1
|
Dos Santos Araújo R, Botina LL, Viana TA, Vidigal ML, da Silva Alves BC, Bernardes RC, Martins GF. Behavioral and physiological effects of difenoconazole on stingless bees: A multi-species analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178837. [PMID: 39952205 DOI: 10.1016/j.scitotenv.2025.178837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/25/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Stingless bees, vital to ecosystems and plant production, face increasing threats from pesticide use, with poorly understood potential impacts of fungicides on these pollinators. The goal of this work was to evaluate the effect of contact or oral exposure to difenoconazole, a broad-spectrum fungicide, on foragers of three species of stingless bees: Frieseomelitta varia, Melipona mondury, and Trigona spinipes. The study employed a field-realistic dose of difenoconazole (0.075 mg a.i./mL, referred to as 1×) and its dilutions (10× or 100×) to assess survival and food consumption. The recommended field dose was used to evaluate behaviors, as well as total hemocyte count (THC), and midgut morphology. Contact or oral exposure increased THC in F. varia, while oral exposure decreased food consumed, distance walked, and social interactions, and caused injuries to the midgut. In M. mondury, contact exposure decreased survival and THC while increasing interactions, whereas oral exposure increased walking distance and interactions. For T. spinipes, contact exposure increased walking distance and interactions. Exposures caused adverse effects with variations in the level or type of damage depending on the species and route of exposure. This emphasizes the significance of understanding the potential impacts of fungicides on various pollinators, particularly on stingless bees.
Collapse
Affiliation(s)
- Renan Dos Santos Araújo
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, 78698-000 Pontal do Araguaia, MT, Brazil.
| | - Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | - Mateus Lordelo Vidigal
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | | | | | | |
Collapse
|
2
|
Gomes DS, Miranda FR, Motta JVDO, Oliveira MSD, Farder-Gomes CF, Bastos DSS, Bernardes RC, Silva FPD, Gonçalves PL, Zago HB, Silva CCD, Oliveira LLD, Fernandes KM, Serrão JE. Effects of the insecticide thiodicarb on non-target organs and behavior of the stingless bee Partamona helleri (Hymenoptera: Meliponini). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106308. [PMID: 40015900 DOI: 10.1016/j.pestbp.2025.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
Stingless bees are vital pollinators in the Neotropics and can be exposed to pesticides used in agriculture during their foraging activities. Among these pesticides, the insecticide thiodicarb is commonly applied to bean and sunflower crops, posing a potential risk to the stingless bee Partamona helleri, which pollinates these plants. This study aimed to investigate the effects of thiodicarb on mortality, morphology, programmed cell death signaling pathways in the midgut and Malpighian tubules, and the locomotion behavior of P. helleri workers. The estimated lethal concentration (LC50) of thiodicarb for P. helleri was 87 μg a.i. mL-1. Bees fed this concentration exhibited morphological damage to the midgut epithelium and Malpighian tubules, including brush border degeneration, increased cytoplasm vacuolation, and the release of cell fragments into the intestinal lumen. In the midgut, regenerative cells showed cytoplasm disorganization and nuclear pyknosis. Immunofluorescence analysis revealed an increase in cell death via autophagy and apoptosis in the epithelial cells of the affected organs. Ingestion of thiodicarb also altered the bees' locomotion, resulting in increased meandering and decreased walking speed and total distance traveled. These findings demonstrate that the LC50 of thiodicarb causes damage to non-target organs as the midgut and Malpighian tubules, and impairs behavior, which may ultimately affect the pollination services provided by P. helleri. These results enhance our understanding of the vulnerability of stingless bees to insecticides and underscore the importance of strategies aimed at protecting these pollinators.
Collapse
Affiliation(s)
- Davy Soares Gomes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Franciane Rosa Miranda
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Mateus Soares de Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Fernanda Pereira da Silva
- Department of Agronomy, Universidade Federal do Espírito Santo, Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil
| | - Pollyana Leão Gonçalves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Hugo Bolsoni Zago
- Department of Agronomy, Universidade Federal do Espírito Santo, Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil
| | - Cynthia Canêdo da Silva
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Kenner Morais Fernandes
- Department of Agronomy, Universidade Federal do Espírito Santo, Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
3
|
Pesce S, Sanchez W, Leenhardt S, Mamy L. Recommendations to reduce the streetlight effect and gray areas limiting the knowledge of the effects of plant protection products on biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3060-3067. [PMID: 38051484 DOI: 10.1007/s11356-023-31310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Preserving biodiversity against the adverse effects of plant protection products (PPPs) is a major environmental and societal issue. However, despite intensive investigation into the ecotoxicological effects of PPPs, the knowledge produced remains fragmented given the sheer diversity of PPPs. This is due, at least in part, to a strong streetlight effect in the field of ecotoxicology. Indeed, while some PPPs have been investigated in numerous ecotoxicological studies, there are many for which the scientific literature still has little or no information on their ecotoxicological risks and effects. The PPPs under the streetlight include a large variety of legacy substances and a more limited number of more recent or currently-in-use substances, such as the herbicide glyphosate and the neonicotinoid insecticides. Furthermore, many of the most recent PPPs (including those used in biocontrol) and PPP transformation products (TPs) resulting from abiotic and/or biotic degradation are rarely addressed in the international literature in the field of ecotoxicology. Here, based on a recent collective scientific assessment of the effects of PPPs on biodiversity and ecosystem services in the French and European contexts, this article sets out to illustrate the limitations and biases caused by the streetlight effect and numbers of gray areas, and issue recommendations on how to overcome them.
Collapse
Affiliation(s)
| | | | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| |
Collapse
|
4
|
Mamy L, Pesce S, Sanchez W, Aviron S, Bedos C, Berny P, Bertrand C, Betoulle S, Charles S, Chaumot A, Coeurdassier M, Coutellec MA, Crouzet O, Faburé J, Fritsch C, Gonzalez P, Hedde M, Leboulanger C, Margoum C, Mougin C, Munaron D, Nélieu S, Pelosi C, Rault M, Sucré E, Thomas M, Tournebize J, Leenhardt S. Impacts of neonicotinoids on biodiversity: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2794-2829. [PMID: 38036909 DOI: 10.1007/s11356-023-31032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.
Collapse
Affiliation(s)
- Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| | | | | | | | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire, 69280, Marcy‑L'Etoile, France
| | - Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, 51100, Reims, France
| | | | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, Ifremer, 35042, Rennes, France
| | - Olivier Crouzet
- OFB, Direction de la Recherche et Appui Scientifique (DRAS), 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Patrice Gonzalez
- CNRS, Bordeaux INP, EPOC, UMR 5805, Univ. Bordeaux, 33600, Pessac, France
| | - Mickael Hedde
- Eco&Sols, Univ. Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, 34060, Montpellier, France
| | | | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Magali Rault
- Université d'Avignon, Université Aix-Marseille, CNRS, IRD, IMBE, Pôle Agrosciences, 84916, Avignon, France
| | - Elliott Sucré
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34200, Sète, France
- Centre Universitaire de Formation Et de Recherche de Mayotte (CUFR), 97660, Dembeni, Mayotte, France
| | - Marielle Thomas
- Université de Lorraine, INRAE, UR AFPA, 54000, Nancy, France
| | | | | |
Collapse
|
5
|
Amichot M, Bertrand C, Chauvel B, Corio-Costet MF, Martin-Laurent F, Le Perchec S, Mamy L. Natural products for biocontrol: review of their fate in the environment and impacts on biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2857-2892. [PMID: 38630402 DOI: 10.1007/s11356-024-33256-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/04/2024] [Indexed: 02/19/2025]
Abstract
Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.
