1
|
Drag MH, Debes KP, Franck CS, Flethøj M, Lyhne MK, Møller JE, Ludvigsen TP, Jespersen T, Olsen LH, Kilpeläinen TO. Nanopore sequencing reveals methylation changes associated with obesity in circulating cell-free DNA from Göttingen Minipigs. Epigenetics 2023; 18:2199374. [PMID: 37032646 PMCID: PMC10088973 DOI: 10.1080/15592294.2023.2199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Profiling of circulating cell-free DNA (cfDNA) by tissue-specific base modifications, such as 5-methylcytosines (5mC), may enable the monitoring of ongoing pathophysiological processes. Nanopore sequencing allows genome-wide 5mC detection in cfDNA without bisulphite conversion. The aims of this study were: i) to find differentially methylated regions (DMRs) of cfDNA associated with obesity in Göttingen minipigs using Nanopore sequencing, ii) to validate a subset of the DMRs using methylation-specific PCR (MSP-PCR), and iii) to compare the cfDNA DMRs with those from whole blood genomic DNA (gDNA). Serum cfDNA and gDNA were obtained from 10 lean and 7 obese Göttingen Minipigs both with experimentally induced myocardial infarction and sequenced using Oxford Nanopore MinION. A total of 1,236 cfDNA DMRs (FDR<0.01) were associated with obesity. In silico analysis showed enrichment of the adipocytokine signalling, glucagon signalling, and cellular glucose homoeostasis pathways. A strong cfDNA DMR was discovered in PPARGC1B, a gene linked to obesity and type 2 diabetes. The DMR was validated using MSP-PCR and correlated significantly with body weight (P < 0.05). No DMRs intersected between cfDNA and gDNA, suggesting that cfDNA originates from body-wide shedding of DNA. In conclusion, nanopore sequencing detected differential methylation in minute quantities (0.1-1 ng/µl) of cfDNA. Future work should focus on translation into human and comparing 5mC from somatic tissues to pinpoint the exact location of pathology.
Collapse
Affiliation(s)
- Markus Hodal Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Conservation, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Clara Sandkamm Franck
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flethøj
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Mille Kronborg Lyhne
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital and Odense University Hospital, Odense, Denmark
| | | | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Chikuie E, Saeki Y, Tanabe K, Ota H, Tanaka Y, Ohdan H. The involvement of circulating CD69+ CD56bright natural killer cells in weight loss before bariatric surgery: A retrospective cohort study. Medicine (Baltimore) 2023; 102:e34999. [PMID: 37832122 PMCID: PMC10578777 DOI: 10.1097/md.0000000000034999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 10/15/2023] Open
Abstract
As the impact of the immune system on weight loss prior to bariatric surgery has never been proven, we elucidated the clinical utility of the immune system as an indicator of preoperative weight loss before bariatric surgery. We examined the relationships between preoperative weight loss and biochemical and clinical data at the initial visit in 34 obese patients. Patients were divided according to preoperative weight loss, and peripheral blood mononuclear cells were compared using flowcytometry. The Δpreoperative excess weight loss [Δpre-EWL: pre-EWL (%)/period of preoperative weight loss (days)] showed negative correlations with total and subcutaneous fat area (P = .02, r = -0.41, P = .02, r = -0.42 respectively). The Δpre-EWL and Δpreoperative total weight loss (Δpre-TWL) were negatively correlated with white blood cell count, lymphocyte count, and C-reactive protein (CRP) levels at the initial visit (Δpre-EWL; P = .02, r = -0.37, P = .01, r = -0.41, P = .008, r = -0.45, Δpre-TWL; P = .01, r = -0.40, P = .01, r = -0.42, P = .01, r = -0.42, respectively). Multivariate regression modeling showed that both Δpre-EWL and Δpre-TWL were significantly associated with lymphocyte count (Δpre-EWL; P = .01, Δpre-TWL; P = .01). A comparison between the high (Δ pre-EWL > 0.098) and low weight loss group (Δ pre-EWL < 0.098) demonstrated a significant difference in the expression of the activation marker CD69 on CD56bright Natural killer (NK) cells (P = .01), whereas there was no difference in the frequency of T cells, Natural killer T cells, or NK cells. Additionally, high CRP levels were associated with CD69 expression in CD56bright NK cells (P = .01, R = 0.57). Peripheral lymphocytes, especially CD69-positive CD56bright NK cells, are involved in preoperative weight loss after bariatric surgery, and systemic inflammation may inhibit weight loss before surgery.
Collapse
Affiliation(s)
- Emi Chikuie
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Saeki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Division of Endoscopic Surgery, Hofu Institute of Gastroenterology, Hiroshima University Hospital, Hofu, Japan
| | - Kazuaki Tanabe
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Department of Perioperative and Critical Care Management, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Ota
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Nikolova-Ganeva K, Vasilev V, Kerezieva S, Tchorbanov A. Impact of folic acid on regulatory B lymphocytes from patients with systemic lupus erythematosus in vitro. Int J Rheum Dis 2023; 26:298-304. [PMID: 36385742 DOI: 10.1111/1756-185x.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Epigenetic modifications of genomes are of particular interest as numerous studies indicate the correlation between DNA methylation and the development of systemic lupus. As a major methyl group donor, folic acid is an important participant in this process. The aim of this study is to determine the effect of low or high dose folate co-culturing with peripheral blood mononuclear cells (PBMCs) on the secretion of interleukin (IL)10 from regulatory cells from lupus patients or from healthy volunteers. METHODS PBMCs from lupus patients and healthy volunteers were isolated and separated CD19+ B cell populations were cultured in the presence of 4 μg/mL or of 16 μg/mL of folic acid and the DNA methylation level as well as the percentages of B lymphocytes were measured. In another experiment, PBMCs were stimulated in vitro for IL10 production with 1 μg/mL recombinant human CD40L and with 2.5 μg/mL unmethylated CpG dinucleotides and cultured in the presence of 4 μg/mL or of 16 μg/mL of folic acid. RESULTS Although co-culturing with low or high folic acid concentrations had no effect on the methylation level of B lymphocytes, particular patients showed an increase in the population of CD19+ IL10+ as well as of CD19- IL10+ cells. CONCLUSION The observed increase may be a consequence of additional indirect or direct methylation of DNA in specific loci of the targeted cells. However, further analysis would clarify the exact mechanism of action of folate and would reveal its immunomodulating potential in this autoimmune disease.
Collapse
Affiliation(s)
- Kalina Nikolova-Ganeva
- Department of Immunology, Laboratory of Experimental Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vasil Vasilev
- Department of Nephrology, University Hospital "Tsaritsa Yoanna - ISUL", Medical University - Sofia, Sofia, Bulgaria
| | - Simona Kerezieva
- Department of Nephrology, University Hospital "Tsaritsa Yoanna - ISUL", Medical University - Sofia, Sofia, Bulgaria
| | - Andrey Tchorbanov
- Department of Immunology, Laboratory of Experimental Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
4
|
Zhang N, Tian X, Yan T, Wang H, Zhang D, Lin C, Liu Q, Jiang S. Insights into the role of nucleotide methylation in metabolic-associated fatty liver disease. Front Immunol 2023; 14:1148722. [PMID: 37020540 PMCID: PMC10067741 DOI: 10.3389/fimmu.2023.1148722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by fatty infiltration of the liver. In recent years, the MAFLD incidence rate has risen and emerged as a serious public health concern. MAFLD typically progresses from the initial hepatocyte steatosis to steatohepatitis and then gradually advances to liver fibrosis, which may ultimately lead to cirrhosis and carcinogenesis. However, the potential evolutionary mechanisms still need to be clarified. Recent studies have shown that nucleotide methylation, which was directly associated with MAFLD's inflammatory grading, lipid synthesis, and oxidative stress, plays a crucial role in the occurrence and progression of MAFLD. In this review, we highlight the regulatory function and associated mechanisms of nucleotide methylation modification in the progress of MAFLD, with a particular emphasis on its regulatory role in the inflammation of MAFLD, including the regulation of inflammation-related immune and metabolic microenvironment. Additionally, we summarize the potential value of nucleotide methylation in the diagnosis and treatment of MAFLD, intending to provide references for the future investigation of MAFLD.
Collapse
Affiliation(s)
- Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Dengtian Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| |
Collapse
|
5
|
Morais JBS, Dias TMDS, Cardoso BEP, de Paiva Sousa M, Sousa TGVD, Araújo DSCD, Marreiro DDN. Adipose Tissue Dysfunction: Impact on Metabolic Changes? Horm Metab Res 2022; 54:785-794. [PMID: 35952684 DOI: 10.1055/a-1922-7052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adipose tissue is a metabolically dynamic organ that is the primary site of storage for excess energy, but it serves as an endocrine organ capable of synthesizing a number of biologically active compounds that regulate metabolic homeostasis. However, when the capacity of expansion of this tissue exceeds, dysfunction occurs, favoring ectopic accumulation of fat in the visceral, which has been implicated in several disease states, most notably obesity. This review highlights the mechanisms involved in the structure of adipose tissue, tissue expandability, adipocyte dysfunction, as well as the impact of these events on the manifestation of important metabolic disorders associated with adipose tissue dysfunction. A literature search using Pubmed, Web of Science, Scopus, and Cochrane databases were used to identify relevant studies, using clinical trials, experimental studies in animals and humans, case-control studies, case series, letters to the editor, and review articles published in English, without restrictions on year of publication. The excessive ectopic lipid accumulation leads to local inflammation and insulin resistance. Indeed, overnutrition triggers uncontrolled inflammatory responses white adipose tissue, leading to chronic low-grade inflammation, therefore fostering the progression of important metabolic disorders. Thus, it is essential to advance the understanding of the molecular mechanisms involved in adipose tissue dysfunction in order to mitigate the negative metabolic consequences of obesity.
