1
|
Speziale P, Foster TJ, Arciola CR. The endothelium at the interface between tissues and Staphylococcus aureus in the bloodstream. Clin Microbiol Rev 2025:e0009824. [PMID: 39807893 DOI: 10.1128/cmr.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYStaphylococcus aureus is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels. The success of endothelial colonization and infection by S. aureus relies on its ability to express a wide array of cell wall-anchored and secreted virulence factors. Establishment of endothelial infection by the pathogen is a multistep process involving adhesion, invasion, extravasation, and dissemination of the bacterium into surrounding tissues. The process is dependent on the type of endothelium in different organs (tissues) and pathogenetic potential of the individual strains. In this review, we report an update on the organization of the endothelium in the vessels, the structure and function of the virulence factors of S. aureus, and the several aspects of bacteria-endothelial cell interactions. After these sections, we will discuss recent advances in understanding the specific mechanisms of infections that develop in the heart, bone and joints, lung, and brain. Finally, we describe how neutrophils bind to endothelial cells, migrate to the site of infection to kill bacteria in the tissues, and how staphylococci counteract neutrophils' actions. Knowledge of the molecular details of S. aureus-endothelial cell interactions will promote the development of new therapeutic strategies and tools to combat this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Carla Renata Arciola
- Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Shi J, Xiao Y, Shen L, Wan C, Wang B, Zhou P, Zhang J, Han W, Yu F. Phenotypic and genomic analysis of the hypervirulent methicillin-resistant Staphylococcus aureus ST630 clone in China. mSystems 2024; 9:e0066424. [PMID: 39158330 PMCID: PMC11406941 DOI: 10.1128/msystems.00664-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) sequence type 630 (ST630) is a rarely reported lineage worldwide. This study aimed to trace the dissemination of the emerging MRSA ST630 clones in China and investigate their virulence potential. We collected 22 ST630-MRSA isolates from across China and performed whole-genome sequencing analysis and virulence characterization on these isolates. Epidemiological results showed that MRSA ST630 isolates were primarily isolated from pus/wound secretions, mainly originating from Jiangxi province, and carried diverse virulence and drug resistance genes. Staphylococcal cassette chromosome mec type V (SCCmec V) predominated (11/22, 50.0%) among the MRSA ST630 isolates. Interestingly, nearly half (45.5%) of the 22 ST630-MRSA isolates tested lacked intact SCCmec elements. Phylogenetic analysis demonstrated that ST630-MRSA could be divided into two distinct clades, with widespread dissemination mainly in Chinese regions. Five representative isolates were selected for phenotypic assays, including hemolysin activity, real-time fluorescence quantitative PCR, western blot analysis, hydrogen peroxide killing assay, blood killing assay, cell adhesion and invasion assay, and mouse skin abscess model. The results showed that, compared to the USA300-LAC strain, ST630 isolates exhibited particularly strong invasiveness and virulence in the aforementioned phenotypic assays. This study described the emergence of a highly virulent ST630-MRSA lineage and improved our insight into the molecular epidemiology of ST630 clones in China.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) sequence type 630 (ST630) is an emerging clone with an increasing isolation rate in China. This study raises awareness of the hypervirulent MRSA ST630 clones in China and alerts people to their widespread dissemination. ST630-staphylococcal cassette chromosome mec V is a noteworthy clone in China, and we present the first comprehensive genetic and phenotypic analysis of this lineage. Our findings provide valuable insights for the prevention and control of infections caused by this emerging MRSA clone.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Moulick S, Roy DN. Bioflavonoid Baicalein Modulates Tetracycline Resistance by Inhibiting Efflux Pump in Staphylococcus aureus. Microb Drug Resist 2024; 30:363-371. [PMID: 39133125 DOI: 10.1089/mdr.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
The rise in antibiotic resistance among bacterial pathogens, particularly Staphylococcus aureus, has become a critical global health issue, necessitating the search for novel antimicrobial agents. S. aureus uses various mechanisms to resist antibiotics, including the activation of efflux pumps, biofilm formation, and enzymatic modification of drugs. This study explores the potential of baicalein, a bioflavonoid from Scutellaria baicalensis, in modulating tetracycline resistance in S. aureus by inhibiting efflux pumps. The synergistic action of baicalein and tetracycline was evaluated through various assays. The minimum inhibitory concentration (MIC) of baicalein and tetracycline against S. aureus was 256 and 1.0 μg/mL, respectively. Baicalein at 64 μg/mL reduced the MIC of tetracycline by eightfold, indicating a synergistic effect (fractional inhibitory concentration index: 0.375). Time-kill kinetics demonstrated a 1.0 log CFU/mL reduction in bacterial count after 24 hours with the combination treatment. The ethidium bromide accumulation assay showed that baicalein mediated significant inhibition of efflux pumps, with a dose-dependent increase in fluorescence. In addition, baicalein inhibited DNA synthesis by 73% alone and 92% in combination with tetracycline. It also markedly reduced biofilm formation and the invasiveness of S. aureus into HeLa cells by 52% at 64 μg/mL. These findings suggest that baicalein enhances tetracycline efficacy and could be a promising adjunct therapy to combat multidrug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Soumitra Moulick
- TCG Lifesciences Private Limited, Kolkata, India
- Department of Biotechnology, National Institute of Technology Raipur, Chhattisgarh, India
| | - Dijendra Nath Roy
- Department of Biotechnology, National Institute of Technology Raipur, Chhattisgarh, India
| |
Collapse
|
4
|
Marinho Righetto G, Alves Santos-Filho N, Oliveira Catarin Nunes L, André C, Souza JM, Andricopulo AD, Martins Bispo PJ, Cilli EM, Camargo ILBDC. Optimizing Bothropstoxin-I-Derived Peptides: Exploring the Antibacterial Potential of p-BthW. ACS OMEGA 2024; 9:23662-23674. [PMID: 38854567 PMCID: PMC11154919 DOI: 10.1021/acsomega.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial peptides are an emerging class of antibiotics that present a series of advantageous characteristics such as wide structural variety, broad spectrum of activity, and low propensity to select for resistance. They are found in all classes of life as defense molecules. A group of peptides derived from the protein Bothropstoxin-I has been previously studied as an alternative treatment against multi-drug-resistant bacteria. The peptide p-BthTX-I (sequence: KKYRYHLKPFCKK) and its homodimer, linked by disulfide oxidation through the residues of Cys11 and the serum degradation product [sequence: (KKYRYHLKPFC)2], were evaluated and showed similar antimicrobial activity. In this study, we synthesized an analogue of p-BthTX-I that uses the strategy of Fmoc-Lys(Fmoc)-OH in the C-terminal region for dimerization and tryptophan for all aromatic amino acids to provide better membrane interactions. This analogue, named p-BthW, displayed potent antibacterial activity at lower concentrations and maintained the same hemolytic levels as the original molecule. Our assessment revealed that p-BthW has a quick in vitro bactericidal action and prolonged post-antibiotic effect, comparable to the action of polymyxin B. The mode of action of p-BthW seems to rely not only on membrane depolarization but also on necrosis-like effects, especially in Gram-negative bacteria. Overall, the remarkable results regarding the propensity to develop resistance reaffirmed the great potential of the developed molecule.
Collapse
Affiliation(s)
- Gabriela Marinho Righetto
- Laboratory
of Molecular Epidemiology and Microbiology, Department of Physics
and Interdisciplinary Science, University
of Sao Paulo, 13563-120 São Carlos, Brazil
| | - Norival Alves Santos-Filho
- Department
of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, 14800-060 Araraquara, Brazil
| | - Letícia Oliveira Catarin Nunes
- Department
of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, 14800-060 Araraquara, Brazil
| | - Camille André
- Infectious
Disease Institute, Department of Ophthalmology, Massachusetts Eye
and Ear, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Julia Medeiros Souza
- Laboratory
of Medicinal and Computational Chemistry, Department of Physics and
Interdisciplinary Science, University of
Sao Paulo, 13563-120 São Carlos, Brazil
| | - Adriano Defini Andricopulo
- Laboratory
of Medicinal and Computational Chemistry, Department of Physics and
Interdisciplinary Science, University of
Sao Paulo, 13563-120 São Carlos, Brazil
| | - Paulo José Martins Bispo
- Infectious
Disease Institute, Department of Ophthalmology, Massachusetts Eye
and Ear, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eduardo Maffud Cilli
- Department
of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, 14800-060 Araraquara, Brazil
| | - Ilana Lopes Baratella da Cunha Camargo
- Laboratory
of Molecular Epidemiology and Microbiology, Department of Physics
and Interdisciplinary Science, University
of Sao Paulo, 13563-120 São Carlos, Brazil
| |
Collapse
|
5
|
Shi Y, Muenzner P, Schanz-Jurinka S, Hauck CR. The phosphatidylinositol-5' phosphatase synaptojanin1 limits integrin-mediated invasion of Staphylococcus aureus. Microbiol Spectr 2024; 12:e0200623. [PMID: 38358281 PMCID: PMC10986543 DOI: 10.1128/spectrum.02006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The gram-positive bacterium Staphylococcus aureus can invade non-professional phagocytic cells by associating with the plasma protein fibronectin to exploit host cell integrins. Integrin-mediated internalization of these pathogens is facilitated by the local production of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) via an integrin-associated isoform of phosphatidylinositol-5' kinase. In this study, we addressed the role of PI-4,5-P2-directed phosphatases on internalization of S. aureus. ShRNA-mediated knockdown of individual phosphoinositide 5-phosphatases revealed that synaptojanin1 (SYNJ1) is counteracting invasion of S. aureus into mammalian cells. Indeed, shRNA-mediated depletion as well as genetic deletion of synaptojanin1 via CRISPR/Cas9 resulted in a gain-of-function phenotype with regard to integrin-mediated uptake. Surprisingly, the surface level of integrins was slightly downregulated in Synj1-KO cells. Nevertheless, these cells showed enhanced local accumulation of PI-4,5-P2 and exhibited increased internalization of S. aureus. While the phosphorylation level of the integrin-associated protein tyrosine kinase FAK was unaltered, the integrin-binding and -activating protein talin was enriched in the vicinity of S. aureus in synaptojanin1 knockout cells. Scanning electron microscopy revealed enlarged membrane invaginations in the absence of synaptojanin1 explaining the increased capability of these cells to internalize integrin-bound microorganisms. Importantly, the enhanced uptake by Synj1-KO cells and the exaggerated morphological features were rescued by the re-expression of the wild-type enzyme but not phosphatase inactive mutants. Accordingly, synaptojanin1 activity limits integrin-mediated invasion of S. aureus, corroborating the important role of PI-4,5-P2 during this process.IMPORTANCEStaphylococcus aureus, an important bacterial pathogen, can invade non-professional phagocytes by capturing host fibronectin and engaging integrin α5β1. Understanding how S. aureus exploits this cell adhesion receptor for efficient cell entry can also shed light on the physiological regulation of integrins by endocytosis. Previous studies have found that a specific membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), supports the internalization process. Here, we extend these findings and report that the local levels of PIP2 are controlled by the activity of the PIP2-directed lipid phosphatase Synaptojanin1. By dephosphorylating PIP2 at bacteria-host cell attachment sites, Synaptojanin1 counteracts the integrin-mediated uptake of the microorganisms. Therefore, our study not only generates new insight into subversion of cellular receptors by pathogenic bacteria but also highlights the role of host cell proteins acting as restriction factors for bacterial invasion at the plasma membrane.
