1
|
Kamarullah W, Pranata R, Wiramihardja S, Tiksnadi BB. Role of Incretin Mimetics in Cardiovascular Outcomes and Other Classical Cardiovascular Risk Factors beyond Obesity and Diabetes Mellitus in Nondiabetic Adults with Obesity: a Meta-analysis of Randomized Controlled Trials. Am J Cardiovasc Drugs 2024. [DOI: 10.1007/s40256-024-00695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/23/2024]
|
2
|
Cebi M, Yilmaz Y. Immune system dysregulation in the pathogenesis of non-alcoholic steatohepatitis: unveiling the critical role of T and B lymphocytes. Front Immunol 2024; 15:1445634. [PMID: 39148730 PMCID: PMC11324455 DOI: 10.3389/fimmu.2024.1445634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of fat within the cytoplasm of hepatocytes (exceeding 5% of liver weight) in individuals without significant alcohol consumption, has rapidly evolved into a pressing global health issue, affecting approximately 25% of the world population. This condition, closely associated with obesity, type 2 diabetes, and the metabolic syndrome, encompasses a spectrum of liver disorders ranging from simple steatosis without inflammation to non-alcoholic steatohepatitis (NASH) and cirrhotic liver disease. Recent research has illuminated the complex interplay between metabolic and immune responses in the pathogenesis of NASH, underscoring the critical role played by T and B lymphocytes. These immune cells not only contribute to necroinflammatory changes in hepatic lobules but may also drive the onset and progression of liver fibrosis. This narrative review aims to provide a comprehensive exploration of the effector mechanisms employed by T cells, B cells, and their respective subpopulations in the pathogenesis of NASH. Understanding the immunological complexity of NASH holds profound implications for the development of targeted immunotherapeutic strategies to combat this increasingly prevalent and burdensome metabolic liver disease.
Collapse
Affiliation(s)
- Merve Cebi
- Department of Medical Biology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, United States
| |
Collapse
|
3
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Hachuła M, Kosowski M, Ryl S, Basiak M, Okopień B. Impact of Glucagon-Like Peptide 1 Receptor Agonists on Biochemical Markers of the Initiation of Atherosclerotic Process. Int J Mol Sci 2024; 25:1854. [PMID: 38339133 PMCID: PMC10855444 DOI: 10.3390/ijms25031854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis stands out as one of the leading causes of global mortality. The inflammatory response against vascular wall components plays a pivotal role in the atherogenic process. The initiation of this process is notably driven by oxidized low-density lipoprotein (oxLDL) and a range of pro-inflammatory cytokines, with interleukin-1β (Il-1β) and tumor necrosis factor α (TNFα) emerging as particularly significant in the early stages of atherosclerotic plaque formation. In recent years, researchers worldwide have been diligently exploring innovative therapeutic approaches for metabolic diseases, recognizing their impact on the atherogenesis process. Our study aimed to investigate the influence of glucagon-like peptide 1 receptor agonists (GLP-1RA) on cytokine concentrations associated with the initiation of atherosclerotic plaque formation in a group of patients with type 2 diabetes and dyslipidemia. The study encompassed 50 subjects aged 41-81 (mean: 60.7), all diagnosed with type 2 diabetes, dyslipidemia and confirmed atherosclerosis based on B-mode ultrasound. Following a 180-day treatment with dulaglutide or semaglutide, we observed a statistically significant reduction in biochemical markers (oxLDL, TNFα and Il-1β) associated with the initiation of the atherosclerotic process (p < 0.001) within our study group. In addition to the already acknowledged positive effects of GLP-1RA on the metabolic parameters of treated patients, these drugs demonstrated a notable reduction in proinflammatory cytokine concentrations and may constitute an important element of therapy aimed at reducing cardiovascular risk.