Collapse
|
6
|
Polyzos SA, Hill MA, Fuleihan GEH, Gnudi L, Kim YB, Larsson SC, Masuzaki H, Matarese G, Sanoudou D, Tena-Sempere M, Mantzoros CS. Metabolism, Clinical and Experimental: seventy years young and growing. Metabolism 2022; 137:155333. [PMID: 36244415 DOI: 10.1016/j.metabol.2022.155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Ghada El-Hajj Fuleihan
- Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, World Health Organization Collaborating Center for Metabolic Bone Disorders, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Luigi Gnudi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, UK
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hiroaki Masuzaki
- Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy; Laboratorio di Immunogenetica dei Trapianti & Registro Regionale dei Trapianti di Midollo, AOU "Federico II", Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Hameed M, Geerling E, Pinto AK, Miraj I, Weger-Lucarelli J. Immune response to arbovirus infection in obesity. Front Immunol 2022; 13:968582. [PMID: 36466818 PMCID: PMC9716109 DOI: 10.3389/fimmu.2022.968582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 12/26/2023] Open
Abstract
Obesity is a global health problem that affects 650 million people worldwide and leads to diverse changes in host immunity. Individuals with obesity experience an increase in the size and the number of adipocytes, which function as an endocrine organ and release various adipocytokines such as leptin and adiponectin that exert wide ranging effects on other cells. In individuals with obesity, macrophages account for up to 40% of adipose tissue (AT) cells, three times more than in adipose tissue (10%) of healthy weight individuals and secrete several cytokines and chemokines such as interleukin (IL)-1β, chemokine C-C ligand (CCL)-2, IL-6, CCL5, and tumor necrosis factor (TNF)-α, leading to the development of inflammation. Overall, obesity-derived cytokines strongly affect immune responses and make patients with obesity more prone to severe symptoms than patients with a healthy weight. Several epidemiological studies reported a strong association between obesity and severe arthropod-borne virus (arbovirus) infections such as dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), and Sindbis virus (SINV). Recently, experimental investigations found that DENV, WNV, CHIKV and Mayaro virus (MAYV) infections cause worsened disease outcomes in infected diet induced obese (DIO) mice groups compared to infected healthy-weight animals. The mechanisms leading to higher susceptibility to severe infections in individuals with obesity remain unknown, though a better understanding of the causes will help scientists and clinicians develop host directed therapies to treat severe disease. In this review article, we summarize the effects of obesity on the host immune response in the context of arboviral infections. We have outlined that obesity makes the host more susceptible to infectious agents, likely by disrupting the functions of innate and adaptive immune cells. We have also discussed the immune response of DIO mouse models against some important arboviruses such as CHIKV, MAYV, DENV, and WNV. We can speculate that obesity-induced disruption of innate and adaptive immune cell function in arboviral infections ultimately affects the course of arboviral disease. Therefore, further studies are needed to explore the cellular and molecular aspects of immunity that are compromised in obesity during arboviral infections or vaccination, which will be helpful in developing specific therapeutic/prophylactic interventions to prevent immunopathology and disease progression in individuals with obesity.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Iqra Miraj
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Moharrek F, Ingerslev LR, Altıntaş A, Lundell L, Hansen AN, Small L, Workman CT, Barrès R. Comparative analysis of sperm DNA methylation supports evolutionary acquired epigenetic plasticity for organ speciation. Epigenomics 2022; 14:1305-1324. [PMID: 36420698 DOI: 10.2217/epi-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aim: To perform a comparative epigenomic analysis of DNA methylation in spermatozoa from humans, mice, rats and mini-pigs. Materials & methods: Genome-wide DNA methylation analysis was used to compare the methylation profiles of orthologous CpG sites. Transcription profiles of early embryo development were analyzed to provide insight into the association between sperm methylation and gene expression programming. Results: We identified DNA methylation variation near genes related to the central nervous system and signal transduction. Gene expression dynamics at different time points of preimplantation stages were modestly associated with spermatozoal DNA methylation at the nearest promoters. Conclusion: Conserved genomic regions subject to epigenetic variation across different species were associated with specific organ functions, suggesting their potential contribution to organ speciation and long-term adaptation to the environment.
Collapse
Affiliation(s)
- Farideh Moharrek
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lars R Ingerslev
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ali Altıntaş
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Leonidas Lundell
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ann N Hansen
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lewin Small
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Christopher T Workman
- Department of Biotechnology & Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Romain Barrès
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.,Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France
| |
Collapse
|
9
|
Ibrahim HIM. Epigenetic Regulation of Obesity-Associated Type 2 Diabetes. Medicina (B Aires) 2022; 58:medicina58101366. [PMID: 36295527 PMCID: PMC9607337 DOI: 10.3390/medicina58101366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is becoming more widespread, and epidemics of this condition are now considered present in all developed countries, leading to public health concerns. The dramatic increases in obesity, type 2 diabetes mellitus (T2DM), and related vascular difficulties are causing a public health crisis. Thus, it is imperative that these trends are curbed. Understanding the molecular underpinnings of these diseases is crucial to aiding in their detection or even management. Thus, understanding the mechanisms underlying the interactions between environment, lifestyle, and genetics is important for developing effective strategies for the management of obesity. The focus is on finding the vital role of epigenetic changes in the etiology of obesity. Genome and epigenome-wide approaches have revealed associations with T2DM. The epigenome indicates that there is a systematic link between genetic variants and environmental factors that put people at risk of obesity. The present review focuses on the epigenetic mechanism linked with obesity-associated T2DM. Although the utilization of epigenetic treatments has been discussed with reference to certain cancers, several challenges remain to be addressed for T2DM.
Collapse
Affiliation(s)
- Hairul Islam Mohamed Ibrahim
- Department of Biological Science, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Division of Microbiology and Immunology, Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
| |
Collapse
|
10
|
Cao H, Baranova A, Wei X, Wang C, Zhang F. Bidirectional causal associations between type 2 diabetes and COVID-19. J Med Virol 2022; 95:e28100. [PMID: 36029131 PMCID: PMC9538258 DOI: 10.1002/jmv.28100] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Observational studies have reported high comorbidity between type 2 diabetes (T2D) and severe COVID-19. However, the causality between T2D and COVID-19 has yet to be validated. We performed genetic correlation and Mendelian randomization (MR) analyses to assess genetic relationships and potential causal associations between T2D and three COVID-19 outcomes (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infection, COVID-19 hospitalization, and critical COVID-19). Molecular pathways connecting SARS-CoV-2 and COVID-19 were reconstructed to extract insights into the potential mechanisms underlying the connection. We identified a high genetic overlap between T2D and each COVID-19 outcome (genetic correlations 0.21-0.28). The MR analyses indicated that genetic liability to T2D confers a causal effect on hospitalized COVID-19 (odds ratio 1.08, 95% confidence interval [CI] 1.04-1.12) and critical COVID-19 (1.09, 1.03-1.16), while genetic liability to SARS-CoV-2 infection exerts a causal effect on T2D (1.25, 1.00-1.56). There was suggestive evidence that T2D was associated with an increased risk for SARS-CoV-2 infection (1.02, 1.00-1.03), while critical COVID-19 (1.06, 1.00-1.13) and hospitalized COVID-19 (1.09, 0.99-1.19) were associated with an increased risk for T2D. Pathway analysis identified a panel of immunity-related genes that may mediate the links between T2D and COVID-19 at the molecular level. Our study provides robust support for the bidirectional causal associations between T2D and COVID-19. T2D may contribute to amplifying the severity of COVID-19, while the liability to COVID-19 may increase the risk for T2D.
Collapse
Affiliation(s)
- Hongbao Cao
- School of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Ancha Baranova
- School of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA,Research Centre for Medical GeneticsMoscowRussia
| | - Xuejuan Wei
- Fengtai District Fangzhuang Community Health Service Center in BeijingBeijingChina
| | - Chun Wang
- Department of Medical PsychologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Fuquan Zhang
- Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina,Institute of NeuropsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
11
|
Zatterale F, Raciti GA, Prevenzano I, Leone A, Campitelli M, De Rosa V, Beguinot F, Parrillo L. Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes. Biomolecules 2022; 12:biom12070982. [PMID: 35883538 PMCID: PMC9313117 DOI: 10.3390/biom12070982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Gregory Alexander Raciti
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Immacolata Prevenzano
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Alessia Leone
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Michele Campitelli
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Veronica De Rosa
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Francesco Beguinot
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| | - Luca Parrillo
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| |
Collapse
|
12
|
Yu L, Zhang X, Ye S, Lian H, Wang H, Ye J. Obesity and COVID-19: Mechanistic Insights From Adipose Tissue. J Clin Endocrinol Metab 2022; 107:1799-1811. [PMID: 35262698 PMCID: PMC8992328 DOI: 10.1210/clinem/dgac137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Obesity is associated with an increase in morbidity and mortality from coronavirus disease 2019 (COVID-19). The risk is related to the cytokine storm, a major contributor to multiorgan failure and a pathological character of COVID-19 patients with obesity. While the exact cause of the cytokine storm remains elusive, disorders in energy metabolism has provided insights into the mechanism. Emerging data suggest that adipose tissue in obesity contributes to the disorders in several ways. First, adipose tissue restricts the pulmonary function by generation of mechanical pressures to promote systemic hypoxia. Second, adipose tissue supplies a base for severe acute respiratory syndrome coronavirus 2 entry by overexpression of viral receptors [angiotensin-converting enzyme 2 and dipeptidyl peptidase 4]. Third, impaired antiviral responses of adipocytes and immune cells result in dysfunction of immunologic surveillance as well as the viral clearance systems. Fourth, chronic inflammation in obesity contributes to the cytokine storm by secreting more proinflammatory cytokines. Fifth, abnormal levels of adipokines increase the risk of a hyperimmune response to the virus in the lungs and other organs to enhance the cytokine storm. Mitochondrial dysfunction in adipocytes, immune cells, and other cell types (endothelial cells and platelets, etc) is a common cellular mechanism for the development of cytokine storm, which leads to the progression of mild COVID-19 to severe cases with multiorgan failure and high mortality. Correction of energy surplus through various approaches is recommended in the prevention and treatment of COVID-19 in the obese patients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Immunology, Institute of Precision Medicine, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoying Zhang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Sarah Ye
- Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Hongkai Lian
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
- Corresponding author:
| |
Collapse
|
13
|
Seal SV, Henry M, Pajot C, Holuka C, Bailbé D, Movassat J, Darnaudéry M, Turner JD. A Holistic View of the Goto-Kakizaki Rat Immune System: Decreased Circulating Immune Markers in Non- Obese Type 2 Diabetes. Front Immunol 2022; 13:896179. [PMID: 35677049 PMCID: PMC9168276 DOI: 10.3389/fimmu.2022.896179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells, lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is frequently associated with obesity and adipocyte-released inflammatory mediators, the pro-inflammatory milieu seems not due to Type-2 diabetes per se; although this overall reduction of immune markers suggests marked immune dysfunction in Goto-Kakizaki rats.