Collapse
Affiliation(s)
- Yong Shi
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | | | - Christof R. Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Kolodkin-Gal I, Dash O, Rak R. Probiotic cultivated meat: bacterial-based scaffolds and products to improve cultivated meat. Trends Biotechnol 2024; 42:269-281. [PMID: 37805297 DOI: 10.1016/j.tibtech.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Cultivated meat is emerging to replace traditional livestock industries, which have ecological costs, including land and water overuse and considerable carbon emissions. During cultivated meat production, mammalian cells can increase their numbers dramatically through self-renewal/proliferation and transform into mature cells, such as muscle or fat cells, through maturation/differentiation. Here, we address opportunities for introducing probiotic bacteria into the cultivated meat industry, including using them to produce renewable antimicrobials and scaffolding materials. We also offer solutions to challenges, including the growth of bacteria and mammalian cells, the effect of probiotic bacteria on production costs, and the effect of bacteria and their products on texture and taste. Our summary provides a promising framework for applying microbial composites in the cultivated meat industry.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Orit Dash
- Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
7
|
Liu S, Li Z, Lan S, Hao H, Jin X, Liang J, Baz AA, Yan X, Gao P, Chen S, Chu Y. LppA is a novel plasminogen receptor of Mycoplasma bovis that contributes to adhesion by binding the host extracellular matrix and Annexin A2. Vet Res 2023; 54:107. [PMID: 37978536 PMCID: PMC10657132 DOI: 10.1186/s13567-023-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
Mycoplasma bovis is responsible for various inflammatory diseases in cattle. The prevention and control of M. bovis are complicated by the absence of effective vaccines and the emergence of multidrug-resistant strains, resulting in substantial economic losses worldwide in the cattle industry. Lipoproteins, vital components of the Mycoplasmas cell membrane, are deemed potent antigens for eliciting immune responses in the host upon infection. However, the functions of lipoproteins in M. bovis remain underexplored due to their low sequence similarity with those of other bacteria and the scarcity of genetic manipulation tools for M. bovis. In this study, the lipoprotein LppA was identified in all examined M. bovis strains. Utilizing immunoelectron microscopy and Western blotting, it was observed that LppA localizes to the surface membrane. Recombinant LppA demonstrated dose-dependent adherence to the membrane of embryonic bovine lung (EBL) cells, and this adhesion was inhibited by anti-LppA serum. In vitro binding assays confirmed LppA's ability to associate with fibronectin, collagen IV, laminin, vitronectin, plasminogen, and tPA, thereby facilitating the conversion of plasminogen to plasmin. Moreover, LppA was found to bind and enhance the accumulation of Annexin A2 (ANXA2) on the cell membrane. Disrupting LppA in M. bovis significantly diminished the bacterium's capacity to adhere to EBL cells, underscoring LppA's function as a bacterial adhesin. In conclusion, LppA emerges as a novel adhesion protein that interacts with multiple host extracellular matrix proteins and ANXA2, playing a crucial role in M. bovis's adherence to host cells and dissemination. These insights substantially deepen our comprehension of the molecular pathogenesis of M. bovis.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Xiangrui Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Jinjia Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China.
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China.
| |
Collapse
|
8
|
Bisutti V, Mach N, Giannuzzi D, Vanzin A, Capra E, Negrini R, Gelain ME, Cecchinato A, Ajmone-Marsan P, Pegolo S. Transcriptome-wide mapping of milk somatic cells upon subclinical mastitis infection in dairy cattle. J Anim Sci Biotechnol 2023; 14:93. [PMID: 37403140 DOI: 10.1186/s40104-023-00890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/07/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Subclinical intramammary infection (IMI) represents a significant problem in maintaining dairy cows' health. Disease severity and extent depend on the interaction between the causative agent, environment, and host. To investigate the molecular mechanisms behind the host immune response, we used RNA-Seq for the milk somatic cells (SC) transcriptome profiling in healthy cows (n = 9), and cows naturally affected by subclinical IMI from Prototheca spp. (n = 11) and Streptococcus agalactiae (S. agalactiae; n = 11). Data Integration Analysis for Biomarker discovery using Latent Components (DIABLO) was used to integrate transcriptomic data and host phenotypic traits related to milk composition, SC composition, and udder health to identify hub variables for subclinical IMI detection. RESULTS A total of 1,682 and 2,427 differentially expressed genes (DEGs) were identified when comparing Prototheca spp. and S. agalactiae to healthy animals, respectively. Pathogen-specific pathway analyses evidenced that Prototheca's infection upregulated antigen processing and lymphocyte proliferation pathways while S. agalactiae induced a reduction of energy-related pathways like the tricarboxylic acid cycle, and carbohydrate and lipid metabolism. The integrative analysis of commonly shared DEGs between the two pathogens (n = 681) referred to the core-mastitis response genes, and phenotypic data evidenced a strong covariation between those genes and the flow cytometry immune cells (r2 = 0.72), followed by the udder health (r2 = 0.64) and milk quality parameters (r2 = 0.64). Variables with r ≥ 0.90 were used to build a network in which the top 20 hub variables were identified with the Cytoscape cytohubba plug-in. The genes in common between DIABLO and cytohubba (n = 10) were submitted to a ROC analysis which showed they had excellent predictive performances in terms of discriminating healthy and mastitis-affected animals (sensitivity > 0.89, specificity > 0.81, accuracy > 0.87, and precision > 0.69). Among these genes, CIITA could play a key role in regulating the animals' response to subclinical IMI. CONCLUSIONS Despite some differences in the enriched pathways, the two mastitis-causing pathogens seemed to induce a shared host immune-transcriptomic response. The hub variables identified with the integrative approach might be included in screening and diagnostic tools for subclinical IMI detection.
Collapse
Affiliation(s)
- Vittoria Bisutti
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy.
| | - Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin Des Capelles, Toulouse, 31300, France
| | - Diana Giannuzzi
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Alice Vanzin
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Emanuele Capra
- IBBA, National Research Council, Via Einstein, Lodi, 26900, Italy
| | - Riccardo Negrini
- DIANA, Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza, 29122, Italy
| | - Maria Elena Gelain
- BCA, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Alessio Cecchinato
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Paolo Ajmone-Marsan
- DIANA, Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza, 29122, Italy
| | - Sara Pegolo
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| |
Collapse
|
9
|
Solanki V, Tiwari M, Tiwari V. Investigation of Peptidoglycan-Associated Lipoprotein of Acinetobacter baumannii and Its Interaction with Fibronectin To Find Its Therapeutic Potential. Infect Immun 2023; 91:e0002323. [PMID: 37017535 PMCID: PMC10187120 DOI: 10.1128/iai.00023-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/07/2023] [Indexed: 04/06/2023] Open
Abstract
Acinetobacter baumannii causes hospital-acquired infections and is responsible for high mortality and morbidity. The interaction of this bacterium with the host is critical in bacterial pathogenesis and infection. Here, we report the interaction of peptidoglycan-associated lipoprotein (PAL) of A. baumannii with host fibronectin (FN) to find its therapeutic potential. The proteome of A. baumannii was explored in the host-pathogen interaction database to filter out the PAL of the bacterial outer membrane that interacts with the host's FN protein. This interaction was confirmed experimentally using purified recombinant PAL and pure FN protein. To investigate the pleiotropic role of PAL protein, different biochemical assays using wild-type PAL and PAL mutants were performed. The result showed that PAL mediates bacterial pathogenesis, adherence, and invasion in host pulmonary epithelial cells and has a role in the biofilm formation, bacterial motility, and membrane integrity of bacteria. All of the results suggest that PAL's interaction with FN plays a vital role in host-cell interaction. In addition, the PAL protein also interacts with Toll-like receptor 2 and MARCO receptor, which suggests the role of PAL protein in innate immune responses. We have also investigated the therapeutic potential of this protein for vaccine and therapeutic design. Using reverse vaccinology, PAL's potential epitopes were filtered out that exhibit binding potential with host major histocompatibility complex class I (MHC-I), MHC-II, and B cells, suggesting that PAL protein is a potential vaccine target. The immune simulation showed that PAL protein could elevate innate and adaptive immune response with the generation of memory cells and would have subsequent potential to eliminate bacterial infection. Therefore, the present study highlights the interaction ability of a novel host-pathogen interacting partner (PAL-FN) and uncovers its therapeutic potential to combat infection caused by A. baumannii.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
10
|
Lyon LM, Doran KS, Horswill AR. Staphylococcus aureus Fibronectin-Binding Proteins Contribute to Colonization of the Female Reproductive Tract. Infect Immun 2023; 91:e0046022. [PMID: 36511703 PMCID: PMC9872658 DOI: 10.1128/iai.00460-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and frequent colonizer of human skin and mucosal membranes, including the vagina, with vaginal colonization reaching nearly 25% in some pregnant populations. MRSA vaginal colonization can lead to aerobic vaginitis (AV), and during pregnancy, bacterial ascension into the upper reproductive tract can lead to adverse birth outcomes. USA300, the most prominent MRSA lineage to colonize pregnant individuals, is a robust biofilm former and causative agent of invasive infections; however, little is known about how it colonizes and ascends in the female reproductive tract (FRT). Our previous studies showed that a MRSA mutant of seven fibrinogen-binding adhesins was deficient in FRT epithelial attachment and colonization. Using both monolayer and multilayer air-liquid interface cell culture models, we determine that one class of these adhesins, the fibronectin binding proteins (FnBPA and FnBPB), are critical for association with human vaginal epithelial cells (hVECs) and hVEC invasion through interactions with α5β1 integrin. We observe that both FnBPs are important for biofilm formation as single and double fnbAB mutants exhibit reduced biofilm formation on hVECs. Using heterologous expression of fnbA and fnbB in Staphylococcus carnosus, FnBPs are also found to be sufficient for hVEC cellular association, invasion, and biofilm formation. In addition, we found that an ΔfnbAB mutant displays attenuated ascension in our murine vaginal colonization model. Better understanding of MRSA FRT colonization and ascension can ultimately inform treatment strategies to limit MRSA vaginal burden or prevent ascension, especially during pregnancy and in those prone to AV.
