleaved, amidated 9 kDa secreted protein. The related protein FAM237B, which is 64% homologous to FAM237A, demonstrated similar posttranslational modification and activation of GPR83, albeit with reduced potency. These results demonstrate that our approach is capable of identifying and characterizing novel hormones that require processing for activity.
Collapse
Affiliation(s)
- Nathan A Sallee
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,Maze Therapeutics Inc., South San Francisco, CA, USA
| | - Ernestine Lee
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Atossa Leffert
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Silvia Ramirez
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Arthur D Brace
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Robert Halenbeck
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - W Michael Kavanaugh
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,CytomX Therapeutics Inc., South San Francisco, CA, USA
| | | |
Collapse
|
8
|
Mack SM, Gomes I, Devi LA. Neuropeptide PEN and Its Receptor GPR83: Distribution, Signaling, and Regulation. ACS Chem Neurosci 2019; 10:1884-1891. [PMID: 30726666 DOI: 10.1021/acschemneuro.8b00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides are chemical messengers that act to regulate a number of physiological processes, including feeding, reward, pain, and memory, among others. PEN is one of the most abundant hypothalamic neuropeptides; however, until recently, its target receptor remained unknown. In this Review, we summarize recent developments in research focusing on PEN and its receptor GPR83. We describe the studies leading to the deorphanization of GPR83 as the receptor for PEN. We also describe the signaling mediated by the PEN-GPR83 system, as well as the physiological roles in which PEN-GPR83 has been implicated. As studies have suggested a role for the PEN-GPR83 system in food intake and body weight regulation, as well as in drug addiction and reward disorders, a thorough understanding of this novel neuropeptide-receptor system will help identify novel therapeutic targets to treat pathophysiological conditions involving PEN-GPR83.
Collapse
Affiliation(s)
- Seshat M. Mack
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
9
|
Lueptow LM, Devi LA, Fakira AK. Targeting the Recently Deorphanized Receptor GPR83 for the Treatment of Immunological, Neuroendocrine and Neuropsychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:1-25. [PMID: 30340784 DOI: 10.1016/bs.pmbts.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-protein coupled receptors (GPCRs) are a superfamily of receptors responsible for initiation of a myriad of intracellular signaling cascades. Currently, GPCRs represent approximately 34% of marketed pharmaceuticals, a large portion of which have no known endogenous ligand. These orphan GPCRs represent a large pool of novel targets for drug development. Very recently, the neuropeptide PEN, derived from the proteolytic processing of the precursor proSAAS, has been identified as a selective, high-affinity endogenous ligand for the orphan receptor, GPR83. GPR83 is highly expressed in the brain, spleen and thymus, indicating that this receptor may be a target to treat neurological and immune disorders. In the brain GPR83 is expressed in regions involved in the reward pathway, stress/anxiety responses, learning and memory and metabolism. However, the cell type specific expression of GPR83 in these regions has only recently begun to be characterized. In the immune system, GPR83 expression is regulated by Foxp3 in T-regulatory cells that are involved in autoimmune responses. Moreover, in the brain this receptor is regulated by interactions with other GPCRs, such as the recently deorphanized receptor, GPR171, and other hypothalamic receptors such as MC4R and GHSR. The following review will summarize the properties of GPR83 and highlight its known and potential significance in health and disease, as well as its promise as a novel target for drug development.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Amanda K Fakira
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Abstract
Classic lesion and physiology experiments identified the hypothalamic preoptic area as a pivotal region in the regulation of temperature homeostasis. The preoptic area can sense changes in local temperature, receives information about ambient temperature, contributes to fever, and can affect thermoregulation in response to several biologic signals. Electrophysiologic studies indicate that these actions are mediated by a neuronal circuitry that comprises temperature-sensitive as well as temperature-insensitive neurons. Little is known on the molecules that may be required for central thermosensation and much of the efforts towards their identification was done for warm-sensitive neurons. Here we summarize the current knowledge on the subject as well as what the search for these molecules revealed about warm-sensitive neurons.
