1
|
Marinho Y, Villarreal ES, Loya O, Oliveira SD. Mechanisms of lung endothelial cell injury and survival in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L972-L983. [PMID: 39406383 DOI: 10.1152/ajplung.00208.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 12/06/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, chronic, and incurable inflammatory pulmonary vascular disease characterized by significant sex bias and largely unexplored microbial-associated molecular mechanisms that may influence its development and sex prevalence across various subgroups. PAH can be subclassified as idiopathic, heritable, or associated with conditions such as connective tissue diseases, congenital heart defects, liver disease, infections, and chronic exposure to drugs or toxins. During PAH progression, lung vascular endothelial cells (ECs) undergo dramatic morphofunctional transformations in response to acute and chronic inflammation. These transformations include the appearance and expansion of abnormal vascular cell phenotypes such as those derived from apoptosis-resistant cell growth and endothelial-to-mesenchymal transition (EndoMT). Compelling evidence indicates that these endothelial phenotypes seem to be triggered by chronic lung vascular injury and dysfunction, often characterized by reduced secretion of vasoactive molecules like nitric oxide (NO) and exacerbated response to vasoconstrictors such as Endothelin-1 (ET-1), both long-term known contributors of PAH pathogenesis. This review sheds light on the mechanisms of EC dysfunction, apoptosis, and EndoMT in PAH, aiming to unravel the intricate interactions between ECs, pathogens, and other cell types that drive the onset and progression of this devastating disease. Ultimately, we hope to provide an overview of the complex functions of lung vascular ECs in PAH, inspiring novel therapeutic strategies that target these dysfunctional cells to improve the treatment landscape for PAH, particularly in the face of current and emerging global pathogenic threats.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Elizabeth S Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Omar Loya
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Suellen D Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Ackermann M, Werlein C, Plucinski E, Leypold S, Kühnel MP, Verleden SE, Khalil HA, Länger F, Welte T, Mentzer SJ, Jonigk DD. The role of vasculature and angiogenesis in respiratory diseases. Angiogenesis 2024; 27:293-310. [PMID: 38580869 PMCID: PMC11303512 DOI: 10.1007/s10456-024-09910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 04/07/2024]
Abstract
In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany.
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Witten, Germany.
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | | - Edith Plucinski
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sophie Leypold
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - Hassan A Khalil
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steven J Mentzer
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danny D Jonigk
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
3
|
Zheng W, Meng Z, Zhu Z, Wang X, Xu X, Zhang Y, Luo Y, Liu Y, Pei X. Metal-Organic Framework-Based Nanomaterials for Regulation of the Osteogenic Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310622. [PMID: 38377299 DOI: 10.1002/smll.202310622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Indexed: 02/22/2024]
Abstract
As the global population ages, bone diseases have become increasingly prevalent in clinical settings. These conditions often involve detrimental factors such as infection, inflammation, and oxidative stress that disrupt bone homeostasis. Addressing these disorders requires exogenous strategies to regulate the osteogenic microenvironment (OME). The exogenous regulation of OME can be divided into four processes: induction, modulation, protection, and support, each serving a specific purpose. To this end, metal-organic frameworks (MOFs) are an emerging focus in nanomedicine, which show tremendous potential due to their superior delivery capability. MOFs play numerous roles in OME regulation such as metal ion donors, drug carriers, nanozymes, and photosensitizers, which have been extensively explored in recent studies. This review presents a comprehensive introduction to the exogenous regulation of OME by MOF-based nanomaterials. By discussing various functional MOF composites, this work aims to inspire and guide the creation of sophisticated and efficient nanomaterials for bone disease management.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Biazus Soares G, Mahmoud O, Yosipovitch G, Mochizuki H. The mind-skin connection: A narrative review exploring the link between inflammatory skin diseases and psychological stress. J Eur Acad Dermatol Venereol 2024; 38:821-834. [PMID: 38311707 DOI: 10.1111/jdv.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024]
Abstract
Inflammatory skin diseases are known to negatively impact patient psychology, with individuals experiencing higher rates of stress and subsequent diminished quality of life, as well as mental health issues including anxiety and depression. Moreover, increased psychological stress has been found to exacerbate existing inflammatory skin diseases. The association between inflammatory skin diseases and psychological stress is a timely topic, and a framework to better understand the relationship between the two that integrates available literature is needed. In this narrative review article, we discuss potential neurobiological mechanisms behind psychological stress due to inflammatory skin diseases, focusing mainly on proinflammatory cytokines in the circulating system (the brain-gut-skin communications) and the default mode network in the brain. We also discuss potential descending pathways from the brain that lead to aggravation of inflammatory skin diseases due to psychological stress, including the central and peripheral hypothalamic-pituitary-adrenal axes, peripheral nerves and the skin barrier function.