Collapse
Affiliation(s)
- Marcel Amichot
- UMR ISA, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Cédric Bertrand
- Université de Perpignan Via Domitia, CRIOBE UAR 3278 CNRS-EPHE-UPVD, Centre de Phytopharmacie, 66860, Perpignan, France
| | - Bruno Chauvel
- INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, 21000, Dijon, France
| | | | - Fabrice Martin-Laurent
- INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, 21000, Dijon, France
| | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| |
Collapse
|
6
|
Bogo G, Porrini MP, Aguilar-Monge I, Aldea-Sánchez P, de Groot GS, Velarde RA, Xolalpa-Aroche A, Vázquez DE. Current status of toxicological research on stingless bees (Apidae, Meliponini): Important pollinators neglected by pesticides' regulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178229. [PMID: 39719763 DOI: 10.1016/j.scitotenv.2024.178229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Stingless bees (tribe Meliponini), comprising over 600 known species within the largest group of eusocial bees, play a critical role in ecosystem functioning through their pollination services. They contribute to the reproduction of numerous plant species, including many economically important crops such as cacao, coffee, and various fruits. Beyond their ecological significance, stingless bees hold cultural and economic importance for many native and rural communities, where they are managed for their honey, pollen, and propolis for nutritional and health purposes. The overwhelming majority of studies on pesticide toxicity and risk assessment on bees are conducted on the model species Apis mellifera in the United States and Europe, where stingless bees are absent. In May 2023, the European Food Safety Authority (EFSA) published its revised guidance document on the risk assessment of plant protection products (PPPs) for bees, including, beyond honey bees, other bee species from Bombus and Osmia genera. Despite the Meliponini widespread distribution in tropical and subtropical regions, the impact of pesticides on stingless bees remains largely unexplored. Here, we present a systematic review of stingless bee toxicological studies which highlights a substantial knowledge gap. Up to October of 2024, only 144 research articles on the effects of pesticides on Meliponini had been identified, 80 % of those were conducted in a single country (Brazil). The number of bee species and PPPs tested is extremely low, with just five species accounting for almost 50 % of the collected data and only 79 PPPs tested, among which biopesticides were the most common. Concerning the experimental methodologies, there is a significant lack of studies focusing on chronic exposure and field assays, as well as a scarcity of studies focusing on sublethal effects. Furthermore, we pinpoint to areas where research is needed for the development of risk assessment guidelines to protect these vital pollinators.
Collapse
Affiliation(s)
- Gherardo Bogo
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy.
| | - Martín P Porrini
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Investigación en Abejas Sociales (CIAS)-Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Estación Costera J.J. Nágera, Ruta Provincial 11 Km 5395 Playa Chapadmalal, 7603 Mar del Plata, Buenos Aires, Argentina.
| | - Ingrid Aguilar-Monge
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia. Costa Rica.
| | - Patricia Aldea-Sánchez
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Universidad SEK, Santiago, Chile.
| | - Grecia S de Groot
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Grupo Ecología de la Polinización (ECOPOL) - Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA - CONICET-Universidad Nacional del Comahue), Pasaje Gutiérrez 1250, Bariloche, Río Negro, Argentina.
| | - Rodrigo A Velarde
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay.
| | - Aurora Xolalpa-Aroche
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Innovación para el Desarrollo Apícola Sustentable en Quintana Roo - Universidad Intercultural Maya de Quintana Roo, Mexico.
| | - Diego E Vázquez
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay; Centro de Investigación en Ciencias Ambientales (CICA), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
7
|
Góngora-Gamboa C, Ruiz-Sánchez E, Zamora-Bustillos R, Hernández-Núñez E, Ballina-Gómez H. Lethal and sublethal effects of flupyradifurone and cyantraniliprole on two neotropical stingless bee species. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-024-02848-7. [PMID: 39777609 DOI: 10.1007/s10646-024-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Stingless bees are important pollinators in tropical regions, but their survival and behavior have been impacted by various factors, including exposure to insecticides. Here, we evaluated the lethal and sublethal effects of commercial formulations of two widely used insecticides, flupyradifurone (FPF formulation), and cyantraniliprole (CY formulation), on Melipona beecheii and Nannotrigona perilampoides. The study involved oral exposure of bees to insecticides, calculation of the lethal concentration (LC50) and the lethal time (LT50), and evaluation of walking and flight take-off activities. The LC50 values showed that the largest bee, M. beecheii, was more sensitive than N. perilampoides to both insecticides and that the FPF formulation had faster lethal effects in both species (N. perilampoides, 9.6 h; M. beecheii, 5 h) compared to the effects of the CY formulation (N. perilampoides, 17 h; M. beecheii, 24.7 h). Sublethal concentrations (LC50/10 and LC50/100) of both insecticides affected walking and flight take-off activities. After 6-24 h of exposure, both FPF and CY formulations significantly reduced the mean walking speed of N. perilampoides (0.962-1.402 cm/s) and M. beecheii (2.026-2.589 cm/s) compared to the control groups (N. perilampoides: 1.648-1.941 cm/s; M. beecheii: 2.759-3.471 cm/s). Additionally, the FPF and the CY formulation impaired individual flight take-off in both species. This study provides the first comprehensive evaluation of the lethal and sublethal effects of flupyradifurone and cyantraniliprole on M. beecheii and N. perilampoides, offering valuable information for future research on insecticide toxicity in stingless bees.
Collapse
Affiliation(s)
| | - Esaú Ruiz-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán, Mexico.
| | | | - Emanuel Hernández-Núñez
- Departamento de Posgrado e Investigación, Instituto Tecnológico Superior de Calkiní, Calkiní, Campeche, Mexico
| | - Horacio Ballina-Gómez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán, Mexico
| |
Collapse
|
8
|
Bernardes RC, Botina LL, Ribas A, Soares JM, Martins GF. Artificial intelligence-driven tool for spectral analysis: identifying pesticide contamination in bees from reflectance profiling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136425. [PMID: 39547034 DOI: 10.1016/j.jhazmat.2024.136425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Pesticide poisoning constantly threatens bees as they forage for resources in pesticide-treated crops. This poisoning requires thorough investigation to identify its causes, underscoring the importance of reliable pesticide detection methods for bee monitoring. Infrared spectroscopy provides reflectance data across hundreds of spectral bands (hyperspectral reflectance), presumably enabling the efficient classification of pesticide contamination in bee carcasses using artificial intelligence (AI) models, such as machine learning. In this study, bee contamination by commercial formulations of three insecticides-dimethoate (organophosphate), fipronil (phenylpyrazole), and imidacloprid (neonicotinoid)-as well as glyphosate, the most widely used herbicide globally, was detected using machine learning models. These models classified the hyperspectral reflectance profiles of the body surfaces of contaminated bees. The best-performing model, the linear discriminant analysis, achieved 98 % accuracy in discriminating contamination across species Apis mellifera, Melipona mondury, and Partamona helleri, with prediction speeds of 0.27 s. Our pioneering study introduced an effective method for discerning multiple classes of bees contaminated with pesticides using hyperspectral reflectance. An AI-driven spectral data analysis tool (https://github.com/bernardesrodrigoc/MACSS) was developed for the purpose of identifying and characterizing new samples through their spectral characteristics. This platform aids efforts to monitor and conserve bee populations and holds potential importance in environmental monitoring, agricultural research, and industrial quality control.