Collapse
Affiliation(s)
- Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Sabina Ryl
- Department of Anaesthesiology and Intensive Care, Municipal Hospital in Zabrze-Biskupice, Zamkowa 4, 41-803 Zabrze, Poland;
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| |
Collapse
|
5
|
Piccirillo F, Mastroberardino S, Nusca A, Frau L, Guarino L, Napoli N, Ussia GP, Grigioni F. Novel Antidiabetic Agents and Their Effects on Lipid Profile: A Single Shot for Several Cardiovascular Targets. Int J Mol Sci 2023; 24:10164. [PMID: 37373310 PMCID: PMC10299555 DOI: 10.3390/ijms241210164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Type-2 diabetes mellitus (DM) represents one of the most important risk factors for cardiovascular diseases (CVD). Hyperglycemia and glycemic variability are not the only determinant of the increased cardiovascular (CV) risk in diabetic patients, as a frequent metabolic disorder associated with DM is dyslipidemia, characterized by hypertriglyceridemia, decreased high-density lipoprotein (HDL) cholesterol levels and a shift towards small dense low-density lipoprotein (LDL) cholesterol. This pathological alteration, also called diabetic dyslipidemia, represents a relevant factor which could promotes atherosclerosis and subsequently an increased CV morbidity and mortality. Recently, the introduction of novel antidiabetic agents, such as sodium glucose transporter-2 inhibitors (SGLT2i), dipeptidyl peptidase-4 inhibitors (DPP4i) and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), has been associated with a significant improvement in CV outcomes. Beyond their known action on glycemia, their positive effects on the CV system also seems to be related to an ameliorated lipidic profile. In this context, this narrative review summarizes the current knowledge regarding these novel anti-diabetic drugs and their effects on diabetic dyslipidemia, which could explain the provided global benefit to the cardiovascular system.
Collapse
Affiliation(s)
- Francesco Piccirillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Sara Mastroberardino
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Lorenzo Frau
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Lorenzo Guarino
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Nicola Napoli
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Endocrinology and Diabetes Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
6
|
Patti AM, Giglio RV, Allotta A, Bruno A, Di Bella T, Pantea Stoian A, Ciaccio M, Rizzo M. Effect of Semaglutide on Subclinical Atherosclerosis and Cardiometabolic Compensation: A Real-World Study in Patients with Type 2 Diabetes. Biomedicines 2023; 11:biomedicines11051362. [PMID: 37239033 DOI: 10.3390/biomedicines11051362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Semaglutide is a recently approved glucagon-like peptide-1 receptor agonist. Several trials reported the protective effect of injectable semaglutide on cardiovascular (CV) risk by reducing major adverse cardiovascular events in type 2 diabetes patients. Strong preclinical evidence supports the CV benefits of semaglutide through an effect on atherosclerosis. However, scant evidence is available about the protective mechanisms of semaglutide in clinical practice. METHODS A retrospective observational study was conducted among consecutive type 2 diabetes patients treated with injectable semaglutide in Italy between November 2019 and January 2021 when the drug was first available in the country. The primary aims were the assessment of the carotid intima-media thickness (cIMT) and hemoglobin A1c (HbA1c) levels. The secondary aims were the evaluation of anthropometric, glycemic, and hepatic parameters and plasma lipids, including the assessment of the triglyceride/high-density lipoprotein ratio as an indirect marker of atherogenic small, dense low-density lipoprotein particles. RESULTS Injectable semaglutide reduced HbA1c and cIMT. An improvement in CV risk factors and the triglyceride/high-density lipoprotein ratio was reported. Moreover, through correlation analyses, we found that hepatic fibrosis and steatosis indices and the anthropometric, hepatic, and glycemic parameters, as well as plasma lipids, were unrelated to the variations in cIMT and HbA1c. CONCLUSIONS Our findings suggest the effect of injectable semaglutide on atherosclerosis as a key CV protective mechanism. Considering the favorable effects on atherogenic lipoproteins and hepatic steatosis indices, our results support the pleiotropic effect of semaglutide beyond glycemic control.
Collapse
Affiliation(s)
- Angelo Maria Patti
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, 91022 Castelvetrano, Italy
| | - Rosaria Vincenza Giglio
- Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Alberto Allotta
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, 91022 Castelvetrano, Italy
| | - Andreina Bruno
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| | - Tommaso Di Bella
- Geriatrics Complex Operative Units, Vittorio Emanuele III Hospital, 91018 Salemi, Italy
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine, 050474 Bucharest, Romania
| | - Marcello Ciaccio
- Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Manfredi Rizzo
- Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine, 050474 Bucharest, Romania
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
7
|
Thomas MC, Coughlan MT, Cooper ME. The postprandial actions of GLP-1 receptor agonists: The missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab 2023; 35:253-273. [PMID: 36754019 DOI: 10.1016/j.cmet.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Department of Biochemistry, Monash University, Melbourne, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052 VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia.