Collapse
Affiliation(s)
- Snehaa V Seal
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mathilde Henry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Clémentine Pajot
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Danielle Bailbé
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Jamileh Movassat
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Muriel Darnaudéry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
14
|
Ding Q, Gao Z, Chen K, Zhang Q, Hu S, Zhao L. Inflammation-Related Epigenetic Modification: The Bridge Between Immune and Metabolism in Type 2 Diabetes. Front Immunol 2022; 13:883410. [PMID: 35603204 PMCID: PMC9120428 DOI: 10.3389/fimmu.2022.883410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
T2DM, as a typical metabolic inflammatory disease, is under the joint regulation of environmental factors and genetics, combining with a variety of epigenetic changes. Apart from epigenetic changes of islet β cells and glycometabolic tissues or organs, the inflammation-related epigenetics is also the core pathomechanism leading to β-cell dysfunction and insulin resistance. In this review, we focus on the epigenetic modification of immune cells’ proliferation, recruitment, differentiation and function, providing an overview of the key genes which regulated by DNA methylation, histone modifications, and non-coding RNA in the respect of T2DM. Meanwhile, we further summarize the present situation of T2DM epigenetic research and elucidate its prospect in T2DM clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiyou Ding
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Zhang
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Linhua Zhao,
| |
Collapse
|
15
|
Wang H, Cao K, Liu S, Xu Y, Tang L. Tim-3 Expression Causes NK Cell Dysfunction in Type 2 Diabetes Patients. Front Immunol 2022; 13:852436. [PMID: 35464400 PMCID: PMC9018664 DOI: 10.3389/fimmu.2022.852436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and chronic low-grade inflammation. It shows a strong association with obesity and immune dysfunction, which makes T2DM patients more susceptible to infectious diseases. NK cells play an important role in pathogen control and tumor surveillance. However, whether NK cell distribution and functional status are altered in T2DM is unclear. To address this issue, we compared surface receptor expression and cytokine production between peripheral blood NK cells from 90 T2DM patients and 62 age- and sex-matched healthy controls. We found a significantly lower frequency and absolute number of NK cells in patients than in controls. Interestingly, the expression of inhibitory receptor Tim-3 was significantly increased, while the expression of the activating receptor NKG2D was significantly decreased, in T2DM NK cells. Both TNF-α secretion and degranulation capacity (evidenced by CD107a expression) were dampened in NK cells from patients. The expression of Tim-3 on NK cells correlated positively with both HbA1c and fasting blood glucose levels and negatively with the percentage and absolute number of total NK cells and was associated with increased NK cell apoptosis. In addition, Tim-3 expression on NK cells negatively correlated with TNF-α production, which could be restored by blocking Galectin-9/Tim-3 pathway. Our results suggest that NK cell dysfunction secondary to augmented Tim-3 expression occurs in T2DM patients, which may partly explain their increased susceptibility to cancer and infectious disease.
Collapse
Affiliation(s)
- Hui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kangli Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Association between placental global DNA methylation and blood pressure during human pregnancy. J Hypertens 2022; 40:1002-1009. [DOI: 10.1097/hjh.0000000000003103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Palano MT, Cucchiara M, Gallazzi M, Riccio F, Mortara L, Gensini GF, Spinetti G, Ambrosio G, Bruno A. When a Friend Becomes Your Enemy: Natural Killer Cells in Atherosclerosis and Atherosclerosis-Associated Risk Factors. Front Immunol 2022; 12:798155. [PMID: 35095876 PMCID: PMC8793801 DOI: 10.3389/fimmu.2021.798155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis (ATS), the change in structure and function of arteries with associated lesion formation and altered blood flow, is the leading cause of cardiovascular disease, the number one killer worldwide. Beyond dyslipidemia, chronic inflammation, together with aberrant phenotype and function of cells of both the innate and adaptive immune system, are now recognized as relevant contributors to atherosclerosis onset and progression. While the role of macrophages and T cells in atherosclerosis has been addressed in several studies, Natural Killer cells (NKs) represent a poorly explored immune cell type, that deserves attention, due to NKs’ emerging contribution to vascular homeostasis. Furthermore, the possibility to re-polarize the immune system has emerged as a relevant tool to design new therapies, with some succesfull exmples in the field of cancer immunotherapy. Thus, a deeper knowledge of NK cell pathophysiology in the context of atherosclerosis and atherosclerosis-associated risk factors could help developing new preventive and treatment strategies, and decipher the complex scenario/history from “the risk factors for atherosclerosis” Here, we review the current knowledge about NK cell phenotype and activities in atherosclerosis and selected atherosclerosis risk factors, namely type-2 diabetes and obesity, and discuss the related NK-cell oriented environmental signals.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gian Franco Gensini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | | | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| |
Collapse
|
18
|
Karin M, Shalapour S. Regulation of antitumor immunity by inflammation-induced epigenetic alterations. Cell Mol Immunol 2022; 19:59-66. [PMID: 34465885 PMCID: PMC8752743 DOI: 10.1038/s41423-021-00756-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation promotes tumor development, progression, and metastatic dissemination and causes treatment resistance. The accumulation of genetic alterations and loss of normal cellular regulatory processes are not only associated with cancer growth and progression but also result in the expression of tumor-specific and tumor-associated antigens that may activate antitumor immunity. This antagonism between inflammation and immunity and the ability of cancer cells to avoid immune detection affect the course of cancer development and treatment outcomes. While inflammation, particularly acute inflammation, supports T-cell priming, activation, and infiltration into infected tissues, chronic inflammation is mostly immunosuppressive. However, the main mechanisms that dictate the outcome of the inflammation-immunity interplay are not well understood. Recent data suggest that inflammation triggers epigenetic alterations in cancer cells and components of the tumor microenvironment. These alterations can affect and modulate numerous aspects of cancer development, including tumor growth, the metabolic state, metastatic spread, immune escape, and immunosuppressive or immunosupportive leukocyte generation. In this review, we discuss the role of inflammation in initiating epigenetic alterations in immune cells, cancer-associated fibroblasts, and cancer cells and suggest how and when epigenetic interventions can be combined with immunotherapies to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Lau CM, Wiedemann GM, Sun JC. Epigenetic regulation of natural killer cell memory. Immunol Rev 2022; 305:90-110. [PMID: 34908173 PMCID: PMC8955591 DOI: 10.1111/imr.13031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
Immunological memory is the underlying mechanism by which the immune system remembers previous encounters with pathogens to produce an enhanced secondary response upon re-encounter. It stands as the hallmark feature of the adaptive immune system and the cornerstone of vaccine development. Classic recall responses are executed by conventional T and B cells, which undergo somatic recombination and modify their receptor repertoire to ensure recognition of a vast number of antigens. However, recent evidence has challenged the dogma that memory responses are restricted to the adaptive immune system, which has prompted a reevaluation of what delineates "immune memory." Natural killer (NK) cells of the innate immune system have been at the forefront of these pushed boundaries, and have proved to be more "adaptable" than previously thought. Like T cells, we now appreciate that their "natural" abilities actually require a myriad of signals for optimal responses. In this review, we discuss the many signals required for effector and memory NK cell responses and the epigenetic mechanisms that ultimately endow their enhanced features.
Collapse
Affiliation(s)
- Colleen M. Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gabriela M. Wiedemann
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
20
|
Li X, Zhang M, Cai S, Wu Y, You Y, Wang X, Wang L. Concentration-Dependent Decitabine Effects on Primary NK Cells Viability, Phenotype, and Function in the Absence of Obvious NK Cells Proliferation-Original Article. Front Pharmacol 2021; 12:755662. [PMID: 34759824 PMCID: PMC8573336 DOI: 10.3389/fphar.2021.755662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) cells can evade innate immune killing by modulating natural killer (NK) cells receptors and their cognate ligands in tumor cells, thus it may be possible to restore proper expression of immune receptors or ligands with immune sensitive drugs. Decitabine, as a hypomethylation agent, was approved for the treatment of AML and myelodysplastic syndrome. While clinical responses were contributed by epigenetic effects and the induction of cancer cell apoptosis, decitabine also has immune-mediated anti-tumor effects. After exposure to various concentration of decitabine for 24 h, the primary NK cells (AML-NK cells) cytotoxicity and receptor expression (NKG2D and NKp46) displayed parabola-shaped response, while U-shaped response was seen in cytokine release (IFN-γ and IL-10), and these effects were regulated by ERK and STAT3 phosphorylation level. Furthermore, AML-NK cells function displayed different response when the competitive MEK and STAT3 inhibitors applied respectively. Thus, we could conclude that the different dose of decitabine makes various effects on AML-NK cells function and receptors expression.
Collapse
Affiliation(s)
- Xiang Li
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Cai
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohui Wu
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghong Wang
- Institution of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Institution of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Tonyan ZN, Nasykhova YA, Danilova MM, Glotov AS. Genetics of macrovascular complications in type 2 diabetes. World J Diabetes 2021; 12:1200-1219. [PMID: 34512887 PMCID: PMC8394234 DOI: 10.4239/wjd.v12.i8.1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030. Long-term vascular complications, such as coronary artery disease, myocardial infarction, stroke, are the leading causes of morbidity and mortality among diabetic patients. The recent advances in genome-wide technologies have given a powerful impetus to the study of risk markers for multifactorial diseases. To date, the role of genetic and epigenetic factors in modulating susceptibility to T2DM and its vascular complications is being successfully studied that provides the accumulation of genomic knowledge. In the future, this will provide an opportunity to reveal the pathogenetic pathways in the development of the disease and allow to predict the macrovascular complications in T2DM patients. This review is focused on the evidence of the role of genetic variants and epigenetic changes in the development of macrovascular pathology in diabetic patients.
