1
|
Schroedter L, Schneider R, Venus J. Transforming waste wood into pure L-(+)-lactic acid: Efficient use of mixed sugar media through cell-recycled continuous fermentation. BIORESOURCE TECHNOLOGY 2025; 419:132010. [PMID: 39719203 DOI: 10.1016/j.biortech.2024.132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
Lignocellulosic media, containing diverse sugars and growth inhibitor compounds, pose great challenges to fermentation processes. This study tested thermophile Heyndrickxia coagulans strains for the production of L-(+)-lactic acid from waste wood hydrolysate. H. coagulans A166 reached high titers of up to 94.6 g·L-1 lactic acid in batch studies, tolerating furfuralic compounds, however, productivity was affected by carbon catabolite repression. Within cell-recycled continuous fermentation studies, this limitation was overcome by determining optimal initial dilution rates: complete and concurrent utilization of mixed sugars was realized at 7.6 g·L-1·h-1 productivity - an increase by factor 4.5-5.8 compared to batch studies. Work on synthetic media enabled process durations of up to 188 h, providing further insights into the process behavior and offering cues for further optimization. Employing inhibitor compound tolerant H. coagulans A166 at optimal initial dilution rate, cell-recycled continuous fermentation is a promising approach to enhance lactic acid production from lignocellulose media.
Collapse
Affiliation(s)
- Linda Schroedter
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| |
Collapse
|
2
|
Li M, Zhu W, Fan J, Gao M, Wang X, Wu C, Wang Y, Lu Y. Carbon catabolite repression during the simultaneous utilization of lignocellulose-derived sugars in lactic acid production: Influencing factors and mitigation strategies. ENVIRONMENTAL RESEARCH 2025; 266:120484. [PMID: 39617153 DOI: 10.1016/j.envres.2024.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Lignocellulose is the most abundant, sustainable, and comparatively economical renewable biomass containing ample fermentable sugars for bio-based chemical production, such as lactic acid (LA). LA is a versatile chemical with substantial global demand. However, the concurrent utilization of mixed sugars derived from lignocellulose, including glucose, xylose, and arabinose, remains a formidable challenge because of the metabolic regulation of carbon catabolite repression (CCR), in which glucose is preferentially utilized over non-glucose sugars, resulting in the loss of carbon resources and a decrease in biorefinery efficacy. Most current studies on CCR have concentrated on elucidating the principles and their impact on specific bacterial species using mixed carbon sources. However, there remains a notable dearth of comprehensive reviews summarizing the underlying principles and corresponding mitigation strategies across other bacterial strains encountering similar challenges. In light of this, this article delineates the possible factors that lead to CCR, including signal transduction and metabolic pathways. Additionally, the fermentation conditions and nutrients are described. Finally, this study proposes appropriate mitigation strategies to overcome the aforementioned obstacles and presents new insights into the rapid and simultaneous consumption of mixed sugars to bolster the production yields of biofuels and chemicals in the future.
Collapse
Affiliation(s)
- Mingxi Li
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Wenbin Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, Guangdong, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiamei Fan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China; Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China.
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China.
| |
Collapse
|
3
|
Chu W, Guo Y, Wu Y, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Enhancing Cellular and Enzymatic Properties Through In Vivo Continuous Evolution. Chembiochem 2024; 25:e202400564. [PMID: 39248206 DOI: 10.1002/cbic.202400564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Directed evolution seeks to evolve target genes at a rate far exceeding the natural mutation rate, thereby endowing cellular and enzymatic properties with desired traits. In vivo continuous directed evolution achieves these purposes by generating libraries within living cells, enabling a continuous cycle of mutant generation and selection, enhancing the exploration of gene variants. Continuous evolution has become powerful tools for unraveling evolution mechanism and improving cellular and enzymatic properties. This review categorizes current continuous evolution into three distinct classes: non-targeted chromosomal, targeted chromosomal, and extra-chromosomal hypermutation approaches. It also compares various continuous evolution strategies based on different principles, providing a reference for selecting suitable methods for specific evolutionary goals. Furthermore, this review discusses the two primary limitations for further widespread application of in vivo continuous evolution, which are lack of general applicability and insufficient mutagenic capability. We envision that developing generally applicable mutagenic components and methods to enhance mutation rates for in vivo continuous evolution are promising future directions for wide range applications of continuous evolution.
Collapse
Affiliation(s)
- Weiran Chu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaxin Guo
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Lee DH, Lee W, Shin D, Im H, Jung G, Lee YB, Choi J. Genomic and metabolomic analysis of Latilactobacillus sakei DCF0720 for black soybean yogurt fermentation. Int J Food Microbiol 2024; 425:110897. [PMID: 39241349 DOI: 10.1016/j.ijfoodmicro.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid bacteria are commonly used in plant-based fermentation to reduce off-flavor and improve sensory characteristics. However, there have been few studies on Latilactobacillus sakei for plant-based yogurt fermentation and, particularly, its metabolic features at the genomic level remain unclear. This study aims to analyze the fermentation characteristics of the L. sakei DCF0720 strain and compare genetics and metabolic relations. For this, DCF0720 was used to ferment the black soybean milk and conduct the physicochemical analysis and sensory test. The genomic and metabolic analyses were performed by complete genome sequencing and 500 MHz 1H NMR, respectively. As a result, DCF0720 exhibited enhanced fermentation performance and sensory evaluations at 37 °C compared to 30 °C, which is generally recognized as the optimal growth temperature for most L. sakei strains. It also produced flavor enhancing volatile compounds such as acetoin and hydroxyacetone, possessing all three key genes for acetoin biosynthesis. DCF0720 lacks 2,3-butanediol dehydrogenase, which leads to the inhibition of acetoin production. DCF0720 possesses a complete pathway to utilize primary black soybean carbon sources such as sucrose, raffinose, and stachyose. DCF0720 also possesses genes for the GH28 family, including the key enzymes in the hydrolysis of pectin substances, which means eliminating the main soybean nonstarch polysaccharides. This study demonstrates that DCF0720 is a suitable starter for plant-based yogurt fermentation, providing a better understanding of fermentation conditions with genetic and metabolic features for black soybean yogurt. Various carbon source utilization abilities with depth metabolic pathway analysis provide that DCF0720 can be employed to develop enhanced starter cultures for black soybean yogurt and diverse plant-based yogurts.
Collapse
Affiliation(s)
- Dong Hyeon Lee
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Wonjong Lee
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Dongho Shin
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Haecheon Im
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Guhun Jung
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Yoon-Bok Lee
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Jaekwon Choi
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| |
Collapse
|
5
|
Zhu J, Liu W, Guo L, Tan X, Sun W, Zhang H, Zhang H, Tian W, Jiang T, Meng W, Liu Y, Kang Z, Gao C, Lü C, Xu P, Ma C. Acetate production from corn stover hydrolysate using recombinant Escherichia coli BL21 (DE3) with an EP-bifido pathway. Microb Cell Fact 2024; 23:300. [PMID: 39523316 PMCID: PMC11552437 DOI: 10.1186/s12934-024-02575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acetate is an important chemical feedstock widely applied in the food, chemical and textile industries. It is now mainly produced from petrochemical materials through chemical processes. Conversion of lignocellulose biomass to acetate by biotechnological pathways is both environmentally beneficial and cost-effective. However, acetate production from carbohydrate in lignocellulose hydrolysate via glycolytic pathways involving pyruvate decarboxylation often suffers from the carbon loss and results in low acetate yield. RESULTS Escherichia coli BL21 (DE3) was confirmed to have high tolerance to acetate in this work. Thus, it was selected from seven laboratory E. coli strains for acetate production from lignocellulose hydrolysate. The byproduct-producing genes frdA, ldhA, and adhE in E. coli BL21 (DE3) were firstly knocked out to decrease the generation of succinate, lactate, and ethanol. Then, the genes pfkA and edd were also deleted and bifunctional phosphoketolase and fructose-1,6-bisphosphatase were overexpressed to construct an EP-bifido pathway in E. coli BL21 (DE3) to increase the generation of acetate from glucose. The obtained strain E. coli 5K/pFF can produce 22.89 g/L acetate from 37.5 g/L glucose with a yield of 0.61 g/g glucose. Finally, the ptsG gene in E. coli 5K/pFF was also deleted to make the engineered strain E. coli 6K/pFF to simultaneously utilize glucose and xylose in lignocellulosic hydrolysates. E. coli 6K/pFF can produce 20.09 g/L acetate from corn stover hydrolysate with a yield of 0.52 g/g sugar. CONCLUSION The results presented here provide a promising alternative for acetate production with low cost substrate. Besides acetate production, other biotechnological processes might also be developed for other acetyl-CoA derivatives production with lignocellulose hydrolysate through further metabolic engineering of E. coli 6K/pFF.
Collapse
Affiliation(s)
- Jieni Zhu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Leilei Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Hongxu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Hui Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wenjia Tian
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| |
Collapse
|
6
|
VanArsdale E, Kelly E, Sayer CV, Vora GJ, Tschirhart T. Engineering xylose induction in Vibrio natriegens for biomanufacturing applications. Biotechnol Bioeng 2024; 121:3572-3581. [PMID: 39031482 DOI: 10.1002/bit.28804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Xylose is an abundant, inexpensive and readily available carbohydrate common in minimally processed feedstocks such as seaweed and algae. While a wide variety of marine microbes have evolved to utilize seaweed and algae, only a few currently have the requisite characteristics and genetic engineering tools necessary to entertain the use of these underutilized feedstocks. The rapidly growing Gram-negative halophilic bacterium Vibrio natriegens is one such chassis. In this study, we engineered and tested xylose induction in V. natriegens as a tool for scalable bioproduction applications. First, we created a sensing construct based on the xylose operon from Escherichia coli MG1665 and measured its activity using a fluorescent reporter and identified that cellular import plays a key role in induction strength and that expression required the XylR transcription factor. Next, we identified that select deletions of the promoter region enhance gene expression, limiting the effect of carbohydrate repression when xylose is used as an inducer in the presence of industrially relevant carbon sources. Lastly, we used the optimized constructs to produce the biopolymer melanin using seawater mimetic media. One of these formulations utilized a nori-based seaweed extract as an inducer and demonstrated melanin yields comparable to previously optimized methods using a more traditional and costly inducer. Together, the results demonstrate that engineering xylose induction in V. natriegens can provide an effective and lower cost option for timed biosynthesis in scalable biomanufacturing applications using renewable feedstocks.