Collapse
Affiliation(s)
- G Biazus Soares
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - O Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - G Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - H Mochizuki
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
5
|
Alfano DN, Miller MJ, Bubeck Wardenburg J. Endothelial ADAM10 utilization defines a molecular pathway of vascular injury in mice with bacterial sepsis. J Clin Invest 2023; 133:e168450. [PMID: 37788087 PMCID: PMC10688991 DOI: 10.1172/jci168450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
The endothelium plays a critical role in the host response to infection and has been a focus of investigation in sepsis. While it is appreciated that intravascular thrombus formation, severe inflammation, and loss of endothelial integrity impair tissue oxygenation during sepsis, the precise molecular mechanisms that lead to endothelial injury remain poorly understood. We demonstrate here that endothelial ADAM10 was essential for the pathogenesis of Staphylococcus aureus sepsis, contributing to α-toxin-mediated (Hla-mediated) microvascular thrombus formation and lethality. As ADAM10 is essential for endothelial development and homeostasis, we examined whether other major human sepsis pathogens also rely on ADAM10-dependent pathways in pathogenesis. Mice harboring an endothelium-specific knockout of ADAM10 were protected against lethal Pseudomonas aeruginosa and Streptococcus pneumoniae sepsis, yet remained fully susceptible to group B streptococci and Candida albicans sepsis. These studies illustrate a previously unknown role for ADAM10 in sepsis-associated endothelial injury and suggest that understanding pathogen-specific divergent host pathways in sepsis may enable more precise targeting of disease.
Collapse
Affiliation(s)
| | - Mark J. Miller
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
6
|
Jeon HJ, Kang JM, Koh H, Kim MS, Ihn K. Postoperative Bloodstream Infection Is Associated with Early Vascular Complications in Pediatric Liver Transplant Recipients with Biliary Atresia. J Clin Med 2023; 12:6760. [PMID: 37959226 PMCID: PMC10648914 DOI: 10.3390/jcm12216760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Bloodstream infection (BSI) after pediatric liver transplantation (PLT) is a common and severe complication that affects patient survival. Children with biliary atresia (BA) are at an increased risk for clinically significant infections. This study evaluated the impact of post-PLT BSI on clinical outcomes in children with BA. A total of 67 patients with BA aged <18 years who underwent PLT between April 2006 and September 2020 were analyzed and divided into two groups according to the occurrence of post-PLT BSI within 1 month (BSI vs. no BSI = 13 [19.4%] vs. 54 [80.6%]). The BSI group was significantly younger at the time of PLT and had a higher frequency of BSI at the time of PLT than the no BSI group. Early vascular complications within 3 months and reoperations were significantly more frequent in the BSI group. Univariate and multivariate analyses revealed that bacteremia within 1 month of PLT and graft-to-recipient weight ratio >4% were significantly associated with vascular complications. In conclusion, BSI after PLT is associated with increased vascular complications and reoperations. Proper control of bacterial infections and early liver transplantation before uncontrolled BSI may reduce vascular complications and unexpected reoperations in children with BA.