Collapse
Affiliation(s)
| | - Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Andreza Ribas
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Júlia Martins Soares
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | | |
Collapse
|
9
|
Farder-Gomes CF, Miranda FR, Bernardes RC, Bastos DSS, Gomes DS, da Silva FP, Gonçalves PL, Arndt S, da Silva Xavier A, Zago HB, Serrão JE, Martins GF, de Oliveira LL, Fernandes KM. Exposure to the herbicide tebuthiuron affects behavior, enzymatic activity, morphology and physiology of the midgut of the stingless bee Partamona helleri. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104516. [PMID: 39032582 DOI: 10.1016/j.etap.2024.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Partamona helleri is an important pollinator in the Neotropics. However, this bee faces an increased risk of pesticide exposure, potentially affecting both individual bees and entire colonies. Thus, this study aimed to evaluate the effects of the herbicide tebuthiuron on behavior, antioxidant activity, midgut morphology, and signaling pathways related to cell death, cell proliferation and differentiation in P. helleri workers. tebuthiuron significantly reduced locomotor activity and induced morphological changes in the midgut. The activity of the detoxification enzymes superoxide dismutase and glutathione S-transferase increased after exposure, indicating a detoxification mechanism. Furthermore, the herbicide led to alterations in the number of positive cells for signaling-pathway proteins in the midgut of bees, suggesting induction of apoptotic cell death and disruption of midgut epithelial regeneration. Therefore, tebuthiuron may negatively impact the behavior, antioxidant activity, morphology, and physiology of P. helleri workers, potentially posing a threat to the survival of this non-target organism.
Collapse
Affiliation(s)
| | - Franciane Rosa Miranda
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Davy Soares Gomes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Fernanda Pereira da Silva
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| | - Pollyana Leão Gonçalves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Stella Arndt
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| | - André da Silva Xavier
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| | - Hugo Bolsoni Zago
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Kenner Morais Fernandes
- Department of Agronomy, Universidade Federal do Espírito Santo - Campus Alegre, Alegre, Espírito Santo 29500-000, Brazil.
| |
Collapse
|
10
|
Botina LL, Barbosa WF, Viana TA, de Oliveira Faustino A, Martins GF. Physiological responses of the stingless bee Partamona helleri to oral exposure to three agrochemicals: impact on antioxidant enzymes and hemocyte count. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54648-54658. [PMID: 39207621 DOI: 10.1007/s11356-024-34790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Agrochemicals pose significant threats to the survival of bees, yet the physiological impacts of sublethal doses on stingless bees remain poorly understood. This study investigated the effects of acute oral exposure to three commercial formulations of agrochemicals [CuSO4 (leaf fertilizer), glyphosate (herbicide), and spinosad (bioinsecticide)] on antioxidant enzymes, malondialdehyde content (MDA), nitric oxide (NO) levels, and total hemocyte count (THC) in the stingless bee Partamona helleri. Foragers were exposed to lethal concentrations aimed to kill 5% (LC5) of CuSO4 (120 μg mL-1) or spinosad (0.85 μg mL-1) over a 24-h period. Glyphosate-exposed bees received the recommended label concentration (7400 μg mL-1), as they exhibited 100% survival after exposure. Ingestion of CuSO4 or glyphosate-treated diets by bees was reduced. Levels of NO and catalase (CAT) remained unaffected at 0 h or 24 h post-exposure. Superoxide dismutase (SOD) activity was higher at 0 h compared to 24 h, although insignificantly so when compared to the control. Exposure to CuSO4 reduced glutathione S-transferase (GST) activity at 0 h but increased it after 24 h, for both CuSO4 and glyphosate. MDA levels decreased after 0 h exposure to CuSO4 or spinosad but increased after 24 h exposure to all tested agrochemicals. THC showed no difference among glyphosate or spinosad compared to the control or across time. However, CuSO4 exposure significantly increased THC. These findings shed light on the physiological responses of stingless bees to agrochemicals, crucial for understanding their overall health.
Collapse
Affiliation(s)
- Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
11
|
Gomes DS, Miranda FR, Fernandes KM, Farder-Gomes CF, Bastos DSS, Bernardes RC, Serrão JE. Acute exposure to fungicide fluazinam induces cell death in the midgut, oxidative stress and alters behavior of the stingless bee Partamona helleri (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116677. [PMID: 38971098 DOI: 10.1016/j.ecoenv.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.
Collapse
Affiliation(s)
- Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Franciane Rosa Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Cliver Fernandes Farder-Gomes
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Campus Araras, Araras, São Paulo 13.600-970, Brazil
| | - Daniel Silva Sena Bastos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
12
|
Botina LL, Barbosa WF, Martins GF. Toxicological Assessments of Agrochemicals in Stingless Bees in Brazil: a Systematic Review. NEOTROPICAL ENTOMOLOGY 2024; 53:480-489. [PMID: 38358646 DOI: 10.1007/s13744-024-01132-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
The growing concern with the decline of pollinators worldwide is centered on honey bees, due to their wide distribution, economic, and ecological importance. This type of concern remained less evident for stingless bees, which are widely distributed in the Neotropics, until recently. Since exposure to agrochemicals has been identified as one of the potential threats to bees, the present systematic review compiled information from toxicological evaluations in stingless bees in Brazil, home to a considerable portion of the existing species. This systematic review was performed considering species, research institutions, scientific journals, metrics, experimental set ups, and agrochemicals. The first article in this topic was published in 2010. Since then, 93 scientific papers were published, which showed that there are few species of stingless bees used for toxicological evaluations and Brazilian institutions lead these evaluations. Only 1.5% of the stingless bees' species that occur in Brazil were assessed through chronic exposure in the larval stage. The Universidade Federal de Viçosa (UFV) is responsible for 37% of the total publications. The main route of exposure was acute, using adults in laboratory conditions. The main group of agrochemicals studied were insecticides, in particular the neonicotinoids. The current results reveal the advances achieved and point out the gaps that still need to be filled considering toxicological evaluations in stingless bees.