Collapse
Affiliation(s)
- Laurie M. Lyon
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, USA
| |
Collapse
|
11
|
Hu Z, Li H, Zhao Y, Wang G, Shang Y, Chen Y, Wang S, Tian M, Qi J, Yu S. NADH oxidase of Mycoplasma synoviae is a potential diagnostic antigen, plasminogen/fibronectin binding protein and a putative adhesin. BMC Vet Res 2022; 18:455. [PMID: 36581820 PMCID: PMC9798693 DOI: 10.1186/s12917-022-03556-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mycoplasma synoviae (MS) is an important pathogen causing respiratory diseases and arthritis in chickens and turkeys, thus, resulting in serious economic losses to the poultry industry. Membrane-associated proteins are thought to play important roles in cytoadherence and pathogenesis. NADH oxidase (NOX) is an oxidoreductase involved in glycolysis, which is thought to be a multifunctional protein and potential virulence factor in some pathogens. However, little is known regarding the NOX of MS (MSNOX). We previously demonstrated that MSNOX was a metabolic enzyme distributed in not only the cytoplasm but also the MS membrane. This study was aimed at exploring NOX's potential as a diagnostic antigen and its role in MS cytoadherence. RESULTS Western blots and ELISAs indicated that recombinant MSNOX (rMSNOX) protein reacted with sera positive for various MS isolates, but not MG isolates or other avian pathogens, thus, suggesting that rMSNOX is a potential diagnostic antigen. In addition, rabbit anti-rMSNOX serum showed substantial complement-dependent mycoplasmacidal activity toward various MS isolates and MG Rlow. MSNOX protein was found not only in the cytoplasm but also on the membrane of MS through suspension immunofluorescence and immunogold electron microscopy assays. Indirect immunofluorescence assays indicated that rMSNOX adhered to DF-1 cells, and this adherence was inhibited by rabbit anti-rMSNOX, but not anti-MG serum. Furthermore, indirect immunofluorescence and colony counting assays confirmed that the rabbit anti-rMSNOX serum inhibited the adherence of various MS isolates but not MG Rlow to DF-1 cells. Moreover, plasminogen (Plg)- and fibronectin (Fn)-binding assays demonstrated that rMSNOX bound Plg and Fn in a dose-dependent manner, thereby further confirming that MSNOX may be a putative adhesin. CONCLUSION MSNOX was identified to be a surface immunogenic protein that has good immunoreactivity and specificity in Western blot and ELISA, and therefore, may be used as a potential diagnostic antigen in the future. In addition, rMSNOX adhered to DF-1 cells, an effect inhibited by rabbit anti-rMSNOX, but not anti-MG serum, and anti-rMSNOX serum inhibited the adherence of various MS isolates, but not MG Rlow, to DF-1 cells, thus indicating that the inhibition of adherence by anti-MSNOX serum was MS specific. Moreover, rMSNOX adhered to extracellular matrix proteins including Plg and Fn, thus suggesting that NOX may play important roles in MS cytoadherence and pathogenesis. Besides, rabbit anti-rMSNOX serum presented complement-dependent mycoplasmacidal activity toward both MS and MG, indicating the MSNOX may be further studied as a potential protective vaccine candidate.
Collapse
Affiliation(s)
- Zengjin Hu
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Haoran Li
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Yuxin Zhao
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.268415.cCollege of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Guijun Wang
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Yuanbing Shang
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Yuetong Chen
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Shaohui Wang
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Mingxing Tian
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Jingjing Qi
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Shengqing Yu
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| |
Collapse
|
12
|
Adnan M, Siddiqui AJ, Noumi E, Hannachi S, Ashraf SA, Awadelkareem AM, Snoussi M, Badraoui R, Bardakci F, Sachidanandan M, Patel M, Patel M. Integrating Network Pharmacology Approaches to Decipher the Multi-Target Pharmacological Mechanism of Microbial Biosurfactants as Novel Green Antimicrobials against Listeriosis. Antibiotics (Basel) 2022; 12:5. [PMID: 36671206 PMCID: PMC9854906 DOI: 10.3390/antibiotics12010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a serious food-borne pathogen that can cause listeriosis, an illness caused by eating food contaminated with this pathogen. Currently, the treatment or prevention of listeriosis is a global challenge due to the resistance of bacteria against multiple commonly used antibiotics, thus necessitating the development of novel green antimicrobials. Scientists are increasingly interested in microbial surfactants, commonly known as "biosurfactants", due to their antimicrobial properties and eco-friendly nature, which make them an ideal candidate to combat a variety of bacterial infections. Therefore, the present study was designed to use a network pharmacology approach to uncover the active biosurfactants and their potential targets, as well as the signaling pathway(s) involved in listeriosis treatment. In the framework of this study, 15 biosurfactants were screened out for subsequent studies. Among 546 putative targets of biosurfactants and 244 targets of disease, 37 targets were identified as potential targets for treatment of L. monocytogenes infection, and these 37 targets were significantly enriched in a Gene Ontology (GO) analysis, which aims to identify those biological processes, cellular locations, and molecular functions that are impacted in the condition studied. The obtained results revealed several important biological processes, such as positive regulation of MAP kinase activity, protein kinase B signaling, ERK1 and ERK2 cascade, ERBB signaling pathway, positive regulation of protein serine/threonine kinase activity, and regulation of caveolin-mediated endocytosis. Several important KEGG pathways, such as the ERBBB signaling pathway, TH17 cell differentiation, HIF-1 signaling pathway, Yersinia infection, Shigellosis, and C-type lectin receptor signaling pathways, were identified. The protein-protein interaction analysis yielded 10 core targets (IL2, MAPK1, EGFR, PTPRC, TNF, ITGB1, IL1B, ERBB2, SRC, and mTOR). Molecular docking was used in the latter part of the study to verify the effectiveness of the active biosurfactants against the potential targets. Lastly, we found that a few highly active biosurfactants, namely lichenysin, iturin, surfactin, rhamnolipid, subtilisin, and polymyxin, had high binding affinities towards IL2, MAPK1, EGFR, PTPRC, TNF, ITGB1, IL1B, ERBB2, SRC, and mTOR, which may act as potential therapeutic targets for listeriosis. Overall, based on the integrated network pharmacology and docking analysis, we found that biosurfactants possess promising anti-listeriosis properties and explored the pharmacological mechanisms behind their effect, laying the groundwork for further research and development.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Sami Hannachi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mirav Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| |
Collapse
|
13
|
Szafraniec GM, Szeleszczuk P, Dolka B. Review on skeletal disorders caused by Staphylococcus spp. in poultry. Vet Q 2022; 42:21-40. [PMID: 35076352 PMCID: PMC8843168 DOI: 10.1080/01652176.2022.2033880] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Lameness or leg weakness is the main cause of poor poultry welfare and serious economic losses in meat-type poultry production worldwide. Disorders related to the legs are often associated with multifactorial aetiology which makes diagnosis and proper treatment difficult. Among the infectious agents, bacteria of genus Staphylococcus are one of the most common causes of bone infections in poultry and are some of the oldest bacterial infections described in poultry. Staphylococci readily infect bones and joints and are associated with bacterial chondronecrosis with osteomyelitis (BCO), spondylitis, arthritis, tendinitis, tenosynovitis, osteomyelitis, turkey osteomyelitis complex (TOC), bumblefoot, dyschondroplasia with osteomyelitis and amyloid arthropathy. Overall, 61 staphylococcal species have been described so far, and 56% of them (34/61) have been isolated from clinical cases in poultry. Although Staphylococcus aureus is the principal cause of poultry staphylococcosis, other Staphylococcus species, such as S. agnetis, S. cohnii, S. epidermidis, S. hyicus, S. simulans, have also been isolated from skeletal lesions. Antimicrobial treatment of staphylococcosis is usually ineffective due to the location and type of lesion, as well as the possible occurrence of multidrug-resistant strains. Increasing demand for antibiotic-free farming has contributed to the use of alternatives to antibiotics. Other prevention methods, such as better management strategies, early feed restriction or use of slow growing broilers should be implemented to avoid rapid growth rate, which is associated with locomotor problems. This review aims to summarise and address current knowledge on skeletal disorders associated with Staphylococcus spp. infection in poultry.
Collapse
Affiliation(s)
- Gustaw M. Szafraniec
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
14
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
15
|
Li J, Wen Q, Gu F, An L, Yu T. Non-antibiotic strategies for prevention and treatment of internalized Staphylococcus aureus. Front Microbiol 2022; 13:974984. [PMID: 36118198 PMCID: PMC9471010 DOI: 10.3389/fmicb.2022.974984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are often difficult to cure completely. One of the main reasons for this difficulty is that S. aureus can be internalized into cells after infecting tissue. Because conventional antibiotics and immune cells have difficulty entering cells, the bacteria can survive long enough to cause recurrent infections, which poses a serious burden in healthcare settings because repeated infections drastically increase treatment costs. Therefore, preventing and treating S. aureus internalization is becoming a research hotspot. S. aureus internalization can essentially be divided into three phases: (1) S. aureus binds to the extracellular matrix (ECM), (2) fibronectin (Fn) receptors mediate S. aureus internalization into cells, and (3) intracellular S. aureus and persistence into cells. Different phases require different treatments. Many studies have reported on different treatments at different phases of bacterial infection. In the first and second phases, the latest research results show that the cell wall-anchored protein vaccine and some microbial agents can inhibit the adhesion of S. aureus to host cells. In the third phase, nanoparticles, photochemical internalization (PCI), cell-penetrating peptides (CPPs), antimicrobial peptides (AMPs), and bacteriophage therapy can effectively eliminate bacteria from cells. In this paper, the recent progress in the infection process and the prevention and treatment of S. aureus internalization is summarized by reviewing a large number of studies.
Collapse
Affiliation(s)
- Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Qiangqiang Wen
- Department of Orthopedics, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Lijuan An
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Tiecheng Yu,
| |
Collapse
|
16
|
Ji Q, Zhang M, Wang Y, Chen Y, Wang L, Lu X, Bai L, Wang M, Bao L, Hao H, Wang Z. Protective effects of chlorogenic acid on inflammatory responses induced by Staphylococcus aureus and milk protein synthesis in bovine mammary epithelial cells. Microb Pathog 2022; 171:105726. [PMID: 35995255 DOI: 10.1016/j.micpath.2022.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022]
Abstract
Staphylococcus aureus (S. aureus) is a major mastitis-causing pathogen in dairy cows. Dairy cows with mastitis suffer from a decrease in milk yield and protein content. Chlorogenic acid (CGA) is a natural product with anti-inflammatory effects. In this study, we examined the function and mechanism of CGA with regard to its anti-inflammatory effects and evaluated its protective function in milk protein synthesis in bovine mammary epithelial cells (BMECs). BMECs were cultured with and without infection by S. aureus and CGA, and extracellular inflammatory cytokines and amino acids in the medium and milk proteins were determined by ELISA. The function of IL-10RA in anti-inflammatory processes and of SF-1 in milk protein synthesis was assessed by gene silencing. The activity of mTORC1, NF-κB, and STAT5 was examined by western blot. S. aureus caused intracellular infection and upregulated TNF-α, IL-1β, IL-6, and IL-8, whereas uptake of amino acids and milk protein synthesis were suppressed. CGA mitigated the S. aureus-induced inflammatory response and milk protein synthesis in vitro and in vivo. CGA alleviated S. aureus-induced inhibition of mTORC1 and STAT5 and upregulated IL-10 and IL-10RA. In addition, SF-1 was predicted to be a transcription factor of the milk protein-encoding genes α-LA, β-LG, and CSN2. S. aureus downregulated SF-1 and CGA reversed the decline in milk protein synthesis due to SF-1 knockdown. Thus, CGA mitigates the inflammatory response that is induced by S. aureus and protects the uptake of amino acids and milk protein synthesis in BMECs.