Collapse
Affiliation(s)
- Eric VanArsdale
- National Research Council, United States Naval Research Laboratory, Washington, District of Columbia, USA
| | - Erin Kelly
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Cameron V Sayer
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Gary J Vora
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Tanya Tschirhart
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Yuan D, Liu B, Jiang L, Chen Y, Xu G, Lin J, Yang L, Lian J, Jiang Y, Ye L, Wu M. XylR Overexpression in Escherichia coli Alleviated Transcriptional Repression by Arabinose and Enhanced Xylitol Bioproduction from Xylose Mother Liquor. Appl Biochem Biotechnol 2024; 196:6624-6637. [PMID: 38393582 DOI: 10.1007/s12010-024-04890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Xylitol is a polyol widely used in food, pharmaceuticals, and light industries. It is currently produced through the chemical catalytic hydrogenation of xylose and generates xylose mother liquor as a substantial byproduct in the procedure of xylose extraction. If xylose mother liquor could also be efficiently bioconverted to xylitol, the greenness and atom economy of xylitol production would be largely improved. However, xylose mother liquor contains a mixture of glucose, xylose, and arabinose, raising the issue of carbon catabolic repression in its utilization by microbial conversion. Targeting this challenge, the transcriptional activator XylR was overexpressed in a previously constructed xylitol-producing E. coli strain CPH. The resulting strain CPHR produced 16.61 g/L of xylitol in shake-flask cultures from the mixture of corn cob hydrolysate and xylose mother liquor (1:1, v/v) with a xylose conversion rate of 90.1%, which were 2.23 and 2.15 times higher than the starting strain, respectively. Furthermore, XylR overexpression upregulated the expression levels of xylE, xylF, xylG, and xylH genes by 2.08-2.72 times in arabinose-containing medium, suggesting the alleviation of transcriptional repression of xylose transport genes by arabinose. This work lays the foundation for xylitol bioproduction from xylose mother liquor.
Collapse
Affiliation(s)
- Dongxu Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Bingbing Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lin Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yuhuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Gang Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yiqi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, People's Republic of China.
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, People's Republic of China.
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou, 318000, People's Republic of China.
| |
Collapse
|
8
|
Taylor ZA, Chen P, Noeparvar P, Pham DN, Walker AR, Kitten T, Zeng L. Glycerol metabolism contributes to competition by oral streptococci through production of hydrogen peroxide. J Bacteriol 2024; 206:e0022724. [PMID: 39171915 PMCID: PMC11411925 DOI: 10.1128/jb.00227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
As a biological byproduct from both humans and microbes, glycerol's contribution to microbial homeostasis in the oral cavity remains understudied. In this study, we examined glycerol metabolism by Streptococcus sanguinis, a commensal associated with oral health. Genetic mutants of glucose-PTS enzyme II (manL), glycerol metabolism (glp and dha pathways), and transcriptional regulators were characterized with regard to glycerol catabolism, growth, production of hydrogen peroxide (H2O2), transcription, and competition with Streptococcus mutans. Biochemical assays identified the glp pathway as a novel source for H2O2 production by S. sanguinis that is independent of pyruvate oxidase (SpxB). Genetic analysis indicated that the glp pathway requires glycerol and a transcriptional regulator, GlpR, for expression and is negatively regulated by PTS, but not the catabolite control protein, CcpA. Conversely, deletion of either manL or ccpA increased the expression of spxB and a second, H2O2-non-producing glycerol metabolic pathway (dha), indicative of a mode of regulation consistent with conventional carbon catabolite repression (CCR). In a plate-based antagonism assay and competition assays performed with planktonic and biofilm-grown cells, glycerol greatly benefited the competitive fitness of S. sanguinis against S. mutans. The glp pathway appears to be conserved in several commensal streptococci and actively expressed in caries-free plaque samples. Our study suggests that glycerol metabolism plays a more significant role in the ecology of the oral cavity than previously understood. Commensal streptococci, though not able to use glycerol as a sole carbohydrate source for growth, benefit from the catabolism of glycerol through production of both ATP and H2O2. IMPORTANCE Glycerol is an abundant carbohydrate in the oral cavity. However, little is understood regarding the metabolism of glycerol by commensal streptococci, some of the most abundant oral bacteria. This was in part because most streptococci cannot grow on glycerol as the sole carbon source. In this study, we show that Streptococcus sanguinis, a commensal associated with dental health, can degrade glycerol for persistence and competition through two pathways, one of which generates hydrogen peroxide at levels capable of inhibiting Streptococcus mutans. Preliminary studies suggest that several additional commensal streptococci are also able to catabolize glycerol, and glycerol-related genes are actively expressed in human dental plaque samples. Our findings reveal the potential of glycerol to significantly impact microbial homeostasis, which warrants further exploration.
Collapse
Affiliation(s)
- Zachary A Taylor
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ping Chen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Payam Noeparvar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Danniel N Pham
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Alejandro R Walker
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Lin Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
9
|
Kim GY, Yang J, Han YH, Seo SW. Synthetic redesign of Escherichia coli W for faster metabolism of sugarcane molasses. Microb Cell Fact 2024; 23:242. [PMID: 39252026 PMCID: PMC11382391 DOI: 10.1186/s12934-024-02520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Sugarcane molasses, rich in sucrose, glucose, and fructose, offers a promising carbon source for industrial fermentation due to its abundance and low cost. However, challenges arise from the simultaneous utilization of multiple sugars and carbon catabolite repression (CCR). Despite its nutritional content, sucrose metabolism in Escherichia coli, except for W strain, remains poorly understood, hindering its use in microbial fermentation. In this study, E. coli W was engineered to enhance sugar consumption rates and overcome CCR. This was achieved through the integration of a synthetically designed csc operon and the optimization of glucose and fructose co-utilization pathways. These advancements facilitate efficient utilization of sugarcane molasses for the production of 3-hydroxypropionic acid (3-HP), contributing to sustainable biochemical production processes. RESULTS In this study, we addressed challenges associated with sugar metabolism in E. coli W, focusing on enhancing sucrose consumption and improving glucose-fructose co-utilization. Through targeted engineering of the sucrose utilization system, we achieved accelerated sucrose consumption rates by modulating the expression of the csc operon components, cscB, cscK, cscA, and cscR. Our findings revealed that monocistronic expression of the csc genes with the deletion of cscR, led to optimal sucrose utilization without significant growth burden. Furthermore, we successfully alleviated fructose catabolite repression by modulating the binding dynamics of FruR with the fructose PTS regulon, enabling near-equivalent co-utilization of glucose and fructose. To validate the industrial applicability of our engineered strain, we pursued 3-HP production from sugarcane molasses. By integrating heterologous genes and optimizing metabolic pathways, we achieved improvements in 3-HP titers compared to previous studies. Additionally, glyceraldehyde-3-phosphate dehydrogenase (gapA) repression aids in carbon flux redistribution, enhancing molasses conversion to 3-HP. CONCLUSIONS Despite limitations in sucrose metabolism, the redesigned E. coli W strain, adept at utilizing sugarcane molasses, is a valuable asset for industrial fermentation. Its synthetic csc operon enhances sucrose consumption, while mitigating CCR improves glucose-fructose co-utilization. These enhancements, coupled with repression of gapA, aim to efficiently convert sugarcane molasses into 3-HP, addressing limitations in sucrose and fructose metabolism for industrial applications.
Collapse
Affiliation(s)
- Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- School of Biological Sciences and Biotechnology, Graduate School, and School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju, 61186, South Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Chemical Processes, and Bio-MAX Institute, and Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Mishra LK, Shashidhar R. CRP improves the survival and competitive fitness of Salmonella Typhimurium under starvation by controlling the cellular maintenance rate. J Bacteriol 2024; 206:e0001024. [PMID: 39046248 PMCID: PMC11340309 DOI: 10.1128/jb.00010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Catabolite repression is a mechanism of selectively utilizing preferred nutrient sources by redirecting the metabolic pathways. Therefore, it prevents non-essential energy expenditure by repressing the genes and proteins involved in the metabolism of other less favored nutrient sources. Catabolite repressor protein (CRP) is a chief mediator of catabolite repression in microorganisms. In this context, we investigated the role of CRP in starvation tolerance, at both cell physiology and molecular level, by comparing the growth, survival, competitive fitness, maintenance rate, and gene and protein expression of wild type (WT) and ∆crp of Salmonella Typhimurium, under nutrient-rich and minimal medium condition. The ∆crp shows slow growth upon the arrival of nutrient-limiting conditions, poor survival under prolong-starvation, and inability to compete with its counterpart WT strain in nutrient-rich [Luria broth (LB)] and glucose-supplemented M9 minimal medium. Surprisingly, we observed that the survival and competitive fitness of ∆crp are influenced by the composition of the growth medium. Consequently, compared to the glucose-supplemented M9 medium, ∆crp shows faster death and a higher maintenance rate in the LB medium. The comparative gene and protein expression studies of WT and ∆crp in LB medium show that ∆crp has partial or complete loss of repression from CRP-controlled genes, resulting in a high abundance of hundreds of proteins in ∆crp compared to WT. Subsequently, the addition of metabolizable sugar or fresh nutrients to the competing culture showed extended survival of ∆crp. Therefore, our results suggest that CRP-mediated gene repression improves starvation tolerance and competitive fitness of Salmonella Typhimurium by adapting its cellular maintenance rate to environmental conditions.IMPORTANCESalmonella Typhimurium is a master at adapting to chronic starvation conditions. However, the molecular mechanisms to adapt to such conditions are still unknown. In this context, we have evaluated the role of catabolite repressor protein (CRP), a dual transcriptional regulator, in providing survival and competitive fitness under starvation conditions. Also, it showed an association between CRP and nutrient composition. We observed that Δcrp growing on alternate carbon sources has lower survival and competitive fitness than Δcrp growing on glucose as a carbon source. We observed that this is due to the loss of repression from the glucose and CRP-controlled genes, resulting in elevated cellular metabolism (a high maintenance rate) of the Δcrp during growth in a medium having a carbon source other than glucose (e.g., Luria broth medium).