Collapse
Affiliation(s)
- Ho Jong Jeon
- Division of Pediatric Surgery, Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea;
| | - Ji-Man Kang
- Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hong Koh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyong Ihn
- Division of Pediatric Surgery, Department of Surgery, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Titball RW, Lewis N, Nicholas R. Is Clostridium perfringens epsilon toxin associated with multiple sclerosis? Mult Scler 2023; 29:1057-1063. [PMID: 37480283 PMCID: PMC10413780 DOI: 10.1177/13524585231186899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023]
Abstract
Clostridium perfringens epsilon toxin is associated with enterotoxaemia in livestock. More recently, it is proposed to play a role in multiple sclerosis (MS) in humans. Compared to matched controls, strains of C. perfringens which produce epsilon toxin are significantly more likely to be isolated from the gut of MS patients and at significantly higher levels; similarly, sera from MS patients are significantly more likely to contain antibodies to epsilon toxin. Epsilon toxin recognises the myelin and lymphocyte (MAL) protein receptor, damaging the blood-brain barrier and brain cells expressing MAL. In the experimental autoimmune encephalomyelitis model of MS, the toxin enables infiltration of immune cells into the central nervous system, inducing an MS-like disease. These studies provide evidence that epsilon toxin plays a role in MS, but do not yet fulfil Koch's postulates in proving a causal role.
Collapse
Affiliation(s)
| | | | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Laakmann K, Eckersberg JM, Hapke M, Wiegand M, Bierwagen J, Beinborn I, Preußer C, Pogge von Strandmann E, Heimerl T, Schmeck B, Jung AL. Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells. Cell Commun Signal 2023; 21:111. [PMID: 37189117 DOI: 10.1186/s12964-023-01131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction. Here, we investigated the impact of bEVs of sepsis-related pathogens on human EC RNase1 regulation. METHODS bEVs from sepsis-associated bacteria were isolated via ultrafiltration and size exclusion chromatography and used for stimulation of human lung microvascular ECs combined with and without signaling pathway inhibitor treatments. RESULTS bEVs from Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium significantly reduced RNase1 mRNA and protein expression and activated ECs, while TLR2-inducing bEVs from Streptococcus pneumoniae did not. These effects were mediated via LPS-dependent TLR4 signaling cascades as they could be blocked by Polymyxin B. Additionally, LPS-free ClearColi™ had no impact on RNase1. Further characterization of TLR4 downstream pathways involving NF-кB and p38, as well as JAK1/STAT1 signaling, revealed that RNase1 mRNA regulation is mediated via a p38-dependent mechanism. CONCLUSION Blood stream bEVs from gram-negative, sepsis-associated bacteria reduce the vascular protective factor RNase1, opening new avenues for therapeutical intervention of EC dysfunction via promotion of RNase1 integrity. Video Abstract.
Collapse
Affiliation(s)
- Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jorina Mona Eckersberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Moritz Hapke
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
9
|
Chaurasia R, Vinetz JM. In silico prediction of molecular mechanisms of toxicity mediated by the leptospiral PF07598 gene family-encoded virulence-modifying proteins. Front Mol Biosci 2023; 9:1092197. [PMID: 36756251 PMCID: PMC9900628 DOI: 10.3389/fmolb.2022.1092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Mechanisms of leptospirosis pathogenesis remain unclear despite the identification of a number of potential leptospiral virulence factors. We recently demonstrated potential mechanisms by which the virulence-modifying (VM) proteins-defined as containing a Domain of Unknown function (DUF1561), encoded by the PF07598 gene family-found only in group 1 pathogenic Leptospira-might mediate the clinical pathogenesis of leptospirosis. VM proteins belongs to classical AB toxin paradigm though have a unique AB domain architecture, unlike other AB toxins such as diphtheria toxin, pertussis toxin, shiga toxin, or ricin toxin which are typically encoded by two or more genes and self-assembled into a multi-domain holotoxin. Leptospiral VM proteins are secreted R-type lectin domain-containing exotoxins with discrete N-terminal ricin B-like domains involved in host cell surface binding, and a C-terminal DNase/toxin domain. Here we use the artificial intelligence-based AlphaFold algorithm and other computational tools to predict and elaborate on details of the VM protein structure-function relationship. Comparative AlphaFold and CD-spectroscopy defined the consistent secondary structure (Helix and ß-sheet) content, and the stability of the functional domains were further supported by molecular dynamics simulation. VM proteins comprises distinctive lectic family (QxW)3 motifs, the Mycoplasma CARDS toxin (D3 domain, aromatic patches), C-terminal similarity with mammalian DNase I. In-silico study proposed that Gln412, Gln523, His533, Thr59 are the high binding energy or ligand binding residues plausibly anticipates in the functional activities. Divalent cation (Mg+2-Gln412) and phosphate ion (PO4]-3-Arg615) interaction further supports the functional activities driven by C-terminal domain. Computation-driven structure-function studies of VM proteins will guide experimentation towards mechanistic understandings of leptospirosis pathogenesis, which underlie development of new therapeutic and preventive measures for this devastating disease.