Collapse
Affiliation(s)
- Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Meng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; School of Life Sciences and Technology, Jining Normal University, Jining, 012000, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Manshulin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lili Bao
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
17
|
Pulia MS, Anderson J, Ye Z, Elsayed NS, Le T, Patitucci J, Ganta K, Hall M, Singh VK, Shukla SK. Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections. Antibiotics (Basel) 2022; 11:527. [PMID: 35453277 PMCID: PMC9032627 DOI: 10.3390/antibiotics11040527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Staphylococcus aureus, the most common pathogen in skin and soft tissue infections (SSTI), harbors many well-characterized virulence genes. However, the expression of many of them in SSTIs is unknown. In this study, S. aureus virulence genes expressed in SSTI were investigated. METHODS Fifty-three subjects presenting to the outpatient's care and emergency departments with a purulent SSTI at two medical centers in Wisconsin, USA, were enrolled in the study. Total mRNA was extracted from the purulent or swab materials, made into cDNA and sequenced on MiSeq platform. The relative cDNA counts to gmk and identifications of the transcripts were carried out with respect to USA300 reference genome and using SAMTOOLS v.1.3 and BWA, respectively. RESULT A significantly higher cDNA count was observed for many of the virulence and regulatory gene transcripts in the pus samples compared to the swab samples relative to the cDNA counts for gmk, a housekeeping gene. They were for lukS-PV (18.6 vs. 14.2), isaA (13.4 vs. 8.5), ssaA (4.8 vs. 3.1), hlgC (1.4 vs. 1.33), atl (17.7 vs. 8.33), clfA (3.9 vs. 0.83), eno (6.04 vs. 3.16), fnbA (5.93 vs. 0.33), saeS (6.3 vs. 1.33), saeR (5.4 vs. 3.33) and agrC (5.6 vs. 1.5). CONCLUSIONS A relative increase in the transcripts of several toxins, adhesion and regulatory genes with respect to a gmk in purulent materials suggests their role in situ during SSTIs, perhaps in an orchestrated manner.
Collapse
Affiliation(s)
- Michael S. Pulia
- Department of Emergency Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726, USA;
| | - Jennifer Anderson
- Integrated Research Development Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (J.A.); (T.L.)
| | - Zhan Ye
- Bioinformatics Research Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (Z.Y.); (J.P.)
| | - Noha S. Elsayed
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| | - Thao Le
- Integrated Research Development Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (J.A.); (T.L.)
| | - Jacob Patitucci
- Bioinformatics Research Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (Z.Y.); (J.P.)
| | - Krishna Ganta
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| | - Matthew Hall
- Department of Infectious Diseases, Marshfield Clinic Health System, Marshfield, WI 54449, USA;
| | - Vineet K. Singh
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still, University of Health Sciences, Kirksville, MO 63501, USA;
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| |
Collapse
|
18
|
Li Y, Ma Q, Liu G, Zhang Z, Zhan Y, Zhu M, Wang C. Metabolic Alternations During Gestation in Dezhou Donkeys and the Link to the Gut Microbiota. Front Microbiol 2022; 13:801976. [PMID: 35369472 PMCID: PMC8969422 DOI: 10.3389/fmicb.2022.801976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
The maternal intestinal microbial community changes dramatically during pregnancy and plays an important role in animal growth, metabolism, immunity and reproduction. However, our understanding of microbiota compositional dynamics during the whole pregnancy period in donkey is incomplete. This study was carried out to evaluate gut microbiota alterations as well as the correlation with serum biochemical indices, comparing pregnant donkeys to non-pregnant donkeys. A total of 18 pregnant (including EP, early-stage pregnancy; MP, middle-stage pregnancy and LP, late-stage pregnancy) and six non-pregnant (C as a control) donkey blood samples and rectum contents were collected. The results showed that pregnant donkeys had higher microbial richness than non-pregnant donkeys and that the lowest microbial diversity occurred at the EP period. Moreover, the relative abundances of the families Clostridiaceae and Streptococcaceae were significantly higher in the EP group (p < 0.05) than that in the C and MP groups, while the relative abundances of the families Lachnospiraceae and Rikenellaceae were significantly lower in the EP group (p < 0.05) than that in the C group. The predicted microbial gene functions related to the inflammatory response and apoptosis, such as Staphylococcus aureus infection, the RIG-1-like receptor signaling pathway and apoptosis, were mainly enriched in EP. Furthermore, pregnant donkeys had higher glucose levels than non-pregnant donkeys, especially at EP period. EP donkeys had lower triglyceride, total protein and albumin levels but higher malondialdehyde, interleukin 1β, interleukin 6 and tumor necrosis factor-α levels than those in the C and MP groups. Additionally, there were strong correlations between inflammatory cytokine levels and the relative abundances of genera belonging to the Clostridiaceae and Streptococcaceae families. This is the first comparative study performed in donkeys that indicates that pregnancy status (especially in the early pregnancy period) alters the gut microbiota composition, which was correlated with serum biochemical parameters. These results could provide useful information for improving the reproductive management in Dezhou donkeys.
Collapse
|
19
|
Guo H, Tong Y, Cheng J, Abbas Z, Li Z, Wang J, Zhou Y, Si D, Zhang R. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int J Mol Sci 2022; 23:ijms23031241. [PMID: 35163165 PMCID: PMC8835882 DOI: 10.3390/ijms23031241] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.
Collapse
|
20
|
Niedziela DA, Cormican P, Foucras G, Leonard FC, Keane OM. Bovine milk somatic cell transcriptomic response to Staphylococcus aureus is dependent on strain genotype. BMC Genomics 2021; 22:796. [PMID: 34740333 PMCID: PMC8571842 DOI: 10.1186/s12864-021-08135-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
Background Mastitis is an economically important disease of dairy cows with Staphylococcus aureus a major cause worldwide. Challenge of Holstein-Friesian cows demonstrated that S. aureus strain MOK124, which belongs to Clonal Complex (CC)151, caused clinical mastitis, while strain MOK023, belonging to CC97, caused mild or subclinical mastitis. The aim of this study was to elucidate the molecular mechanisms of the host immune response utilising a transcriptomic approach. Milk somatic cells were collected from cows infected with either S. aureus MOK023 or MOK124 at 0, 24, 48, 72 and 168 h post-infection (hpi) and analysed for differentially expressed (DE) genes in response to each strain. Results In response to MOK023, 1278, 2278, 1986 and 1750 DE genes were found at 24, 48, 72 and 168 hpi, respectively, while 2293, 1979, 1428 and 1544 DE genes were found in response to MOK124 at those time points. Genes involved in milk production (CSN1, CSN10, CSN1S2, CSN2, a-LACTA and PRLR) were downregulated in response to both strains, with a more pronounced decrease in the MOK124 group. Immune response pathways such as NF-κB and TNF signalling were overrepresented in response to both strains at 24 hpi. These immune pathways continued to be overrepresented in the MOK023 group at 48 and 72 hpi, while the Hippo signalling, extracellular matrix interaction (ECM) and tight junction pathways were overrepresented in the MOK124 group between 48 and 168 hpi. Cellular composition analysis demonstrated that a neutrophil response was predominant in response to MOK124, while M1 macrophages were the main milk cell type post-infection in the MOK023 group. Conclusions A switch from immune response pathways to pathways involved in maintaining the integrity of the epithelial cell layer was observed in the MOK124 group from 48 hpi, which coincided with the occurrence of clinical signs in the infected animals. The higher proportion of M1 macrophages in the MOK023 group and lack of substantial neutrophil recruitment in response to MOK023 may indicate immune evasion by this strain. The results of this study highlight that the somatic cell transcriptomic response to S. aureus is dependent on the genotype of the infecting strain. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08135-7.
Collapse
Affiliation(s)
- Dagmara A Niedziela
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.,School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Gilles Foucras
- IHAP, Université de Toulouse, ENVT, INRAE, UMR1225, F-31076, Toulouse, France
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
21
|
He J, Liu R, Zheng W, Guo H, Yang Y, Zhao R, Yao W. High ambient temperature exposure during late gestation disrupts glycolipid metabolism and hepatic mitochondrial function tightly related to gut microbial dysbiosis in pregnant mice. Microb Biotechnol 2021; 14:2116-2129. [PMID: 34272826 PMCID: PMC8449678 DOI: 10.1111/1751-7915.13893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
As global warming intensifies, emerging evidence has demonstrated high ambient temperature during pregnancy negatively affects maternal physiology with compromised pregnant outcomes; however, little is known about the roles of gut microbiota and its underlying mechanisms in this process. Here, for the first time, we explored the potential mechanisms of gut microbiota involved in the disrupted glycolipid metabolism via hepatic mitochondrial function. Our results indicate heat stress (HS) reduces fat and protein contents and serum levels of insulin and triglyceride (TG), while increases that of non-esterified fatty acid (NEFA), β-hydroxybutyric acid (B-HBA), creatinine and blood urea nitrogen (BUN) (P < 0.05). Additionally, HS downregulates both mitochondrial genes (mtDNA) and nuclear encoding mitochondrial functional genes with increasing serum levels of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) (P < 0.05). Regarding microbial response, HS boosts serum levels of lipopolysaccharide (LPS) (P < 0.05) and alters β-diversity (ANOSIM, P < 0.01), increasing the proportions of Escherichia-Shigella, Acinetobacter and Klebsiella (q < 0.05), while reducing that of Ruminiclostridium, Blautia, Lachnospiraceae_NK4A136_group, Clostridium VadinBB60 and Muribaculaceae (q < 0.05). PICRUSt analysis predicts that HS upregulates 11 KEGG pathways, mainly including bile secretion and bacterial invasion of epithelial cells. The collective results suggest that microbial dysbiosis due to late gestational HS has strong associations with damaged hepatic mitochondrial function and disrupted metabolic profiles.