Collapse
Affiliation(s)
- Ziravard N Tonyan
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg 199034, Russia
| | - Yulia A Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg 199034, Russia
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, Saint-Petersburg 199034, Russia
| | - Maria M Danilova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg 199034, Russia
| | - Andrey S Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg 199034, Russia
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, Saint-Petersburg 199034, Russia
| |
Collapse
|
22
|
Somasundaram S, Satheesh V, Singh M, Anandhan S. A simple flow cytometry-based assay to study global methylation levels in onion, a non-model species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1859-1865. [PMID: 34539120 PMCID: PMC8405793 DOI: 10.1007/s12298-021-01047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED DNA methylation is an important epigenetic mark and global methylation dynamics regulate plant developmental processes. Even though genome sequencing technologies have made DNA methylation studies easier, it is difficult in non-model species where genome information is not available. Therefore in this study, we developed a simple assay for analysing global methylation levels in plants by washless immunolabelling of unfixed nuclei using flow cytometry. Onion leaf tissue was used as a model system, and mean fluorescence intensity due to anti-5- methyl cytosine (5-mC) antibodies were used as a measure of global methylation levels. Among three nuclear isolation buffers evaluated, the highest nuclear yield with the low background was obtained with LB01. To maintain a balance between high DNA fluorescence value and low coefficient of variation of DNA peaks, 45 min of hydrolysis with 0.2 N hydrochloric acid was used for chromatin denaturation resulting in six-fold increase in 5-mC fluorescence compared to control. This method was used successfully to detect 5-Azacytidine induced DNA hypomethylation in onion leaf tissues. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01047-6.
Collapse
Affiliation(s)
- Saravanakumar Somasundaram
- ICAR-Directorate of Onion and Garlic Research, Pune, 410505 India
- Present Address: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Pune, 410505 India
| | | |
Collapse
|
23
|
Yan T, Xiao R, Wang N, Shang R, Lin G. Obesity and severe coronavirus disease 2019: molecular mechanisms, paths forward, and therapeutic opportunities. Theranostics 2021; 11:8234-8253. [PMID: 34373739 PMCID: PMC8343994 DOI: 10.7150/thno.59293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/20/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to have higher pathogenicity among patients with obesity. Obesity, termed as body mass index greater than 30 kg/m2, has now been demonstrated to be important comorbidity for disease severity during coronavirus disease 2019 (COVID-19) pandemic and associated with adverse events. Unraveling mechanisms behind this phenomenon can assist scientists, clinicians, and policymakers in responding appropriately to the COVID-19 pandemic. In this review, we systemically delineated the potential mechanistic links between obesity and worsening COVID-19 from altered physiology, underlying diseases, metabolism, immunity, cytokine storm, and thrombosis. Problematic ventilation caused by obesity and preexisting medical disorders exacerbate organ dysfunction for patients with obesity. Chronic metabolic disorders, including dyslipidemia, hyperglycemia, vitamin D deficiency, and polymorphisms of metabolism-related genes in obesity, probably aid SARS-CoV-2 intrusion and impair antiviral responses. Obesity-induced inadequate antiviral immunity (interferon, natural killer cells, invariant natural killer T cell, dendritic cell, T cells, B cell) at the early stage of SARS-CoV-2 infection leads to delayed viral elimination, increased viral load, and expedited viral mutation. Cytokine storm, with the defective antiviral immunity, probably contributes to tissue damage and pathological progression, resulting in severe symptoms and poor prognosis. The prothrombotic state, driven in large part by endothelial dysfunction, platelet hyperactivation, hypercoagulability, and impaired fibrinolysis in obesity, also increases the risk of severe COVID-19. These mechanisms in the susceptibility to severe condition also open the possibility for host-directed therapies in population with obesity. By bridging work done in these fields, researchers can gain a holistic view of the paths forward and therapeutic opportunities to break the vicious cycle of obesity and its devastating complications in the next emerging pandemic.
Collapse
Affiliation(s)
- Tiantian Yan
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Rong Xiao
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Nannan Wang
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Guoan Lin
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| |
Collapse
|
24
|
Overweight and obesity in pregnancy: their impact on epigenetics. Eur J Clin Nutr 2021; 75:1710-1722. [PMID: 34230629 PMCID: PMC8636269 DOI: 10.1038/s41430-021-00905-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
Over the last few decades, the prevalence of obesity has risen to epidemic proportions worldwide. Consequently, the number of obesity in pregnancy has risen drastically. Gestational overweight and obesity are associated with impaired outcomes for mother and child. Furthermore, studies show that maternal obesity can lead to long-term consequences in the offspring, increasing the risk for obesity and cardiometabolic disease in later life. In addition to genetic mechanisms, mounting evidence demonstrates the induction of epigenetic alterations by maternal obesity, which can affect the offspring’s phenotype, thereby influencing the later risk of obesity and cardiometabolic disease. Clear evidence in this regard comes from various animal models of maternal obesity. Evidence derived from clinical studies remains limited. The current article gives an overview of pathophysiological changes associated with maternal obesity and their consequences on placental structure and function. Furthermore, a short excurse is given on epigenetic mechanisms and emerging data regarding a putative interaction between metabolism and epigenetics. Finally, a summary of important findings of animal and clinical studies investigating maternal obesity-related epigenetic effects is presented also addressing current limitations of clinical studies.
Collapse
|
25
|
Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Lüscher TF, Paneni F, Costantino S. Epigenetic Remodeling in Obesity-Related Vascular Disease. Antioxid Redox Signal 2021; 34:1165-1199. [PMID: 32808539 DOI: 10.1089/ars.2020.8040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The prevalence of obesity and cardiometabolic phenotypes is alarmingly increasing across the globe and is associated with atherosclerotic vascular complications and high mortality. In spite of multifactorial interventions, vascular residual risk remains high in this patient population, suggesting the need for breakthrough therapies. The mechanisms underpinning obesity-related vascular disease remain elusive and represent an intense area of investigation. Recent Advances: Epigenetic modifications-defined as environmentally induced chemical changes of DNA and histones that do not affect DNA sequence-are emerging as a potent modulator of gene transcription in the vasculature and might significantly contribute to the development of obesity-induced endothelial dysfunction. DNA methylation and histone post-translational modifications cooperate to build complex epigenetic signals, altering transcriptional networks that are implicated in redox homeostasis, mitochondrial function, vascular inflammation, and perivascular fat homeostasis in patients with cardiometabolic disturbances. Critical Issues: Deciphering the epigenetic landscape in the vasculature is extremely challenging due to the complexity of epigenetic signals and their function in regulating transcription. An overview of the most important epigenetic pathways is required to identify potential molecular targets to treat or prevent obesity-related endothelial dysfunction and atherosclerotic disease. This would enable the employment of precision medicine approaches in this setting. Future Directions: Current and future research efforts in this field entail a better definition of the vascular epigenome in obese patients as well as the unveiling of novel, cell-specific chromatin-modifying drugs that are able to erase specific epigenetic signals that are responsible for maladaptive transcriptional alterations and vascular dysfunction in obese patients. Antioxid. Redox Signal. 34, 1165-1199.
Collapse
Affiliation(s)
- Stefano Masi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Heart Division, Royal Brompton and Harefield Hospital Trust, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
26
|
Hung JH, Cheng HY, Tsai YC, Pan HA, Omar HA, Chiu CC, Su YM, Lin YM, Teng YN. LRWD1 expression is regulated through DNA methylation in human testicular embryonal carcinoma cells. Basic Clin Androl 2021; 31:12. [PMID: 34011267 PMCID: PMC8136200 DOI: 10.1186/s12610-021-00130-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sperm growth and maturation are correlated with the expression levels of Leucine-rich repeat and WD repeat-containing protein 1 (LRWD1), a widely expressed protein in the human testicles. The decrease in LRWD1 cellular level was linked to the reduction in cell growth and mitosis and the rise in cell microtubule atrophy rates. Since DNA methylation has a major regulatory role in gene expression, this study aimed at exploring the effect of the modulation of DNA methylation on LRWD1 expression levels. RESULTS The results revealed the presence of a CpG island up of 298 bps (- 253 ~ + 45) upon LRWD1 promoter in NT2/D1 cells. The hypermethylation of the LRWD1 promoter was linked to a reduction in the transcription activity in NT2/D1 cells, as indicated by luciferase reporter assay. The methylation activator, floxuridine, confirmed the decrease in the LRWD1 promoter transcriptional activity. On the other hand, 5-Aza-2'-deoxycytidine (5-Aza-dc, methylation inhibitor), significantly augmented LRWD1 promoter activity and the expression levels of mRNA and proteins. Furthermore, DNA methylation status of LRWD1 promoter in human sperm genomic DNA samples was analyzed. The results indicated that methylation of LRWD1 promoter was correlated to sperm activity. CONCLUSIONS Thus, the regulation of LRWD1 expression is correlated with the methylation status of LRWD1 promoter, which played a significant role in the modulation of spermatogenesis, sperm motility, and vitality. Based on these results, the methylation status of LRWD1 promoter may serve as a novel molecular diagnostic marker or a therapeutic target in males' infertility.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Han-Yi Cheng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center; Department of Sport Management, and Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Mei Su
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan
| | - Yung-Ming Lin
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan.
| |
Collapse
|
27
|
Quan Y, Liang F, Deng SM, Zhu Y, Chen Y, Xiong J. Mining the Selective Remodeling of DNA Methylation in Promoter Regions to Identify Robust Gene-Level Associations With Phenotype. Front Mol Biosci 2021; 8:597513. [PMID: 33842534 PMCID: PMC8034267 DOI: 10.3389/fmolb.2021.597513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Epigenetics is an essential biological frontier linking genetics to the environment, where DNA methylation is one of the most studied epigenetic events. In recent years, through the epigenome-wide association study (EWAS), researchers have identified thousands of phenotype-related methylation sites. However, the overlaps of identified phenotype-related DNA methylation sites between various studies are often quite small, and it might be due to the fact that methylation remodeling has a certain degree of randomness within the genome. Thus, the identification of robust gene-phenotype associations is crucial to interpreting pathogenesis. How to integrate the methylation values of different sites on the same gene and to mine the DNA methylation at the gene level remains a challenge. A recent study found that the DNA methylation difference of the gene body and promoter region has a strong correlation with gene expression. In this study, we proposed a Statistical difference of DNA Methylation between Promoter and Other Body Region (SIMPO) algorithm to extract DNA methylation values at the gene level. First, by choosing to smoke as an environmental exposure factor, our method led to significant improvements in gene overlaps (from 5 to 17%) between different datasets. In addition, the biological significance of phenotype-related genes identified by SIMPO algorithm is comparable to that of the traditional probe-based methods. Then, we selected two disease contents (e.g., insulin resistance and Parkinson's disease) to show that the biological efficiency of disease-related gene identification increased from 15.43 to 44.44% (p-value = 1.20e-28). In summary, our results declare that mining the selective remodeling of DNA methylation in promoter regions can identify robust gene-level associations with phenotype, and the characteristic remodeling of a given gene's promoter region can reflect the essence of disease.
