1
|
Bertoni C, Mazzocchi A, Leone L, Agostoni C, Filocamo G. Cardiovascular risk and inflammation in a population with autoimmune diseases: a narrative review. Front Immunol 2024; 15:1380372. [PMID: 38605945 PMCID: PMC11006973 DOI: 10.3389/fimmu.2024.1380372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Juvenile Systemic Connective Tissue Diseases (JSCTD) are a heterogeneous group of chronic autoimmune diseases, associated with dyslipidemia and increased cardiovascular risk are related. Studies from the last 10 years, from 2013 to 2022, on lipid profiles in JSCTD were collected. Different studies on lipid profiles in children affected by JSCTD were selected, because the aim is to analyze the cardiovascular risk and the possibility of atherosclerosis in these patients in whom, sometimes, corticosteroid therapies and immunosuppressants increase the state of dyslipidemia. Several studies have shown that autoimmune diseases with an inflammatory substrate also share abnormalities in lipid profile and increased cardiovascular risk. Specifically, associations have been found between Juvenile Systemic Connective Tissue Diseases and elevated triglycerides, TC-C (Total Cholesterol), LDL-C (Low-Density Lipoprotein), low HDL-C (High-Density Lipoprotein), and increased risk of developing diseases such as myocardial infarction, peripheral vascular disease, pulmonary and arterial hypertension, and atrial fibrillation. Supplementation with alpha-linolenic acid (ALA) on the other hand has also been analyzed with positive results in reducing inflammatory parameters, such as IL-6 (Interleukin-6), CRP (C-reactive protein), and fasting glucose, in subjects with dyslipidemia. These observations suggest that supplementation with ALA, an omega-3 precursor, may positively modulate both the inflammatory status and dyslipidemic conditions in patients with autoimmune disorders.
Collapse
Affiliation(s)
- Camilla Bertoni
- Department of Veterinary Sciences for Health, Animal Production and Food Safety, University of Milan, Milan, Italy
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ludovica Leone
- Pediatric Area, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pediatric Area, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Filocamo
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pediatric Area, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Grande Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Zhang W, Zhao Y, He Q, Lang R. Therapeutically targeting essential metabolites to improve immunometabolism manipulation after liver transplantation for hepatocellular carcinoma. Front Immunol 2023; 14:1211126. [PMID: 37492564 PMCID: PMC10363744 DOI: 10.3389/fimmu.2023.1211126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy worldwide and is associated with a poor prognosis. Sophisticated molecular mechanisms and biological characteristics need to be explored to gain a better understanding of HCC. The role of metabolites in cancer immunometabolism has been widely recognized as a hallmark of cancer in the tumor microenvironment (TME). Recent studies have focused on metabolites that are derived from carbohydrate, lipid, and protein metabolism, because alterations in these may contribute to HCC progression, ischemia-reperfusion (IR) injury during liver transplantation (LT), and post-LT rejection. Immune cells play a central role in the HCC microenvironment and the duration of IR or rejection. They shape immune responses through metabolite modifications and by engaging in complex crosstalk with tumor cells. A growing number of publications suggest that immune cell functions in the TME are closely linked to metabolic changes. In this review, we summarize recent findings on the primary metabolites in the TME and post-LT metabolism and relate these studies to HCC development, IR injury, and post-LT rejection. Our understanding of aberrant metabolism and metabolite targeting based on regulatory metabolic pathways may provide a novel strategy to enhance immunometabolism manipulation by reprogramming cell metabolism.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Dyslipidemia is associated with inflammation and organ involvement in systemic lupus erythematosus. Clin Rheumatol 2023; 42:1565-1572. [PMID: 36790644 DOI: 10.1007/s10067-023-06539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Disturbed lipid metabolism was observed in systemic lupus erythematosus (SLE) patients. This study aimed to evaluate the relationships between dyslipidemia and visceral organ involvement, disease severity, inflammatory factors, and drug intake in SLE patients. METHOD Inpatients with SLE (n = 105) and healthy controls (HC) (n = 75) were recruited in this study. Clinical and laboratory data were collected from patient records. The concentrations of tumor necrosis factor receptors superfamily member1A (TNFRSF1A), member1B (TNFRSF1B) and adipokine angiopoietin-like 4 (ANGPTL4) in plasma were measured by ELISA. RESULT Compared to HC, serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), and apolipoprotein B (ApoB) were significantly increased, while high-density lipoprotein (HDL) and apolipoprotein A1 (ApoA1) were decreased in SLE patients. Patients with higher disease activity and renal damage suffered from more severe dyslipidemia. Renal functional parameters were closely correlated with serum lipid levels. Inflammatory factors were associated with dyslipidemia. The levels of TNFRSF1A and TNFRSF1B were obviously increased and associated with kidney involvement in SLE patients. Patients with high-dose glucocorticoid intake showed more severe dyslipidemia. CONCLUSIONS Attention should be paid to the dyslipidemia of SLE. Dyslipidemia is associated with inflammation and organ involvement in SLE. These findings might provide a new strategy for the treatment of SLE. Key Points • Serum levels of TG, TC, LDL, and ApoB were significantly increased, while HDL and ApoA1 were decreased in SLE patients. • Patients with higher disease activity and renal damage suffered from more severe dyslipidemia. Renal functional parameters and inflammatory factors were closely correlated with serum lipid levels. • Patients with high-dose glucocorticoid intake showed more severe dyslipidemia. • These findings might provide a new strategy for the treatment of SLE.