Collapse
|
13
|
Pereira RC, Vieira Júnior JOL, Barcelos JVPL, Peçanha LS, França TA, Mendonça LVP, da Silva WR, Samuels RI, Silva GA. The stingless bee Trigona spinipes (Hymenoptera: Apidae) is at risk from a range of insecticides via direct ingestion and trophallactic exchanges. PEST MANAGEMENT SCIENCE 2024; 80:2188-2198. [PMID: 38158650 DOI: 10.1002/ps.7956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The stingless bee, Trigona spinipes, is an important pollinator of numerous native and cultivated plants. Trigona spinipes populations can be negatively impacted by insecticides commonly used for pest control in crops. However, this species has been neglected in toxicological studies. Here we observed the effects of seven insecticides on the survival of bees that had fed directly on insecticide-contaminated food sources or received insecticides via trophallactic exchanges between nestmates. The effects of insecticides on flight behavior were also determined for the compounds considered to be of low toxicity. RESULTS Imidacloprid, spinosad and malathion were categorized as highly toxic to T. spinipes, whereas lambda-cyhalothrin, methomyl and chlorfenapyr were of medium to low toxicity and interfered with two aspects of flight behavior evaluated here. Chlorantraniliprole was the only insecticide tested here that had no significant effect on T. spinipes survival, although it did interfere with one aspect of flight capacity. A single bee that had ingested malathion, spinosad or imidacloprid, could contaminate three, four and nineteen other bees, respectively via trophallaxis, resulting in the death of the recipients. CONCLUSION This is the first study to evaluate the ecotoxicology of a range of insecticides that not only negatively affected T. spinipes survival, but also interfered with flight capacity, a very important aspect of pollination behavior. The toxicity of the insecticides was observed following direct ingestion and also via trophallactic exchanges between nestmates, highlighting the possibility of lethal effects of these insecticides spreading throughout the colony, reducing the survival of non-foraging individuals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renata Cunha Pereira
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - José Olívio Lopes Vieira Júnior
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | | | - Ludimila Simões Peçanha
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Thalles Alves França
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Laís Viana Paes Mendonça
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Wanderson Rosa da Silva
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Richard Ian Samuels
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Gerson Adriano Silva
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Ribas A, Botina LL, Araújo RDS, Vidigal ML, Cristina da Silva Alves B, Martins GF. Exploring honey bee toxicological data as a proxy for assessing dimethoate sensitivity in stingless bees. CHEMOSPHERE 2024; 354:141652. [PMID: 38462182 DOI: 10.1016/j.chemosphere.2024.141652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
The high diversity and distinctive characteristics of stingless bees pose challenges in utilizing toxicity test results for agrochemical registrations. Toxicity assessments were performed on 15 stingless bee species, along with the honey bee, using the insecticide dimethoate, following adapted OECD protocols. Median lethal doses over 24 h (24 h-LD50) were determined for exposure routes (acute oral or contact) and species. Species sensitivity distribution (SSD) curves were constructed and the 5% hazard doses (HD5) were estimated based on 24 h-LD50 values. The SSD curve was adjusted as the body weight and dimethoate response were correlated. Lighter bees (<10 mg) had lower 24 h-LD50 values. Contact exposure for adjusted HD5 suggested insufficient protection for Melipona mondury, whereas the oral exposure HD5 indicated no risks for the other 14 species. Comprehensive risk assessments are crucial for understanding the agrochemical impact on stingless bees, emphasizing the need for a broader species range in formulating conservation strategies.
Collapse
Affiliation(s)
- Andreza Ribas
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Renan Dos Santos Araújo
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, 78698-000, Pontal do Araguaia, MT, Brazil.
| | - Mateus Lordelo Vidigal
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | | | | |
Collapse
|
15
|
Araújo RDS, Viana TA, Botina LL, Bastos DSS, da Silva Alves BC, Machado-Neves M, Bernardes RC, Martins GF. Investigating the effects of mesotrione/atrazine-based herbicide on honey bee foragers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165526. [PMID: 37451454 DOI: 10.1016/j.scitotenv.2023.165526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
A mixture of the herbicides mesotrione and atrazine (Calaris®) is a widely used herbicide in agriculture in several countries. However, the possible toxicological effects of this formulation on non-target organisms require investigation. In this study, the effects of acute oral exposure to Calaris® were evaluated in Apis mellifera foragers. The effect of seven different concentrations of Calaris® on survival and sucrose consumption was studied, while the recommended concentration for field use (FC) and its 10× dilution (0.1 FC) were used to assess overall locomotor activity, respiratory rate, flight, midgut morphology, oxidative and nitrosative stresses, and hemocyte counting. The exposure to FC or 0.1 FC decreased locomotor activity and induced damage to the midgut epithelium. Additionally, the two tested concentrations reduced superoxide dismutase activity, nitric oxide levels, and total hemocyte count. FC also increased malondialdehyde content and 0.1 FC increased respiratory rate and decreased the proportion of prohemocytes. Overall, our findings evidenced significant harmful effects on A. mellifera foragers resulting from the ingestion of the Calaris® herbicide.
Collapse
Affiliation(s)
- Renan Dos Santos Araújo
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, 78698-000 Pontal do Araguaia, MT, Brazil.
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | - Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | | | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | | | | |
Collapse
|
16
|
Ferreira LMN, Hrncir M, de Almeida DV, Bernardes RC, Lima MAP. Effects of acephate and glyphosate-based agrochemicals on the survival and flight of Plebeia lucii Moure, 2004 (Apidae: Meliponini). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:926-936. [PMID: 37728837 DOI: 10.1007/s10646-023-02698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The conservation of terrestrial ecosystems depends largely on the preservation of pollinators, mainly bees. Stingless bees are among the main pollinators of native plants and crops in tropical regions, where they can be exposed to agrochemicals while foraging on contaminated flowers. In the present study, we investigated the effects on stingless bees of both a commonly used insecticide and herbicide in Brazil. Plebeia lucii Moure, 2004 (Apidae: Meliponini) foragers were orally chronically exposed to food contaminated with different concentrations of commercial formulations of the insecticide acephate or the herbicide glyphosate. Bee mortality increased with increasing agrochemical concentrations. Depending on its concentration, the acephate-based formulation reduced the lifespan and impaired the flight ability of bees. The glyphosate-based formulation was toxic only under unrealistic concentrations. Our results demonstrate that realistic concentrations of acephate-based insecticides harm the survival and alter the mobility of stingless bees. The ingestion of glyphosate-based herbicides was safe for forager bees under realistic concentrations.
Collapse
Affiliation(s)
- Lívia Maria Negrini Ferreira
- Universidade Federal de Viçosa, Departamento de Biologia Geral, Programa de Pós-Graduação em Ecologia, Viçosa, MG, Brazil.
- Universidade Federal de Viçosa, Departamento de Entomologia, Viçosa, MG, Brazil.
| | - Michael Hrncir
- Universidade de São Paulo, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Danilo Vieira de Almeida
- Universidade Federal de Viçosa, Departamento de Agronomia, Curso de Graduação em Agronomia, Viçosa, MG, Brazil
| | | | | |
Collapse
|
17
|
Botina LL, Barbosa WF, Acosta JPL, Bernardes RC, Cortes JEQ, Pylro VS, Mendonça AC, Barbosa RC, Lima MAP, Martins GF. The impact of early-life exposure to three agrochemicals on survival, behavior, and gut microbiota of stingless bees (Partamona helleri). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27385-4. [PMID: 37147541 DOI: 10.1007/s11356-023-27385-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Over the last few decades, agrochemicals have been partially associated with a global reduction in bees' population. Toxicological assessment is therefore crucial for understanding the overall agrochemical risks to stingless bees. Therefore, the lethal and sublethal effects of agrochemicals commonly used in crops (copper sulfate, glyphosate, and spinosad) on the behavior and gut microbiota of the stingless bee, Partamona helleri, were assessed using chronic exposure during the larval stage. When used at the field-recommended rates, both copper sulfate (200 µg of active ingredient/bee; a.i µg bee-1) and spinosad (8.16 a.i µg bee-1) caused a decrease in bee survival, while glyphosate (148 a.i µg bee-1) did not show any significant effects. No significant adverse effects on bee development were observed in any treatment with CuSO4 or glyphosate, but spinosad (0.08 or 0.03 a.i µg bee -1) increased the number of deformed bees and reduced their body mass. Agrochemicals changed the behavior of bees and composition of the gut microbiota of adult bees, and metals such as copper accumulated in the bees' bodies. The response of bees to agrochemicals depends on the class or dose of the ingested compound. In vitro rearing of stingless bees' larvae is a useful tool to elucidate the sublethal effects of agrochemicals.