Collapse
Affiliation(s)
- L. K. Mishra
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- Food Technology division, Bhabha Atomic Research Centre, Mumbai, India
| | - R. Shashidhar
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- Food Technology division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
11
|
Sinha AK, Laursen MF, Licht TR. Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2024:S0966-842X(24)00175-6. [PMID: 39095208 DOI: 10.1016/j.tim.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Rajewska M, Maciąg T, Narajczyk M, Jafra S. Carbon Source and Substrate Surface Affect Biofilm Formation by the Plant-Associated Bacterium Pseudomonas donghuensis P482. Int J Mol Sci 2024; 25:8351. [PMID: 39125921 PMCID: PMC11312691 DOI: 10.3390/ijms25158351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Tomasz Maciąg
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
13
|
Ma Q, Yi J, Tang Y, Geng Z, Zhang C, Sun W, Liu Z, Xiong W, Wu H, Xie X. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals. Biotechnol Adv 2024; 73:108380. [PMID: 38759845 DOI: 10.1016/j.biotechadv.2024.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR). This review aimed to introduce the mechanisms of CCR and further focus on the summary of the strategies for co-utilization of carbon sources, including alleviation of CCR, engineering of the transport and metabolism of secondary carbon sources, compulsive co-utilization in single culture, co-utilization of carbon sources via co-culture, and evolutionary approaches. The findings of representative studies with a significant improvement in the bioproduction of chemicals via the co-utilization of carbon sources were discussed in this review. It suggested that by combining rational metabolic engineering and irrational evolutionary approaches, co-utilizing carbon sources can significantly contribute to the bioproduction of chemicals.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhang Yi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yulin Tang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihao Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenchao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengkai Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Taylor ZA, Chen P, Noeparvar P, Pham DN, Walker AR, Kitten T, Zeng L. Glycerol Metabolism Contributes to Competition by Oral Streptococci through Production of Hydrogen Peroxide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.598274. [PMID: 38979179 PMCID: PMC11230354 DOI: 10.1101/2024.06.28.598274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
As a biological byproduct from both humans and microbes, glycerol's contribution to microbial homeostasis in the oral cavity remains understudied. Here we examined glycerol metabolism by Streptococcus sanguinis, a commensal associated with oral health. Genetic mutants of glucose-PTS enzyme II ( manL ), glycerol metabolism ( glp and dha pathways), and transcriptional regulators were characterized with regard to glycerol catabolism, growth, production of hydrogen peroxide (H 2 O 2 ), transcription, and competition with Streptococcus mutans . Biochemical assays identified the glp pathway as a novel source of H 2 O 2 production by S. sanguinis that is independent of pyruvate oxidase (SpxB). Genetic analysis indicated that the glp pathway requires glycerol and a transcriptional regulator, GlpR, for expression and is negatively regulated by PTS, but not the catabolite control protein, CcpA. Conversely, deletion of either manL or ccpA increased expression of spxB and a second, H 2 O 2 -non-producing glycerol metabolic pathway ( dha ), indicative of a mode of regulation consistent with conventional carbon catabolite repression (CCR). In a plate-based antagonism assay and competition assays performed with planktonic and biofilm-grown cells, glycerol greatly benefited the competitive fitness of S. sanguinis against S. mutans. The glp pathway appears to be conserved in several commensal streptococci and actively expressed in caries-free plaque samples. Our study suggests that glycerol metabolism plays a more significant role in the ecology of the oral cavity than previously understood. Commensal streptococci, though not able to use glycerol as a sole carbohydrate for growth, benefit from catabolism of glycerol through production of both ATP and H 2 O 2 . Importance Glycerol is an abundant carbohydrate found in oral cavity, both due to biological activities of humans and microbes, and as a common ingredient of foods and health care products. However, very little is understood regarding the metabolism of glycerol by some of the most abundant oral bacteria, commensal streptococci. This was in part because most streptococci cannot grow on glycerol as the sole carbon source. Here we show that Streptococcus sanguinis , an oral commensal associated with dental health, can degrade glycerol for persistence and competition through two independent pathways, one of which generates hydrogen peroxide at levels capable of inhibiting a dental pathobiont, Streptococcus mutans . Preliminary studies suggest that several other commensal streptococci are also able to catabolize glycerol, and glycerol-related genes are being actively expressed in human dental plaque samples. Our findings reveal the potential of glycerol to significantly impact microbial homeostasis which warrants further exploration.
Collapse
|
15
|
Sato G, Miyazawa S, Doi N, Fujiwara K. Cell-Free Protein Expression by a Reconstituted Transcription-Translation System Energized by Sugar Catabolism. Molecules 2024; 29:2956. [PMID: 38998908 PMCID: PMC11243612 DOI: 10.3390/molecules29132956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Cooperation between catabolism and anabolism is crucial for maintaining homeostasis in living cells. The most fundamental systems for catabolism and anabolism are the glycolysis of sugars and the transcription-translation (TX-TL) of DNA, respectively. Despite their importance in living cells, the in vitro reconstitution of their cooperation through purified factors has not been achieved, which hinders the elucidation of the design principle in living cells. Here, we reconstituted glycolysis using sugars and integrated it with the PURE system, a commercial in vitro TX-TL kit composed of purified factors. By optimizing key parameters, such as glucokinase and initial phosphate concentrations, we determined suitable conditions for their cooperation. The optimized system showed protein synthesis at up to 33% of that of the original PURE system. We observed that ATP consumption in upstream glycolysis inhibits TX-TL and that this inhibition can be alleviated by the co-addition of glycolytic intermediates, such as glyceraldehyde 3-phosphate, with glucose. Moreover, the system developed here simultaneously synthesizes a subset of its own enzymes, that is, glycolytic enzymes, in a single test tube, which is a necessary step toward self-replication. As glycolysis and TX-TL provide building blocks for constructing cells, the integrated system can be a fundamental material for reconstituting living cells from purified factors.
Collapse
Affiliation(s)
- Gaku Sato
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Shintaro Miyazawa
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
16
|
Ngo HG, Mohiuddin SG, Ananda A, Orman MA. UNRAVELING CRP/cAMP-MEDIATED METABOLIC REGULATION IN ESCHERICHIA COLI PERSISTER CELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598332. [PMID: 38915711 PMCID: PMC11195080 DOI: 10.1101/2024.06.10.598332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A substantial gap persists in our comprehension of how bacterial metabolism undergoes rewiring during the transition to a persistent state. Also, it remains unclear which metabolic mechanisms become indispensable for persister cell survival. To address these questions, we directed our efforts towards persister cells in Escherichia coli that emerge during the late stationary phase. These cells have been recognized for their exceptional resilience and are commonly believed to be in a dormant state. Our results demonstrate that the global metabolic regulator Crp/cAMP redirects the metabolism of these antibiotic-tolerant cells from anabolism to oxidative phosphorylation. Although our data indicates that persisters exhibit a reduced metabolic rate compared to rapidly growing exponential-phase cells, their survival still relies on energy metabolism. Extensive genomic-level analyses of metabolomics, proteomics, and single-gene deletions consistently emphasize the critical role of energy metabolism, specifically the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and ATP synthase, in sustaining the viability of persisters. Altogether, this study provides much-needed clarification regarding the role of energy metabolism in antibiotic tolerance and highlights the importance of using a multipronged approach at the genomic level to obtain a broader picture of the metabolic state of persister cells.
Collapse
Affiliation(s)
- Han G. Ngo
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| | - Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| | - Aina Ananda
- Department of Biology, Monmouth University, NJ, 07764
| | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| |
Collapse
|
17
|
Qiu Z, Wang G, Shao W, Cao L, Tan H, Shao S, Jin C, Xia J, He J, Liu X, He A, Han X, Xu J. Third-generation D-lactic acid production using red macroalgae Gelidium amansii by co-fermentation of galactose, glucose and xylose. BIORESOURCE TECHNOLOGY 2024; 399:130631. [PMID: 38554760 DOI: 10.1016/j.biortech.2024.130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Macroalgae biomass has been considered as a promising renewable feedstock for lactic acid production owing to its lignin-free, high carbohydrate content and high productivity. Herein, the D-lactic acid production from red macroalgae Gelidium amansii by Pediococcus acidilactici was investigated. The fermentable sugars in G. amansii acid-prehydrolysate were mainly galactose and glucose with a small amounts of xylose. P. acidilactici could simultaneously ferment the mixed sugars of galactose, glucose and xylose into D-lactic acid at high yield (0.90 g/g), without carbon catabolite repression (CCR). The assimilating pathways of these sugars in P. acidilactici were proposed based on the whole genome sequences. Simultaneous saccharification and co-fermentation (SSCF) of the pretreated and biodetoxified G. amansii was also conducted, a record high of D-lactic acid (41.4 g/L) from macroalgae biomass with the yield of 0.34 g/g dry feedstock was achieved. This study provided an important biorefinery strain for D-lactic acid production from macroalgae biomass.