Collapse
|
4
|
A mixed blessing for liver transplantation patients - Rapamycin. Hepatobiliary Pancreat Dis Int 2023; 22:14-21. [PMID: 36328894 DOI: 10.1016/j.hbpd.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Liver transplantation (LT) is an effective treatment option for end-stage liver disease. Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin, are widely used post LT. DATA SOURCES In this review, we focused on the anti-cancer activities and metabolic side effects of rapamycin after LT. The literature available on PubMed for the period of January 1999-September 2022 was reviewed. The key words were rapamycin, sirolimus, liver transplantation, hepatocellular carcinoma, diabetes, and lipid metabolism disorder. RESULTS Rapamycin has shown excellent effects and is safer than other immunosuppressive regimens. It has exhibited excellent anti-cancer activity and has the potential in preventing hepatocellular carcinoma (HCC) recurrence post LT. Rapamycin is closely related to two long-term complications after LT, diabetes and lipid metabolism disorders. CONCLUSIONS Rapamycin prevents HCC recurrence post LT in some patients, but it also induces metabolic disorders. Reasonable use of rapamycin benefits the liver recipients.
Collapse
|
5
|
PINHO ARYANEC, BURGEIRO ANA, PEREIRA MARIAJOÃO, CARVALHO EUGENIA. Drug-induced metabolic alterations in adipose tissue - with an emphasis in epicardial adipose tissue. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220201819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Affiliation(s)
| | | | | | - EUGENIA CARVALHO
- University of Coimbra, Portugal; University of Coimbra, Portugal; APDP-Portuguese Diabetes Association, Portugal
| |
Collapse
|
6
|
Han Y, Wu L, Ling Q, Wu P, Zhang C, Jia L, Weng H, Wang B. Intestinal Dysbiosis Correlates With Sirolimus-induced Metabolic Disorders in Mice. Transplantation 2021; 105:1017-1029. [PMID: 33116044 DOI: 10.1097/tp.0000000000003494] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Long-time use of pharmacological immunosuppressive agents frequently leads to metabolic disorders. Most studies have focused on islet toxicity leading to posttransplantation diabetes mellitus. In contrast, the link between intestinal dysbiosis and immunosuppressive drug-induced metabolic disorders remains unclear. METHODS We established a mouse model of metabolic abnormality via sirolimus treatment. Fecal microbiota was examined using 16S rRNA gene MiSeq sequencing. Intestinal barrier function was assessed using fluorescein isothiocyanate-dextran assay and mucus immunostaining. Systemic inflammation was determined using a multiplexed fluorescent bead-based immunoassay. RESULTS Sirolimus induced dyslipidemia and glucose intolerance in mice in a dose-dependent manner. Interestingly, the clinical-mimicking dose of sirolimus altered the intestinal microbiota community, which was characterized by the enrichment of Proteobacteria, depletion of Akkermansia, and potential function shifts to those involved in lipid metabolism and the immune system. In addition, the clinical-mimicking dose of sirolimus reduced the thickness of the intestinal mucosal layer, increased the intestinal permeability, and enriched the circulating pro-inflammatory factors, including interleukin (IL)-12, IL-6, monocyte chemotactic protein 1, granulocyte-macrophage colony stimulating factor, and IL-1β. Our results showed a close association between intestinal dysbiosis, intestinal barrier failure, systemic inflammation, and metabolic disorders. Furthermore, we demonstrated that oral intervention in the gut microbiota by Lactobacillus rhamnosus HN001 protected against intestinal dysbiosis, especially by depleting the lipopolysaccharide-producing Proteobacteria, and attenuated the sirolimus-induced systemic inflammation, dyslipidemia, and insulin resistance. CONCLUSIONS Our study demonstrated a potentially causative role of intestinal dysbiosis in sirolimus-induced metabolic disorders, which will provide a novel therapeutic target for transplant recipients.
