1
|
Shah A, Xu H, Kwon HJ, Wondisford FE. In vivo glycerol metabolism in patients with glycerol kinase deficiency. JIMD Rep 2024; 65:392-400. [PMID: 39512433 PMCID: PMC11540572 DOI: 10.1002/jmd2.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 11/15/2024] Open
Abstract
Glycerol kinase deficiency (GKD) is an X-linked recessive disorder due to glycerol kinase (GK) gene mutations resulting in hyperglycerolermia, hyperglyceroluria, and "pseudohypertriglyceridemia." In vivo glycerol metabolism has not been assessed in GKD. A 62-year-old man with suspected GKD and his extended family underwent whole exome sequencing and fasting blood work with two modes of lipid measurements: (1) standard lipase-based methodology and (2) nuclear magnetic resonance (NMR). Two overnight fasted men with GKD and a heterozygote female carrier then underwent 13C3-glycerol infusion. Affected family members had a novel two-nucleotide deletion in exon 5 of the GK gene (c.373_374del). Compared to their family members (n = 14), men with GKD (n = 5) had significantly lower total cholesterol levels (3.72 ± 0.70 vs. 4.77 ± 0.85 mmol/L, p = 0.024). Compared to NMR, lipase-based assays overreported triglycerides (5.28 ± 1.38 vs. 0.81 ± 0.32, mmol/L, p < 0.001) and underreported low-density lipoprotein cholesterol values (0.93 ± 0.23 vs. 2.18 ± 0.42 mmol/L, p = 0.001) in GKD. Men with GKD could not convert glycerol into glucose or triglycerides, which was preserved in the heterozygote carrier. Glycolytic metabolism of glycerol to lactate persisted in GKD, but it was reduced by a magnitude and, possibly, due to homologous glycerol kinases encoded by other genes. In summary, we report a novel GK pathogenic variant; affected men cannot convert circulating glycerol to glucose or triglycerides and have lower cholesterol levels. These results offer a human model for potentially targeting glycerol kinase to treat conditions associated with hyperglycemia and hyperlipidemia and warrant further investigation.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Huiting Xu
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Hyok Joon Kwon
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
- University of Arizona College of MedicinePhoenixArizonaUSA
| | - Fredric E. Wondisford
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
- University of Arizona College of MedicinePhoenixArizonaUSA
| |
Collapse
|
2
|
Chen L, Liu L. Adipose thermogenic mechanisms by cold, exercise and intermittent fasting: Similarities, disparities and the application in treatment. Clin Nutr 2024; 43:2043-2056. [PMID: 39088961 DOI: 10.1016/j.clnu.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Given its nonnegligible role in metabolic homeostasis, adipose tissue has been the target for treating metabolic disorders such as obesity, diabetes and cardiovascular diseases. Besides its lipolytic function, adipose thermogenesis has gained increased interest due to the irreplaceable contribution to dissipating energy to restore equilibrium, and its therapeutic effects have been testified in various animal models. In this review, we will brief about the canonical cold-stimulated adipose thermogenic mechanisms, elucidate on the exercise- and intermittent fasting-induced adipose thermogenic mechanisms, with a focus on the similarities and disparities among these signaling pathways, in an effort to uncover the overlapped and specific targets that may yield potent therapeutic efficacy synergistically in improving metabolic health.