| |
Collapse
|
8
|
Komatsu T, Abe S, Nakashima S, Sasaki K, Higaki Y, Saku K, Miura SI, Uehara Y. Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Phosphate Accelerates Cellular Cholesterol Efflux in THP-1 Cells. Biomolecules 2023; 13:biom13020228. [PMID: 36830597 PMCID: PMC9953524 DOI: 10.3390/biom13020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cholesterol efflux is a major atheroprotective function of high-density lipoproteins (HDLs) which removes cholesterol from the foam cells of lipid-rich plaques in Type 2 diabetes. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin phosphate increases plasma glucagon-like peptide-1 (GLP-1) concentrations and is used to treat Type 2 diabetes. GLP-1 plays an important role in regulating insulin secretion and expression via the GLP-1 receptor (GLP-1R), which is expressed in pancreatic islets as well as freshly isolated human monocytes and THP-1 cells. Here, we identified a direct role of GLP-1 and DPP-4 inhibition in HDL function. Cholesterol efflux was measured in cultivated phorbol 12-myristate 13-acetate-treated THP-1 cells radiolabeled with 3H-cholesterol and stimulated with liver X receptor/retinoid X receptor agonists. Contrary to vildagliptin, sitagliptin phosphate together with GLP-1 significantly (p < 0.01) elevated apolipoprotein (apo)A1-mediated cholesterol efflux in a dose-dependent manner. The sitagliptin-induced increase in cholesterol efflux did not occur in the absence of GLP-1. In contrast, adenosine triphosphate-binding cassette transporter A1 (ABCA1) mRNA and protein expressions in the whole cell fraction were not changed by sitagliptin in the presence of GLP-1, although sitagliptin treatment significantly increased ABCA1 protein expression in the membrane fraction. Furthermore, the sitagliptin-induced, elevated efflux in the presence of GLP-1 was significantly decreased by a GLP-1R antagonist, an effect that was not observed with a protein kinase A inhibitor. To our knowledge, the present study reports for the first time that sitagliptin elevates cholesterol efflux in cultivated macrophages and may exert anti-atherosclerotic actions that are independent of improvements in glucose metabolism. Our results suggest that sitagliptin enhances HDL function by inducing a de novo HDL synthesis via cholesterol efflux.
Collapse
Affiliation(s)
- Tomohiro Komatsu
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Satomi Abe
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Shihoko Nakashima
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Kei Sasaki
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Yasuki Higaki
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Shin-ichiro Miura
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Yoshinari Uehara
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Correspondence: ; Tel.: +81-92-871-6631
| |
Collapse
|
9
|
Andreadi A, Muscoli S, Tajmir R, Meloni M, Muscoli C, Ilari S, Mollace V, Della Morte D, Bellia A, Di Daniele N, Tesauro M, Lauro D. Recent Pharmacological Options in Type 2 Diabetes and Synergic Mechanism in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24021646. [PMID: 36675160 PMCID: PMC9862607 DOI: 10.3390/ijms24021646] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes Mellitus is a multifactorial disease with a critical impact worldwide. During prediabetes, the presence of various inflammatory cytokines and oxidative stress will lead to the pathogenesis of type 2 diabetes. Furthermore, insulin resistance and chronic hyperglycemia will lead to micro- and macrovascular complications (cardiovascular disease, heart failure, hypertension, chronic kidney disease, and atherosclerosis). The development through the years of pharmacological options allowed us to reduce the persistence of chronic hyperglycemia and reduce diabetic complications. This review aims to highlight the specific mechanisms with which the new treatments for type 2 diabetes reduce oxidative stress and insulin resistance and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: (A.A.); (D.L.)
| | - Saverio Muscoli
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Rojin Tajmir
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Carolina Muscoli
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Sara Ilari
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - David Della Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alfonso Bellia
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: (A.A.); (D.L.)