Collapse
Affiliation(s)
- Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Guangli Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Wenjun Shao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Longyu Cao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Hufangguo Tan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Shuai Shao
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Ci Jin
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China.
| |
Collapse
|
18
|
Kopkowski PW, Zhang Z, Saier MH. The effect of DNA-binding proteins on insertion sequence element transposition upstream of the bgl operon in Escherichia coli. Front Microbiol 2024; 15:1388522. [PMID: 38666260 PMCID: PMC11043490 DOI: 10.3389/fmicb.2024.1388522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The bglGFB operon in Escherichia coli K-12 strain BW25113, encoding the proteins necessary for the uptake and metabolism of β-glucosides, is normally not expressed. Insertion of either IS1 or IS5 upstream of the bgl promoter activates expression of the operon only when the cell is starving in the presence of a β-glucoside, drastically increasing transcription and allowing the cell to survive and grow using this carbon source. Details surrounding the exact mechanism and regulation of the IS insertional event remain unclear. In this work, the role of several DNA-binding proteins in how they affect the rate of insertion upstream of bgl are examined via mutation assays and protocols measuring transcription. Both Crp and IHF exert a positive effect on insertional Bgl+ mutations when present, active, and functional in the cell. Our results characterize IHF's effect in conjunction with other mutations, show that IHF's effect on IS insertion into bgl also affects other operons, and indicate that it may exert its effect by binding to and altering the DNA conformation of IS1 and IS5 in their native locations, rather than by directly influencing transposase gene expression. In contrast, the cAMP-CRP complex acts directly upon the bgl operon by binding upstream of the promoter, presumably altering local DNA into a conformation that enhances IS insertion.
Collapse
Affiliation(s)
| | - Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Liu Y, Song X, Yang W, Wang M, Lian G, Li ZJ. Production of polyhydroxyalkanoates by engineered Halomonas bluephagenesis using starch as a carbon source. Int J Biol Macromol 2024; 261:129838. [PMID: 38307428 DOI: 10.1016/j.ijbiomac.2024.129838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
A novel α-amylase Amy03713 was screened and cloned from the starch utilization strain Vibrio alginolyticus LHF01. When heterologously expressed in Escherichia coli, Amy03713 exhibited the highest enzyme activity at 45 °C and pH 7, maintained >50 % of the enzyme activity in the range of 25-75 °C and pH 5-9, and sustained >80 % of the enzyme activity in 25 % (w/v) of NaCl solution, thus showing a wide range of adapted temperatures, pH, and salt concentrations. Halomonas bluephagenesis harboring amy03713 gene was able to directly utilize starch. With optimized amylase expression, H. bluephagenesis could produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB). When cultured for PHB production, recombinant H. bluephagenesis was able to grow up to a cell dry weight of 11.26 g/L, achieving a PHB titer of 6.32 g/L, which is the highest titer that has been reported for PHB production from starch in shake flasks. This study suggests that Amy03713 is an ideal amylase for PHA production using starch as the carbon source in H. bluephagenesis.
Collapse
Affiliation(s)
- Yuzhong Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xueqi Song
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weinan Yang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengru Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guoli Lian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zheng-Jun Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
20
|
Sakai K, Kishida K, Matsumoto S, Nagata Y, Tsuda M, Ohtsubo Y. Three distinct metabolic phases of polychlorinated biphenyls/biphenyl degrader Acidovorax sp. KKS102 in nutrient broth. Biosci Biotechnol Biochem 2024; 88:305-315. [PMID: 38192044 DOI: 10.1093/bbb/zbad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Acidovorax sp. KKS102 is a beta-proteobacterium capable of degrading polychlorinated biphenyls (PCBs). In this study, we examined its growth in liquid nutrient broth supplemented with different carbon sources. KKS102 had at least 3 distinct metabolic phases designated as metabolic phases 1-3, with phase 2 having 2 sub-phases. For example, succinate, fumarate, and glutamate, known to repress the PCB/biphenyl catabolic operon in KKS102, were utilized in phase 1, while acetate, arabinose, and glycerol in phase 2, and glucose and mannose in phase 3. We also showed that the BphQ response regulator mediating catabolite control in KKS102, whose expression level increased moderately through the growth, plays important roles in carbon metabolism in phases 2 and 3. Our study elucidates the hierarchical growth of KKS102 in nutrient-rich media. This insight is crucial for studies exploiting microbial biodegradation capabilities and advancing studies for catabolite regulation mechanisms.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kouhei Kishida
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Satoshi Matsumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Pang AP, Wang Y, Zhang T, Gao F, Shen JD, Huang L, Zhou J, Zhang B, Liu ZQ, Zheng YG. Highly efficient production of rhamnolipid in P. putida using a novel sacB-based system and mixed carbon source. BIORESOURCE TECHNOLOGY 2024; 394:130220. [PMID: 38109979 DOI: 10.1016/j.biortech.2023.130220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Pseudomonas putida KT2440, a GRAS strain, has been used for synthesizing bulk and fine chemicals. However, the gene editing tool to metabolically engineer KT2440 showed low efficiency. In this study, a novel sacB-based system pK51mobsacB was established to improve the efficiency for marker-free gene disruption. Then the rhamnolipid synthetic pathway was introduced in KT2440 and genes of the competitive pathways were deleted to lower the metabolic burden based on pK51mobsacB. A series of endogenous and synthetic promoters were used for fine tuning rhlAB expression. The limited supply of dTDP-L-rhamnose was enhanced by heterologous rmlBDAC expression. Cell growth and rhamnolipid production were well balanced by using glucose/glycerol as mixed carbon sources. The final strain produced 3.64 g/L at shake-flask and 19.77 g/L rhamnolipid in a 5 L fermenter, the highest obtained among metabolically engineered KT2440, which implied the potential of KT2440 as a promising microbial cell factory for industrial rhamnolipid production.
Collapse
Affiliation(s)
- Ai-Ping Pang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yun Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Teng Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Feng Gao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ji-Dong Shen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Junping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
22
|
Qiu S, Huang Y, Liang S, Zeng H, Yang A. Systematic elucidation of independently modulated genes in Lactiplantibacillus plantarum reveals a trade-off between secondary and primary metabolism. Microb Biotechnol 2024; 17:e14425. [PMID: 38393514 PMCID: PMC10886434 DOI: 10.1111/1751-7915.14425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Lactiplantibacillus plantarum is a probiotic bacterium widely used in food and health industries, but its gene regulatory information is limited in existing databases, which impedes the research of its physiology and its applications. To obtain a better understanding of the transcriptional regulatory network of L. plantarum, independent component analysis of its transcriptomes was used to derive 45 sets of independently modulated genes (iModulons). Those iModulons were annotated for associated transcription factors and functional pathways, and active iModulons in response to different growth conditions were identified and characterized in detail. Eventually, the analysis of iModulon activities reveals a trade-off between regulatory activities of secondary and primary metabolism in L. plantarum.
Collapse
Affiliation(s)
- Sizhe Qiu
- Department of Engineering ScienceUniversity of OxfordOxfordUK
- School of Food and HealthBeijing Technology and Business UniversityBeijingChina
| | - Yidi Huang
- School of Computer Science and EngineeringBeihang UniversityBeijingChina
| | - Shishun Liang
- Department of Life ScienceImperial College LondonLondonUK
| | - Hong Zeng
- School of Food and HealthBeijing Technology and Business UniversityBeijingChina
| | - Aidong Yang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
23
|
Zhang L, Xu H, Cheng H, Song F, Zhang J, Peng Q. Transcriptional regulation of cellobiose utilization by PRD-domain containing Sigma54-dependent transcriptional activator (CelR) and catabolite control protein A (CcpA) in Bacillus thuringiensis. Front Microbiol 2024; 15:1160472. [PMID: 38357353 PMCID: PMC10864463 DOI: 10.3389/fmicb.2024.1160472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin resulting from the enzymatic hydrolysis of cellulose. It is a major source of carbon for soil bacteria. In bacteria, the phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS), encoded by the cel operon, is responsible for the transport and utilization of cellobiose. In this study, we analyzed the transcription and regulation of the cel operon in Bacillus thuringiensis (Bt). The cel operon is composed of five genes forming one transcription unit. β-Galactosidase assays revealed that cel operon transcription is induced by cellobiose, controlled by Sigma54, and positively regulated by CelR. The HTH-AAA+ domain of CelR recognized and specifically bound to three possible binding sites in the celA promoter region. CelR contains two PTS regulation domains (PRD1 and PRD2), which are separated by two PTS-like domains-the mannose transporter enzyme IIA component domain (EIIAMan) and the galactitol transporter enzyme IIB component domain (EIIBGat). Mutations of His-546 on the EIIAMan domain and Cys-682 on the EIIBGat domain resulted in decreased transcription of the cel operon, and mutations of His-839 on PRD2 increased transcription of the cel operon. Glucose repressed the transcription of the cel operon and catabolite control protein A (CcpA) positively regulated this process by binding the cel promoter. In the celABCDE and celR mutants, PTS activities were decreased, and cellobiose utilization was abolished, suggesting that the cel operon is essential for cellobiose utilization. Bt has been widely used as a biological pesticide. The metabolic properties of Bt are critical for fermentation. Nutrient utilization is also essential for the environmental adaptation of Bt. Glucose is the preferred energy source for many bacteria, and the presence of the phosphotransferase system allows bacteria to utilize other sugars in addition to glucose. Cellobiose utilization pathways have been of particular interest owing to their potential for developing alternative energy sources for bacteria. The data presented in this study improve our understanding of the transcription patterns of cel gene clusters. This will further help us to better understand how cellobiose is utilized for bacterial growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Tanabe T, Tsukamoto M, Shioda M, Nagaoka K, Funahashi T. Expression regulation of type III secretion system 2 in Vibrio parahaemolyticus by catabolite activator protein. FEMS Microbiol Lett 2024; 371:fnae054. [PMID: 39054297 DOI: 10.1093/femsle/fnae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Vibrio parahaemolyticus has two sets of type III secretion systems that are major pathogenic factors: T3SS1 (cytotoxicity) and T3SS2 (enterotoxicity). V. parahaemolyticus mainly colonizes the distal small intestine after oral infection and may be exposed to carbon-limiting stress due to the lack of readily available carbohydrates in this environment. Catabolite activator protein (CAP), a transcription factor involved in carbon-limiting metabolism in many Gram-negative bacteria, is well known to be involved in the regulation of the expression of many virulence factors. In this study, we determined the effects of CAP on the expression of T3SSs in this bacterium. Based on a lactate dehydrogenase-based cytotoxicity assay, CAP was found to have a greater contribution to the expression of T3SS2-dependent cytotoxicity than to that of T3SS1. Reverse transcription quantitative PCR revealed decreased expression of many T3SS2-related genes, including vpa1348, in the cap gene deletion mutant compared to the parent strain. CAP was demonstrated to bind near the T-rich elements within the vpa1348 promoter region in an electrophoretic mobility shift assay and DNase I footprinting. CAP also enhanced the expression of vpa1348 in a β-galactosidase reporter assay. Collectively, these results suggest that CAP is involved in T3SS2-mediated virulence by regulating the expression of vpa1348 in V. parahaemolyticus.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Mitsuki Tsukamoto
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Mahiro Shioda
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
25
|
Zhang J, Zhao J, Fu Q, Liu H, Li M, Wang Z, Gu W, Zhu X, Lin R, Dai L, Liu K, Wang C. Metabolic engineering of Paenibacillus polymyxa for effective production of 2,3-butanediol from poplar hydrolysate. BIORESOURCE TECHNOLOGY 2024; 392:130002. [PMID: 37956945 DOI: 10.1016/j.biortech.2023.130002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
2,3-Butanediol is an essential renewable fuel. The synthesis of 2,3-butanediol using Paenibacillus polymyxa has attracted increasing attention. In this study, the glucose-derived 2,3-butanediol pathway and its related genes were identified in P. polymyxa using combined transcriptome and metabolome analyses. The functions of two distinct genes ldh1 and ldh3 encoding lactate dehydrogenase, the gene bdh encoding butanediol dehydrogenase, and the spore-forming genes spo0A and spoIIE were studied and directly knocked out or overexpressed in the genome sequence to improve the production of 2,3-butanediol. A raw hydrolysate of poplar wood containing 27 g/L glucose and 15 g/L xylose was used to produce 2,3-butanediol with a maximum yield of 0.465 g/g and 93 % of the maximum theoretical value, and the total production of 2,3-butanediol and ethanol reached 21.7 g/L. This study provides a new scheme for engineered P. polymyxa to produce renewable fuels using raw poplar wood hydrolysates.