Collapse
Affiliation(s)
- Jianwen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Riliang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huiduo Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunnan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruqian Zhao
- Key Lab of Animal Physiology and Biochemistry, Nanjing Agricultural University, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210095, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Physiology and Biochemistry, Nanjing Agricultural University, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210095, China
| |
Collapse
|
22
|
Mohamed AA, Elshawadfy AM, Amin G, Askora A. Characterization of R-pyocin activity against Gram-positive pathogens for the first time with special focus on Staphylococcus aureus. J Appl Microbiol 2021; 131:2780-2792. [PMID: 33977611 DOI: 10.1111/jam.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
AIM This study is aimed at characterization of both antimicrobial and anti-biofilm activity of R-pyocin from clinical Pseudomonas aeruginosa against Gram-positive pathogens including Staphylococcus aureus. METHODS AND RESULTS Pyocinogenic P. aeruginosa was detected using reverse-side method, and pyocinogeny typing was confirmed using revised-spotting method. Transmission electron microscopy (TEM) was used for morphological characterization of R-pyocin and for detection of changes in membrane of R-pyocin-treated S. aureus. SDS-PAGE analysis was used for detection of the molecular weight of R-pyocin protein-subunits and Poisson-killing-distribution assay for burst-size calculation. Lipotechoic-acid (LTA) adsorption-assay was used to confirm whether LTA in Gram-positive bacteria served as R-pyocin receptor. Moreover, R-pyocin production at 10-60°C was assessed herein. Host-range of activity of R-pyocin was tested against antimicrobial resistant (AMR) pathogens. The anti-biofilm activity of R-pyocin was detected against sensitive bacterial strains. Chemical, enzymatic, pH and thermo-stability of R-pyocin were evaluated. TEM micrographs revealed a typical morphology of myotailocins indicating the production of R-pyocin designated as RPU15. TEM revealed pores formation in S. aureus membrane, and bacteriophage-like plaques were obvious on plates of R-pyocin-treated S. aureus. R-pyocin activity was neutralized by LTA of S. aureus and Listeria monocytogenes. Pseudomonas aeruginosa PU15 produced ~428 non-inducible R-pyocin particles. RPU15 sheath and tube protein-subunits exhibited a molecular weight of 38 and 23 kDa, respectively. RPU15 possessed activity against S. aureus, L. monocytogenes, Bacillus cereus and Candida albicans and reduced biofilm-biomasses of tested AMR strains. CONCLUSION Our results show the potential therapeutic use of R-pyocin due to its effectiveness on tested bacterial biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that investigates antimicrobial and anti-biofilm activity of R-pyocin activity against S. aureus. R-pyocin shows new phenomenon of bacteriophage-like plaques. Our findings represent a future therapeutic agent targeting both methicillin-resistant and vancomycin-resistant S. aureus.
Collapse
Affiliation(s)
- A A Mohamed
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - A M Elshawadfy
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - G Amin
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - A Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Abstract
At the intestinal host-microbe interface, the transmembrane mucin MUC1 can function as a physical barrier as well as a receptor for bacteria. MUC1 also influences epithelial cell morphology and receptor function. Various bacterial pathogens can exploit integrins to infect eukaryotic cells. It is yet unclear whether MUC1 influences the interaction of bacteria with integrins. We used Escherichia coli expressing the invasin (inv) protein of Yersinia pseudotuberculosis (E. coli inv) to assess the effects of MUC1 on β1 integrin (ITGB1)-mediated bacterial invasion. Our results show that expression of full-length MUC1 does not yield a physical barrier but slightly enhances E. coli inv uptake. Enzymatic removal of the MUC1 extracellular domain (ED) using a secreted protease of C1 esterase inhibitor (StcE) of pathogenic Escherichia coli had no additional effect on E. coli inv invasion. In contrast, expression of a truncated MUC1 that lacks the cytoplasmic tail (CT) reduced bacterial entry substantially. Substitution of tyrosine residues in the MUC1 CT also reduced bacterial uptake, while deletion of the C-terminal half of the cytoplasmic tail only had a minor effect, pointing to a regulatory role of tyrosine phosphorylation and the N-terminal region of the MUC1 CT in integrin-mediated uptake process. Unexpectedly, StcE removal of the ED in MUC1-ΔCT cells reversed the block in bacterial invasion. Together, these findings indicate that MUC1 can facilitate β1-integrin-mediated bacterial invasion by a concerted action of the large glycosylated extracellular domain and the membrane-juxtaposed cytoplasmic tail region.IMPORTANCE Bacteria can exploit membrane receptor integrins for cellular invasion, either by direct binding of bacterial adhesins or utilizing extracellular matrix components. MUC1 is a large transmembrane glycoprotein expressed by most epithelial cells that can have direct defensive or receptor functions at the host-microbe interface and is involved in facilitating integrin clustering. We investigated the role of epithelial MUC1 on β1 integrin-mediated bacterial invasion. We discovered that MUC1 does not act as a barrier but facilitates bacterial entry through β1 integrins. This process involves a concerted action of the MUC1 O-glycosylated extracellular domain and cytoplasmic tail. Our findings add a new dimension to the complexity of bacterial invasion mechanisms and provide novel insights into the distinct functions of MUC1 domains at the host-microbe interface.
Collapse
|
24
|
Cuervo G, Escrihuela-Vidal F, Gudiol C, Carratalà J. Current Challenges in the Management of Infective Endocarditis. Front Med (Lausanne) 2021; 8:641243. [PMID: 33693021 PMCID: PMC7937698 DOI: 10.3389/fmed.2021.641243] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Infective endocarditis is a relatively rare, but deadly cause of sepsis, with an overall mortality ranging from 20 to 25% in most series. Although the classic clinical classification into syndromes of acute or subacute endocarditis have not completely lost their usefulness, current clinical forms have changed according to the profound epidemiological changes observed in developed countries. In this review, we aim to address the changing epidemiology of endocarditis, several recent advances in the understanding of the pathophysiology of endocarditis and endocarditis-triggered sepsis, new useful diagnostic tools as well as current concepts in the medical and surgical management of this disease. Given its complexity, the management of infective endocarditis requires the close collaboration of multidisciplinary endocarditis teams that must decide on the diagnostic approach; the appropriate initial treatment in the critical phase; the detection of patients needing surgery and the timing of this intervention; and finally the accurate selection of patients for out-of-hospital treatment, either at home hospitalization or with oral antibiotic treatment.
Collapse
Affiliation(s)
- Guillermo Cuervo
- Infectious Diseases Department, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Escrihuela-Vidal
- Infectious Diseases Department, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Bellvitge University Hospital, University of Barcelona, Barcelona, Spain
| | - Carlota Gudiol
- Infectious Diseases Department, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Insitut Català d'Oncologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain
| | - Jordi Carratalà
- Infectious Diseases Department, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Peng J, Mishra B, Khader R, Felix L, Mylonakis E. Novel Cecropin-4 Derived Peptides against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:36. [PMID: 33401476 PMCID: PMC7824259 DOI: 10.3390/antibiotics10010036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Increasing microbial resistance, coupled with a lack of new antimicrobial discovery, has led researchers to refocus on antimicrobial peptides (AMPs) as novel therapeutic candidates. Significantly, the less toxic cecropins have gained widespread attention for potential antibacterial agent development. However, the narrow activity spectrum and long sequence remain the primary limitations of this approach. In this study, we truncated and modified cecropin 4 (41 amino acids) by varying the charge and hydrophobicity balance to obtain smaller AMPs. The derivative peptide C18 (16 amino acids) demonstrated high antibacterial activity against Gram-negative and Gram-positive bacteria, as well as yeasts. Moreover, C18 demonstrated a minimal inhibitory concentration (MIC) of 4 µg/mL against the methicillin-resistant Staphylococcus aureus (MRSA) and showed synergy with daptomycin with a fractional inhibition concentration index (FICI) value of 0.313. Similar to traditional cecropins, C18 altered the membrane potential, increased fluidity, and caused membrane breakage at 32 µg/mL. Importantly, C18 eliminated 99% persisters at 10 × MIC within 20 min and reduced the biofilm adherence by ~40% and 35% at 32 and 16 µg/mL. Besides, C18 possessed a strong binding ability with DNA at 7.8 μM and down-regulated the expression of virulence factor genes like agrA, fnb-A, and clf-1 by more than 5-fold (p < 0.05). Interestingly, in the Galleria mellonella model, C18 rescued more than 80% of larva infected with the MRSA throughout 120-h post-infection at a single dose of 8 mg/kg (p < 0.05). In conclusion, this study provides a reference for the transformation of cecropin to derive small peptides and presents C18 as an attractive therapeutic candidate to be developed to treat severe MRSA infections.
Collapse
Affiliation(s)
- Jian Peng
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Biswajit Mishra
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - Rajamohammed Khader
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - LewisOscar Felix
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| |
Collapse
|
26
|
Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis. Microb Pathog 2020; 152:104632. [PMID: 33242645 DOI: 10.1016/j.micpath.2020.104632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023]
Abstract
Pterostilbene (PTE) is a naturally occurring compound originally isolated from Pterocarpus spp. It has been widely used in traditional Indian medicine and later discovered to have various beneficial pharmacological effects such as antioxidant properties, hypoglycaemic or antitumor, and antimicrobial activity. This work is focused on demonstrating PTE synergistic effect with erythromycin and tetracycline to reduce their needed effective concentration for suppression of Staphylococcus epidermidis planktonic cells growth and biofilm formation. The secondary aim is to find these combinations effect on the production of its virulence factors. PTE was found to be effective in inhibition of its planktonic cells with MIC80 values 25-37.5 mg l-1. Simultaneously, it decreased the metabolic activity of biofilm cells and was especially effective on a clinical isolate (MBIC80 = 35 mg l-1) in contrast to the conventional antibiotics. In combination, PTE helped the antibiotics to overcome the tolerance of S. epidermidis biofilm cells (5 mg l-1 of each antibiotic with 49 mg l-1 PTE caused more than 85% inhibition of metabolic activity). It permeabilized cytoplasmic membrane of S. epidermidis cells and altered their surface hydrophobicity. Therefore, PTE has a great potential to enhance antibiotics action in the treatment of infections caused by this pathogen.
Collapse
|
27
|
Ahmad V. Prospective of extracellular matrix and drug correlations in disease management. Asian J Pharm Sci 2020; 16:147-160. [PMID: 33995610 PMCID: PMC8105415 DOI: 10.1016/j.ajps.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) comprises of many structural molecules that constitute the extracellular environment. ECM molecules are characterized by specific features like diversity, complexity and signaling, which are also results of improvement or development of disease mediated by some physiological changes. Several drugs have also been used to manage diseases and they have been reported to modulate ECM assembly, including physiological changes, beyond their primary targets and ECM metabolism. This review highlights the alteration of ECM environment for diseases and effect of different classes of drugs like nonsteroidal anti-inflammatory drugs, immune suppressant drug, steroids on ECM or its components. Thus, it is summarized from previously conducted researches that diseases can be managed by targeting specific components of ECM which are involved in the pathophysiology of diseases. Moreover, the drug delivery focused on targeting the ECM components also has the potential for the discovery of targeted and site specific release of drugs. Therefore, ECM or its components could be future targets for the development of new drugs for controlling various disease conditions including neurodegenerative diseases and cancers.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol 2020; 11:2054. [PMID: 32983039 PMCID: PMC7480013 DOI: 10.3389/fmicb.2020.02054] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge. The FnBPA and FnBPB A domains engage in homophilic cell-cell interactions and promote biofilm formation and enhance platelet aggregation. In this review we update the current understanding of the structure and functional properties of FnBPs and emphasize the role they may have in the staphylococcal infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
29
|
Çankirili NK, Kart D, Çelebi-Saltik B. Evaluation of the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on human umbilical cord CD146+ stem cells and stem cell-based decellularized matrix. Cell Tissue Bank 2020; 21:215-231. [PMID: 32020424 DOI: 10.1007/s10561-020-09815-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
This study aims to evaluate the CD146+ stem cells obtained from the human umbilical cord and their extracellular matrix proteins on in vitro Pseudomonas aeruginosa and Staphylococcus aureus biofilms to understand their possible antimicrobial activity. CD146+ stem cells were determined according to cell surface markers and differentiation capacity. Characterization of the decellularized matrix was done with DAPI, Masson's Trichrome staining and proteome analysis. Cell viability/proliferation of cells in co-cultures was evaluated by WST-1 and crystal-violet staining. The effects of cells and decellularized matrix proteins on biofilms were investigated on a drip flow biofilm reactor and their effects on gene expression were determined by RT-qPCR. We observed that CD146/105+ stem cells could differentiate adipogenically and decellularized matrix showed negative DAPI and positive collagen staining with Masson' s Trichrome. Proteome analysis of the decellularized matrix revealed some matrix components and growth factors. Although the decellularized matrix significantly reduced the cell counts of P. aeruginosa, no significant difference was observed for S. aureus cells in both groups. Supporting data was obtained from the gene expression results of P. aeruginosa with the significant down-regulation of rhlR and lasR. For S. aureus, icaADBC genes were significantly up-regulated when grown on the decellularized matrix.