| |
Collapse
|
10
|
Xu Q, Zhang X, Li T, Shao S. Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice. Mol Med 2022; 28:144. [PMID: 36463128 PMCID: PMC9719171 DOI: 10.1186/s10020-022-00574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The T helper 17 (Th17)/T regulatory (Treg) cell imbalance is involved in the course of obesity and type 2 diabetes mellitus (T2DM). In the current study, the exact role of glucagon-like peptide-1 receptor agonist (GLP-1RA) exenatide on regulating the Th17/Treg balance and the underlying molecular mechanisms are investigated in obese diabetic mice model. METHODS Metabolic parameters were monitored in db/db mice treated with/without exenatide during 8-week study period. The frequencies of Th17 and Treg cells from peripheral blood and pancreas in db/db mice were assessed. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/Forkhead box O1 (FoxO1) pathway in Th17 and Treg cells from the spleens of male C57BL/6J mice was detected by western blotting. In addition, the expression of glucagon-like peptide-1 receptor (GLP-1R) in peripheral blood mononuclear cells (PBMCs) of male C57BL/6J mice was analyzed. RESULTS Exenatide treatment improved β-cell function and insulitis in addition to glucose, insulin sensitivity and weight. Increased Th17 and decreased Treg cells in peripheral blood were present as diabetes progressed while exenatide corrected this imbalance. Progressive IL-17 + T cell infiltration of pancreatic islets was alleviated by exenatide intervention. In vitro study showed no significant difference in the level of GLP-1R expression in PBMCs between control and palmitate (PA) groups. In addition, PA could promote Th17 but suppress Treg differentiation along with down-regulating the phosphorylation of PI3K/Akt/FoxO1, which was reversed by exenatide intervention. FoxO1 inhibitor AS1842856 could abrogate all these effects of exenatide against lipid stress. CONCLUSIONS Exenatide could restore systemic Th17/Treg balance via regulating FoxO1 pathway with the progression of diabetes in db/db mice. The protection of pancreatic β-cell function may be partially mediated by inhibiting Th17 cell infiltration into pancreatic islets, and the resultant alleviation of islet inflammation.
Collapse
Affiliation(s)
- Qinqin Xu
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| | - Xiaoling Zhang
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| | - Tao Li
- grid.33199.310000 0004 0368 7223Division of Ophthalmology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China
| | - Shiying Shao
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| |
Collapse
|
11
|
Shao S, Zhang X, Xu Q, Pan R, Chen Y. Emerging roles of Glucagon like peptide-1 in the management of autoimmune diseases and diabetes-associated comorbidities. Pharmacol Ther 2022; 239:108270. [PMID: 36002078 DOI: 10.1016/j.pharmthera.2022.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
|
12
|
Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation 2022; 128:67-82. [DOI: 10.1016/j.diff.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
13
|
Coronary atherosclerosis severity is closely associated with decreased GLP-1R positivity among CD16 + pro-inflammatory and patrolling monocyte subsets. ATHEROSCLEROSIS PLUS 2021; 46:15-19. [PMID: 36643724 PMCID: PMC9833237 DOI: 10.1016/j.athplu.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023]
Abstract
Background and aims Glucagon Like Peptide-1 Receptor (GLP-1R) activation reduces pro-inflammatory responses of human monocytes, their accumulation in the vascular wall and foam cell formation inhibiting atherosclerogenesis. This suggests that reduction of circulating GLP-1-1R positive monocytes may have pro-atherogenic effects. It is unknown whether different CD14/CD16 monocytes subsets display GLP-1R and whether their relative proportions correlate with atherosclerosis severity. We evaluated the association between GLP-1R positivity in different CD14/CD16 monocyte subsets and coronary atherosclerosis severity. Methods Relative amounts of classical (CD14+/CD16-), intermediate pro-inflammatory (CD14+/CD16+) and non-classical patrolling (CD14-/CD16+) subsets of total circulating monocytes and the proportions of GLP-1R positive monocytes in these subsets were determined in 13 control subjects and 10 dyslipidemic ischemic heart disease (IHD) patients with severe angiographic proven coronary atherosclerosis using flow cytometry analysis. Atherosclerosis severity was calculated by SYNTAX score. Results In univariable analysis, severe atherosclerosis was associated with decreased proportion of classical monocytes and two fold increased CD16+ pro-inflammatory and patrolling subsets as compared with controls (p = 0.01, p = 0.02 and p = 0.01, respectively). Frequency of GLP-1R positive monocytes was decreased in both CD16+ subsets (p = 0.02 and p = 0.05, respectively) and negatively correlated with atherosclerosis severity (r = -0.65, p = 0.005 and r = -0.44, p = 0.05, respectively). Conclusions Increased skewing of the classical monocyte population toward CD16+ pro-inflammatory and patrolling subsets accompanied by decreased in GLP-1R positivity are associated with coronary atherosclerosis severity in IHD patients with dyslipidemia. Although the effect of potential confounders cannot be ruled out, our data suggest that failure of GLP-1R-dependent anti-inflammatory/anti-atherogenic control results in innate immune system dysfunction and can promote atherosclerogenesis.