Collapse
Affiliation(s)
- Yuqiu Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Pin Wu
- Division of Throat Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenzhi Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Longfei Jia
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Honglei Weng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China
| |
Collapse
|
7
|
Paolella LM, Mukherjee S, Tran CM, Bellaver B, Hugo M, Luongo TS, Shewale SV, Lu W, Chellappa K, Baur JA. mTORC1 restrains adipocyte lipolysis to prevent systemic hyperlipidemia. Mol Metab 2019; 32:136-147. [PMID: 32029223 PMCID: PMC6961719 DOI: 10.1016/j.molmet.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Objective Pharmacological agents targeting the mTOR complexes are used clinically as immunosuppressants and anticancer agents and can extend the lifespan of model organisms. An undesirable side effect of these drugs is hyperlipidemia. Although multiple roles have been described for mTOR complex 1 (mTORC1) in lipid metabolism, the etiology of hyperlipidemia remains incompletely understood. The objective of this study was to determine the influence of adipocyte mTORC1 signaling in systemic lipid homeostasis in vivo. Methods We characterized systemic lipid metabolism in mice lacking the mTORC1 subunit Raptor (RaptoraKO), the key lipolytic enzyme ATGL (ATGLaKO), or both (ATGL-RaptoraKO) in their adipocytes. Results Mice lacking mTORC1 activity in their adipocytes failed to completely suppress lipolysis in the fed state and displayed prominent hypertriglyceridemia and hypercholesterolemia. Blocking lipolysis in their adipose tissue restored normal levels of triglycerides and cholesterol in the fed state as well as the ability to clear triglycerides in an oral fat tolerance test. Conclusions Unsuppressed adipose lipolysis in the fed state interferes with triglyceride clearance and contributes to hyperlipidemia. Adipose tissue mTORC1 activity is necessary for appropriate suppression of lipolysis and for the maintenance of systemic lipid homeostasis. Inhibition of adipose mTORC1 causes hypertriglyceridemia prior to lipodystrophy. Genetically inhibiting lipolysis reverses the increase in plasma TG. Acute pharmacological inhibition of lipolysis reverses the increase in plasma TG caused by rapamycin treatment. Unrestrained lipolysis impairs LPL activity and decreases TG clearance.
Collapse
Affiliation(s)
- Lauren M Paolella
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cassie M Tran
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruna Bellaver
- Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Programa de Pós-graduação em Ciência Biológicas-Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mindy Hugo
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy S Luongo
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Swapnil V Shewale
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Karthikeyani Chellappa
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph A Baur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Tirronen A, Vuorio T, Kettunen S, Hokkanen K, Ramms B, Niskanen H, Laakso H, Kaikkonen MU, Jauhiainen M, Gordts PLSM, Ylä-Herttuala S. Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants. Arterioscler Thromb Vasc Biol 2019; 38:2327-2337. [PMID: 30354205 DOI: 10.1161/atvbaha.118.311549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- ApoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and cholesterol production, as well as downregulation of peroxisomal β-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Taina Vuorio
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Sanna Kettunen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Krista Hokkanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Bastian Ramms
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.)
| | - Henri Niskanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Hanne Laakso
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Minna U Kaikkonen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.J.)