Collapse
Affiliation(s)
- Bruno Conti
- Departments of Molecular Medicine and of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
11
|
Smith SD, Kawash JK, Karaiskos S, Biluck I, Grigoriev A. Evolutionary adaptation revealed by comparative genome analysis of woolly mammoths and elephants. DNA Res 2017; 24:359-369. [PMID: 28369217 PMCID: PMC5737375 DOI: 10.1093/dnares/dsx007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Comparative genomics studies typically limit their focus to single nucleotide variants (SNVs) and that was the case for previous comparisons of woolly mammoth genomes. We extended the analysis to systematically identify not only SNVs but also larger structural variants (SVs) and indels and found multiple mammoth-specific deletions and duplications affecting exons or even complete genes. The most prominent SV found was an amplification of RNase L (with different copy numbers in different mammoth genomes, up to 9-fold), involved in antiviral defense and inflammasome function. This amplification was accompanied by mutations affecting several domains of the protein including the active site and produced different sets of RNase L paralogs in four mammoth genomes likely contributing to adaptations to environmental threats. In addition to immunity and defense, we found many other unique genetic changes in woolly mammoths that suggest adaptations to life in harsh Arctic conditions, including variants involving lipid metabolism, circadian rhythms, and skeletal and body features. Together, these variants paint a complex picture of evolution of the mammoth species and may be relevant in the studies of their population history and extinction.
Collapse
Affiliation(s)
- Sean D Smith
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Joseph K Kawash
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Spyros Karaiskos
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ian Biluck
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
12
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|
13
|
Müller A, Berkmann JC, Scheerer P, Biebermann H, Kleinau G. Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83. PLoS One 2016; 11:e0168260. [PMID: 27936173 PMCID: PMC5148169 DOI: 10.1371/journal.pone.0168260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
The murine G-protein coupled receptor 83 (mGPR83) is expressed in the hypothalamus and was previously suggested to be involved in the regulation of metabolism. The neuropeptide PEN has been recently identified as a potent GPR83 ligand. Moreover, GPR83 constitutes functionally relevant hetero-oligomers with other G-protein coupled receptors (GPCR) such as the ghrelin receptor (GHSR) or GPR171. Previous deletion studies also revealed that the long N-terminal extracellular receptor domain (eNDo) of mGPR83 may act as an intra-molecular ligand, which participates in the regulation of basal signaling activity, which is a key feature of GPCR function. Here, we investigated particular amino acids at the eNDo of human GPR83 (hGPR83) by side-directed mutagenesis to identify determinants of the internal ligand. These studies were accompanied by structure homology modeling to combine functional insights with structural information. The capacity for hetero-oligomer formation of hGPR83 with diverse family A GPCRs such as the melanocortin-4 receptor (MC4R) was also investigated, with a specific emphasis on the impact of the eNDo on oligomerization and basal signaling properties. Finally, we demonstrate that hGPR83 exhibits an unusual basal signaling for different effectors, which also supports signaling promiscuity. hGPR83 interacts with a variety of hypothalamic GPCRs such as the MC4R or GHSR. These interactions are not dependent on the ectodomain and most likely occur at interfaces constituted in the transmembrane regions. Moreover, several amino acids at the transition between the eNDo and transmembrane helix 1 were identified, where mutations lead also to biased basal signaling modulation.
Collapse
Affiliation(s)
- Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Julia Catherine Berkmann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- * E-mail:
| |
Collapse
|
14
|
Cade BE, Chen H, Stilp AM, Gleason KJ, Sofer T, Ancoli-Israel S, Arens R, Bell GI, Below JE, Bjonnes AC, Chun S, Conomos MP, Evans DS, Johnson WC, Frazier-Wood AC, Lane JM, Larkin EK, Loredo JS, Post WS, Ramos AR, Rice K, Rotter JI, Shah NA, Stone KL, Taylor KD, Thornton TA, Tranah GJ, Wang C, Zee PC, Hanis CL, Sunyaev SR, Patel SR, Laurie CC, Zhu X, Saxena R, Lin X, Redline S. Genetic Associations with Obstructive Sleep Apnea Traits in Hispanic/Latino Americans. Am J Respir Crit Care Med 2016; 194:886-897. [PMID: 26977737 PMCID: PMC5074655 DOI: 10.1164/rccm.201512-2431oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Obstructive sleep apnea is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. Although there is strong clinical and epidemiologic evidence supporting the importance of genetic factors in influencing obstructive sleep apnea, its genetic basis is still largely unknown. Prior genetic studies focused on traits defined using the apnea-hypopnea index, which contains limited information on potentially important genetically determined physiologic factors, such as propensity for hypoxemia and respiratory arousability. OBJECTIVES To define novel obstructive sleep apnea genetic risk loci for obstructive sleep apnea, we conducted genome-wide association studies of quantitative traits in Hispanic/Latino Americans from three cohorts. METHODS Genome-wide data from as many as 12,558 participants in the Hispanic Community Health Study/Study of Latinos, Multi-Ethnic Study of Atherosclerosis, and Starr County Health Studies population-based cohorts were metaanalyzed for association with the apnea-hypopnea index, average oxygen saturation during sleep, and average respiratory event duration. MEASUREMENTS AND MAIN RESULTS Two novel loci were identified at genome-level significance (rs11691765, GPR83, P = 1.90 × 10-8 for the apnea-hypopnea index, and rs35424364; C6ORF183/CCDC162P, P = 4.88 × 10-8 for respiratory event duration) and seven additional loci were identified with suggestive significance (P < 5 × 10-7). Secondary sex-stratified analyses also identified one significant and several suggestive associations. Multiple loci overlapped genes with biologic plausibility. CONCLUSIONS These are the first genome-level significant findings reported for obstructive sleep apnea-related physiologic traits in any population. These findings identify novel associations in inflammatory, hypoxia signaling, and sleep pathways.