Collapse
Affiliation(s)
- Lorena Lisbetd Botina
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Lima Acosta
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Victor Satler Pylro
- Departamento de Biologia, Universidade Federal de Lavras - UFLA, Lavras, MG, 37200-900, Brazil
| | - Adriana Corrêa Mendonça
- Departamento de Ciência de Solos, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Renata Cristina Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
18
|
Araújo RDS, Lopes MP, Viana TA, Bastos DSS, Machado-Neves M, Botina LL, Martins GF. Bioinsecticide spinosad poses multiple harmful effects on foragers of Apis mellifera. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66923-66935. [PMID: 37099096 DOI: 10.1007/s11356-023-27143-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
There are multifactorial causes for the recent decline in bee populations, which has resulted in compromised pollination and reduced biodiversity. Bees are considered one of the most important non-target insects affected by insecticides used in crop production. In the present study, we investigated the effects of acute oral exposure to spinosad on the survival, food consumption, flight behavior, respiration rate, activity of detoxification enzymes, total antioxidant capacity (TAC), brain morphology, and hemocyte count of Apis mellifera foragers. We tested six different concentrations of spinosad for the first two analyses, followed by LC50 (7.7 mg L-1) for other assays. Spinosad ingestion decreased survival and food consumption. Exposure to spinosad LC50 reduced flight capacity, respiration rate, and superoxide dismutase activity. Furthermore, this concentration increased glutathione S-transferase activity and the TAC of the brain. Notably, exposure to LC50 damaged mushroom bodies, reduced the total hemocyte count and granulocyte number, and increased the number of prohemocytes. These findings imply that the neurotoxin spinosad affects various crucial functions and tissues important for bee performance and that the toxic effects are complex and detrimental to individual homeostasis.
Collapse
Affiliation(s)
- Renan Dos Santos Araújo
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - Marcos Pereira Lopes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Daniel Silva Sena Bastos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
19
|
da Silva PC, Gonçalves B, Franceschinelli E, Brito P. Glyphosate-Based Herbicide Causes Cellular Alterations to Gut Epithelium of the Neotropical Stingless Bee Melipona quadrifasciata quadrifasciata (Hymenoptera: Meliponini). NEOTROPICAL ENTOMOLOGY 2022; 51:860-868. [PMID: 36378479 DOI: 10.1007/s13744-022-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBH) are the best-selling pesticides in Brazil, with hundreds of thousands of tons sold per year. There is no study investigating morphological alterations caused by GBH on the epithelium of the gut in bees. Here, we aimed to demonstrate effects of chronic ingestion of GBH in the midgut digestive cells of the Brazilian stingless bee Melipona quadrifasciata quadrifasciata Lepeletier 1836. We kept forager workers of M. quadrifasciata in laboratory conditions and fed on food contaminated with three different concentrations of GBH for 10 days, after which the midgut digestive cell structure and ultrastructure were analyzed. The presence of GBH in food did not affect food consumption, indicating that M. quadrifasciata bees do not reject food contaminated with GBH. As digestive cells of the midgut release apocrine secretion as a detoxication mechanism, we expected that the ingestion of food contaminated with GBH in the present study affect the height of midgut digestive cells. However, such reduction did not occur, probably because of the low-test concentrations. Although there were differences in digestive cell ultrastructure, ingestion of GBH impaired midgut digestive cell cohesion by disorganizing the smooth septate junctions between cells, which may probably be caused by the adjuvant "polyethoxylated tallow amine" present in the GBH. Previous studies demonstrated that GBH increase bees' sensibility to intestine infections, based on the present results we hypothesized that the loss of cell cohesion in the midgut epithelium favors pathogenic microbial infections and harms food absorption, increasing bees' mortality.
Collapse
Affiliation(s)
- Paulo César da Silva
- Programa de Pós-Graduação Em Biodiversidade Animal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Bruno Gonçalves
- Laboratório de Biotecnologia Ambiental e Ecotoxicologia, Instituto Tropical de Patologia e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Edivani Franceschinelli
- Laboratório de Biologia Reprodutiva de Plantas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pedro Brito
- Laboratório de Estudos Morfológicos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
20
|
Farder-Gomes CF, Santos AA, Fernandes KM, Bernardes RC, Martins GF, Serrão JE. Fipronil exposure compromises respiration and damages the Malpighian tubules of the stingless bee Partamona helleri Friese (Hymenoptera: Apidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88101-88108. [PMID: 35821320 DOI: 10.1007/s11356-022-21858-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Fipronil has been widely used in agriculture and forestry in Brazil to control several pests. However, this insecticide may be hazardous to non-target organisms, including stingless bees, which are essential pollinators of crops and natural environments. Here, we investigated the effect of 24-h acute oral exposure to LC50 of fipronil on the Malpighian tubules of the stingless bee Partamona helleri (Friese). Insecticide exposure decreases the respiration rate of forager bees, and the Malpighian tubules are severely affected, as shown by the epithelial architecture disorganization, loss of cytoplasmic content, degradation of the brush border, and nuclear pyknosis. In addition, fipronil ingestion increases the number of Malpighian cells positive for peroxidase, LC3, cleaved caspase-3, and JNK. However, Notch and ERK1/2-positive cells decrease in the exposed bees. These changes in the signaling proteins indicate an increase in oxidative stress, autophagy and apoptosis, and impairment of cell recovery. Overall, our results demonstrate the toxicological effects of fipronil on a stingless bee, which compromises the physiology of this important pollinator.
Collapse
Affiliation(s)
| | - Abraão Almeida Santos
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
21
|
Góngora-Gamboa C, Ruiz-Sánchez E, Ballina-Gómez HS, González-Moreno A, Zamora-Bustillos R. Survival Rate of the Neotropical Stingless Bees Nannotrigona perilampoides and Frieseomelitta nigra after Exposure to Five Selected Insecticides, under Controlled Conditions. INSECTS 2022; 13:961. [PMID: 36292908 PMCID: PMC9603930 DOI: 10.3390/insects13100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Insecticides used in agricultural pest management pose survival risks to the stingless bees that forage on crops in tropical and subtropical regions. In the present study, we evaluated, under laboratory conditions, the acute oral toxicity of five selected insecticides (dinotefuran, imidacloprid, flupyradifurone, spirotetramat, and cyantraniliprole) to two species of neotropical stingless bees: Nannotrigona perilampoides and Frieseomelitta nigra. At field recommended doses, dinotefuran, imidacloprid, and flupyradifurone caused the highest mortality in both bee species. These insecticides also caused the largest decrease in the survival rate when exposed to a 10-fold dilution of the field recommended doses. Notably, dinotefuran exerted a high effect even at 100-fold dilution (100% mortality). In contrast, cyantraniliprole had a low effect and spirotetramat was virtually nontoxic. These results suggest that some insecticides used to control sap-sucking insects may have a significant negative impact on the communities of stingless bees.