| | - Philip L S M Gordts
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Glycobiology Research and Training Center (P.L.S.M.G.), University of California San Diego, La Jolla, CA
| | - Seppo Ylä-Herttuala
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.).,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
9
|
Wu Q, Kuca K. Metabolic Pathway of Cyclosporine A and Its Correlation with Nephrotoxicity. Curr Drug Metab 2019; 20:84-90. [DOI: 10.2174/1389200219666181031113505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022]
Abstract
Background:Cyclosporine A (CsA) is widely used for organ transplantation and autoimmune disorders. However, CsA nephrotoxicity is a serious side effect that limits the clinical use of CsA. The metabolism of CsA has a close relationship with this disease in renal-transplant patients. However, the metabolic pathways of CsA and its metabolizing enzymes have rarely been comprehensively reviewed. In this review, we have summarized the specific metabolic profiles of CsA in humans, especially renal-transplant patients. Moreover, the specific metabolizing enzymes and the potential roles that CsA metabolism plays in CsA nephrotoxicity were summarized and discussed.Methods:Electronic databases including PubMed, Web of Science, and Scifinder were searched with the keywords "Cyclosporine A and metabolism", and "Cyclosporine A and nephrotoxicity", "Cyclosporine A metabolism and nephrotoxicity". All these studies published until 2018 were included in this review.Results:The major metabolic pathways of CsA in humans are hydroxylation and N-demethylation. Normally, these metabolites are relatively less toxic than CsA. However, the metabolism of CsA in the kidneys is much weaker than that in the liver, which explains why CsA is so toxic to the kidneys. CYP3A families, especially CYP3A4 and CYP3A5, play an important role in the biotransformation of CsA. Moreover, increased lines of evidence show that some metabolites (including AM19) associate directly with nephrotoxicity in CsA-treated organ-transplant patients.Conclusion:The findings of this review help to further understand the metabolic activities of CsA in renal-transplant patients and cast some light on the mechanisms of CsA nephrotoxicity.
Collapse
Affiliation(s)
- Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression From NAFLD to NASH. Transplantation 2019; 103:e1-e13. [DOI: 10.1097/tp.0000000000002480] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
12
|
Fonseca ACRG, Carvalho E, Eriksson JW, Pereira MJ. Calcineurin is an important factor involved in glucose uptake in human adipocytes. Mol Cell Biochem 2018; 445:157-168. [PMID: 29380240 PMCID: PMC6060758 DOI: 10.1007/s11010-017-3261-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
Abstract
Calcineurin inhibitors are used in immunosuppressive therapy applied after transplantation, but they are associated with major metabolic side effects including the development of new onset diabetes. Previously, we have shown that the calcineurin inhibiting drugs tacrolimus and cyclosporin A reduce adipocyte and myocyte glucose uptakes by reducing the amount of glucose transporter type 4 (GLUT4) at the cell surface, due to an increased internalization rate. However, this happens without alteration in total protein and phosphorylation levels of key proteins involved in insulin signalling or in the total amount of GLUT4. The present study evaluates possible pathways involved in the altered internalization of GLUT4 and consequent reduction of glucose uptake provoked by calcineurin inhibitors in human subcutaneous adipose tissue. Short- and long-term treatments with tacrolimus, cyclosporin A or another CNI deltamethrin (herbicide) decreased basal and insulin-dependent glucose uptake in adipocytes, without any additive effects observed when added together. However, no tacrolimus effects were observed on glucose uptake when gene transcription and protein translation were inhibited. Investigation of genes potentially involved in GLUT4 trafficking showed only a small effect on ARHGEF11 gene expression (p < 0.05). In conlusion, the specific inhibition of calcineurin, but not that of protein phosphatases, decreases glucose uptake in human subcutaneous adipocytes, suggesting that calcineurin is an important regulator of glucose transport. This inhibitory effect is mediated via gene transcription or protein translation; however, expression of genes potentially involved in GLUT4 trafficking and endocytosis appears not to be involved in these effects.