Collapse
Affiliation(s)
- Jikun Zhang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China; Shandong Baolai-leelai Bioengineering Co., Ltd., Tai'an 271000, China.
| | - Jianzhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), and The State Key Laboratory of Microbial Technology, Jinan 250353, China.
| | - Quanbin Fu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| | - Haiyang Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Min Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhongyue Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Wei Gu
- Shandong Baolai-leelai Bioengineering Co., Ltd., Tai'an 271000, China.
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Rongshan Lin
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Li Dai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
26
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
27
|
Lu C, Ramalho TP, Bisschops MMM, Wijffels RH, Martins Dos Santos VAP, Weusthuis RA. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli. N Biotechnol 2023; 77:20-29. [PMID: 37348756 DOI: 10.1016/j.nbt.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
As a global regulatory mechanism, carbon catabolite repression allows bacteria and eukaryal microbes to preferentially utilize certain substrates from a mixture of carbon sources. The mechanism varies among different species. In Pseudomonas spp., it is mainly mediated by the Crc-Hfq complex which binds to the 5' region of the target mRNAs, thereby inhibiting their translation. This molecular mechanism enables P. putida to rapidly adjust and fine-tune gene expression in changing environments. Hfq is an RNA-binding protein that is ubiquitous and highly conserved in bacterial species. Considering the characteristics of Hfq, and the widespread use and rapid response of Crc-Hfq in P. putida, this complex has the potential to become a general toolbox for post-transcriptional multiplex regulation. In this study, we demonstrate for the first time that transplanting the pseudomonal catabolite repression protein, Crc, into E. coli causes multiplex gene repression. Under the control of Crc, the production of a diester and its precursors was significantly reduced. The effects of Crc introduction on cell growth in both minimal and rich media were evaluated. Two potential factors - off-target effects and Hfq-sequestration - could explain negative effects on cell growth. Simultaneous reduction of off-targeting and increased sequestration of Hfq by the introduction of the small RNA CrcZ, indicated that Hfq sequestration plays a more prominent role in the negative side-effects. This suggests that the negative growth effect can be mitigated by well-controlled expression of Hfq. This study reveals the feasibility of controlling gene expression using heterologous regulation systems.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands.
| | - Tiago P Ramalho
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| | - Markus M M Bisschops
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands; Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Vitor A P Martins Dos Santos
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands; Lifeglimmer GmbH, Berlin, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| |
Collapse
|
28
|
Chen M, Ren G, Zhang X, Yang L, Ding Q, Sun J, Xia J, Xu J, Jiang L, Fang W, Cheng C, Song H. DegU-mediated suppression of carbohydrate uptake in Listeria monocytogenes increases adaptation to oxidative stress. Appl Environ Microbiol 2023; 89:e0101723. [PMID: 37787570 PMCID: PMC10617591 DOI: 10.1128/aem.01017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
The foodborne bacterial pathogen Listeria monocytogenes exhibits remarkable survival capabilities under challenging conditions, severely threatening food safety and human health. The orphan regulator DegU is a pleiotropic regulator required for bacterial environmental adaptation. However, the specific mechanism of how DegU participates in oxidative stress tolerance remains unknown in L. monocytogenes. In this study, we demonstrate that DegU suppresses carbohydrate uptake under stress conditions by altering global transcriptional profiles, particularly by modulating the transcription of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS)-related genes, such as ptsH, ptsI, and hprK. Specifically, in the absence of degU, the transcripts of ptsI are significantly upregulated and those of hprK are significantly downregulated in response to copper ion-induced stress. Overexpression of ptsI significantly increases bacterial growth in vitro, while overexpression of hprK leads to a decrease in growth. We further demonstrate that DegU directly senses oxidative stress, downregulates ptsI transcription, and upregulates hprK transcription. Additionally, through an electrophoretic mobility shift assay, we demonstrate that DegU directly regulates the transcription of ptsI and hprK by binding to specific regions within their respective promoter sequences. Notably, the putative pivotal DegU binding sequence for ptsI is located from 38 to 68 base pairs upstream of the ptsH transcription start site (TSS), whereas for hprK, it is mapped from 36 to 124 base pairs upstream of the hprK TSS. In summary, we elucidate that DegU plays a significant role in suppressing carbohydrate uptake in response to oxidative stress through the direct regulation of ptsI and hprK.ImportanceUnderstanding the adaptive mechanisms employed by Listeria monocytogenes in harsh environments is of great significance. This study focuses on investigating the role of DegU in response to oxidative stress by examining global transcriptional profiles. The results highlight the noteworthy involvement of DegU in this stress response. Specifically, DegU acts as a direct sensor of oxidative stress, leading to the modulation of gene transcription. It downregulates ptsI transcription while it upregulates hprK transcription through direct binding to their promoters. Consequently, these regulatory actions impede bacterial growth, providing a defense mechanism against stress-induced damage. These findings gained from this study may have broader implications, serving as a reference for studying adaptive mechanisms in other pathogenic bacteria and aiding in the development of targeted strategies to control L. monocytogenes and ensure food safety.
Collapse
Affiliation(s)
- Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Gengjia Ren
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xian Zhang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Yang
- Ningbo College of Health Sciences, Ningbo, China
| | - Qiang Ding
- Ningbo College of Health Sciences, Ningbo, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
29
|
Tang R, Yuan X, Yang J. Problems and corresponding strategies for converting CO 2 into value-added products in Cupriavidus necator H16 cell factories. Biotechnol Adv 2023; 67:108183. [PMID: 37286176 DOI: 10.1016/j.biotechadv.2023.108183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Elevated CO2 emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO2 into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO2 into various value-added products. However, the development and application of C. necator H16 cell factories has several limitations, including low efficiency, high cost, and safety concerns arising from the autotrophic metabolic characteristics of the strains. In this review, we first considered the autotrophic metabolic characteristics of C. necator H16, and then categorized and summarized the resulting problems. We also provided a detailed discussion of some corresponding strategies concerning metabolic engineering, trophic models, and cultivation mode. Finally, we provided several suggestions for improving and combining them. This review might help in the research and application of the conversion of CO2 into value-added products in C. necator H16 cell factories.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
30
|
Zheng P, Kumadaki K, Quek C, Lim ZH, Ashenafi Y, Yip ZT, Newby J, Alverson AJ, Jie Y, Jedd G. Cooperative motility, force generation and mechanosensing in a foraging non-photosynthetic diatom. Open Biol 2023; 13:230148. [PMID: 37788707 PMCID: PMC10547550 DOI: 10.1098/rsob.230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Diatoms are ancestrally photosynthetic microalgae. However, some underwent a major evolutionary transition, losing photosynthesis to become obligate heterotrophs. The molecular and physiological basis for this transition is unclear. Here, we isolate and characterize new strains of non-photosynthetic diatoms from the coastal waters of Singapore. These diatoms occupy diverse ecological niches and display glucose-mediated catabolite repression, a classical feature of bacterial and fungal heterotrophs. Live-cell imaging reveals deposition of secreted extracellular polymeric substance (EPS). Diatoms moving on pre-existing EPS trails (runners) move faster than those laying new trails (blazers). This leads to cell-to-cell coupling where runners can push blazers to make them move faster. Calibrated micropipettes measure substantial single-cell pushing forces, which are consistent with high-order myosin motor cooperativity. Collisions that impede forward motion induce reversal, revealing navigation-related force sensing. Together, these data identify aspects of metabolism and motility that are likely to promote and underpin diatom heterotrophy.