Collapse
Affiliation(s)
- Linshan Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Morgan HJN, Delfino HBP, Schavinski AZ, Malone SA, Charoy C, Reis NG, Assis AP, Lautherbach N, Silveira WA, Heck LC, Guton D, Domingos AI, Kettelhut IC, Montminy M, Navegantes LCC. Hepatic noradrenergic innervation acts via CREB/CRTC2 to activate gluconeogenesis during cold. Metabolism 2024; 157:155940. [PMID: 38878857 DOI: 10.1016/j.metabol.2024.155940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND AIM Although it is well established that hormones like glucagon stimulates gluconeogenesis via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2, the role of neural signals in the regulation of gluconeogenesis remains uncertain. METHODS AND RESULTS Here, we characterize the noradrenergic bundle architecture in mouse liver; we show that the sympathoexcitation induced by acute cold exposure promotes hyperglycemia and upregulation of gluconeogenesis via triggering of the CREB/CRTC2 pathway. Following its induction by dephosphorylation, CRTC2 translocates to the nucleus and drives the transcription of key gluconeogenic genes. Rodents submitted to different models of sympathectomy or knockout of CRTC2 do not activate gluconeogenesis in response to cold. Norepinephrine directly acts in hepatocytes mainly through a Ca2+-dependent pathway that stimulates CREB/CRTC2, leading to activation of the gluconeogenic program. CONCLUSION Our data demonstrate the importance of the CREB/CRTC2 pathway in mediating effects of hepatic sympathetic inputs on glucose homeostasis, providing new insights into the role of norepinephrine in health and disease.
Collapse
Affiliation(s)
- Henrique J N Morgan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Heitor B P Delfino
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Z Schavinski
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samuel A Malone
- Department of Physiology, Genetics and Anatomy, University of Oxford, Oxford, UK
| | | | - Natany G Reis
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana P Assis
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Lautherbach
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilian A Silveira
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Lilian C Heck
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dan Guton
- The Francis Crick Institute, London, UK
| | - Ana I Domingos
- Department of Physiology, Genetics and Anatomy, University of Oxford, Oxford, UK
| | - Isis C Kettelhut
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marc Montminy
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Tao Y, Zhao J, Yin J, Zhou Z, Li H, Zang J, Wang T, Wang Y, Guo C, Zhu F, Dai S, Wang F, Zhao H, Mao H, Liu F, Zhang L, Wang Q. Hepatocyte TIPE2 is a fasting-induced Raf-1 inactivator that drives hepatic gluconeogenesis to maintain glucose homeostasis. Metabolism 2023; 148:155690. [PMID: 37717724 DOI: 10.1016/j.metabol.2023.155690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The liver regulates metabolic balance during fasting-feeding cycle. Hepatic adaptation to fasting is precisely modulated on multiple levels. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) is a negative regulator of immunity that reduces several liver pathologies, but its physiological roles in hepatic metabolism are largely unknown. METHODS TIPE2 expression was examined in mouse liver during fasting-feeding cycle. TIPE2-knockout mice, liver-specific TIPE2-knockout mice, liver-specific TIPE2-overexpressed mice were examined for fasting blood glucose and pyruvate tolerance test. Primary hepatocytes or liver tissues from these mice were evaluated for glucose production, lipid accumulation, gene expression and regulatory pathways. TIPE2 interaction with Raf-1 and TIPE2 transcription regulated by PPAR-α were examined using gene overexpression or knockdown, co-immunoprecipitation, western blot, luciferase reporter assay and DNA-protein binding assay. RESULTS TIPE2 expression was upregulated in fasted mouse liver and starved hepatocytes, which was positively correlated with gluconeogenic genes. Liver-specific TIPE2 deficiency impaired blood glucose homeostasis and gluconeogenic capacity in mice upon fasting, while liver-specific TIPE2 overexpression elevated fasting blood glucose and hepatic gluconeogenesis in mice. In primary hepatocytes upon starvation, TIPE2 interacted with Raf-1 to accelerate its ubiquitination and degradation, resulting in ERK deactivation and FOXO1 maintenance to sustain gluconeogenesis. During prolonged fasting, hepatic TIPE2 deficiency caused aberrant activation of ERK-mTORC1 axis that increased hepatic lipid accumulation via lipogenesis. In hepatocytes upon starvation, PPAR-α bound with TIPE2 promoter and triggered its transcriptional expression. CONCLUSIONS Hepatocyte TIPE2 is a PPAR-α-induced Raf-1 inactivator that sustains hepatic gluconeogenesis and prevents excessive hepatic lipid accumulation, playing beneficial roles in hepatocyte adaptation to fasting.