Collapse
|
14
|
Berndt J, Ooi SL, Pak SC. What Is the Mechanism Driving the Reduction of Cardiovascular Events from Glucagon-like Peptide-1 Receptor Agonists?-A Mini Review. Molecules 2021; 26:4822. [PMID: 34443410 PMCID: PMC8400553 DOI: 10.3390/molecules26164822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are considered the standard of care for type 2 diabetes in many countries worldwide. These molecules have profound anti-hyperglycaemic actions with a favourable safety profile. They are now being considered for their robust cardiovascular (CV) protective qualities in diabetic patients. Most recent CV outcome trials have reported that GLP-1 RAs reduce major adverse cardiovascular events (MACE). Furthermore, the GLP-1 RAs seem to target the atherosclerotic CV disease processes preferentially. GLP-1 RAs also improve a wide range of routinely measured surrogate markers associated with CV risk. However, mediation analysis suggests these modest improvements may contribute indirectly to the overall anti-atherogenic profile of the molecules but fall short in accounting for the significant reduction in MACE. This review explores the body of literature to understand the possible mechanisms that contribute to the CV protective profile of GLP-1 RAs.
Collapse
Affiliation(s)
- Jared Berndt
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
- Eli Lilly Australia Pty. Ltd., West Ryde, NSW 2114, Australia
| | - Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
| |
Collapse
|
15
|
Yokomori H, Ando W. Spatial expression of glucagon-like peptide 1 receptor and caveolin-1 in hepatocytes with macrovesicular steatosis in non-alcoholic steatohepatitis. BMJ Open Gastroenterol 2021; 7:bmjgast-2019-000370. [PMID: 32414752 PMCID: PMC7232783 DOI: 10.1136/bmjgast-2019-000370] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Non-alcoholic steatohepatitis (NASH) can progress to fibrosis, cirrhosis and end-stage liver disease. Glucagon-like peptide 1 receptor (GLP-1R) mediates β cell function. Its receptor agonists, currently used to treat type 2 diabetes mellitus, might be effective against NASH. GLP-1R, a G protein-coupled receptor family member, preferentially localises to caveolae. Therefore, we ascertained the cellular localisation of GLP-1R and caveolin (CAV)-1 in NASH liver. Methods Liver biopsies were obtained from three patients with NASH and were compared with those of four normal patients. Immunohistochemistry (IHC) and immunoelectron microscopy (IEM) were used to compare GLP-1R and CAV-1 expression in the livers of patients with metastatic liver cancer and normal patients. Results IHC showed that GLP-1R localised to basolateral membranes of hepatocytes with macrovesicular steatosis and was expressed in monocytes infiltrating hepatic sinusoids. CAV-1 was minimally associated with low-electron density lipid droplets (LDs) in hepatocytes. IEM showed small clusters of GLP-1R molecules on the peripheral rims of LDs and on cytoplasmic leaflets of endoplasmic reticulum membranes and vesicles, whereas CAV-1 molecules were found in LD caveolae. Conclusions GLP-1R is present in the lipid microdomains of hepatocytes with macrovesicular steatosis. These results may help inform future studies about the liver-specific mechanisms of GLP-1 modulation in NASH therapy.