Collapse
Affiliation(s)
- Peng Zheng
- Temasek Life Sciences Laboratory, 117604 Singapore
| | - Kayo Kumadaki
- Department of Physics, National University of Singapore, 117542 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | | | - Zeng Hao Lim
- Temasek Life Sciences Laboratory, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Yonatan Ashenafi
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| | - Zhi Ting Yip
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Jay Newby
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| | - Andrew J. Alverson
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA
| | - Yan Jie
- Department of Physics, National University of Singapore, 117542 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| |
Collapse
|
31
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
32
|
Rados T, Andre K, Cerletti M, Bisson A. A sweet new set of inducible and constitutive promoters in Haloferax volcanii. Front Microbiol 2023; 14:1204876. [PMID: 37637112 PMCID: PMC10448506 DOI: 10.3389/fmicb.2023.1204876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Inducible promoters are one of cellular and molecular biology's most important technical tools. The ability to deplete, replete, and overexpress genes on demand is the foundation of most functional studies. Here, we developed and characterized a new xylose-responsive promoter (Pxyl), the second inducible promoter system for the model haloarcheon Haloferax volcanii. Generating RNA-seq datasets from cultures in the presence of four historically used inducers (arabinose, xylose, maltose, and IPTG), we mapped upregulated genomic regions primarily repressed in the absence of the above inducers. We found a highly upregulated promoter that controls the expression of the xacEA (HVO_B0027-28) operon in the pHV3 chromosome. To characterize this promoter region, we cloned msfGFP (monomeric superfold green fluorescent protein) under the control of two upstream regions into a modified pTA962 vector: the first 250 bp (P250) and the whole 750 bp intergenic fragments (P750). The P250 sequence drove the expression of msfGFP constitutively, and its expression did not respond to the presence or absence of xylose. However, the P750 promoter showed not only to be repressed in the absence of xylose but also expressed higher levels of msfGFP than the previously described inducible promoter PtnaA in the presence of the inducer. Finally, we validated the inducible Pxyl promoter by reproducing morphological phenotypes already described in the literature. By overexpressing the tubulin-like FtsZ1 and FtsZ2, we observed similar but slightly more pronounced morphological defects than the tryptophan-inducible promoter PtnaA. FtsZ1 overexpression created larger, deformed cells, whereas cells overexpressing FtsZ2 were smaller but mostly retained their shape. In summary, this work contributes a new xylose-inducible promoter that could be used simultaneously with the well-established PtnaA in functional studies in H. volcanii in the future.
Collapse
Affiliation(s)
- Theopi Rados
- Department of Biology, Brandeis University, Waltham, MA, United States
| | - Katherine Andre
- Department of Biology, Brandeis University, Waltham, MA, United States
| | - Micaela Cerletti
- Department of Biology, Brandeis University, Waltham, MA, United States
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alex Bisson
- Department of Biology, Brandeis University, Waltham, MA, United States
| |
Collapse
|
33
|
Ogura M, Matsutani M, Asai K, Suzuki M. Glucose controls manganese homeostasis through transcription factors regulating known and newly identified manganese transporter genes in Bacillus subtilis. J Biol Chem 2023; 299:105069. [PMID: 37468100 PMCID: PMC10448178 DOI: 10.1016/j.jbc.2023.105069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Mn2+ is an essential nutrient whose concentration is tightly controlled in bacteria. In Bacillus subtilis, the Mn2+-activated transcription factor MntR controls Mn2+ transporter genes. However, factors regulating intracellular Mn2+ concentration are incompletely understood. Here, we found that glucose addition induces an increase in intracellular Mn2+ concentration. We determined this upshift was mediated by glucose induction of the major Mn2+ importer gene mntH by the transcription factor AhrC, which is known to be involved in arginine metabolism and to be indirectly induced by glucose. In addition, we identified novel AhrC-regulated genes encoding the Mn2+ importer YcsG and the ABC-type exporter YknUV. We found the expression of these genes was also regulated by glucose and contributes to the glucose induction of Mn2+ concentrations. ycsG expression is regulated by MntR as well. Furthermore, we analyzed the interaction of AhrC and MntR with the promoter driving ycsG expression and examined the Mn2+-dependent induction of this promoter to identify the transcription factors responsible for the Mn2+ induction. RNA-Seq revealed that disruption of ahrC and mntR affected the expression of 502 and 478 genes, respectively (false discovery rate, <0.001, log2[fold change] ≥ |2|. The AhrC- and/or MntR-dependent expression of twenty promoters was confirmed by LacZ analysis, and AhrC or MntR binding to some of these promoters was observed via EMSA. The finding that glucose promotes an increase in intracellular Mn2+ levels without changes in extracellular Mn2+ concentrations is reasonable for the bacterium, as intracellular Mn2+ is required for enzymes and pathways mediating glucose metabolism.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan.
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Li S, Yang S, Wei X, Jiao S, Luo W, Chen W, Wei G. Reduced trace gas oxidizers as a response to organic carbon availability linked to oligotrophs in desert fertile islands. THE ISME JOURNAL 2023; 17:1257-1266. [PMID: 37253970 PMCID: PMC10356767 DOI: 10.1038/s41396-023-01437-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
Atmospheric trace gases, such as H2 and CO, are important energy sources for microbial growth and maintenance in various ecosystems, especially in arid deserts with little organic substrate. Nonetheless, the impact of soil organic C availability on microbial trace gas oxidation and the underlying mechanisms are unclear at the community level. This study investigated the energy and life-history strategies of soil microbiomes along an organic C gradient inside and out of Hedysarum scoparium islands dispersed in the Mu Us Desert, China. Metagenomic analysis showed that with increasing organic C availability from bare areas into "fertile islands", the abundance of trace gas oxidizers (TGOs) decreased, but that of trace gas nonoxidizers (TGNOs) increased. The variation in their abundance was more related to labile/soluble organic C levels than to stable/insoluble organic C levels. The consumption rates of H2 and CO confirmed that organic C addition, especially soluble organic C addition, inhibited microbial trace gas oxidation. Moreover, microorganisms with distinct energy-acquiring strategies showed different life-history traits. The TGOs had lower 16 S rRNA operon copy numbers, lower predicted maximum growth rates and higher proportions of labile C degradation genes, implying the prevalence of oligotrophs. In contrast, copiotrophs were prevalent in the TGNOs. These results revealed a mechanism for the microbial community to adapt to the highly heterogeneous distribution of C resources by adjusting the abundances of taxa with distinct energy and life-history strategies, which would further affect trace gas consumption and C turnover in desert ecosystems.
Collapse
Affiliation(s)
- Shuyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shanshan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
35
|
Yoon CK, Lee SH, Zhang J, Lee HY, Kim MK, Seok YJ. HPr prevents FruR-mediated facilitation of RNA polymerase binding to the fru promoter in Vibrio cholerae. Nucleic Acids Res 2023; 51:5432-5448. [PMID: 36987873 PMCID: PMC10287919 DOI: 10.1093/nar/gkad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.
Collapse
Affiliation(s)
- Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| | - Jing Zhang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Hye-Young Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Min-Kyu Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
36
|
Xu T, Tao X, He H, Kempher ML, Zhang S, Liu X, Wang J, Wang D, Ning D, Pan C, Ge H, Zhang N, He YX, Zhou J. Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia. THE ISME JOURNAL 2023; 17:823-835. [PMID: 36899058 PMCID: PMC10203250 DOI: 10.1038/s41396-023-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 05/24/2023]
Abstract
Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.
Collapse
Affiliation(s)
- Tao Xu
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Xuanyu Tao
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Hongxi He
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Megan L Kempher
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaochun Liu
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Jun Wang
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Dongyu Wang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Daliang Ning
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- School of computer science, University of Oklahoma, Norman, OK, USA
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, PR China.
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
37
|
Zhang H, Zheng D, Hu C, Cheng W, Lei P, Xu H, Gao N. Certain Tomato Root Exudates Induced by Pseudomonas stutzeri NRCB010 Enhance Its Rhizosphere Colonization Capability. Metabolites 2023; 13:metabo13050664. [PMID: 37233705 DOI: 10.3390/metabo13050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) can colonize plant root surfaces or form biofilms to promote plant growth and enhance plant resistance to harsh external environments. However, plant-PGPR interactions, especially chemical signaling molecules, are poorly understood. This study aimed to gain an in-depth understanding of the rhizosphere interaction mechanisms between PGPR and tomato plants. This study found that inoculation with a certain concentration of Pseudomonas stutzeri significantly promoted tomato growth and induced significant changes in tomato root exudates. Furthermore, the root exudates significantly induced NRCB010 growth, swarming motility, and biofilm formation. In addition, the composition of the root exudates was analyzed, and four metabolites (methyl hexadecanoate, methyl stearate, 2,4-di-tert-butylphenol, and n-hexadecanoic acid) significantly related to the chemotaxis and biofilm formation of NRCB010 were screened. Further assessment showed that these metabolites positively affected the growth, swarming motility, chemotaxis, or biofilm formation of strain NRCB010. Among these, n-hexadecanoic acid induced the most remarkable growth, chemotactic response, biofilm formation, and rhizosphere colonization. This study will help develop effective PGPR-based bioformulations to improve PGPR colonization and crop yields.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Donghui Zheng
- College of 2011, Nanjing Tech University, Nanjing 211816, China
| | - Chun Hu
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenwen Cheng
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- School of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- School of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Nan Gao
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
38
|
Scott M, Hwa T. Shaping bacterial gene expression by physiological and proteome allocation constraints. Nat Rev Microbiol 2023; 21:327-342. [PMID: 36376406 PMCID: PMC10121745 DOI: 10.1038/s41579-022-00818-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Networks of molecular regulators are often the primary objects of focus in the study of gene regulation, with the machinery of protein synthesis tacitly relegated to the background. Shifting focus to the constraints imposed by the allocation of protein synthesis flux reveals surprising ways in which the actions of molecular regulators are shaped by physiological demands. Using carbon catabolite repression as a case study, we describe how physiological constraints are sensed through metabolic fluxes and how flux-controlled regulation gives rise to simple empirical relations between protein levels and the rate of cell growth.