Collapse
|
22
|
Kato Y, Kikuta S, Barribeau SM, Inoue MN. In vitro larval rearing method of eusocial bumblebee Bombus terrestris for toxicity test. Sci Rep 2022; 12:15783. [PMID: 36138070 PMCID: PMC9499950 DOI: 10.1038/s41598-022-19965-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Bumblebees are important pollinators of wild and agricultural plants but recently have been declining due to various stressors, such as pesticides and diseases. Because of the haplo-diploid sex determination system in hymenopterans, experiments using micro-colonies (small sub colonies without a queen) to identify risks to bumblebee health are limited as they are only able to produce males. Therefore, an experimental protocol for rearing bumblebee larvae in vitro is needed to better understand effects on worker larvae. Here, we aimed to establish a rearing method for larvae of Bombus terrestris for use in risk assessment assays. To confirm the validity of our rearing method, we tested two insecticides used for tomato cultivation, chlorfenapyr and dinotefuran. Bombus terrestris larvae fed with a high nutrient quantity and quality diet increased growth per day. All chlorfenapyr-exposed individuals died within 10 days at 2000-fold dilution, an application dose used for tomatoes. There were significant differences in adult emergence rate among almost all chlorfenapyr treatments. On the other hand, sublethal dinotefuran-exposure did not affect rates of pupation and adult emergence, growth, or larval and pupal periods. Although larvae were smaller than in the natural colony, this rearing method for B. terrestris larvae proved to be effective at evaluating realistic sub-colonies to pesticide exposures.
Collapse
Affiliation(s)
- Yuto Kato
- Department of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Shingo Kikuta
- College of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan
| | - Seth M Barribeau
- Institute of Infection, Veterinary, and Ecological Sciences, The University of Liverpool, Liverpool, L69 7ZB, UK
| | - Maki N Inoue
- Department of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
23
|
Leite MOG, Alves DA, Lecocq A, Malaquias JB, Delalibera I, Jensen AB. Laboratory Risk Assessment of Three Entomopathogenic Fungi Used for Pest Control toward Social Bee Pollinators. Microorganisms 2022; 10:1800. [PMID: 36144402 PMCID: PMC9501116 DOI: 10.3390/microorganisms10091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The use of fungal-based biopesticides to reduce pest damage and protect crop quality is often considered a low-risk control strategy. Nevertheless, risk assessment of mycopesticides is still needed since pests and beneficial insects, such as pollinators, co-exist in the same agroecosystem where mass use of this strategy occurs. In this context, we evaluated the effect of five concentrations of three commercial entomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae, and Cordyceps fumosorosea, by direct contact and ingestion, on the tropical stingless bees Scaptotrigona depilis and Tetragonisca angustula, temperate bee species, the honey bee Apis mellifera, and the bumble bee Bombus terrestris, at the individual level. Furthermore, we studied the potential of two infection routes, either by direct contact or ingestion. In general, all three fungi caused considerable mortalities in the four bee species, which differed in their response to the different fungal species. Scaptotrigona depilis and B. terrestris were more susceptible to B. bassiana than the other fungi when exposed topically, and B. terrestris and A. mellifera were more susceptible to M. anisopliae when exposed orally. Interestingly, increased positive concentration responses were not observed for all fungal species and application methods. For example, B. terrestris mortalities were similar at the lowest and highest fungal concentrations for both exposure methods. This study demonstrates that under laboratory conditions, the three fungal species can potentially reduce the survival of social bees at the individual level. However, further colony and field studies are needed to elucidate the susceptibility of these fungi towards social bees to fully assess the ecological risks.
Collapse
Affiliation(s)
- Mariana O G Leite
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba 13418-900, SP, Brazil
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Denise A Alves
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba 13418-900, SP, Brazil
| | - Antoine Lecocq
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - José Bruno Malaquias
- Department of Biostatistics, Institute of Biosciences, São Paulo State University, Rua Prof. Dr. Antônio Celso Wagner Zanin 250, Botucatu 18618-689, SP, Brazil
| | - Italo Delalibera
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba 13418-900, SP, Brazil
| | - Annette B Jensen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
24
|
Bernardes RC, Botina LL, Araújo RDS, Guedes RNC, Martins GF, Lima MAP. Artificial Intelligence-Aided Meta-Analysis of Toxicological Assessment of Agrochemicals in Bees. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of consensus regarding pollinator decline in various parts of the planet has generated intense debates in different spheres. Consequently, much research has attempted to identify the leading causes of this decline, and a multifactorial synergism (i.e., different stressors acting together and mutually potentiating the harmful effects) seems to be the emerging consensus explaining this phenomenon. The emphasis on some stressor groups such as agrochemicals, and pollinators such as the honey bee Apis mellifera, can hide the real risk of anthropogenic stressors on pollinating insects. In the present study, we conducted a systematic review of the literature to identify general and temporal trends in publications, considering the different groups of pollinators and their exposure to agrochemicals over the last 76 years. Through an artificial intelligence (AI)-aided meta-analysis, we quantitatively assessed trends in publications on bee groups and agrochemicals. Using AI tools through machine learning enabled efficient evaluation of a large volume of published articles. Toxicological assessment of the impact of agrochemicals on insect pollinators is dominated by the order Hymenoptera, which includes honey bees. Although honey bees are well-explored, there is a lack of published articles exploring the toxicological assessment of agrochemicals for bumble bees, solitary bees, and stingless bees. The data gathered provide insights into the current scenario of the risk of pollinator decline imposed by agrochemicals and serve to guide further research in this area.Systematic Review Registrationhttps://asreview.nl/.
Collapse
|
25
|
Viana TA, Barbosa WF, Jojoa LLB, Bernardes RC, da Silva JS, Jacobs-Lorena M, Martins GF. A Genetically Modified Anti-Plasmodium Bacterium Is Harmless to the Foragers of the Stingless Bee Partamona helleri. MICROBIAL ECOLOGY 2022; 83:766-775. [PMID: 34231036 PMCID: PMC9840896 DOI: 10.1007/s00248-021-01805-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Paratransgenesis consists of genetically engineering an insect symbiont to control vector-borne diseases. Biosafety assessments are a prerequisite for the use of genetically modified organisms (GMOs). Assessments rely on the measurement of the possible impacts of GMOs on different organisms, including beneficial organisms, such as pollinators. The bacterium Serratia AS1 has been genetically modified to express anti-Plasmodium effector proteins and does not impose a fitness cost on mosquitoes that carry it. In the present study, we assessed the impact of this bacterium on the native bee Partamona helleri (Meliponini), an ecologically important species in Brazil. Serratia eGFP AS1 (recombinant strain) or a wild strain of Serratia marcescens were suspended in a sucrose solution and fed to foragers, followed by measurements of survival, feeding rate, and behavior (walking and flying). These bacteria did not change any of the variables measured at 24, 72, and 144 h after the onset of the experiment. Recombinant and wild bacteria were detected in the homogenates of digestive tract during the 144 h period analyzed, but their numbers decreased with time. The recombinant strain was detected in the midgut at 24 h and in the hindgut at 72 h and 144 h after the onset of the experiment under the fluorescent microscope. As reported for mosquitoes, Serratia eGFP AS1 did not compromise the foragers of P. helleri, an ecologically relevant bee.