Collapse
Affiliation(s)
- Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jilong Yin
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huijie Li
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinhao Zang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tianci Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yalin Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shen Dai
- Department of Physiology and Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fuwu Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Fengming Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Schembri Wismayer D, Laurenti MC, Song Y, Egan AM, Welch AA, Bailey KR, Cobelli C, Dalla Man C, Jensen MD, Vella A. Effects of acute changes in fasting glucose and free fatty acid concentrations on indices of β-cell function and glucose metabolism in subjects without diabetes. Am J Physiol Endocrinol Metab 2023; 325:E119-E131. [PMID: 37285600 PMCID: PMC10393375 DOI: 10.1152/ajpendo.00043.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Elevated fasting free fatty acids (FFAs) and fasting glucose are additively associated with impaired glucose tolerance (IGT) and decreased β-cell function [quantified as disposition index (DI)]. We sought to examine how changes in fasting FFA and glucose alter islet function. We studied 10 subjects with normal fasting glucose (NFG) and normal glucose tolerance (NGT) on two occasions. On one occasion, Intralipid and glucose were infused overnight to mimic conditions present in IFG/IGT. In addition, we studied seven subjects with IFG/IGT on two occasions. On one occasion, insulin was infused to lower overnight FFA and glucose concentrations to those observed in people with NFG/NGT. The following morning, a labeled mixed meal was used to measure postprandial glucose metabolism and β-cell function. Elevation of overnight fasting FFA and glucose in NFG/NGT did not alter peak or integrated glucose concentrations (2.0 ± 0.1 vs. 2.0 ± 0.1 Mol per 5 h, Saline vs. Intralipid/glucose, P = 0.55). Although overall β-cell function quantified by the Disposition Index was unchanged, the dynamic component of β-cell responsivity (ϕd) was decreased by Intralipid and glucose infusion (9 ± 1 vs. 16 ± 3 10-9, P = 0.02). In people with IFG/IGT, insulin did not alter postprandial glucose concentrations or indices of β-cell function. Endogenous glucose production and glucose disappearance were also unchanged in both groups. We conclude that acute, overnight changes in FFA, and glucose concentrations do not alter islet function or glucose metabolism in prediabetes.NEW & NOTEWORTHY This experiment studied the effect of changes in overnight concentrations of free fatty acids (FFAs) and glucose on β-cell function and glucose metabolism. In response to elevation of these metabolites, the dynamic component of the β-cell response to glucose was impaired. This suggests that in health overnight hyperglycemia and FFA elevation can deplete preformed insulin granules in the β-cell.
Collapse
Affiliation(s)
- Daniel Schembri Wismayer
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Marcello C Laurenti
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States
| | - Yilin Song
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Aoife M Egan
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Andrew A Welch
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Kent R Bailey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Michael D Jensen
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| |
Collapse
|
6
|
Shah A, Wang Y, Wondisford FE. Differential Metabolism of Glycerol Based on Oral versus Intravenous Administration in Humans. Metabolites 2022; 12:metabo12100890. [PMID: 36295792 PMCID: PMC9611849 DOI: 10.3390/metabo12100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Glycerol can be metabolized to glucose via gluconeogenesis or lactate via glycolysis. It is unknown if glycerol is metabolized similarly in the portal and systemic circulations in humans. Eight metabolically healthy overnight-fasted individuals received equimolar amounts of 13C3-glycerol orally and intravenously on two separate occasions with serial blood draws over four hours. Serum samples underwent liquid chromatography–mass spectrometry analysis. Oral 13C3-glycerol administration led to higher average serum glucose enrichment than intravenous administration (5.02 ± 1.43 versus 4.07 ± 0.79%, p = 0.009). In contrast, intravenous 13C3-glycerol administration yielded higher average serum lactate enrichment than oral administration (5.67 ± 0.80 versus 4.85 ± 1.30%, p = 0.032). Peak serum glucose enrichment was also higher with oral administration (9.37 ± 2.93 versus 7.12 ± 1.28%, p = 0.010). Glycerol metabolism across the portal and systemic circulations is not congruent. Orally administered labeled glycerol led to greater labeled glucose production, while intravenously administration yielded greater lactate production. These data support direct glycerol to lactate conversion in humans.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yujue Wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Fredric E. Wondisford
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence:
| |
Collapse
|