Collapse
Affiliation(s)
- Matthew Scott
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Sawant K, Shashidhar R. The cAMP receptor protein (CRP) enhances the competitive nature of Salmonella Typhimurium. Arch Microbiol 2023; 205:197. [PMID: 37067650 DOI: 10.1007/s00203-023-03528-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
The cAMP receptor protein (CRP) is a global regulatory protein. We evaluated the role of CRP in starvation physiology in Salmonella Typhimurium. The Δcrp mutant survived 10 days of starvation. However, in a co-culture with the wild type in nutrient-rich medium, Δcrp died within 48 h. Similar co-culture results were observed with Escherichia coli and Staphylococcus aureus. Our study showed that the Δcrp mutant was not killed by toxins and the Type IV secretion system of the WT. The possibility of viable but non-culturable cells (VBNC) was also ruled out. However, when the overall metabolism of the co-culture was slowed down (anaerobic condition, inhibition by antibiotics and low temperature) that improved the survival of Δcrp in co-culture. But one more significant observation was that the Δcrp mutant survived in nutrient-free co-culture conditions. These two observations suggest that CRP protein is essential for efficient nutrient assimilation in a competitive environment. The cells without CRP protein are unable to evaluate the energy balance within the cell, and the cell spends energy to absorb nutrients. But the wild type cell absorbs nutrients at a faster rate than Δcrp mutant. This leads to a situation wherein the Δcrp is spending energy to absorb the nutrients but is unable to compete with the wild type. This futile metabolism leads to death. Hence, this study shows that CRP is a metabolism modulator in a complex nutrient environment. This study also highlights the need for innovative growth conditions to understand the unique function of a gene.
Collapse
Affiliation(s)
- Kirti Sawant
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Life Sciences, Homi Bhabha National Institute (Deemed to be University), Mumbai, India.
| |
Collapse
|
40
|
Weng C, Tang R, Peng X, Han Y. Co-conversion of lignocellulose-derived glucose, xylose, and aromatics to polyhydroxybutyrate by metabolically engineered Cupriavidus necator. BIORESOURCE TECHNOLOGY 2023; 374:128762. [PMID: 36813047 DOI: 10.1016/j.biortech.2023.128762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Utilization of all major components of lignocellulose is essential for biomass biorefining. Glucose, xylose, and lignin-derived aromatics can be generated from cellulose, hemicellulose, and lignin of lignocellulose degradation through pretreatment and hydrolysis. In present work, Cupriavidus necator H16 was engineered to utilize glucose, xylose, p-coumaric acid, and ferulic acid simultaneously by multi-step genetic engineering. Firstly, genetic modification and adaptive laboratory evolution were performed to promote glucose transmembrane transport and metabolism. Xylose metabolism was then engineered by integrating genes xylAB (xylose isomerase and xylulokinase) and xylE (proton-coupled symporter) in the locus of ldh (lactate dehydrogenase) and ackA (acetate kinase) on the genome, respectively. Thirdly, p-coumaric acid and ferulic acid metabolism was achieved by constructing an exogenous CoA-dependent non-β-oxidation pathway. Using corn stover hydrolysates as carbon sources, the resulting engineered strain Reh06 simultaneously converted all components of glucose, xylose, p-coumaric acid, and ferulic acid to produce 11.51 g/L polyhydroxybutyrate.
Collapse
Affiliation(s)
- Caihong Weng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruohao Tang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Neira JL, Palomino-Schätzlein M. Folding of the nascent polypeptide chain of a histidine phosphocarrier protein in vitro. Arch Biochem Biophys 2023; 736:109538. [PMID: 36738980 DOI: 10.1016/j.abb.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The phosphotransferase system (PTS), a metabolic pathway formed by five proteins, modulates the use of sugars in bacteria. The second protein in the chain is the histidine phosphocarrier, HPr, with the binding site at His15. The HPr kinase/phosphorylase (HPrK/P), involved in the bacterial use of carbon sources, phosphorylates HPr at Ser46, and it binds at its binding site. The regulator of sigma D protein (Rsd) also binds to HPr at His15. We have designed fragments of HPr, growing from its N-terminus and containing the His15. In this work, we obtained three fragments, HPr38, HPr58 and HPr70, comprising the first thirty-eight, fifty-eight and seventy residues of HPr, respectively. All fragments were mainly disordered, with evidence of a weak native-like, helical population around the binding site, as shown by fluorescence, far-ultraviolet circular dichroism, size exclusion chromatography and nuclear magnetic resonance. Although HPr38, HPr58 and HPr70 were disordered, they could bind to: (i) the N-terminal domain of first protein of the PTS, EIN; (ii) Rsd; and, (iii) HPrK/P, as shown by fluorescence and biolayer interferometry (BLI). The association constants for each protein to any of the fragments were in the low micromolar range, within the same range than those measured in the binding of HPr to each protein. Then, although acquisition of stable, native-like secondary and tertiary structures occurred at the last residues of the polypeptide, the ability to bind protein partners happened much earlier in the growing chain. Binding was related to the presence of the native-like structure around His15.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain.
| | - Martina Palomino-Schätzlein
- ProtoQSAR SL, CEEI-Valencia, Parque Tecnológico de Valencia, Av. Benjamin Franklin 12 (Dep. 8), 46980, Paterna, Valencia, Spain
| |
Collapse
|
42
|
The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705. Microorganisms 2023; 11:microorganisms11030588. [PMID: 36985162 PMCID: PMC10059941 DOI: 10.3390/microorganisms11030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Bifidobacteria are saccharolytic bacteria that are able to metabolize a relatively large range of carbohydrates through their unique central carbon metabolism known as the “bifid-shunt”. Carbohydrates have been shown to modulate the growth rate of bifidobacteria, but unlike for other genera (e.g., E. coli or L. lactis), the impact it may have on the overall physiology of the bacteria has not been studied in detail to date. Using glucose and galactose as model substrates in Bifidobacterium longum NCC 2705, we established that the strain displayed fast and slow growth rates on those carbohydrates, respectively. We show that these differential growth conditions are accompanied by global transcriptional changes and adjustments of central carbon fluxes. In addition, when grown on galactose, NCC 2705 cells were significantly smaller, exhibited an expanded capacity to import and metabolized different sugars and displayed an increased acid-stress resistance, a phenotypic signature associated with generalized fitness. We predict that part of the observed adaptation is regulated by the previously described bifidobacterial global transcriptional regulator AraQ, which we propose to reflect a catabolite-repression-like response in B. longum. With this manuscript, we demonstrate that not only growth rate but also various physiological characteristics of B. longum NCC 2705 are responsive to the carbon source used for growth, which is relevant in the context of its lifestyle in the human infant gut where galactose-containing oligosaccharides are prominent.
Collapse
|
43
|
Dal Co A, Ackermann M, van Vliet S. Spatial self-organization of metabolism in microbial systems: A matter of enzymes and chemicals. Cell Syst 2023; 14:98-108. [PMID: 36796335 DOI: 10.1016/j.cels.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Most bacteria live in dense, spatially structured communities such as biofilms. The high density allows cells to alter the local microenvironment, whereas the limited mobility can cause species to become spatially organized. Together, these factors can spatially organize metabolic processes within microbial communities so that cells in different locations perform different metabolic reactions. The overall metabolic activity of a community depends both on how metabolic reactions are arranged in space and on how they are coupled, i.e., how cells in different regions exchange metabolites. Here, we review mechanisms that lead to the spatial organization of metabolic processes in microbial systems. We discuss factors that determine the length scales over which metabolic activities are arranged in space and highlight how the spatial organization of metabolic processes affects the ecology and evolution of microbial communities. Finally, we define key open questions that we believe should be the main focus of future research.
Collapse
Affiliation(s)
- Alma Dal Co
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland; Department of Environmental Microbiology, Eawag, 8600 Duebendorf, Switzerland.
| | | |
Collapse
|
44
|
Takada H, Kijima K, Ishiguro A, Ishihama A, Shimada T. Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism. Int J Mol Sci 2023; 24:3696. [PMID: 36835109 PMCID: PMC9962212 DOI: 10.3390/ijms24043696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Flagella are vital bacterial organs that allow microorganisms to move to favorable environments. However, their construction and operation consume a large amount of energy. The master regulator FlhDC mediates all flagellum-forming genes in E. coli through a transcriptional regulatory cascade, the details of which remain elusive. In this study, we attempted to uncover a direct set of target genes in vitro using gSELEX-chip screening to re-examine the role of FlhDC in the entire E. coli genome regulatory network. We identified novel target genes involved in the sugar utilization phosphotransferase system, sugar catabolic pathway of glycolysis, and other carbon source metabolic pathways in addition to the known flagella formation target genes. Examining FlhDC transcriptional regulation in vitro and in vivo and its effects on sugar consumption and cell growth suggested that FlhDC activates these new targets. Based on these results, we proposed that the flagella master transcriptional regulator FlhDC acts in the activation of a set of flagella-forming genes, sugar utilization, and carbon source catabolic pathways to provide coordinated regulation between flagella formation, operation and energy production.