Collapse
|
10
|
Moran TE, Hammers DE, Lee SW. The Role of Host-Cellular Responses in COVID-19 Endothelial Dysfunction. Curr Drug Targets 2022; 23:1555-1566. [PMID: 35748550 DOI: 10.2174/1389450123666220624094940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
SARS-CoV2, Severe acute respiratory syndrome coronavirus 2, is a novel member of the human coronavirus family that has recently emerged worldwide to cause COVID-19 disease. COVID-19 disease has been declared a worldwide pandemic with over 270 million total cases, and >5 million deaths as of this writing. Although co-morbidities and preexisting conditions have played a significant role in the severity of COVID-19, the hallmark feature of severe disease associated with SARS-CoV2 is respiratory failure. Recent findings have demonstrated a key role for endothelial dysfunction caused by SARS-CoV2 in these clinical outcomes, characterized by endothelial inflammation, the persistence of a pro-coagulative state, and major recruitment of leukocytes and other immune cells to localized areas of endothelial dysfunction. Though it is generally recognized that endothelial impairment is a major contributor to COVID-19 disease, studies to examine the initial cellular events involved in triggering endothelial dysfunction are needed. In this article, we review the general strategy of pathogens to exploit endothelial cells and the endothelium to cause disease. We discuss the role of the endothelium in COVID-19 disease and highlight very recent findings that identify key signaling and cellular events that are associated with the initiation of SARS-CoV2 infection. These studies may reveal specific molecular pathways that can serve as potential means of therapeutic development against COVID-19 disease.
Collapse
Affiliation(s)
- Thomas E Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, USA.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
11
|
A Live Cell Imaging Microfluidic Model for Studying Extravasation of Bloodborne Bacterial Pathogens. Cell Microbiol 2022. [DOI: 10.1155/2022/3130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria that migrate (extravasate) out of the bloodstream during vascular dissemination can cause secondary infections in many tissues and organs, including the brain, heart, liver, joints, and bone with clinically serious and sometimes fatal outcomes. The mechanisms by which bacteria extravasate through endothelial barriers in the face of blood flow-induced shear stress are poorly understood, in part because individual bacteria are rarely observed traversing endothelia in vivo, and in vitro model systems inadequately mimic the vascular environment. To enable the study of bacterial extravasation mechanisms, we developed a transmembrane microfluidics device mimicking human blood vessels. Fast, quantitative, three-dimensional live cell imaging in this system permitted single-cell resolution measurement of the Lyme disease bacterium Borrelia burgdorferi transmigrating through monolayers of primary human endothelial cells under physiological shear stress. This cost-effective, flexible method was 10,000 times more sensitive than conventional plate reader-based methods for measuring transendothelial migration. Validation studies confirmed that B. burgdorferi transmigrate actively and strikingly do so at similar rates under static and physiological flow conditions. This method has significant potential for future studies of B. burgdorferi extravasation mechanisms, as well as the transendothelial migration mechanisms of other disseminating bloodborne pathogens.