Collapse
Affiliation(s)
- Hiroaki Yokomori
- Department of Internal Medicine, Kitasato University Medical Center, Kitamoto, Saitama, Japan
| | - Wataru Ando
- Department of Clinical Pharmacy, Kitasato University School of Pharmacy, Minato-ku, Tokyo, Japan
| |
Collapse
|
16
|
Ma X, Liu Z, Ilyas I, Little PJ, Kamato D, Sahebka A, Chen Z, Luo S, Zheng X, Weng J, Xu S. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 2021; 17:2050-2068. [PMID: 34131405 PMCID: PMC8193264 DOI: 10.7150/ijbs.59965] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zhenghong Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Peter J Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirhossein Sahebka
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad, Iran
| | - Zhengfang Chen
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
17
|
Vargas-Sánchez K, Vargas L, Urrutia Y, Beltrán I, Rossi AB, Lozano HY, Guarín J, Losada-Barragán M. PPARα and PPARβ/δ are negatively correlated with proinflammatory markers in leukocytes of an obese pediatric population. J Inflamm (Lond) 2020; 17:35. [PMID: 33292260 PMCID: PMC7602348 DOI: 10.1186/s12950-020-00264-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obesity configures a pathophysiological profile that predisposes the development of metabolic and cardiovascular diseases, critically impacting public health. The chronic dysregulation of immuno-metabolic components triggered by pediatric obesity is a common but scarcely understood aspect of the disease. Peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors essential for energy and immune homeostasis of different tissues. Besides, the glucagon-like peptide-1 receptor (GLP-1R) activation influences insulin secretion, but also regulates the cytokine profile possibly mediated through a PPAR isotype. However, the role of PPARs and GLP-1R in leukocytes from obese pediatric patients remains unclear. Therefore, we examined the expression of PPARs isotypes and GLP-1R in leukocytes, and its correlation with metabolic, hormonal, inflammatory, and anthropometric markers in an obese pediatric population. RESULTS Obese children and adolescents presented a significant increase in anthropometric and body composition parameters, TG, VLDL, TG/HDL, android fat (%)/gynoid fat (%) (A/G%) index, and HOMA score when compared with the control group. Obese participants exhibited a pro-inflammatory profile with an augment of IL-8 (p = 0,0081), IL-6 (p = 0,0005), TNF-α (p = 0,0004), IFN-γ (p = 0,0110), MCP-1 (p = 0,0452), and adipsin (p = 0,0397), whereas displayed a reduction of adiponectin (p = 0,0452). The expression of PPARα and GLP-1R was lower in the leukocytes from obese participants than in lean subjects. Furthermore, PPARα correlates negatively with TNF-α (p = 0,0383), while GLP-1R did not show correlation with any inflammatory variable. However, both receptors correlate negatively with the abdominal skinfold. Although PPARβ/δ expression was similar between groups, it was negatively associated with IL-8 levels (p = 0,0085). CONCLUSIONS PPARα and PPARβ/δ expression are negatively correlated with the proinflammatory markers TNF-α and IL-8, respectively, suggesting participation in the regulation of inflammation which was observed to be altered in pediatric obesity. Furthermore, PPARα and GLP-1R are downregulated in leukocytes from obese participants. The low expression of both receptors is correlated with an increase in abdominal skinfold, suggesting a role in fat distribution that could indirectly affect cytokine secretion from different immune and adipose cells, likely triggering an inflammatory profile as a consequence of obesity. Altogether, these findings may impact the understanding and implementation of PPARα or GLP-1R agonists in the clinic.
Collapse
Affiliation(s)
- Karina Vargas-Sánchez
- Research group of Translational Neurosciences, School of Medicine, Universidad de los Andes, Bogotá, 111711, Colombia.
| | - Laura Vargas
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yenny Urrutia
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Iván Beltrán
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | | | | | - Jorge Guarín
- GRINCIBIO. Universidad Antonio Nariño, Bogotá, Colombia
| | - Monica Losada-Barragán
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
18
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
19
|
Goncalves E, Bell DSH. Combination Treatment of SGLT2 Inhibitors and GLP-1 Receptor Agonists: Symbiotic Effects on Metabolism and Cardiorenal Risk. Diabetes Ther 2018; 9:919-926. [PMID: 29623594 PMCID: PMC5984923 DOI: 10.1007/s13300-018-0420-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION When treating type 2 diabetes, drugs that cause hypoglycemia and weight gain should, if possible, be avoided. In addition, due to the increased incidence and prevalence of cardiovascular disease, cardiac events and heart failure, as well as the accelerated renal decompensation that may occur with type 2 diabetes, hypoglycemic agents that have the potential to lower cardiac and renal risk should be utilized as early as possible in the course of the disease. METHODS This is a literature review of the efficacy of combined treatment with a glucagon-like peptide 1 (GLP-1) agonist and a sodium glucose cotransporter-2 (SGLT2) inhibitor in lowering glycated hemoglobin (HbA1c) level, cardiac risk, cardiac events and renal decompensation. RESULTS Evidence is presented which shows that the efficacy of combined SGLT2 inhibitor/GLP-1 receptor agonist therapy is additive in lowering HbA1c level, systolic blood pressure and body weight. This combined therapy also has the potential to cause further reductions in major cardiovascular events and renal decompensation than those achieved with either drug used as monotherapy or in combination with other hypoglycemic agents. CONCLUSION The combination of a GLP-1 agonist and an SGLT2-inhibitor has additive effects on lowering HbA1c and systolic blood pressure, body weight and cardiac risk and has the potential to synergistically reduce cardiovascular events and decelerate renal decompensation. A large prospective study of this combination is needed to prove that this synergism, especially as it applies to cardiac risk factors, cardiac events and mortality and preservation of renal function, is proven.