Collapse
Affiliation(s)
- Thaís Andrade Viana
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Wagner Faria Barbosa
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Juliana Soares da Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | |
Collapse
|
26
|
Teixeira GVM, De Souza AR, Barbosa WF, Bernardes RC, Lima MAP. Chronic exposure to a common biopesticide is detrimental to individuals and colonies of the paper wasp Polistes versicolor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152108. [PMID: 34871682 DOI: 10.1016/j.scitotenv.2021.152108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 05/26/2023]
Abstract
Risk assessments of agrochemicals on non-target insects are biased in studies with surrogate groups, such as pollinators. In social insects, such investigations are generally restricted to lethal tests with adults maintained individually, simulating a non-realistic scenario. Here, we performed a holistic approach to resemble a chronic field exposure of Polistes versicolor (Hymenoptera: Vespidae) to a common biopesticide. These wasps are predators that perform biological control in the agroecosystems. Wasps were chronically subjected to the ingestion of different concentrations of azadirachtin. The neonicotinoid imidacloprid was used as a positive control. For the first time, we demonstrated that the biopesticide azadirachtin is detrimental for individual and colony survival and impairs colony reproduction of a social wasp maintained in the laboratory. Our data also indicated that neonicotinoid imidacloprid is harmful to wasps and their colonies. Therefore, the concomitant use of azadirachtin and paper wasps in integrated pest management strategies should be carefully evaluated, because the constant use of this pesticide can be detrimental for social wasps, possibly reducing biological control.
Collapse
Affiliation(s)
- Gabrazane V M Teixeira
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - André R De Souza
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Wagner F Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Rodrigo C Bernardes
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Maria Augusta P Lima
- Departamento de Biologia Animal, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Bernardes RC, Botina LL, da Silva FP, Fernandes KM, Lima MAP, Martins GF. Toxicological assessment of agrochemicals on bees using machine learning tools. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127344. [PMID: 34607030 DOI: 10.1016/j.jhazmat.2021.127344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Machine learning (ML) is a branch of artificial intelligence (AI) that enables the analysis of complex multivariate data. ML has significant potential in risk assessments of non-target insects for modeling the multiple factors affecting insect health, including the adverse effects of agrochemicals. Here, the potential of ML for risk assessments of glyphosate (herbicide; formulation) and imidacloprid (insecticide, neonicotinoid; formulation) on the stingless bee Melipona quadrifasciata was explored. The collective behavior of forager bees was analyzed after in vitro exposure to agrochemicals. ML algorithms were applied to identify the agrochemicals that the bees have been exposed to based on multivariate behavioral features. Changes in the in situ detection of different proteins in the midgut were also studied. Imidacloprid exposure leads to the greatest changes in behavior. The ML algorithms achieved a higher accuracy (up to 91%) in identifying agrochemical contamination. The two agrochemicals altered the detection of cells positive for different proteins, which can be detrimental to midgut physiology. This study provides a holistic assessment of the sublethal effects of glyphosate and imidacloprid on a key pollinator. The procedures used here can be applied in future studies to monitor and predict multiple environmental factors affecting insect health in the field.
Collapse
Affiliation(s)
| | - Lorena Lisbetd Botina
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
28
|
Bernardes RC, Fernandes KM, Bastos DSS, Freire AFPA, Lopes MP, de Oliveira LL, Tavares MG, Dos Santos Araújo R, Martins GF. Impact of copper sulfate on survival, behavior, midgut morphology, and antioxidant activity of Partamona helleri (Apidae: Meliponini). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6294-6305. [PMID: 34449024 DOI: 10.1007/s11356-021-16109-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Copper sulfate (CuSO4) is widely used in agriculture as a pesticide and foliar fertilizer. However, the possible environmental risks associated with CuSO4 use, particularly related to pollinating insects, have been poorly studied. In this study, we evaluated both lethal and sublethal effects of CuSO4 on the stingless bee Partamona helleri. Foragers were orally exposed to five concentrations of CuSO4 (5000, 1666.7, 554.2, 183.4, 58.4 μg mL-1), and the concentration killing 50% (LC50) was estimated. This concentration (142.95 μg mL-1) was subsequently used in behavioral, midgut morphology, and antioxidant activity analyses. Bee mortality increased with the ingestion of increasing concentrations of CuSO4. Ingestion at the estimated LC50 resulted in altered walking behavior and damage to the midgut epithelium and peritrophic matrix of bees. Furthermore, the LC50 increased the catalase or superoxide dismutase activities and levels of the lipid peroxidation biomarker malondialdehyde. Furthermore, the in situ detection of caspase-3 and LC3, proteins related to apoptosis and autophagy, respectively, revealed that these processes are intensified in the midgut of treated bees. These data show that the ingestion of CuSO4 can have considerable sublethal effects on the walking behavior and midgut of stingless bees, and therefore could pose potential risks to pollinators including native bees. Graphical abstract.
Collapse
Affiliation(s)
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Marcos Pereira Lopes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Mara Garcia Tavares
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
29
|
Farder-Gomes CF, Fernandes KM, Bernardes RC, Bastos DSS, Oliveira LLD, Martins GF, Serrão JE. Harmful effects of fipronil exposure on the behavior and brain of the stingless bee Partamona helleri Friese (Hymenoptera: Meliponini). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148678. [PMID: 34225147 DOI: 10.1016/j.scitotenv.2021.148678] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Fipronil is a pesticide widely used to control agricultural and household insect pests. However, fipronil is highly toxic to non-target insects, including pollinators. In this study, we investigated the acute effects of fipronil on the behavior, brain morphology, antioxidant activity, and proteins related to signaling pathways on the brain of workers of the stingless bee Partamona helleri. The ingestion of fipronil increases both the walking distance and velocity and causes enlarged intercellular spaces in the Kenyon cells and intense vacuolization in the neuropils of the brain. Moreover, fipronil decreases the activity of catalase (CAT) and increases the activity of glutathione S-transferase (GST). However, there is no difference in superoxide dismutase (SOD) activity between the control and fipronil. Regarding immunofluorescence analysis, bees exposed to fipronil showed an increase in the number of cells positive for cleaved caspase-3 and peroxidase, but a reduction in the number of cells positive for ERK 1/2, JNK and Notch, suggesting neuron death and impaired brain function. Our results demonstrate that fipronil has harmful effects on the behavior and brain of a stingless bee, which may threaten the individuals and colonies of this pollinator.
Collapse
Affiliation(s)
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
30
|
Iarocz LEB, Silva MS. Nuclear magnetic resonance chiral discrimination of fipronil and malathion agrochemicals: A case study. Chirality 2021; 33:528-534. [PMID: 34184332 DOI: 10.1002/chir.23336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/12/2022]
Abstract
The aim of the present study was to optimize a protocol for nuclear magnetic resonance (NMR) chiral discrimination to be used to determine the enantiomers ratio of agrochemicals. For this goal, the commercial agrochemicals fipronil and malathion were employed as active targets due the distinct physicochemical properties. We used the cyclodextrins to evaluate the chiral discrimination in aqueous media and chiral solvent agents to check in organic media. The fipronil chiral discrimination was accessed by β-CD in aqueous solution, although this procedure was ineffective for malathion due the low solubility. In organic media, the NMR chiral discrimination was successful for both agrochemicals and sensitive to dilution process. The NMR experiments explore very sensitive nuclei, for instance 1 H, 19 F, and 31 P, in a simple, practical and low residue experimental protocol.