Collapse
|
12
|
Xie B, Zhao T, Zhao S, Zhou J, Zhao F. Possible effects of Treponema pallidum infection on human vascular endothelial cells. J Clin Lab Anal 2022; 36:e24318. [PMID: 35274369 PMCID: PMC8993650 DOI: 10.1002/jcla.24318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 11/06/2022] Open
Abstract
Pathogens can affect host cells in various ways, and the same effect can be found in the Treponema pallidum acting on the endothelium of host vessels, and the mechanism is often complex and multiple. Based on the existing T. pallidum of a cognitive framework, the first concerns involving T. pallidum or the bacteria protein directly acted on vascular endothelial cells of the host, the second concerns mainly involved in the process of T. pallidum infection in vivo blood lipid change, secretion of cytokines and the interactions between immune cells indirectly. Through both direct and indirect influence, this study explores the role of host by T. pallidum infect in the process of the vascular endothelium.
Collapse
Affiliation(s)
- Bibo Xie
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| | - Tie Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| | - Sisi Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| | - Jie Zhou
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| |
Collapse
|
13
|
Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells 2021; 11:33. [PMID: 35011595 PMCID: PMC8750085 DOI: 10.3390/cells11010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Collapse
Affiliation(s)
- Matthew K. Siggins
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
14
|
Fukuda S, Niimi Y, Hirasawa Y, Manyeza ER, Garner CE, Southan G, Salzman AL, Prough DS, Enkhbaatar P. Modulation of oxidative and nitrosative stress attenuates microvascular hyperpermeability in ovine model of Pseudomonas aeruginosa sepsis. Sci Rep 2021; 11:23966. [PMID: 34907252 PMCID: PMC8671546 DOI: 10.1038/s41598-021-03320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
In sepsis, microvascular hyperpermeability caused by oxidative/nitrosative stress (O&NS) plays an important role in tissue edema leading to multi-organ dysfunctions and increased mortality. We hypothesized that a novel compound R-107, a modulator of O&NS, effectively ameliorates the severity of microvascular hyperpermeability and preserves multi-organ function in ovine sepsis model. Sepsis was induced in twenty-two adult female Merino sheep by intravenous infusion of Pseudomonas aeruginosa (PA) (1 × 1010 CFUs). The animals were allocated into: 1) Control (n = 13): intramuscular injection (IM) of saline; and 2) Treatment (n = 9): IM of 50 mg/kg R-107. The treatment was given after the PA injection, and monitored for 24-h. R-107 treatment significantly reduced fluid requirement (15-24 h, P < 0.05), net fluid balance (9-24 h, P < 0.05), and water content in lung/heart/kidney (P = 0.02/0.04/0.01) compared to control. R-107 treatment significantly decreased lung injury score/modified sheep SOFA score at 24-h (P = 0.01/0.04), significantly lowered arterial lactate (21-24 h, P < 0.05), shed syndecan-1 (3-6 h, P < 0.05), interleukin-6 (6-12 h, P < 0.05) levels in plasma, and significantly attenuated lung tissue 3-nitrotyrosine and vascular endothelial growth factor-A expressions (P = 0.03/0.002) compared to control. There was no adverse effect in R-107 treatment. In conclusion, modulation of O&NS by R-107 reduced hyperpermeability markers and improved multi-organ function.