Collapse
Affiliation(s)
- Edison Goncalves
- Diabetes & Thyroid Associates, 2022 Brookwood Medical Center Dr, Birmingham, 35209, AL, USA.
| | - David S H Bell
- Southside Endocrinology, Irondale, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Arden C. A role for Glucagon-Like Peptide-1 in the regulation of β-cell autophagy. Peptides 2018; 100:85-93. [PMID: 29412836 DOI: 10.1016/j.peptides.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
Autophagy is a highly conserved intracellular recycling pathway that serves to recycle damaged organelles/proteins or superfluous nutrients during times of nutritional stress to provide energy to maintain intracellular homeostasis and sustain core metabolic functions. Under these conditions, autophagy functions as a cell survival mechanism but impairment of this pathway can lead to pro-death stimuli. Due to their role in synthesising and secreting insulin, pancreatic β-cells have a high requirement for robust degradation pathways. Recent research suggests that functional autophagy is required to maintain β-cell survival and function in response to high fat diet suggesting a pro-survival role. However, a role for autophagy has also been implicated in the pathogenesis of type 2 diabetes. Thus, the pro-survival vs pro-death role of autophagy in regulating β-cell mass requires discussion. Emerging evidence suggests that Glucagon-Like Peptide-1 (GLP-1) may exert beneficial effects on glucose homeostasis via autophagy-dependent pathways both in pancreatic β-cells and in other cell types. The aim of the current review is to: i) summarise the literature surrounding β-cell autophagy and its pro-death vs pro-survival role in regulating β-cell mass; ii) review the literature describing the impact of GLP-1 on β-cell autophagy and in other cell types; iii) discuss the potential underlying mechanisms.
Collapse
Affiliation(s)
- Catherine Arden
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
21
|
Irie Y, Katakami N, Mita T, Takahara M, Matsuoka TA, Gosho M, Watada H, Shimomura I. Evaluation of the Effect of Alogliptin on Tissue Characteristics of the Carotid Wall: Subanalysis of the SPEAD-A Trial. Diabetes Ther 2018; 9:317-329. [PMID: 29330812 PMCID: PMC5801253 DOI: 10.1007/s13300-018-0367-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Ultrasonic tissue characterization of the carotid wall using gray-scale median (GSM) reflects its composition and low-GSM plaque is considered to be unstable. The present study evaluated the effect of alogliptin, a dipeptidyl peptidase-4 inhibitor, on the longitudinal change in GSM, an index of the tissue characteristics of the carotid wall, in patients with type 2 diabetes (T2DM). METHODS This is a post hoc subanalysis using data obtained from the SPEAD-A trial, a randomized controlled trial that demonstrated the beneficial effect of alogliptin treatment on the progression of carotid intima-media thickness in patients with T2DM with no past history of apparent cardiovascular disease. A total of 322 subjects (161 in the alogliptin treatment group and 161 in the conventional treatment group) were enrolled. The primary outcome was the change from baseline in mean GSM-CCA (common carotid artery) during the 104-week observation period. RESULTS Both alogliptin treatment and conventional treatment significantly increased the mean GSM-CCA (from 60.7 ± 12.3 to 65.9 ± 10.1, p < 0.001 and 58.8 ± 14.4-65.2 ± 12.2, p < 0.001, respectively) and there was no significant difference in changes in mean GSM-CCA between the treatment groups (p = 0.95). Additionally, there were no differences in the changes in the left and right GSM-CCA between the groups. CONCLUSIONS A post hoc subanalysis revealed an improvement of tissue characteristics in the carotid arterial wall in both the alogliptin treatment group and the conventional treatment group during the 104-week treatment period and that there was no significant difference between the treatment groups. CLINICAL TRIAL REGISTRATION UMIN000019951.