Collapse
Affiliation(s)
- Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute, Shenzhen, China
| | - Fengji Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Si-Min Deng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yuexing Zhu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Aromability Inc., Beijing, China
| | - Ying Chen
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute, Shenzhen, China
| | - Jianghui Xiong
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute, Shenzhen, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Aromability Inc., Beijing, China
- Jiangsu Industrial Technology Research Institute (JITRI), Applied Adaptome Immunology Institute, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Rahmani-Kukia N, Abbasi A. Physiological and Immunological Causes of the Susceptibility of Chronic Inflammatory Patients to COVID-19 Infection: Focus on Diabetes. Front Endocrinol (Lausanne) 2021; 12:576412. [PMID: 33746897 PMCID: PMC7971178 DOI: 10.3389/fendo.2021.576412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has recently emerged, which was then spread rapidly in more than 190 countries worldwide so far. According to the World Health Organization, 3,232,062 global cases of COVID-19 were confirmed on April 30th with a mortality rate of 3.4%. Notably, the symptoms are almost similar to those of flu such as fever, cough, and fatigue. Unfortunately, the global rates of morbidity and mortality caused by this disease are more and still increasing on a daily basis. The rates for patients suffering from inflammatory diseases like diabetes, is even further, due to their susceptibility to the pathogenesis of COVID-19. In this review, we attempted to focus on diabetes to clarify the physiological and immunological characteristics of diabetics before and after the infection with COVID-19. We hope these conceptions could provide a better understanding of the mechanisms involved in COVID-19 susceptibility and increase the awareness of risk to motivate behavior changes in vulnerable people for enhancing the prevention. Up to now, the important role of immune responses, especially the innate ones, in the development of the worst signs in COVID-19 infection have been confirmed. Therefore, to better control patients with COVID-19, it is recommended to consider a history of chronic inflammatory diseases as well as the way of controlling immune response in these patients.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Pérez-Galarza J, Prócel C, Cañadas C, Aguirre D, Pibaque R, Bedón R, Sempértegui F, Drexhage H, Baldeón L. Immune Response to SARS-CoV-2 Infection in Obesity and T2D: Literature Review. Vaccines (Basel) 2021; 9:102. [PMID: 33572702 PMCID: PMC7911386 DOI: 10.3390/vaccines9020102] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
In December 2019, a novel coronavirus known as SARS-CoV-2 was first detected in Wuhan, China, causing outbreaks of the coronavirus disease COVID-19 that has now spread globally. For this reason, The World Health Organization (WHO) declared COVID-19 a public health emergency in March 2020. People living with pre-existing conditions such as obesity, cardiovascular diseases, type 2 diabetes (T2D), and chronic kidney and lung diseases, are prone to develop severe forms of disease with fatal outcomes. Metabolic diseases such as obesity and T2D alter the balance of innate and adaptive responses. Both diseases share common features characterized by augmented adiposity associated with a chronic systemic low-grade inflammation, senescence, immunoglobulin glycation, and abnormalities in the number and function of adaptive immune cells. In obese and T2D patients infected by SARS-CoV-2, where immune cells are already hampered, this response appears to be stronger. In this review, we describe the abnormalities of the immune system, and summarize clinical findings of COVID-19 patients with pre-existing conditions such as obesity and T2D as this group is at greater risk of suffering severe and fatal clinical outcomes.
Collapse
Affiliation(s)
- Jorge Pérez-Galarza
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| | | | - Cristina Cañadas
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Diana Aguirre
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Ronny Pibaque
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Ricardo Bedón
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
- Hospital General Docente de Calderón, Quito 170201, Ecuador
| | - Fernando Sempértegui
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| | - Hemmo Drexhage
- Immunology Department, Erasmus Medical Center, 3015 Rotterdam, The Netherlands;
| | - Lucy Baldeón
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| |
Collapse
|
30
|
DNA methylation in adipocytes from visceral and subcutaneous adipose tissue influences insulin-signaling gene expression in obese individuals. Int J Obes (Lond) 2021; 45:650-658. [PMID: 33414486 DOI: 10.1038/s41366-020-00729-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Both obesity and insulin resistance are characterized by severe long-term changes in the expression of many genes of importance in the regulation of metabolism. Because these changes occur throughout life, as a result of external factors, the disorders of gene expression could be epigenetically regulated. MATERIALS/METHODS We analyzed the relationship between obesity and insulin resistance in enrolled patients by means of evaluation of the expression rate of numerous genes involved in the regulation of adipocyte metabolism and energy homeostasis in subcutaneous and visceral adipose tissue depots. We also investigated global and site-specific DNA methylation as one of the main regulators of gene expression. Visceral and subcutaneous adipose tissue biopsies were collected from 45 patients during abdominal surgery in an age range of 40-60 years. RESULTS We demonstrated hypermethylation of PPARG, INSR, SLC2A4, and ADIPOQ promoters in obese patients with insulin resistance. Moreover, the methylation rate showed a negative correlation with the expression of the investigated genes. More, we showed a correlation between the expression of PPARG and the expression of numerous genes important for proper insulin action. Given the impact of PPARγ on the regulation of the cell insulin sensitivity through modulation of insulin pathway genes expression, hypermethylation in the PPARG promoter region may constitute one of the epigenetic pathways in the development of insulin resistance in obesity. CONCLUSIONS Our research shows that epigenetic regulation through excessive methylation may constitute a link between obesity and subsequent insulin resistance.
Collapse
|
31
|
Kim E, Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol 2021; 335:113508. [PMID: 33065078 PMCID: PMC7750306 DOI: 10.1016/j.expneurol.2020.113508] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Stroke elicits excessive immune activation in the injured brain tissue. This well-recognized neural inflammation in the brain is not just an intrinsic organ response but also a result of additional intricate interactions between infiltrating peripheral immune cells and the resident immune cells in the affected areas. Given that there is a finite number of immune cells in the organism at the time of stroke, the partitioned immune systems of the central nervous system (CNS) and periphery must appropriately distribute the limited pool of immune cells between the two domains, mounting a necessary post-stroke inflammatory response by supplying a sufficient number of immune cells into the brain while maintaining peripheral immunity. Stroke pathophysiology has mainly been neurocentric in focus, but understanding the distinct roles of the CNS and peripheral immunity in their concerted action against ischemic insults is crucial. This review will discuss stroke-induced influences of the peripheral immune system on CNS injury/repair and of neural inflammation on peripheral immunity, and how comorbidity influences each.