Collapse
Grants
- 22K06184 Ministry of Education, Culture, Sports, Science and Technology
- 18310133 Ministry of Education, Culture, Sports, Science and Technology
- 25430173 Ministry of Education, Culture, Sports, Science and Technology
- 15K18676 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Hiraku Takada
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kaede Kijima
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Ishiguro
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
45
|
A Class IV Adenylate Cyclase, CyaB, Is Required for Capsule Polysaccharide Production and Biofilm Formation in Vibrio parahaemolyticus. Appl Environ Microbiol 2023; 89:e0187422. [PMID: 36602323 PMCID: PMC9888186 DOI: 10.1128/aem.01874-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP (cAMP) receptor protein (CRP), encoded by crp, is a global regulator that is activated by cAMP, a second messenger synthesized by a class I adenylate cyclase (AC-I) encoded by cyaA in Escherichia coli. cAMP-CRP is required for growth on nonpreferred carbon sources and is a global regulator. We constructed in-frame nonpolar deletions of the crp and cyaA homologs in Vibrio parahaemolyticus and found that the Δcrp mutant did not grow in minimal media supplemented with nonpreferred carbon sources, but the ΔcyaA mutant grew similarly to the wild type. Bioinformatics analysis of the V. parahaemolyticus genome identified a 181-amino-acid protein annotated as a class IV adenylate cyclase (AC-IV) named CyaB, a member of the CYTH protein superfamily. AC-IV phylogeny showed that CyaB was present in Gammaproteobacteria and Alphaproteobacteria as well as Planctomycetes and Archaea. Only the bacterial CyaB proteins contained an N-terminal motif, HFxxxxExExK, indicative of adenylyl cyclase activity. Both V. parahaemolyticus cyaA and cyaB genes functionally complemented an E. coli ΔcyaA mutant. The Δcrp and ΔcyaB ΔcyaA mutants showed defects in growth on nonpreferred carbon sources and in swimming and swarming motility, indicating that cAMP-CRP is an activator. The ΔcyaA and ΔcyaB single mutants had no defects in these phenotypes, indicating that AC-IV complements AC-I. Capsule polysaccharide and biofilm production assays showed significant defects in the Δcrp, ΔcyaBΔcyaA, and ΔcyaB mutants, whereas the ΔcyaA strain behaved similarly to the wild type. This is consistent with a role of cAMP-CRP as an activator of these phenotypes and establishes a cellular role for AC-IV in capsule and biofilm formation, which to date has been unestablished. IMPORTANCE Here, we characterized the roles of CRP and CyaA in V. parahaemolyticus, showing that cAMP-CRP is an activator of metabolism, motility, capsule production, and biofilm formation. These results are in contrast to cAMP-CRP in V. cholerae, which represses capsule and biofilm formation. Previously, only an AC-I CyaA had been identified in Vibrio species. Our data showed that an AC-IV CyaB homolog is present in V. parahaemolyticus and is required for optimal growth. The data demonstrated that CyaB is essential for capsule production and biofilm formation, uncovering a physiological role of AC-IV in bacteria. The data showed that the cyaB gene was widespread among Vibrionaceae species and several other Gammaproteobacteria, but in general, its phylogenetic distribution was limited. Our phylogenetic analysis also demonstrated that in some species the cyaB gene was acquired by horizontal gene transfer.
Collapse
|
46
|
Chen X, Wang T, Guan Y, Ouyang Q, Lou C, Qian L. The Topological Characteristics of Biological Ratio-Sensing Networks. Life (Basel) 2023; 13:life13020351. [PMID: 36836707 PMCID: PMC9965423 DOI: 10.3390/life13020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Ratio sensing is a fundamental biological function observed in signal transduction and decision making. In the synthetic biology context, ratio sensing presents one of the elementary functions for cellular multi-signal computation. To investigate the mechanism of the ratio-sensing behavior, we explored the topological characteristics of biological ratio-sensing networks. With exhaustive enumeration of three-node enzymatic and transcriptional regulatory networks, we found that robust ratio sensing was highly dependent on network structure rather than network complexity. Specifically, a set of seven minimal core topological structures and four motifs were deduced to be capable of robust ratio sensing. Further investigations on the evolutionary space of robust ratio-sensing networks revealed highly clustered domains surrounding the core motifs which suggested their evolutionary plausibility. Our study revealed the network topological design principles of ratio-sensing behavior and provided a design scheme for constructing regulatory circuits with ratio-sensing behavior in synthetic biology.
Collapse
Affiliation(s)
- Xinmao Chen
- School of Physics, Peking University, Beijing 100871, China
| | - Tianze Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Ying Guan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Ouyang
- School of Physics, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Correspondence: (Q.O.); (C.L.); (L.Q.)
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (Q.O.); (C.L.); (L.Q.)
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Correspondence: (Q.O.); (C.L.); (L.Q.)
| |
Collapse
|
47
|
Confirmation of Glucose Transporters through Targeted Mutagenesis and Transcriptional Analysis in Clostridium acetobutylicum. FERMENTATION 2023. [DOI: 10.3390/fermentation9010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The solvent-producing bacterium Clostridium acetobutylicum is able to grow on a variety of carbohydrates. The main hexose transport system is the phosphoenolpyruvate-dependent phosphotransferase system (PTS). When the gene glcG that encodes the glucose transporter was inactivated, the resulting mutant glcG::int(1224) grew as well as the wild type, yet its glucose consumption was reduced by 17% in a batch fermentation. Transcriptomics analysis of the phosphate-limited continuous cultures showed that the cellobiose transporter GlcCE was highly up-regulated in the mutant glcG::int(1224). The glcCE mutation did not affect growth and even consumed slightly more glucose during solventogenesis growth compared to wild type, indicating that GlcG is the primary glucose-specific PTS. Poor growth of the double mutant glcG::int(1224)-glcCE::int(193) further revealed that GlcCE was the secondary glucose PTS and that there must be other PTSs capable of glucose uptake. The observations obtained in this study provided a promising foundation to understand glucose transport in C. acetobutylicum.
Collapse
|
48
|
Suo W, Guo X, Zhang X, Xiao S, Wang S, Yin Y, Zheng Y. Glucose levels affect MgaSpn regulation on the virulence and adaptability of Streptococcus pneumoniae. Microb Pathog 2023; 174:105896. [PMID: 36460142 DOI: 10.1016/j.micpath.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Streptococcus pneumoniae can regulate virulence gene expression by sensing environmental changes, which is key to its pathogenicity. The global transcription regulator MgaSpn of Streptococcus pneumoniae regulates virulence genes expression by directly binding to the promoter regions, but its role in response to different environments remains unclear. In this study, we found that glucose levels could affect phosphocholine content, which was mediated by MgaSpn. MgaSpn can also alter its anti-phagocytosis ability, depending on the availability of glucose. In addition, transcriptome analysis of wild-type D39s in low and high glucose concentrations revealed that MgaSpn was also involved in the regulation of carbon metabolism inhibition (carbon catabolite repression; CCR) and translation processes, which made S. pneumoniae highly competitive in fluctuating environments. In conclusion, MgaSpn is closely related to the virulence and environmental adaptability of Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Weicai Suo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Xinlin Guo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Shengnan Xiao
- Precision Medicine Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shuhui Wang
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yuqiang Zheng
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| |
Collapse
|
49
|
Sugiura H, Fukunishi K, Kawakami H, Imajoh M. Phenotypic differences between Edwardsiella piscicida and Edwardsiella anguillarum isolates in Japan. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:197-207. [PMID: 35959541 DOI: 10.1002/aah.10169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Edwardsiella tarda has been regarded as the causative agent of edwardsiellosis in cultured marine and freshwater fish species in Japan. Our previous study genetically classified an E. tarda-like isolate from diseased Olive Flounder Paralichthys olivaceus as E. piscicida and that from diseased Red Seabream Pagrus major as E. anguillarum. This study aimed to understand the phenotypic differences between E. piscicida and E. anguillarum. METHODS Fourteen E. piscicida and seven E. anguillarum isolates were used in this study. The colonies of each isolate were grown on brain-heart infusion agar plates and then subjected to DNA extraction. The extracted DNA was amplified using PCR. carbohydrate fermentation of the isolates was examined using API 50 CH test kits. Moreover, the growth of the two species was examined in defined media. Also, free amino acids in Olive Flounder and Red Seabream sera were detected and quantified via high-performance liquid chromatography-mass spectrometry. Statistical differences in the concentrations of free amino acids were analyzed using Welch's t-tests. RESULT The API 50 CH test revealed that L-arabinose and D-mannitol were fermented by E. anguillarum isolates but not E. piscicida isolates. Furthermore, the growth of E. piscicida and E. anguillarum was reduced in the defined medium without methionine and iron sulfate. The growth of E. piscicida was reduced in the defined medium without phenylalanine, tyrosine, alanine, or nicotinic acid, whereas the growth of E. anguillarum was reduced in the defined medium without serine, cysteine, leucine, threonine, or isoleucine. Tyrosine and alanine were present in higher concentrations in the Olive Flounder serum, whereas threonine and isoleucine were present in higher concentrations in the Red Seabream serum, suggesting favorable growth conditions for E. piscicida and E. anguillarum. CONCLUSION This study characterizes a minimal defined medium that can be used for developing vaccines against E. piscicida and E. anguillarum.
Collapse
Affiliation(s)
- Hidehiro Sugiura
- Department of Bioresource Production Science, The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
| | - Kosuke Fukunishi
- Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Japan
| | | | - Masayuki Imajoh
- Department of Bioresource Production Science, The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Laboratory of Fish Disease, Aquaculture Course, Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
50
|
Zheng L, Shi C, Ma W, Lu Z, Zhou L, Zhang P, Bie X. Mechanism of biofilm formation by Salmonella typhimurium ST19 in a high-glucose environment revealed by transcriptomics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|