Collapse
Affiliation(s)
- Yoko Irie
- Department of Endocrinology and Diabetes, Osaka Police Hospital, 10-31 Kitayamacho, Tennoji-ku, Osaka, 543-0035, Japan
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tomoya Mita
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
- Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mitsuyoshi Takahara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiko Gosho
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
- Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018; 11:3-20. [PMID: 28853441 DOI: 10.1038/mi.2017.73] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium must balance efficient absorption of nutrients with partitioning commensals and pathogens from the bodies' largest immune system. If this crucial barrier fails, inappropriate immune responses can result in inflammatory bowel disease or chronic infection. Enteroendocrine cells represent 1% of this epithelium and have classically been studied for their detection of nutrients and release of peptide hormones to mediate digestion. Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release cytokines in response to pathogen associated molecules and peptide hormone receptors are expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely equipped to be crucial and novel orchestrators of intestinal inflammation. In this review, we introduce enteroendocrine chemosensory roles, summarize studies correlating enteroendocrine perturbations with intestinal inflammation and describe the mechanistic interactions by which enteroendocrine and mucosal immune cells interact during disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.
Collapse
Affiliation(s)
- J J Worthington
- Lancaster University, Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster, Lancashire, UK
| | - F Reimann
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | - F M Gribble
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
23
|
Abstract
Interactions between macrophages and adipocytes influence both metabolism and inflammation. Obesity-induced changes to macrophages and adipocytes lead to chronic inflammation and insulin resistance. This paper reviews the various functions of macrophages in lean and obese adipose tissue and how obesity alters adipose tissue macrophage phenotypes. Metabolic disease and insulin resistance shift the balance between numerous pro- and anti-inflammatory regulators of macrophages and create a feed-forward loop of increasing inflammatory macrophage activation and worsening adipocyte dysfunction. This ultimately leads to adipose tissue fibrosis and diabetes. The molecular mechanisms underlying these processes have therapeutic implications for obesity, metabolic syndrome, and diabetes.
Collapse
Affiliation(s)
- Dylan Thomas
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center, 88 East Newton Street, H-3600, Boston, MA 02118.
| | - Caroline Apovian
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center, 88 East Newton Street, Robinson 4400, Boston, MA 02118.
| |
Collapse
|
24
|
Kolb H, von Herrath M. Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process? Cell Metab 2017; 25:233-241. [PMID: 27839907 DOI: 10.1016/j.cmet.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell-directed immunosuppression only transiently delays the loss of β cell function in recent-onset type 1 diabetes. We argue here that the underlying disease process is carried by innate immune reactivity. Inducing a non-polarized functional state of local innate immunity will support regulatory T cell development and β cell proliferation.
Collapse
Affiliation(s)
- Hubert Kolb
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Düsseldorf, Germany; Faculty of Medicine, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Matthias von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92014, USA; Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98191, USA.
| |
Collapse
|
25
|
Perakakis N, Farr OM, Tuccinardi D, Upadhyay J, Mantzoros CS. Research advances in metabolism 2016. Metabolism 2017; 67:41-53. [PMID: 28081777 PMCID: PMC5871911 DOI: 10.1016/j.metabol.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Olivia M Farr
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dario Tuccinardi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jagriti Upadhyay
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA
| |
Collapse
|
26
|
Zhao S, Li J, Wang L, Wu X. Pomegranate peel polyphenols inhibit lipid accumulation and enhance cholesterol efflux in raw264.7 macrophages. Food Funct 2016; 7:3201-10. [DOI: 10.1039/c6fo00347h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pomegranate peel polyphenols hindered ox-LDL-induced raw264.7 foam cell formation, by decreasing CD36 and promoting ABCA1 and LXRα expression.
Collapse
Affiliation(s)
- Shengjuan Zhao
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
- College of Food & Bioengineering
| | - Jianke Li
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization
| | - Lifang Wang
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Xiaoxia Wu
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
| |
Collapse
|