Collapse
Affiliation(s)
- Brian E. Cade
- Division of Sleep and Circadian Disorders and
- Division of Sleep Medicine and
| | - Han Chen
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, Washington
| | | | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Sonia Ancoli-Israel
- Department of Medicine and
- Department of Psychiatry, University of California, San Diego, California
- Department of Veterans Affairs San Diego Center of Excellence for Stress and Mental Health, San Diego, California
| | - Raanan Arens
- The Children’s Hospital at Montefiore, Division of Respiratory and Sleep Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Graeme I. Bell
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Jennifer E. Below
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Andrew C. Bjonnes
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sung Chun
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, Washington
| | | | - Jacqueline M. Lane
- Division of Sleep and Circadian Disorders and
- Division of Sleep Medicine and
- Center for Human Genetic Research and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Emma K. Larkin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jose S. Loredo
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, UC San Diego School of Medicine, La Jolla, California
| | - Wendy S. Post
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland
| | - Alberto R. Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Neomi A. Shah
- Department of Medicine, Montefiore Medical Center, Bronx, New York
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | | | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Chaolong Wang
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Genome Institute of Singapore, Singapore
| | - Phyllis C. Zee
- Department of Neurology and Sleep Medicine Center, Northwestern University, Chicago, Illinois
| | - Craig L. Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Shamil R. Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Sanjay R. Patel
- Division of Sleep and Circadian Disorders and
- Division of Sleep Medicine and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Richa Saxena
- Division of Sleep and Circadian Disorders and
- Center for Human Genetic Research and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Xihong Lin
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Susan Redline
- Division of Sleep and Circadian Disorders and
- Division of Sleep Medicine and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| |
Collapse
|
15
|
Spaethling JM, Sanchez-Alavez M, Lee J, Xia FC, Dueck H, Wang W, Fisher SA, Sul JY, Seale P, Kim J, Bartfai T, Eberwine J. Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J 2015; 30:81-92. [PMID: 26304220 DOI: 10.1096/fj.15-273797] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023]
Abstract
Brown adipocytes (BAs) are specialized for adaptive thermogenesis and, upon sympathetic stimulation, activate mitochondrial uncoupling protein (UCP)-1 and oxidize fatty acids to generate heat. The capacity for brown adipose tissue (BAT) to protect against obesity and metabolic disease is recognized, yet information about which signals activate BA, besides β3-adrenergic receptor stimulation, is limited. Using single-cell transcriptomics, we confirmed the presence of mRNAs encoding traditional BAT markers (i.e., UCP1, expressed in 100% of BAs Adrb3, expressed in <50% of BAs) in mouse and have shown single-cell variability (>1000-fold) in their expression at both the mRNA and protein levels. We further identified mRNAs encoding novel markers, orphan GPCRs, and many receptors that bind the classic neurotransmitters, neuropeptides, chemokines, cytokines, and hormones. The transcriptome variability between BAs suggests a much larger range of responsiveness of BAT than previously recognized and that not all BAs function identically. We examined the in vivo functional expression of 12 selected receptors by microinjecting agonists into live mouse BAT and analyzing the metabolic response. In this manner, we expanded the number of known receptors on BAs at least 25-fold, while showing that the expression of classic BA markers is more complex and variable than previously thought.