Collapse
Affiliation(s)
- Eunhee Kim
- Vivian L. Smith Department of Neurosurgery at University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, United States of America; Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
32
|
Chen H, Zhang X, Liao N, Ji Y, Mi L, Gan Y, Su Y, Wen F. Identification of NLRP3 Inflammation-Related Gene Promoter Hypomethylation in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 33156339 PMCID: PMC7671867 DOI: 10.1167/iovs.61.13.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose To identify and validate key genes that could provide a new perspective for genetic marker screening of diabetic retinopathy (DR). Methods The gene expression and DNA methylation profiles were obtained from the Gene Expression Omnibus. Differential expression analysis was conducted using the limma package, and then the functions of the differentially expressed genes (DEGs) were analyzed using the DAVID database, followed by protein–protein interaction (PPI) networks using Cytoscape software. We employed the Sequenom MassARRAY system to detect the promoter methylation levels of the candidate genes in peripheral blood mononuclear cells from 32 healthy individuals and 94 patients with type 2 diabetes mellitus (T2D; 64 with DR and 30 without DR) and in fibrovascular membranes (FVMs) from three proliferative DR patients and three controls with idiopathic epiretinal membranes. The mRNA levels of candidate genes were further confirmed via real-time polymerase chain reaction. Results A significant enrichment of 5906 DEGs was found in immune and inflammatory responses. TGFB1, CCL2, and TNFSF2 were identified as the top three core genes associated with NLRP3 inflammation in PPI networks. These genes have relatively low levels of promoter methylation, which have been validated in peripheral blood mononuclear cells and FVMs from DR patients, and the methylation levels were found to be negative correlated with the mRNA levels and HbA1c levels in T2D patients. Conclusions Overall, these data indicate that promoter hypomethylation of NLRP3, TGFB1, CCL2, and TNFSF2 may increase the risk of DR in the Chinese Han population, indicating that these genes might serve as potential targets for the detection and treatment of DR.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiongze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nanying Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuying Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lan Mi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuhong Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yongyue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Benincasa G, Franzese M, Schiano C, Marfella R, Miceli M, Infante T, Sardu C, Zanfardino M, Affinito O, Mansueto G, Sommese L, Nicoletti GF, Salvatore M, Paolisso G, Napoli C. DNA methylation profiling of CD04 +/CD08 + T cells reveals pathogenic mechanisms in increasing hyperglycemia: PIRAMIDE pilot study. Ann Med Surg (Lond) 2020; 60:218-226. [PMID: 33194177 PMCID: PMC7645316 DOI: 10.1016/j.amsu.2020.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background DNA methylation can play a pathogenic role in the early stages of hyperglycemia linking homeostasis imbalance and vascular damage. Material and methods We investigated DNA methylome by RRBS in CD04+ and CD08+ T cells from healthy subjects (HS) to pre-diabetics (Pre-Diab) and type 2 diabetic (T2D) patients to identify early biomarkers of glucose impairment and vascular damage. Our cross-sectional study enrolled 14 individuals from HS state to increasing hyperglycemia (pilot study, PIRAMIDE trial, NCT03792607). Results Globally, differentially methylated regions (DMRs) were mostly annotated to promoter regions. Hypermethylated DMRs were greater than hypomethylated in CD04+ T cells whereas CD08+ T showed an opposite trend. Moreover, DMRs overlapping between Pre-Diab and T2D patients were mostly hypermethylated in both T cells. Interestingly, SPARC was the most hypomethylated gene in Pre-Diab and its methylation level gradually decreased in T2D patients. Besides, SPARC showed a significant positive correlation with DBP (+0.76), HDL (+0.54), Creatinine (+0.83), LVDd (+0.98), LVSD (+0.98), LAD (+0.98), LVPWd (+0.84), AODd (+0.81), HR (+0.72), Triglycerides (+0.83), LAD (+0.69) and AODd (+0.52) whereas a negative correlation with Cholesterol (−0.52) and LDL (−0.71) in T2D. Conclusion SPARC hypomethylation in CD08+ T cells may be a useful biomarker of vascular complications in Pre-Diab with a possible role for primary prevention warranting further multicenter clinical trials to validate our findings. We conducted the first methylome analysis by RRBS platform in circulating CD04+ and CD08+ T cells in increasing hyperglycemia. This approach has revealed possible biomarkers for cardiovascular and kidney complications in prediabetes. SPARC hypomethylation may underly a pro-fibrotic endophenotype to be validated in larger multicenter trials.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | | | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | | | - Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | | | | | - Gelsomina Mansueto
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Linda Sommese
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,IRCCS SDN, 80143, Naples, Italy.,Clinical Department of Internal Medicine and Specialistics, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
34
|
Mxinwa V, Dludla PV, Nyambuya TM, Mokgalaboni K, Mazibuko-Mbeje SE, Nkambule BB. Natural killer cell levels in adults living with type 2 diabetes: a systematic review and meta-analysis of clinical studies. BMC Immunol 2020; 21:51. [PMID: 32907543 PMCID: PMC7487809 DOI: 10.1186/s12865-020-00378-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic immune activation and hyperglycaemia are a hallmark of type 2 diabetes mellitus (T2D) while natural killer (NK) cells are involved in the pathogenesis of T2D. Dysregulated NK cell responses are associated with an increased risk of cardiovascular disease in patients living with T2D. OBJECTIVE To provide a comprehensive and systematic evidence-based estimate on the levels of NK cells in patients living with T2D. RESULTS This systematic review and meta-analysis included 13 studies reporting on 491 adult patients with T2D and 1064 nondiabetic controls. The pooled effect estimates showed increased levels of NK cells in adult patients with T2D compared to controls (MD: 0.03 [- 3.20, 3.26], I2 = 97%, p < 0.00001). CONCLUSION Overall, the evidence presented in this systematic review shows that the changes in NK cells in patients living with T2D are still unclear and further studies are needed.
Collapse
Affiliation(s)
- Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000 South Africa
| | - Phiwayinkosi V. Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Biomedical Research and Innovation Platform, Medical Research Council, Tygerberg, South Africa
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000 South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, 9000 Namibia
| | - Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000 South Africa
| | - Sithandiwe E. Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000 South Africa
| |
Collapse
|
35
|
Vigorelli V, Resta J, Bianchessi V, Lauri A, Bassetti B, Agrifoglio M, Pesce M, Polvani G, Bonalumi G, Cavallotti L, Alamanni F, Genovese S, Pompilio G, Vinci MC. Abnormal DNA Methylation Induced by Hyperglycemia Reduces CXCR 4 Gene Expression in CD 34 + Stem Cells. J Am Heart Assoc 2020; 8:e010012. [PMID: 31018749 PMCID: PMC6512087 DOI: 10.1161/jaha.118.010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background CD 34+ stem/progenitor cells are involved in vascular homeostasis and in neovascularization of ischemic tissues. The number of circulating CD 34+ stem cells is a predictive biomarker of adverse cardiovascular outcomes in diabetic patients. Here, we provide evidence that hyperglycemia can be "memorized" by the stem cells through epigenetic changes that contribute to onset and maintenance of their dysfunction in diabetes mellitus. Methods and Results Cord-blood-derived CD 34+ stem cells exposed to high glucose displayed increased reactive oxygen species production, overexpression of p66shc gene, and downregulation of antioxidant genes catalase and manganese superoxide dismutase when compared with normoglycemic cells. This altered oxidative state was associated with impaired migration ability toward stromal-cell-derived factor 1 alpha and reduced protein and mRNA expression of the C-X-C chemokine receptor type 4 ( CXCR 4) receptor. The methylation analysis by bisulfite Sanger sequencing of the CXCR 4 promoter revealed a significant increase in DNA methylation density in high-glucose CD 34+ stem cells that negatively correlated with mRNA expression (Pearson r=-0.76; P=0.004). Consistently, we found, by chromatin immunoprecipitation assay, a more transcriptionally inactive chromatin conformation and reduced RNA polymerase II engagement on the CXCR 4 promoter. Notably, alteration of CXCR 4 DNA methylation, as well as transcriptional and functional defects, persisted in high-glucose CD 34+ stem cells despite recovery in normoglycemic conditions. Importantly, such an epigenetic modification was thoroughly confirmed in bone marrow CD 34+ stem cells isolated from sternal biopsies of diabetic patients undergoing coronary bypass surgery. Conclusions CD 34+ stem cells "memorize" the hyperglycemic environment in the form of epigenetic modifications that collude to alter CXCR 4 receptor expression and migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Alamanni
- 1 IRCCS Centro Cardiologico Monzino Milan Italy.,3 Department of Clinical Sciences and Community Health Università degli Studi di Milano Milan Italy
| | | | - Giulio Pompilio
- 1 IRCCS Centro Cardiologico Monzino Milan Italy.,3 Department of Clinical Sciences and Community Health Università degli Studi di Milano Milan Italy
| | | |
Collapse
|
36
|
Hernandez JD, Tew BY, Li T, Gooden GC, Ghannam H, Masuda M, Madura J, Salhia B, Jacobsen EA, De Filippis E. A FACS-based approach to obtain viable eosinophils from human adipose tissue. Sci Rep 2020; 10:13210. [PMID: 32764552 PMCID: PMC7413382 DOI: 10.1038/s41598-020-70093-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Eosinophils have been widely investigated in asthma and allergic diseases. More recently, new insights into the biology of these cells has illustrated eosinophils contribute to homeostatic functions in health such as regulation of adipose tissue glucose metabolism. Human translational studies are limited by the difficulty of obtaining cells taken directly from their tissue environment, relying instead on eosinophils isolated from peripheral blood. Isolation techniques for tissue-derived eosinophils can result in unwanted cell or ribonuclease activation, leading to poor cell viability or RNA quality, which may impair analysis of effector activities of these cells. Here we demonstrate a technique to obtain eosinophils from human adipose tissue samples for the purpose of downstream molecular analysis. From as little as 2 g of intact human adipose tissue, greater than 104 eosinophils were purified by fluorescence-activated cell sorting (FACS) protocol resulting in ≥ 99% purity and ≥ 95% viable eosinophils. We demonstrated that the isolated eosinophils could undergo epigenetic analysis to determine differences in DNA methylation in various settings. Here we focused on comparing eosinophils isolated from human peripheral blood vs human adipose tissue. Our results open the door to future mechanistic investigations to better understand the role of tissue resident eosinophils in different context.
Collapse
Affiliation(s)
- James D Hernandez
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ting Li
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Gerald C Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hamza Ghannam
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Mia Masuda
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - James Madura
- Division of General Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Eleanna De Filippis
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
37
|
DNA demethylation increases NETosis. Arch Biochem Biophys 2020; 689:108465. [PMID: 32561201 DOI: 10.1016/j.abb.2020.108465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/27/2020] [Accepted: 06/06/2020] [Indexed: 12/28/2022]
Abstract
Neutrophil extracellular traps (NETs) occur during the development of autoimmune diseases, cancer and diabetes. A novel form of cell death that is induced by NETs is called NETosis. Although these diseases are known to have an epigenetic component, epigenetic regulation of NETosis has not previously been explored. In the present study, we investigated the effects of epigenetic change, especially DNA demethylation, on NETosis in neutrophil-like cells differentiated from HL-60 cells, which were incubated for 72 h in the presence of 1.25% DMSO. DMSO-differentiated neutrophil-like cells tended to have increased methylation of genomic DNA. NETosis in the neutrophil-like cells was induced by the treatment with A23187, calcium ionophore, and increased by the addition of the DNMT inhibitor 5-azacytidine (Aza) during differentiation. Interestingly, Aza-stimulated neutrophil-like cell induced NETosis without treatment with A23187. Although reactive oxygen species (ROS), especially superoxide and hypochlorous acid, are important in NETosis induction, treatment with Aza decreased production of ROS, while mitochondria ROS scavenger tended to decrease Aza-induced NETosis. Moreover, the genomic DNA in Aza-stimulated neutrophil-like cell was demethylated, and the expression of peptidylarginine deiminase4 (PAD4) and citrullinated histone H3 (R2+R8+R17) was increased, but myeloperoxidase expression was unaffected. Additionally, PAD4 inhibition tended to decrease Aza-induced NETosis. The DNA demethylation induced by the DNMT inhibitor in neutrophil-like cells enhanced spontaneous NETosis through increasing PAD4 expression and histone citrullination. This study establishes a relationship between NETosis and epigenetics for the first time, and indicates that various diseases implicated to have an epigenetic component might be exacerbated by excessive NETosis also under epigenetic control.