Collapse
Affiliation(s)
- Nur Kübra Çankirili
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, 06100, Sihhiye, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
30
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
31
|
Li L, Wang G, Cheung A, Abdelhady W, Seidl K, Xiong YQ. MgrA Governs Adherence, Host Cell Interaction, and Virulence in a Murine Model of Bacteremia Due to Staphylococcus aureus. J Infect Dis 2020; 220:1019-1028. [PMID: 31177268 DOI: 10.1093/infdis/jiz219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/26/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND MgrA is an important global virulence gene regulator in Staphylococcus aureus. In the present study, the role of mgrA in host-pathogen interactions related to virulence was explored in both methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains. METHODS In vitro susceptibilities to human defense peptides (HDPs), adherence to fibronectin (Fn) and endothelial cells (ECs), EC damage, α-toxin production, expression of global regulator (eg, agr RNAIII) and its downstream effectors (eg, α-toxin [hla] and Fn binding protein A [fnbA]), MgrA binding to fnbA promoter, and the effect on HDP-induced mprF and dltA expression were analyzed. The impact of mgrA on virulence was evaluated using a mouse bacteremia model. RESULTS mgrA mutants displayed significantly higher susceptibility to HDPs, which might be related to the decreased HDP-induced mprF and dltA expression but decreased Fn and EC adherence, EC damage, α-toxin production, agr RNAIII, hla and fnbA expression, and attenuated virulence in the bacteremia model as compared to their respective parental and mgrA-complemented strains. Importantly, direct binding of MgrA to the fnbA promoter was observed. CONCLUSIONS These results suggest that mgrA mediates host-pathogen interactions and virulence and may provide a novel therapeutic target for invasive S. aureus infections.
Collapse
Affiliation(s)
- Liang Li
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance
| | - Genzhu Wang
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance
| | | | - Wessam Abdelhady
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance
| | - Kati Seidl
- University Hospital of Zurich, Switzerland
| | - Yan Q Xiong
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance.,David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
32
|
Haghi Ghahremanloi Olia A, Ghahremani M, Ahmadi A, Sharifi Y. Comparison of biofilm production and virulence gene distribution among community- and hospital-acquired Staphylococcus aureus isolates from northwestern Iran. INFECTION GENETICS AND EVOLUTION 2020; 81:104262. [PMID: 32109606 DOI: 10.1016/j.meegid.2020.104262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The emergence of antimicrobial-resistant isolates among Staphylococcus aureus and their genetic variations has become a major concern worldwide. The present study aims at comparing the biofilm formation and the genes encoding adhesion molecules in methicillin-susceptible, community- and hospital-acquired methicillin-resistant, vancomycin-intermediate and vancomycin-resistant S. aureus isolates. METHODOLOGY The current study was conducted on 60 S.aureus isolates, collected at Urmia University of Medical Sciences, Iran, between the years 2014 and 2015. The modified Congo-red agar and Microtiter plate methods were used to determine biofilm production. PCR was used to detect the genes which were associated with a protein family of staphylococcal microbial surface components recognizing adhesive matrix molecules. The data were analyzed using SPSS (IBM SPSS Statistics, version 16). RESULTS Of 60 isolates, 57 (95%) were biofilm producers. Unlike the bbp gene, which was only detected in 3 (5%) isolates, the eno and icaD genes were identified as the most prevalent as they were detected in 53 (88.3%) and 50 (85%) of 60 isolates, respectively. The dominant virulotype comprised eight genes (icaA, icaD, clfA, clfB, fnbA, cna, eno, ebpS) in eight isolates, six of which were community-acquired-MRSAs. CONCLUSION A high percentage of the S. aureus isolates could produce a biofilm which is more common among methicillin-susceptible isolates. The high frequency of eno and icaD genes suggests that these genes may synergistically function in the onset and progression of bacterial colonization and biofilm formation. Meanwhile, this ability may help the bacteria resist the exposure of antibacterial agents and cause severe infections.
Collapse
Affiliation(s)
- Ali Haghi Ghahremanloi Olia
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Maryam Ghahremani
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yaeghob Sharifi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran; Cellular and molecular research center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran.
| |
Collapse
|
33
|
Fibrinogen binding is affected by amino acid substitutions in C-terminal repeat region of fibronectin binding protein A. Sci Rep 2019; 9:11619. [PMID: 31406152 PMCID: PMC6690874 DOI: 10.1038/s41598-019-48031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/29/2019] [Indexed: 11/14/2022] Open
Abstract
Fibronectin-binding protein A (FnBPA), a protein displayed on the outer surface of Staphylococcus aureus, has a structured A-domain that binds fibrinogen (Fg) and a disordered repeat-region that binds fibronectin (Fn). Amino acid substitutions in Fn-binding repeats (FnBRs) have previously been linked to cardiovascular infection in humans. Here we used microtiter and atomic force microscopy (AFM) to investigate adhesion by variants of full-length FnBPA covalently anchored in the outer cell wall of Lactococcus lactis, a Gram-positive surrogate that otherwise lacks adhesins to mammalian ligands. Fn adhesion increased in five of seven FnBPA variants under static conditions. The bond targeting Fn increased its strength with load under mechanical dissociation. Substitutions extended bond lifetime (1/koff) up to 2.1 times for FnBPA-Fn. Weaker adhesion was observed for Fg in all FnBPA variants tested with microtiter. However, mechanical dissociation with AFM showed significantly increased tensile strength for Fg interacting with the E652D/H782Q variant. This is consistent with a force-induced mechanism and suggests that the dock, lock, and latch (DLL) mechanism is favored for Fg-binding under mechanical stress. Collectively, these experiments reveal that FnBPA exhibits bimodal, ligand-dependent adhesive behavior. Amino acid substitutions in the repeat-region of FnBPA impact binding to both ligands. This was unexpected for Fg since all variants have the same A-domain sequence, and the Fg-binding site is distant from the repeat region. This indicates that FnBRs may fold back on the A-domain in a way that impacts the DLL binding mechanism for Fg.
Collapse
|
34
|
Foster TJ. Surface Proteins of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0046-2018. [PMID: 31267926 PMCID: PMC10957221 DOI: 10.1128/microbiolspec.gpp3-0046-2018] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
The surface of Staphylococcus aureus is decorated with over 20 proteins that are covalently anchored to peptidoglycan by the action of sortase A. These cell wall-anchored (CWA) proteins can be classified into several structural and functional groups. The largest is the MSCRAMM family, which is characterized by tandemly repeated IgG-like folded domains that bind peptide ligands by the dock lock latch mechanism or the collagen triple helix by the collagen hug. Several CWA proteins comprise modules that have different functions, and some individual domains can bind different ligands, sometimes by different mechanisms. For example, the N-terminus of the fibronectin binding proteins comprises an MSCRAMM domain which binds several ligands, while the C-terminus is composed of tandem fibronectin binding repeats. Surface proteins promote adhesion to host cells and tissue, including components of the extracellular matrix, contribute to biofilm formation by stimulating attachment to the host or indwelling medical devices followed by cell-cell accumulation via homophilic interactions between proteins on neighboring cells, help bacteria evade host innate immune responses, participate in iron acquisition from host hemoglobin, and trigger invasion of bacteria into cells that are not normally phagocytic. The study of genetically manipulated strains using animal infection models has shown that many CWA proteins contribute to pathogenesis. Fragments of CWA proteins have the potential to be used in multicomponent vaccines to prevent S. aureus infections.
Collapse
|
35
|
Bertuzzi M, Hayes GE, Bignell EM. Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev 2019; 43:145-161. [PMID: 30657899 PMCID: PMC6435450 DOI: 10.1093/femsre/fuy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Intracellular occupancy of the respiratory epithelium is a useful pathogenic strategy facilitating microbial replication and evasion of professional phagocytes or circulating antimicrobial drugs. A less appreciated but growing body of evidence indicates that the airway epithelium also plays a crucial role in host defence against inhaled pathogens, by promoting ingestion and quelling of microorganisms, processes that become subverted to favour pathogen activities and promote respiratory disease. To achieve a deeper understanding of beneficial and deleterious activities of respiratory epithelia during antimicrobial defence, we have comprehensively surveyed all current knowledge on airway epithelial uptake of bacterial and fungal pathogens. We find that microbial uptake by airway epithelial cells (AECs) is a common feature of respiratory host-microbe interactions whose stepwise execution, and impacts upon the host, vary by pathogen. Amidst the diversity of underlying mechanisms and disease outcomes, we identify four key infection scenarios and use best-characterised host-pathogen interactions as prototypical examples of each. The emergent view is one in which effi-ciency of AEC-mediated pathogen clearance correlates directly with severity of disease outcome, therefore highlighting an important unmet need to broaden our understanding of the antimicrobial properties of respiratory epithelia and associated drivers of pathogen entry and intracellular fate.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| |
Collapse
|
36
|
Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci Rep 2018; 8:17697. [PMID: 30523267 PMCID: PMC6283846 DOI: 10.1038/s41598-018-36054-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Enzootic pneumonia incurs major economic losses to pork production globally. The primary pathogen and causative agent, Mycoplasma hyopneumoniae, colonises ciliated epithelium and disrupts mucociliary function predisposing the upper respiratory tract to secondary pathogens. Alleviation of disease is reliant on antibiotics, vaccination, and sound animal husbandry, but none are effective at eliminating M. hyopneumoniae from large production systems. Sustainable pork production systems strive to lower reliance on antibiotics but lack of a detailed understanding of the pathobiology of M. hyopneumoniae has curtailed efforts to develop effective mitigation strategies. M. hyopneumoniae is considered an extracellular pathogen. Here we show that M. hyopneumoniae associates with integrin β1 on the surface of epithelial cells via interactions with surface-bound fibronectin and initiates signalling events that stimulate pathogen uptake into clathrin-coated vesicles (CCVs) and caveosomes. These early events allow M. hyopneumoniae to exploit an intracellular lifestyle by commandeering the endosomal pathway. Specifically, we show: (i) using a modified gentamicin protection assay that approximately 8% of M. hyopneumoniae cells reside intracellularly; (ii) integrin β1 expression specifically co-localises with the deposition of fibronectin precisely where M. hyopneumoniae cells assemble extracellularly; (iii) anti-integrin β1 antibodies block entry of M. hyopneumoniae into porcine cells; and (iv) M. hyopneumoniae survives phagolysosomal fusion, and resides within recycling endosomes that are trafficked to the cell membrane. Our data creates a paradigm shift by challenging the long-held view that M. hyopneumoniae is a strict extracellular pathogen and calls for in vivo studies to determine if M. hyopneumoniae can traffic to extrapulmonary sites in commercially-reared pigs.