Collapse
Affiliation(s)
- Jennifer M Spaethling
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Manuel Sanchez-Alavez
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - JaeHee Lee
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Feng C Xia
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Hannah Dueck
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Wenshan Wang
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Stephen A Fisher
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jai-Yoon Sul
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Patrick Seale
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Junhyong Kim
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Tamas Bartfai
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - James Eberwine
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
16
|
Müller A, Kleinau G, Piechowski CL, Müller TD, Finan B, Pratzka J, Grüters A, Krude H, Tschöp M, Biebermann H. G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc(II)-induced activity. PLoS One 2013; 8:e53347. [PMID: 23335960 PMCID: PMC3546042 DOI: 10.1371/journal.pone.0053347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/27/2012] [Indexed: 12/31/2022] Open
Abstract
The G-protein coupled receptor 83 (GPR83) is an orphan G-protein coupled receptor for which the natural ligand(s) and signaling pathway(s) remain to be identified. Previous studies suggest a role of GPR83 in the regulation of thermogenesis and the control of circulating adiponectin. The aim of this study was to gain insights into the molecular underpinnings underlying GPR83 signaling. In particular, we aimed to assess the underlying G-protein activated signaling pathway of GPR83 and how this pathway is affected by mutational activation and zinc(II) challenge. Finally, we assessed the capacity of GPR83 for homodimerization. Our results show for the first time that mouse (m) GPR83 has high basal Gq/11 activity without affecting Gi or Gs signaling. Furthermore, we found that, under physiological conditions, zinc(II) (but not calcium(II) and magnesium(II)) potently activates mGPR83, thus identifying zinc(II) as an endogenous molecule with agonistic capability to activate mGPR83. In line with the observation that zinc(II)-ions activate mGPR83, we identified a cluster of ion-binding sensitive amino acids (e.g. His145, His204, Cys207, Glu217) in an activation sensitive receptor region of mGPR83. The occurrence of a constitutive activating mutant and a zinc(II)-binding residue at the N-terminal part corroborate the importance of this region in mGPR83 signal regulation. Finally, our results indicate that mGPR83 forms homodimers, which extend the current knowledge and molecular facets of GPR83 signaling.
Collapse
Affiliation(s)
- Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin L. Piechowski
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Brian Finan
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juliane Pratzka
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Grüters
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Tschöp
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
- Department of Metabolic Diseases, Technical University, Munich, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
17
|
E Vollmer L, Ghosal S, A Rush J, R Sallee F, P Herman J, Weinert M, Sah R. Attenuated stress-evoked anxiety, increased sucrose preference and delayed spatial learning in glucocorticoid-induced receptor-deficient mice. GENES BRAIN AND BEHAVIOR 2012; 12:241-9. [PMID: 23088626 DOI: 10.1111/j.1601-183x.2012.00867.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/03/2012] [Accepted: 10/09/2012] [Indexed: 12/27/2022]
Abstract
The glucocorticoid-induced receptor (GIR) is a stress-responsive gene that is abundantly expressed in forebrain limbic regions. Glucocorticoid-induced receptor has been classified as a Neuropeptide Y-like receptor, however, physiological attributes have not been investigated. In this study, mice lacking GIR (-/-) were screened in various paradigms related to stress, anxiety, activity, memory, fear and reward. GIR -/- mice elicited behavioral insensitivity to the anxiogenic effects of restraint stress. However, hypothalamic pituitary adrenal axis response to stress was not impacted by GIR deficiency. Increased preference for sucrose was observed in GIR -/- mice suggestive of modulation of reward-associated behaviors by the receptor. A delayed acquisition of spatial learning was also observed in GIR -/- mice. There were no effects of genotype on the modulation of anxiety-like behavior, activity, fear-conditioning and extinction. Our data extend previous studies on GIR regulation by glucocorticoids and provide novel evidence for a role of GIR in reward, learning and the behavioral outcomes of stress.
Collapse
Affiliation(s)
- L E Vollmer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Bartfai T, Conti B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front Genet 2012; 3:184. [PMID: 23097647 PMCID: PMC3466567 DOI: 10.3389/fgene.2012.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/07/2023] Open
Abstract
Core body temperature (CBT) and calorie intake are main components of energy homeostasis and two important regulators of health, longevity, and aging. In homeotherms, CBT can be influenced by calorie intake as food deprivation or calorie restriction (CR) lowers CBT whereas feeding has hyperthermic effects. The finding that in mice CBT prolonged lifespan independently of CR, suggested that the mechanisms modulating CBT may represent important regulators of aging. Here we summarize the current knowledge on the signaling molecules and their receptors that participate in the regulation of CBT responses to calorie intake. These include hypothalamic neuropeptides regulating feeding but also energy expenditure via modulation of thermogenesis. We also report studies indicating that nutrient signals can contribute to regulation of CBT by direct action on hypothalamic preoptic warm-sensitive neurons that in turn regulate adaptive thermogenesis and hence CBT. Finally, we show the role played by two orphans G protein-coupled receptor: GPR50 and GPR83, that were recently demonstrated to regulate temperature-dependent energy expenditure.
Collapse
Affiliation(s)
- Tamas Bartfai
- Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|