Collapse
|
38
|
Lima RS, Assis Silva Gomes J, Moreira PR. An overview about DNA methylation in childhood obesity: Characteristics of the studies and main findings. J Cell Biochem 2020; 121:3042-3057. [DOI: 10.1002/jcb.29544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Rafael Silva Lima
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| | - Juliana Assis Silva Gomes
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| | - Paula Rocha Moreira
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| |
Collapse
|
39
|
Hossan T, Kundu S, Alam SS, Nagarajan S. Epigenetic Modifications Associated with the Pathogenesis of Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2020; 19:775-786. [PMID: 30827271 DOI: 10.2174/1871530319666190301145545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder. Pancreatic β-cell dysfunction and insulin resistance are the most common and crucial events of T2DM. Increasing evidence suggests the association of epigenetic modifications with the pathogenesis of T2DM through the changes in important biological processes including pancreatic β- cell differentiation, development and maintenance of normal β-cell function. Insulin sensitivity by the peripheral glucose uptake tissues is also changed by the altered epigenetic mechanisms. In this review, we discussed the major epigenetic alterations and their effects on β-cell function, insulin secretion and insulin resistance in context of T2DM. METHODS We investigated the presently available epigenetic modifications including DNA methylation, posttranslational histone modifications, ATP-dependent chromatin remodeling and non-coding RNAs related to the pathogenesis of T2DM. Published literatures on this topic were searched both on Google Scholar and Pubmed with related keywords and investigated for relevant information. RESULTS The epigenetic modifications introduce changes in gene expression which are essential for appropriate β-cell development and functions, insulin secretion and sensitivity resulting in the pathogenesis of T2DM. Interestingly, T2DM could also be a prominent reason for the mentioned epigenetic alterations. CONCLUSION This review article emphasized on the epigenetic modifications associated with T2DM and discussed the consequences in deterioration of the disease condition.
Collapse
Affiliation(s)
- Tareq Hossan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Shoumik Kundu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sayeda Sadia Alam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sankari Nagarajan
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
40
|
Phillips CL, Grayson BE. The immune remodel: Weight loss-mediated inflammatory changes to obesity. Exp Biol Med (Maywood) 2020; 245:109-121. [PMID: 31955604 PMCID: PMC7016415 DOI: 10.1177/1535370219900185] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is an escalating world problem that contributes to the complexity and cost of treatment of metabolic disorders. Obesity is the result of increased storage of energy in the form of adipose tissue, reducing the quality of daily life, and interfering with longevity. Obesity is also a chronic, low-grade inflammatory disorder. The inflammatory processes affect many organ systems with expanded numbers of immune cells and increased cytokine production. Long-term weight loss is difficult to achieve and maintain. Lifestyle modifications, pharmacologic treatments, and surgical methods are increasingly utilized to ameliorate excess body weight and the comorbidities of obesity, such as diabetes, cardiovascular disease, dyslipidemia, and cancers. Weight loss is also touted to reduce inflammation. Here we review the current literature on human obesity-related systemic and local changes to the immune system and circulating inflammatory mediators. Further, we consider the impact of weight loss to reduce the burden of inflammation, bearing in mind the different methods of weight loss—behavioral change vs. surgical intervention.
Collapse
Affiliation(s)
- Charles L Phillips
- Program in Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
41
|
Hiam D, Simar D, Laker R, Altıntaş A, Gibson-Helm M, Fletcher E, Moreno-Asso A, Trewin AJ, Barres R, Stepto NK. Epigenetic Reprogramming of Immune Cells in Women With PCOS Impact Genes Controlling Reproductive Function. J Clin Endocrinol Metab 2019; 104:6155-6170. [PMID: 31390009 DOI: 10.1210/jc.2019-01015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a chronic disease affecting reproductive function and whole-body metabolism. Although the etiology is unclear, emerging evidence indicates that the epigenetics may be a contributing factor. OBJECTIVE To determine the role of global and genome-wide epigenetic modifications in specific immune cells in PCOS compared with controls and whether these could be related to clinical features of PCOS. DESIGN Cross-sectional study. PARTICIPANTS Women with (n = 17) or without PCOS (n = 17). SETTING Recruited from the general community. MAIN OUTCOME MEASURES Isolated peripheral blood mononuclear cells were analyzed using multicolor flow cytometry methods to determine global DNA methylation levels in a cell-specific fashion. Transcriptomic and genome-wide DNA methylation analyses were performed on T helper cells using RNA sequencing and reduced representation bisulfite sequencing. RESULTS Women with PCOS had lower global DNA methylation in monocytes (P = 0.006) and in T helper (P = 0.004), T cytotoxic (P = 0.004), and B cells (P = 0.03). Specific genome-wide DNA methylation analysis of T helper cells from women with PCOS identified 5581 differentially methylated CpG sites. Functional gene ontology enrichment analysis showed that genes located at the proximity of differentially methylated CpG sites belong to pathways related to reproductive function and immune cell function. However, these genes were not altered at the transcriptomic level. CONCLUSIONS It was shown that PCOS is associated with global and gene-specific DNA methylation remodeling in a cell type-specific manner. Further investigation is warranted to determine whether epigenetic reprogramming of immune cells is important in determining the different phenotypes of PCOS.
Collapse
Affiliation(s)
- Danielle Hiam
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Rhianna Laker
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ali Altıntaş
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Gibson-Helm
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elly Fletcher
- Baker Heart and Disease Institute, Melbourne, Victoria, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Adam J Trewin
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Romain Barres
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nigel K Stepto
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Medicine-Western Health, School of Medicine, Faculty of Medicine, Dentistry, and Health Science, Melbourne, Australia
| |
Collapse
|
42
|
Altered Genome-Wide DNA Methylation in Peripheral Blood of South African Women with Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20235828. [PMID: 31757015 PMCID: PMC6928622 DOI: 10.3390/ijms20235828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence implicate altered DNA methylation in the pathophysiology of gestational diabetes mellitus (GDM). This exploratory study probed the association between GDM and peripheral blood DNA methylation patterns in South African women. Genome-wide DNA methylation profiling was conducted in women with (n = 12) or without (n = 12) GDM using the Illumina Infinium HumanMethylationEPIC BeadChip array. Functional analysis of differentially methylated genes was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A total of 1046 CpG sites (associated with 939 genes) were differentially methylated between GDM and non-GDM groups. Enriched pathways included GDM-related pathways such as insulin resistance, glucose metabolism and inflammation. DNA methylation of the top five CpG loci showed distinct methylation patterns in GDM and non-GDM groups and was correlated with glucose concentrations. Of these, one CpG site mapped to the calmodulin-binding transcription activator 1 (CAMTA1) gene, which have been shown to regulate insulin production and secretion and may offer potential as an epigenetic biomarker in our population. Further validation using pyrosequencing and conducting longitudinal studies in large sample sizes and in different populations are required to investigate their candidacy as biomarkers of GDM.
Collapse
|
43
|
Hiam D, Patten R, Gibson-Helm M, Moreno-Asso A, McIlvenna L, Levinger I, Harrison C, Moran LJ, Joham A, Parker A, Shorakae S, Simar D, Stepto N. The effectiveness of high intensity intermittent training on metabolic, reproductive and mental health in women with polycystic ovary syndrome: study protocol for the iHIT- randomised controlled trial. Trials 2019; 20:221. [PMID: 30992038 PMCID: PMC6469064 DOI: 10.1186/s13063-019-3313-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a reproductive-metabolic condition. Insulin resistance is a hallmark of PCOS and is related to increased hyperandrogenism that drives inherent metabolic, reproductive and psychological features of the syndrome. Insulin resistance in women with PCOS is managed by weight loss, lifestyle interventions (i.e. exercise, diet) and insulin-sensitising medications. This manuscript describes the protocol of our study evaluating the effectiveness of high intensity intermittent training (HIIT) or moderate intensity exercise on cardiometabolic, reproductive and mental health in overweight women with PCOS. METHODS/DESIGN We will employ a three arm, parallel-group, randomised controlled trial recruiting 60 women diagnosed with PCOS, aged between 18 and 45 years and with a body mass index (BMI) greater than 25 kg/m2. Following screening and baseline testing, women will be randomised by simple randomisation procedure using computer generated sequence allocation to undergo one of two 12-week supervised interventions: either HIIT or moderate intensity exercise (standard supervised exercise), or to standard care [Con] (unsupervised lifestyle advice) at a 1:1:1 allocation ratio. The primary outcome for this trial is to measure the improvements in metabolic health; specifically changes in insulin sensitivity in response to different exercise intensities. Baseline and post-intervention testing include anthropometric measurements, cardiorespiratory fitness testing, reproductive hormone profiles (anti-müllerian hormone and steroid profiles), metabolic health, health-related quality of life and mental health questionnaires and objective and subjective lifestyle monitoring. Reporting of the study will follow the CONSORT statement. DISCUSSION This trial aims to demonstrate the comparative efficacy and maintenance of different exercise intensities to advance the understanding of PCOS management and provide insight into the optimal exercise intensity for improved cardiometabolic outcomes. Secondary outcomes will include the impact of different exercise protocols on reproductive hormone profiles, mental health and health-related quality of life. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry, ACTRN12615000242527 . Registered on 17 March 2015.
Collapse
Affiliation(s)
- Danielle Hiam
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, Victoria 8001 Australia
| | - Rhiannon Patten
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, Victoria 8001 Australia
| | - Melanie Gibson-Helm
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, Victoria 8001 Australia
| | - Luke McIlvenna
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, Victoria 8001 Australia
| | - Itamar Levinger
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, Victoria 8001 Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC Australia
| | - Cheryce Harrison
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Anju Joham
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Alex Parker
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, Victoria 8001 Australia
| | - Soulmaz Shorakae
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Nigel Stepto
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, Victoria 8001 Australia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
44
|
Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr Res Rev 2019; 32:128-145. [PMID: 30707092 DOI: 10.1017/s0954422418000239] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Early-life nutrition plays a critical role in fetal growth and development. Food intake absence and excess are the two main types of energy malnutrition that predispose to the appearance of diseases in adulthood, according to the hypothesis of 'developmental origins of health and disease'. Epidemiological data have shown an association between early-life malnutrition and the metabolic syndrome in later life. Evidence has also demonstrated that nutrition during this period of life can affect the development of the immune system through epigenetic mechanisms. Thus, epigenetics has an essential role in the complex interplay between environmental factors and genetics. Altogether, this leads to the inflammatory response that is commonly seen in non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome. In conjunction, DNA methylation, covalent modification of histones and the expression of non-coding RNA are the epigenetic phenomena that affect inflammatory processes in the context of NAFLD. Here, we highlight current understanding of the mechanisms underlying developmental programming of NAFLD linked to epigenetic modulation of the immune system and environmental factors, such as malnutrition.