Collapse
|
37
|
Zhang H, Jiang H, Fan Y, Chen Z, Li M, Mao Y, Karrow NA, Loor JJ, Moore S, Yang Z. Transcriptomics and iTRAQ-Proteomics Analyses of Bovine Mammary Tissue with Streptococcus agalactiae-Induced Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11188-11196. [PMID: 30096236 DOI: 10.1021/acs.jafc.8b02386] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mastitis is a highly prevalent disease in dairy cows that causes large economic losses. Streptococcus agalactiae is a common contagious pathogen and a major cause of bovine mastitis. The immune response to intramammary infection with S. agalactiae in dairy cows is a very complex biological process. To understand the host immune response to S. agalactiae-induced mastitis, mammary gland of lactating Chinese Holstein cows was challenged with S. agalactiae via nipple tube perfusion. Visual inspection, analysis of milk somatic cell counts, histopathology, and transmission electron microscopy of mammary tissue were performed to confirm S. agalactiae-induced mastitis. Microarray and isobaric tags for relative and absolute quantitation (iTRAQ) were used to compare the transcriptomes and proteomes of healthy and mastitic mammary tissue. Compared with healthy tissue, a total of 129 differentially expressed genes (DEGs, fold change >2, p < 0.05) and 144 differentially expressed proteins (DEPs, fold change >1.2, p < 0.05) were identified in mammary tissue from S. agalactiae-challenged cows. Among the concordant 18 DEGs/DEPs, immunoglobulin M precursor, cathelicidin-7 precursor, integrin alpha-5, and complement C4-A-like isoform X1 were associated with mastitis. Intramammary infection with S. agalactiae triggered a complex host innate immune response that involved complement and coagulation cascades, ECM-receptor interaction, focal adhesion, and phagosome and bacterial invasion of epithelial cells pathways. These results provide candidate genes or proteins for further studies in the context of prevention and targeted treatment of bovine mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niel A Karrow
- Department of Animal Biosciences , University of Guelph , Guelph N1G 2W1 , Canada
| | - Juan J Loor
- Department of Animal Sciences & Division of Nutritional Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Stephen Moore
- Centre for Animal Science , University of Queensland , Saint Luci , Queensland 4072a , Australia
| | | |
Collapse
|
38
|
Distinct virulent network between healthcare- and community-associated Staphylococcus aureus based on proteomic analysis. Clin Proteomics 2018; 15:2. [PMID: 29321722 PMCID: PMC5757299 DOI: 10.1186/s12014-017-9178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Background Staphylococcus aureus (S. aureus or SA) is a leading cause of healthcare-associated (HA-) and community-associated (CA) infection. HA-SA isolates usually cause nosocomial pneumonia, bloodstream infections, catheter-related urinary tract infections, etc. On the other hand, CA-SA isolates usually cause highly fatal diseases, such as SSTIs as well as post influenza necrotic hemorrhagic pneumonia. The differences of the infection types are partially due to the unique characteristics between HA-SA and CA-SA isolates. For example, HA-SA isolates showed strong adherence to host epithelial cells, while CA-SA isolates displayed higher virulence due to the increased activity of the important quorum-sensing system accessory gene regulator (agr). Thus, the aim of this study was to characterize the proteomic difference between HA-SA and CA-SA lineage. Methods In this study, the extracted peptides from those representative strains were analyzed by LC-MS/MS. The protein-protein interaction network was constructed by bioinformatics and their expressions were verified by RT-PCR and Western blot. Results We demonstrated that Agr system (AgrA and AgrC) and its interactive factors (PhoP, SrrB, YycG, SarX, SigB and ClpP) based on the protein–protein interaction network were expressed significantly higher in the epidemic Chinese CA-SA lineage ST398 compared to HA-SA lineage ST239 by LC-MS/MS. We further verified the increased transcription of all these genes in ST398 by RT-PCR, suggesting that the higher expression of these genes/proteins probably play role in the acute infection of CA-SA. Moreover, surface-related proteins (FnbpA, SpA, Atl, ClfA, IsaA, IsaB, LtaS, SsaA and Cna) that are repressed by the Agr system have significantly higher expression in the epidemic Chinese HA-SA clone ST239 in comparison to CA-SA lineage ST398 by LC-MS/MS. Furthermore, we confirmed the significantly increased expression of two important adhesive proteins (Atl and ClfA) in ST239 by Western blot, which may contribute to the durative infection of HA-SA. Conclusion The results suggest that the different proteomic profile, at least partially, contribute to the pathogenic differences between HA-SA and CA-SA. Electronic supplementary material The online version of this article (10.1186/s12014-017-9178-5) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Morgene MF, Botelho-Nevers E, Grattard F, Pillet S, Berthelot P, Pozzetto B, Verhoeven PO. Staphylococcus aureus colonization and non-influenza respiratory viruses: Interactions and synergism mechanisms. Virulence 2018; 9:1354-1363. [PMID: 30058450 PMCID: PMC6177244 DOI: 10.1080/21505594.2018.1504561] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Viral infections of the respiratory tract can be complicated by bacterial superinfection, resulting in a significantly longer duration of illness and even a fatal outcome. In this review, we focused on interactions between S. aureus and non-influenza viruses. Clinical data evidenced that rhinovirus infection may increase the S. aureus carriage load in humans and its spread. In children, respiratory syncytial virus infection is associated with S. aureus carriage. The mechanisms by which some non-influenza respiratory viruses predispose host cells to S. aureus superinfection can be summarized in three categories: i) modifying expression levels of cellular patterns involved in S. aureus adhesion and/or internalization, ii) inducing S. aureus invasion of epithelial cells due to the disruption of tight junctions, and iii) decreasing S. aureus clearance by altering the immune response. The comprehension of pathways involved in S. aureus-respiratory virus interactions may help developing new strategies of preventive and curative therapy.
Collapse
Affiliation(s)
- M. Fedy Morgene
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Infectious Diseases Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Florence Grattard
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Sylvie Pillet
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Bruno Pozzetto
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O. Verhoeven
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
40
|
Prevalence of antibiotic resistance and virulence factors encoding genes in clinical Staphylococcus aureus isolates in Saudi Arabia. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2017. [DOI: 10.1016/j.cegh.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices. Sci Rep 2017; 7:13665. [PMID: 29057978 PMCID: PMC5651841 DOI: 10.1038/s41598-017-14168-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix protein Emp of Staphylococcus aureus is a secreted adhesin that mediates interactions between the bacterial surface and extracellular host structures. However, its structure and role in staphylococcal pathogenesis remain unknown. Using multidisciplinary approaches, including circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, transmission electron (TEM) and immunogold transmission electron microscopy, functional ELISA assays and in silico techniques, we characterized the Emp protein. We demonstrated that Emp and its truncated forms bind to suprastructures in human skin, cartilage or bone, among which binding activity seems to be higher for skin compounds. The binding domain is located in the C-terminal part of the protein. CD spectroscopy revealed high contents of β-sheets (39.58%) and natively disordered structures (41.2%), and TEM suggested a fibrous structure consisting of Emp polymers. The N-terminus seems to be essential for polymerization. Due to the uncommonly high histidine content, we suggest that Emp represents a novel type of histidine-rich protein sharing structural similarities to leucine-rich repeats proteins as predicted by the I-TASSER algorithm. These new findings suggest a role of Emp in infections of deeper tissue and open new possibilities for the development of novel therapeutic strategies.
Collapse
|
42
|
Charmi far B, Mahdavi S. Frequency of Adherence Genes cna, fnbA and fnbB in Staphylococcus aureus Isolates from Traditional Cheese. MEDICAL LABORATORY JOURNAL 2017. [DOI: 10.29252/mlj.11.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
43
|
Kanwal S, Jensch I, Palm GJ, Brönstrup M, Rohde M, Kohler TP, Somplatzki D, Tegge W, Jenkinson HF, Hammerschmidt S. Mapping the recognition domains of pneumococcal fibronectin-binding proteins PavA and PavB demonstrates a common pattern of molecular interactions with fibronectin type III repeats. Mol Microbiol 2017; 105:839-859. [PMID: 28657670 DOI: 10.1111/mmi.13740] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
Abstract
Colonization of mucosal respiratory surfaces is a prerequisite for the human pathobiont Streptococcus pneumoniae (the pneumococcus) to cause severe invasive infections. The arsenal of pneumococcal adhesins interacts with a multitude of extracellular matrix proteins. A paradigm for pneumococci is their interaction with the adhesive glycoprotein fibronectin, which facilitates bacterial adherence to host cells. Here, we deciphered the molecular interaction between fibronectin and pneumococcal fibronectin-binding proteins (FnBPs) PavA and PavB respectively. We show in adherence and binding studies that the pneumococcal interaction with fibronectin is a non-human specific trait. PavA and PavB target at least 13 out of 15 type III fibronectin domains as demonstrated in ligand overlay assays, surface plasmon resonance studies and SPOT peptide arrays. Strikingly, both pneumococcal FnBPs recognize similar peptides in targeted type III repeats. Structural comparisons revealed that the targeted type III repeat epitopes cluster on the inner strands of both β-sheets forming the fibronectin domains. Importantly, synthetic peptides of FnIII1 , FnIII5 or FnIII15 bind directly to FnBPs PavA and PavB respectively. In conclusion, our study suggests a common pattern of molecular interactions between pneumococcal FnBPs and fibronectin. The specific epitopes recognized in this study can potentially be tested as antimicrobial targets in further scientific endeavours.