Collapse
Affiliation(s)
- Lucas E B Iarocz
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas-UFPel, Capão do Leão, Brazil
| | - Márcio S Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas-UFPel, Capão do Leão, Brazil
| |
Collapse
|
31
|
Farder-Gomes CF, Fernandes KM, Bernardes RC, Bastos DSS, Martins GF, Serrão JE. Acute exposure to fipronil induces oxidative stress, apoptosis and impairs epithelial homeostasis in the midgut of the stingless bee Partamona helleri Friese (Hymenoptera: Apidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145679. [PMID: 33611004 DOI: 10.1016/j.scitotenv.2021.145679] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Partamona helleri is an important pollinator in natural and agricultural ecosystems in the neotropics. However, the foraging activity of this bee increases its risk of exposure to pesticides, which may affect both the individuals and the colony. Thus, this study aims to evaluate the side effects of LC50 of fipronil (0.28 ng a.i. μL-1) on the midgut morphology, antioxidant activity and some pathways of cell death, proliferation and differentiation in workers of P. helleri, after 24 h of oral exposure. Fipronil caused morphological alterations in the midgut of the bees. The activities of the detoxification enzymes superoxide dismutase, catalase and glutathione S-transferase increased after exposure, which suggests the occurrence of a detoxification mechanism. Furthermore, exposure to fipronil changed the number of positive cells for signaling-pathway proteins in the midgut of bees, which indicates the induction of cell death by the apoptotic pathway and impairment of the midgut epithelial regeneration. These results demonstrate that fipronil may negatively affect the morphology and physiology of the midgut of the stingless bee P. helleri and impose a threat to the survival of non-target organisms.
Collapse
Affiliation(s)
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
32
|
Bernardes RC, Lima MAP, Guedes RNC, da Silva CB, Martins GF. Ethoflow: Computer Vision and Artificial Intelligence-Based Software for Automatic Behavior Analysis. SENSORS (BASEL, SWITZERLAND) 2021; 21:3237. [PMID: 34067084 PMCID: PMC8124799 DOI: 10.3390/s21093237] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Manual monitoring of animal behavior is time-consuming and prone to bias. An alternative to such limitations is using computational resources in behavioral assessments, such as tracking systems, to facilitate accurate and long-term evaluations. There is a demand for robust software that addresses analysis in heterogeneous environments (such as in field conditions) and evaluates multiple individuals in groups while maintaining their identities. The Ethoflow software was developed using computer vision and artificial intelligence (AI) tools to monitor various behavioral parameters automatically. An object detection algorithm based on instance segmentation was implemented, allowing behavior monitoring in the field under heterogeneous environments. Moreover, a convolutional neural network was implemented to assess complex behaviors expanding behavior analyses' possibilities. The heuristics used to generate training data for the AI models automatically are described, and the models trained with these datasets exhibited high accuracy in detecting individuals in heterogeneous environments and assessing complex behavior. Ethoflow was employed for kinematic assessments and to detect trophallaxis in social bees. The software was developed in desktop applications and had a graphical user interface. In the Ethoflow algorithm, the processing with AI is separate from the other modules, facilitating measurements on an ordinary computer and complex behavior assessing on machines with graphics processing units. Ethoflow is a useful support tool for applications in biology and related fields.
Collapse
Affiliation(s)
| | | | | | - Clíssia Barboza da Silva
- Laboratory of Radiobiology and Environment, University of São Paulo-Center for Nuclear Energy in Agriculture, 303 Centenário Avenue, Piracicaba 13416-000, SP, Brazil;
| | | |
Collapse
|
33
|
Battisti L, Potrich M, Sampaio AR, de Castilhos Ghisi N, Costa-Maia FM, Abati R, Dos Reis Martinez CB, Sofia SH. Is glyphosate toxic to bees? A meta-analytical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145397. [PMID: 33636765 DOI: 10.1016/j.scitotenv.2021.145397] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 01/20/2021] [Indexed: 05/26/2023]
Abstract
Glyphosate (GLY) is an herbicide widely used in agriculture. First considered as non-toxic or slightly toxic to bees, GLY and its different formulations have shown, more recently, to affect negatively the survival, development and behavior of these insects, even when used in doses and concentrations recommended by the manufacturer. Thus, the results of research on the toxicity of GLY to bees are often conflicting, which makes a meta-analysis interesting for data integration, generating a statistically reliable result. Therefore, this study aimed to evaluate the GLY effects on mortality of bees through a meta-analysis. For this, a search was carried out in the databases Web of Science, CAPES (Coordination for the Improvement of Higher Education Personnel - Brazil), Scopus, and PubMed. Papers that evaluated the effect of GLY on bee mortality published between 1945 and October 2020, were considered. After obtaining the data, R software was used to perform the meta-analytical tests. Sixteen papers on mortality were selected with 34 data sets. Most of the sets demonstrated differences between the control and experimental groups, showing that the treatments with GLY caused higher mortality of bees. The results considering the methodology used (ingestion or contact), the phase of the biological cycle (adults or larvae), and the dose (ecologically relevant dose and recommended by the manufacturer) were different when compared with their respective control groups. Therefore, GLY can be considered toxic to bees. It is important to emphasize that this meta-analysis identified that papers assessing the toxicity of GLY to bees are still scarce, for both lethal and sublethal effects, mainly for stingless and solitary bee species.
Collapse
Affiliation(s)
- Lucas Battisti
- Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid, PR 445 km 380, Campus Universitário, 86057-970 Londrina, PR, Brazil
| | - Michele Potrich
- Universidade Tecnológica Federal do Paraná, UTFPR, Campus Dois Vizinhos, LABCON, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil.
| | - Amanda Roberta Sampaio
- Universidade Tecnológica Federal do Paraná, UTFPR, Campus Dois Vizinhos, LABCON, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil
| | - Nédia de Castilhos Ghisi
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, UTFPR, Programa de Pós-Graduação em Biotecnologia, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil
| | - Fabiana Martins Costa-Maia
- Universidade Tecnológica Federal do Paraná, UFTPR, Campus Dois Vizinhos, UNEPE Apicultura, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil
| | - Raiza Abati
- Universidade Tecnológica Federal do Paraná, UTFPR, Campus Dois Vizinhos, LABCON, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid, PR 445 km 380, Campus Universitário, 86057-970 Londrina, PR, Brazil
| | - Silvia Helena Sofia
- Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid, PR 445 km 380, Campus Universitário, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
34
|
Araújo RDS, Bernardes RC, Martins GF. A mixture containing the herbicides Mesotrione and Atrazine imposes toxicological risks on workers of Partamona helleri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142980. [PMID: 33121769 DOI: 10.1016/j.scitotenv.2020.142980] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
A mixture of Mesotrione and Atrazine (Calaris®) has been reported as an improvement of the atrazine herbicides, which are agrochemicals used for weed control. However, its possible harmful effects on non-target organisms, including pollinators, needs to be better understood. In this work, the effects of the mix of herbicides on food consumption, behaviour (walking distance, and meandering), and the morphology of the midgut of the stingless bee Partamona helleri were studied. Foragers were orally exposed to different concentrations of the mix. The concentrations leading to 10% and 50% mortality (LC10 and LC50, respectively) were estimated and used in the analysis of behaviour and morphology. The ingestion of contaminated diets (50% aqueous sucrose solution + mix) led to a reduction in food consumption by the bees when compared to the control, bees fed a non-contaminated diet (sucrose solution). Ingestion of the LC50 diet reduced locomotor activity, increased meandering, induced the degradation of the epithelium and peritrophic matrix, and also changed the number of cells positive for signalling-pathway proteins in the midgut. These results show the potential toxicological effects and environmental impacts of the mix of herbicides in beneficial insects, including a native bee.
Collapse
|