Collapse
|
45
|
Supplementation of Juçara Berry (Euterpe edulis Mart.) Modulates Epigenetic Markers in Monocytes from Obese Adults: A Double-Blind Randomized Trial. Nutrients 2018; 10:nu10121899. [PMID: 30513988 PMCID: PMC6315800 DOI: 10.3390/nu10121899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
Nutrigenomics is an emerging field in obesity since epigenetic markers can be modified by environmental factors including diet. Considering juçara composition—rich in anthocyanins, monounsaturated fatty acids (MUFAs) and fibers—it has the potential for epigenetic modulation. We evaluated the juçara supplementation modulating the serum fatty acids profile and epigenetic markers in monocytes of adult obese humans. It was a randomized double-blind, controlled trial with 27 obese (Body mass index between 30.0 and 39.9 kg/m2) participants of both genders aged from 31 to 59 years, divided into juçara group (5 g juçara freeze-dried pulp) or placebo group (5 g of maltodextrin) for 6 weeks. Before and after supplementation, blood samples were collected. The serum and monocytes cells obtained were cultured and stimulated with lipopolysaccharides as proinflammatory stimulus. After 24 h of incubation, the cells and supernatants were collected and analyzed. Juçara improved the serum fatty acids profile on unsaturated fatty acids levels. The epigenetic markers evaluated were improved post-treatment. Also, the methylated DNA level was increased after treatment. We find that juçara supplementation is a predictor of methyl CpG binding proteins 2 (MeCP2) in monocytes. Concluding, juçara supplementation improved the serum fatty acids profile, modulating the epigenetic markers in monocytes from obese individuals.
Collapse
|
46
|
Abstract
Immune cells are present in the adipose tissue (AT) and regulate its function. Under lean conditions, immune cells predominantly of type 2 immunity, including eosinophils, M2-like anti-inflammatory macrophages and innate lymphoid cells 2, contribute to the maintenance of metabolic homeostasis within the AT. In the course of obesity, pro-inflammatory immune cells, such as M1-like macrophages, prevail in the AT. Inflammation in the obese AT is associated with the development of metabolic complications such as insulin resistance, type 2 diabetes and cardiovascular disease. Thus, the immune cell-adipocyte crosstalk in the AT is an important regulator of AT function and systemic metabolism. We discuss herein this crosstalk with a special focus on the role of innate immune cells in AT inflammation and metabolic homeostasis in obesity.
Collapse
Affiliation(s)
- Kyoung-Jin Chung
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
47
|
Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G. Role of Adaptive and Innate Immunity in Type 2 Diabetes Mellitus. J Diabetes Res 2018; 2018:7457269. [PMID: 30533447 PMCID: PMC6250017 DOI: 10.1155/2018/7457269] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022] Open
Abstract
After the recognition of the essential role of the immune system in the progression of type 2 diabetes mellitus, more studies are focused on the effects produced by the abnormal differentiation of components of the immune system. In patients suffering from obesity or T2DM, there were alterations in proliferation of T cells and macrophages, and impairment in function of NK cells and B cells, which represented abnormal innate and adaptive immunity. The abnormality of either innate immunity, adaptive immunity, or both was involved and interacted with each other during the progression of T2DM. Although previous studies have revealed the functional involvement of T cells in T2DM, and the regulation of metabolism by the innate or adaptive immune system during the pathogenesis of T2DM, there has been a lack of literature reviewing the relevant role of adaptive and innate immunity in the progression of T2DM. Here, we will review their relevant roles, aiming to provide new thought for the development of immunotherapy in T2DM.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zheng Hu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhenxiang Yu
- Department of Respiration, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
48
|
Daniel S, Nylander V, Ingerslev LR, Zhong L, Fabre O, Clifford B, Johnston K, Cohn RJ, Barres R, Simar D. T cell epigenetic remodeling and accelerated epigenetic aging are linked to long-term immune alterations in childhood cancer survivors. Clin Epigenetics 2018; 10:138. [PMID: 30400990 PMCID: PMC6219017 DOI: 10.1186/s13148-018-0561-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/07/2018] [Indexed: 01/08/2023] Open
Abstract
Background Cancer treatments have substantially improved childhood cancer survival but are accompanied by long-term complications, notably chronic inflammatory diseases. We hypothesize that cancer treatments could lead to long-term epigenetic changes in immune cells, resulting in increased prevalence of inflammatory diseases in cancer survivors. Results To test this hypothesis, we established the epigenetic and transcriptomic profiles of immune cells from 44 childhood cancer survivors (CCS, > 16 years old) on full remission (> 5 years) who had received chemotherapy alone or in combination with total body irradiation (TBI) and hematopoietic stem cell transplant (HSCT). We found that more than 10 years post-treatment, CCS treated with TBI/HSCT showed an altered DNA methylation signature in T cell, particularly at genes controlling immune and inflammatory processes and oxidative stress. DNA methylation remodeling in T cell was partially associated with chronic expression changes of nearby genes, increased frequency of type 1 cytokine-producing T cell, elevated systemic levels of these cytokines, and over-activation of related signaling pathways. Survivors exposed to TBI/HSCT were further characterized by an Epigenetic-Aging-Signature of T cell consistent with accelerated epigenetic aging. To investigate the potential contribution of irradiation to these changes, we established two cell culture models. We identified that radiation partially recapitulated the immune changes observed in survivors through a bystander effect that could be mediated by circulating factors. Conclusion Cancer treatments, in particular TBI/HSCT, are associated with long-term immune disturbances. We propose that epigenetic remodeling of immune cells following cancer therapy augments inflammatory- and age-related diseases, including metabolic complications, in childhood cancer survivors. Electronic supplementary material The online version of this article (10.1186/s13148-018-0561-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Daniel
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Wallace Wurth Building East Room 420, Sydney, NSW, 2052, Australia
| | - Vibe Nylander
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Lars R Ingerslev
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Odile Fabre
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Briana Clifford
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Wallace Wurth Building East Room 420, Sydney, NSW, 2052, Australia
| | - Karen Johnston
- School of Women's and Children's Health, UNSW Sydney and Kids Cancer Centre, Sydney Children's Hospital Network, Randwick, Australia
| | - Richard J Cohn
- School of Women's and Children's Health, UNSW Sydney and Kids Cancer Centre, Sydney Children's Hospital Network, Randwick, Australia
| | - Romain Barres
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Wallace Wurth Building East Room 420, Sydney, NSW, 2052, Australia. .,The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Wallace Wurth Building East Room 420, Sydney, NSW, 2052, Australia. .,The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
49
|
Naidoo V, Naidoo M, Ghai M. Cell- and tissue-specific epigenetic changes associated with chronic inflammation in insulin resistance and type 2 diabetes mellitus. Scand J Immunol 2018; 88:e12723. [PMID: 30589455 DOI: 10.1111/sji.12723] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycaemia, which can cause micro- and macrovascular complications. Chronic inflammation may be the cause and result of T2DM, and its related complications as an imbalance between pro- and anti-inflammatory cytokines can affect immune functions. Apart from genetic changes occurring within the body resulting in inflammation in T2DM, epigenetic modifications can modify gene expression in response to environmental cues such as an unhealthy diet, lack of exercise and obesity. The most widely studied epigenetic modification, DNA methylation (DNAm), regulates gene expression and may manipulate inflammatory genes to increase or decrease inflammation associated with T2DM. This review explores the studies related to epigenetic changes, more specifically DNAm, associated with chronic inflammation in T2DM, at both the cell and tissue levels. Studying epigenetic alterations during inflammatory response, as a result of genetic and environmental signals, creates opportunities for the development of "early detection/relative risk" tests to aid in prevention of T2DM. Understanding inflammation in T2DM at the gene level in inflammation-associated cells and tissues may provide further insight for the development of specific therapeutic targets for the disorder.
Collapse
Affiliation(s)
- Velosha Naidoo
- Department of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Merusha Naidoo
- Department of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
50
|
Poupeau A, Garde C, Sulek K, Citirikkaya K, Treebak JT, Arumugam M, Simar D, Olofsson LE, Bäckhed F, Barrès R. Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ-free mice. FASEB J 2018; 33:2719-2731. [PMID: 30303739 PMCID: PMC6338647 DOI: 10.1096/fj.201800787r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Remodeling of the gut microbiota is implicated in various metabolic and inflammatory diseases of the gastrointestinal tract. We hypothesized that the gut microbiota affects the DNA methylation profile of intestinal epithelial cells (IECs) which could, in turn, alter intestinal function. In this study, we used mass spectrometry and methylated DNA capture to respectively investigate global and genome-wide DNA methylation of intestinal epithelial cells from germ-free (GF) and conventionally raised mice. In colonic IECs from GF mice, DNA was markedly hypermethylated. This was associated with a dramatic loss of ten-eleven-translocation activity, a lower DNA methyltransferase activity and lower circulating levels of the 1-carbon metabolite, folate. At the gene level, we found an enrichment for differentially methylated regions proximal to genes regulating the cytotoxicity of NK cells (false-discovery rate < 8.9E−6), notably genes regulating the cross-talk between NK cells and target cells, such as members of the NK group 2 member D ligand superfamily Raet. This distinct epigenetic signature was associated with a marked decrease in Raet1 expression and a loss of CD56+/CD45+ cells in the intestine of GF mice. Thus, our results indicate that altered activity of methylation-modifying enzymes in GF mice influences the IEC epigenome and modulates the crosstalk between IECs and NK cells. Epigenetic reprogramming of IECs may modulate intestinal function in diseases associated with altered gut microbiota.—Poupeau, A., Garde, C., Sulek, K., Citirikkaya, K., Treebak, J. T., Arumugam, M., Simar, D., Olofsson, L. E., Bäckhed, F., Barrès, R. Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ-free mice.
Collapse
Affiliation(s)
- Audrey Poupeau
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Garde
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kiymet Citirikkaya
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Simar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia; and
| | - Louise E Olofsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Molecular and Clinical Medicine, Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|