Collapse
Affiliation(s)
- Sajida Kanwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Inga Jensch
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Gottfried J Palm
- Department of Structural Biology, Institute for Biochemistry, University of Greifswald, Greifswald, D-17487, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Braunschweig, D-38124, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, ZEIM, Helmholtz Centre for Infection Research, Braunschweig, D-38124, Germany
| | - Thomas P Kohler
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Daniela Somplatzki
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, D-97070, Germany
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Braunschweig, D-38124, Germany
| | - Howard F Jenkinson
- Department of Oral and Dental Science, University of Bristol, Bristol, UK
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, D-97070, Germany
| |
Collapse
|
44
|
Calonghi N, Parolin C, Sartor G, Verardi L, Giordani B, Frisco G, Marangoni A, Vitali B. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane. Benef Microbes 2017; 8:625-633. [PMID: 28618863 DOI: 10.3920/bm2016.0212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vaginal lactobacilli offer protection against recurrent urinary and vaginal infections. The precise mechanisms underlying the interaction between lactobacilli and the host epithelium remain poorly understood at the molecular level. Deciphering such events can provide valuable information on the mode of action of commensal and probiotic bacteria in the vaginal environment. We investigated the effects exerted by five Lactobacillus strains of vaginal origin (Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus vaginalis BC15) on the physical properties of the plasma membrane in a cervical cell line (HeLa). The interaction of the vaginal lactobacilli with the cervical cells determined two kinds of effects on plasma membrane: (1) modification of the membrane polar lipid organisation and the physical properties (L. crispatus BC1 and L. gasseri BC9); (2) modification of α5β1 integrin organisation (L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15). These two mechanisms can be at the basis of the protective role of lactobacilli against Candida albicans adhesion. Upon stimulation with all Lactobacillus strains, we observed a reduction of the basal oxidative stress in HeLa cells that could be related to modifications in physical properties and organisation of the plasma membrane. These results confirm the strictly strain-specific peculiarities of Lactobacillus and deepen the understanding of the mechanisms underlying the health-promoting role of this genus within the vaginal ecosystem.
Collapse
Affiliation(s)
- N Calonghi
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - C Parolin
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - G Sartor
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - L Verardi
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - B Giordani
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - G Frisco
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - A Marangoni
- 2 Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - B Vitali
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| |
Collapse
|
45
|
Murai M, Moriyama H, Hata E, Takeuchi F, Amemura-Maekawa J. Variation and association of fibronectin-binding protein genes fnbA and fnbB in Staphylococcus aureus Japanese isolates. Microbiol Immunol 2017; 60:312-25. [PMID: 26990092 DOI: 10.1111/1348-0421.12377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/28/2016] [Accepted: 03/10/2016] [Indexed: 01/02/2023]
Abstract
Fibronectin-binding proteins A and B (FnBPA and FnBPB) mediate adhesion of Staphylococcus aureus to fibrinogen, elastin and fibronectin. FnBPA and FnBPB are encoded by two closely linked genes, fnbA and fnbB, respectively. With the exception of the N-terminal regions, the amino acid sequences of FnBPA and FnBPB are highly conserved. To investigate the genetics and evolution of fnbA and fnbB, the most variable regions, which code for the 67th amino acids of the A through B regions (A67-B) of fnbA and fnbB, were focused upon. Eighty isolates of S. aureus in Japan were sequenced and 19 and 18 types in fnbA and fnbB, respectively, identified. Although the phylogeny of fnbA and fnbB were found to be quite different, each fnbA type connected with a specific fnbB type, indicating that fnbA and fnbB mutate independently, whereas the combination of both genes after recombination is stable. Hence those fnbA-fnbB combinations were defined as FnBP sequence types (FnSTs). Representative isolates of each FnST were assigned distinct STs by multilocus sequence typing, suggesting correspondence of FnST with genome lineage. Linkage disequilibrium (LD) analysis of the A67-B region revealed that subdomains N2, N3 and FnBR1 form a LD block in fnbA, whereas N2 and N3 form two independent LD blocks in fnbB. N2-N3 three-dimensional structural models indicated that not only the variable amino acid residues, but also well-conserved amino acid residues between FnBPA and FnBPB, are located on the surface of the protein. These results highlight a molecular process of the FnBP that has evolved by mingled mutation and recombination with retention of functions.
Collapse
Affiliation(s)
- Miyo Murai
- Department of Health Sciences, Saitama Prefectural University,820, Sannomiya, Koshigaya-shi, Saitama 343-8540
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, 243 Manter Hall, Lincoln, Nebraska 68588, USA
| | - Eiji Hata
- Dairy Hygiene Research Division, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-0045
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640
| | - Junko Amemura-Maekawa
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
46
|
Richter E, Harms M, Ventz K, Nölker R, Fraunholz MJ, Mostertz J, Hochgräfe F. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus. J Proteome Res 2016; 15:4369-4386. [DOI: 10.1021/acs.jproteome.6b00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Erik Richter
- Competence
Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489 Greifswald, Germany
| | - Manuela Harms
- Competence
Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489 Greifswald, Germany
| | - Katharina Ventz
- Competence
Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489 Greifswald, Germany
| | - Rolf Nölker
- Competence
Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489 Greifswald, Germany
| | | | - Jörg Mostertz
- Competence
Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489 Greifswald, Germany
| | - Falko Hochgräfe
- Competence
Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
47
|
The comparison of antimicrobial effectiveness of contact lens solutions. Int Ophthalmol 2016; 37:1103-1114. [PMID: 27738866 DOI: 10.1007/s10792-016-0375-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to compare the effects of widely used multipurpose contact lens solutions against Staphylococcus aureus and Pseudomonas aeruginosa, in addition to cystic and trophozoite forms of Acanthamoeba castellanii and A. polyphaga, that cause microbial keratitis. METHODS Three multipurpose solutions were tested: SOLO-care, ReNu, and Opti-Free Express. The test solutions were challenged with P. aeruginosa (ATCC 27853) and S. aureus (ATCC 2913) based on the ISO stand-alone and regiment test procedure for disinfecting products, A. polyphaga (ATCC 30871) and A. castellanii (1501/1A) cystic and trophozoite forms. Multipurpose solutions were sampled for surviving microorganisms at manufacturer's minimum recommended disinfection time. The number of viable organisms was determined, and log reductions were calculated. RESULTS ReNu and SOLO-care resulted in a reduction greater than the required mean 3.0 logarithmic reduction against S. aureus, and SOLO-care and Opti-Free Express resulted in a reduction more than the required mean 3.0 logarithmic reduction against P. aeruginosa. Against the cystic and trophozoite forms of A. castellanii, the log reduction provided by SOLO-care was 1.01 and 1.31 log, respectively. ReNu provided a 0.83 log reduction of the cystic form and a 1.21 log reduction of the trophozoite form. Using Opti-Free Express, the log reduction for both forms was 1.31. SOLO-care led to a 0.61 log reduction of the cystic form of A. polyphaga and a 1.01 log reduction of the trophozoite form. ReNu provided a 0.41 log reduction of the cystic form and a 4.99 log reduction of the trophozoite form. Opti-free Express resulted in a 0.89 log reduction of the cystic form and a 3.11 log reduction of the trophozoite form. CONCLUSIONS Multipurpose contact lens solutions using similar regimens can show different disinfection abilities.
Collapse
|
48
|
Foster TJ. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2016; 35:1923-1931. [PMID: 27604831 DOI: 10.1007/s10096-016-2763-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/16/2016] [Indexed: 12/01/2022]
Abstract
Staphylococcus aureus expresses two distinct but closely related multifunctional cell wall-anchored (CWA) proteins that bind to the host glycoprotein fibronectin. The fibronectin binding proteins FnBPA and FnBPB comprise two distinct domains. The C-terminal domain comprises a tandem array of repeats that bind to the N-terminal type I modules of fibronectin by the tandem β-zipper mechanism. This causes allosteric activation of a cryptic integrin binding domain, allowing fibronectin to act as a bridge between bacterial cells and the α5β1 integrin on host cells, triggering bacterial uptake by endocytosis. Variants of FnBPA with polymorphisms in fibronectin binding repeats (FnBRs) that increase affinity for the ligand are associated with strains that infect cardiac devices and cause endocarditis, suggesting that binding affinity is particularly important in intravascular infections. The N-terminal A domains of FnBPA and FnBPB have diverged into seven antigenically distinct isoforms. Each binds fibrinogen by the 'dock, lock and latch' mechanism characteristic of clumping factor A. However, FnBPs can also bind to elastin, which is probably important in adhesion to connective tissue in vivo. In addition, they can capture plasminogen from plasma, which can be activated to plasmin by host and bacterial plasminogen activators. The bacterial cells become armed with a host protease which destroys opsonins, contributing to immune evasion and promotes spreading during skin infection. Finally, some methicillin-resistant S. aureus (MRSA) strains form biofilm that depends on the elaboration of FnBPs rather than polysaccharide. The A domains of the FnBPs can interact homophilically, allowing cells to bind together as the biofilm accumulates.
Collapse
Affiliation(s)
- T J Foster
- Microbiology Department, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
49
|
Liang X, Garcia BL, Visai L, Prabhakaran S, Meenan NAG, Potts JR, Humphries MJ, Höök M. Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs. PLoS One 2016; 11:e0159118. [PMID: 27434228 PMCID: PMC4951027 DOI: 10.1371/journal.pone.0159118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/27/2016] [Indexed: 12/03/2022] Open
Abstract
Adherence of microbes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with α5β1 integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/α5β1integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/α5β1 integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/α5β1 on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic α5β1 interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/α5β1 affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs.
Collapse
Affiliation(s)
- Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | - Brandon L. Garcia
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | - Livia Visai
- Dep. of Molecular Medicine, UdR INSTM, Center for Tissue Engineering (C.I.T.), University of Pavia, 27100, Pavia, Italy
- Dep. of Occupational Medicine, Ergonomy and Disability, Salvatore Maugeri Foundation, IRCCS, Nanotechnology Laboratory, 27100, Pavia, Italy
| | - Sabitha Prabhakaran
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | | | - Jennifer R. Potts
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
- * E-mail:
| |
Collapse
|
50
|
The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection. Immunobiology 2016; 221:1091-101. [PMID: 27424796 DOI: 10.1016/j.imbio.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen that is decorated by glycopolymers, including wall teichoic acid (WTA), peptidoglycan, lipoteichoic acid, and capsular polysaccharides. These bacterial surface glycopolymers are recognized by serum antibodies and a variety of pattern recognition molecules, including mannose-binding lectin (MBL). Recently, we demonstrated that human serum MBL senses staphylococcal WTA. Whereas MBL in infants who have not yet fully developed adaptive immunity binds to S. aureus WTA and activates complement serum, MBL in adults who have fully developed adaptive immunity cannot bind to WTA because of an inhibitory effect of serum anti-WTA IgG. Furthermore, we showed that human anti-WTA IgGs purified from pooled adult serum IgGs triggered activation of classical complement-dependent opsonophagocytosis against S. aureus. Because the epitopes of WTA that are recognized by anti-WTA IgG and MBL have not been determined, we constructed several S. aureus mutants with altered WTA glycosylation. Our intensive biochemical studies provide evidence that the β-GlcNAc residues of WTA are required for the induction of anti-WTA IgG-mediated opsonophagocytosis and that both β- and α-GlcNAc residues are required for MBL-mediated complement activation. The molecular interactions of other S. aureus cell wall components and host recognition proteins are also discussed. In summary, in this review, we discuss the biological importance of S. aureus cell surface glycopolymers in complement activation and host defense responses.
Collapse
|