Collapse
Affiliation(s)
- Ana Catarina R G Fonseca
- Department of Medical Sciences, University of Uppsala, 751 85, Uppsala, Sweden.,Center of Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Eugénia Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,The Portuguese Diabetes Association (APDP), 1250-203, Lisbon, Portugal.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Jan W Eriksson
- Department of Medical Sciences, University of Uppsala, 751 85, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, University of Uppsala, 751 85, Uppsala, Sweden.
| |
Collapse
|
13
|
Chen HJ, Liu J. Actein ameliorates hepatic steatosis and fibrosis in high fat diet-induced NAFLD by regulation of insulin and leptin resistant. Biomed Pharmacother 2017; 97:1386-1396. [PMID: 29156528 DOI: 10.1016/j.biopha.2017.09.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/03/2017] [Accepted: 09/18/2017] [Indexed: 02/05/2023] Open
Abstract
Insulin and leptin resistance are highly involved in metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Presently, no approved treatment is available. Actein is isolated from the rthizomes of Cimicifuga foetida, a triterpene glycoside, exhibiting important biological properties, such as anti-inflammatory, anti-cancer, and anti-oxidant activity. However, its effects on metabolic syndrome are poorly understood. The aims of the study were mainly to investigate the molecular mechanisms regulating insulin and leptin resistance, and lipogenic action of actein in high fat diet-fed mice. Our data indicated that actein-treated mice displayed lower body weight, epididymal and subcutaneous fat mass, as well as serum lipid levels. Also, improved insulin and leptin resistance were observed in actein-treated groups. Liver inflammation and fibrosis triggered by high fat diet were decreased for actein administration. Moreover, hepatic lipid accumulation was also reduced by actein along with reductions of hepatic de novo lipogenesis-linked signals in actein-treated rodents with high fat diet. High fat diet-induced activation of insulin receptor substrate 1/Forkhead box protein O1 (IRS1/FOXO1), Janus kinase 2 gene/signal transducer and activator of transcription (JAK2/STAT3) and Protein Kinase B/Glycogen synthase kinase 3 beta (AKT/GSK3β) pathways in liver was inhibited by actein, a potential mechanism by which hyperinsulinemia, hyperleptindemia and dyslipidemia were attenuated. Thus, the findings above might be of nutritional and therapeutic importance for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hong-Jun Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Affiliation(s)
- Maaike Kockx
- aANZAC Research Institute bDepartment of Cardiology, Concord Repatriation General Hospital; University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
15
|
Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1929-1941. [PMID: 27686967 DOI: 10.1016/j.bbalip.2016.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 11/21/2022]
Abstract
New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.
Collapse
|
16
|
Abstract
The synthesis of lipids in response to food intake represents a key advantage that allows organisms to survive when energy availability is limited. In mammals, circulating levels of insulin and nutrients, which fluctuate between fasting and feeding, dictate whether lipids are synthesized or catabolized by tissues. The mechanistic target of rapamycin (mTOR), a kinase that is activated by anabolic signals, plays fundamental roles in regulating lipid biosynthesis and metabolism in response to nutrition. The mTOR kinase nucleates two large protein complexes named mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Following their activation, these complexes facilitate the accumulation of triglycerides by promoting adipogenesis and lipogenesis and by shutting down catabolic processes such as lipolysis and β-oxidation. Here, we review and discuss the roles of mTOR complexes in various aspects of lipid metabolism in mammals. We also use this opportunity to discuss the implication of these relations to the maintenance of systemic lipid homeostasis.
Collapse
Affiliation(s)
- Alexandre Caron
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada, G1V 4G5;
| | | | | |
Collapse
|
17
|
Pereira MJ, Eriksson JW, Svensson MK. A case report of improved metabolic control after conversion from everolimus to cyclosporin A: role of adipose tissue mechanisms? Transplant Proc 2014; 46:2377-80. [PMID: 25242791 DOI: 10.1016/j.transproceed.2014.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/27/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND New-onset diabetes after transplantation is associated with an increase in risk of graft failure, cardiovascular disease, and mortality. Therefore, it compromises the overall beneficial outcome of organ transplantation. CASE REPORT A patient with new-onset diabetes after renal transplantation showed glucose and lipid metabolism improvements after switching immunosuppressant from everolimus to cyclosporin A. A subcutaneous adipose tissue biopsy displayed changes in gene and protein expression that could contribute to the clinical improvement of hyperglycemia and dyslipidemia.
Collapse
Affiliation(s)
- M J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M K Svensson
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
18
|
Cyclosporine A enhances gluconeogenesis while sirolimus impairs insulin signaling in peripheral tissues after 3 weeks of treatment. Biochem Pharmacol 2014; 91:61-73. [DOI: 10.1016/j.bcp.2014.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
|