Collapse
Affiliation(s)
- Satoshi Fukuda
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.411731.10000 0004 0531 3030Department of General Medicine, International University of Health and Welfare, Shioya Hospital, Tochigi, 329-2145 Japan
| | - Yosuke Niimi
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.410818.40000 0001 0720 6587Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, Tokyo, 162-8666 Japan
| | - Yasutaka Hirasawa
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.136304.30000 0004 0370 1101Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| | - Ennert R. Manyeza
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA
| | | | | | | | - Donald S. Prough
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
15
|
Raineri EJM, Yedavally H, Salvati A, van Dijl JM. Time-resolved analysis of Staphylococcus aureus invading the endothelial barrier. Virulence 2021; 11:1623-1639. [PMID: 33222653 PMCID: PMC7714425 DOI: 10.1080/21505594.2020.1844418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is a leading cause of infections world-wide. Once this pathogen has reached the bloodstream, it can invade different parts of the human body by crossing the endothelial barrier. Infected endothelial cells may be lysed by bacterial products, but the bacteria may also persist intracellularly, where they are difficult to eradicate with antibiotics and cause relapses of infection. Our present study was aimed at investigating the fate of methicillin resistant S. aureus (MRSA) isolates of the USA300 lineage with different epidemiological origin inside endothelial cells. To this end, we established two in vitro infection models based on primary human umbilical vein endothelial cells (HUVEC), which mimic conditions of the endothelium when infection occurs. For comparison, the laboratory strain S. aureus HG001 was used. As shown by flow cytometry and fluorescence- or electron microscopy, differentiation of HUVEC into a cell barrier with cell-cell junctions sets limits to the rates of bacterial internalization, the numbers of internalized bacteria, the percentage of infected cells, and long-term intracellular bacterial survival. Clear strain-specific differences were observed with the HG001 strain infecting the highest numbers of HUVEC and displaying the longest intracellular persistence, whereas the MRSA strains reproduced faster intracellularly. Nonetheless, all internalized bacteria remained confined in membrane-enclosed LAMP-1-positive lysosomal or vacuolar compartments. Once internalized, the bacteria had a higher propensity to persist within the differentiated endothelial cell barrier, probably because internalization of lower numbers of bacteria was less toxic. Altogether, our findings imply that intact endothelial barriers are more likely to sustain persistent intracellular infection.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Harita Yedavally
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen , Groningen, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen , Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
16
|
Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection - from 'nose to gut' and back. FEMS Microbiol Rev 2021; 46:6321165. [PMID: 34259843 PMCID: PMC8767451 DOI: 10.1093/femsre/fuab041] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen, which is a leading cause of infections worldwide. The challenge in treating S. aureus infection is linked to the development of multidrug-resistant strains and the mechanisms employed by this pathogen to evade the human immune defenses. In addition, S. aureus can hide asymptomatically in particular ‘protective’ niches of the human body for prolonged periods of time. In the present review, we highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the nasopharynx and oral cavity. In addition, we address the contribution of these ecological niches to staphylococcal transmission, including the roles of particular triggers as modulators of the bacterial dissemination. In this context, we present recent advances concerning the interactions between S. aureus and immune cells to understand their possible roles as vehicles of dissemination from the gut to other body sites. Lastly, we discuss the factors that contribute to the switch from colonization to infection. Altogether, we conclude that an important key to uncovering the pathogenesis of S. aureus infection lies hidden in the endogenous staphylococcal reservoirs, the trafficking of this bacterium through the human body and the subsequent immune responses.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Maes M, Vojdani A, Sirivichayakul S, Barbosa DS, Kanchanatawan B. Inflammatory and Oxidative Pathways Are New Drug Targets in Multiple Episode Schizophrenia and Leaky Gut, Klebsiella pneumoniae, and C1q Immune Complexes Are Additional Drug Targets in First Episode Schizophrenia. Mol Neurobiol 2021; 58:3319-3334. [PMID: 33675500 DOI: 10.1007/s12035-021-02343-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Breakdown of paracellular and vascular pathways and activated neuroimmune and oxidative pathways was established in (deficit) schizophrenia. The aim of this study was to delineate (a) the differences in these pathways between stable-phase, first (FES) and multiple (MES) episode schizophrenia and (b) the pathways that determine the behavioral-cognitive-physical-psychosocial (BCPS) deterioration in FES/MES. This study included 21 FES and 58 FES patients and 40 healthy controls and measured indicants of serum C1q circulating immune complexes (CIC), leaky gut, immune activation, and oxidative stress toxicity (OSTOX). We constructed a BCPS-worsening index by extracting a latent vector from symptomatic, neurocognitive, and quality of life data. FES was associated with higher IgA CIC-C1q, IgA directed to cadherin, catenin, and plasmalemma vesicle-associated protein, and IgA/IgM to Gram-negative bacteria as compared with FES and controls. In FES patients, the BCPS-worsening score was predicted (48.7%) by IgA to Klebsiella pneumoniae and lowered paraoxonase 1 activity. In MES patients, the BCPS-worsening score was explained (42.7%) by increased tumor necrosis factor-α, OSTOX, and number of episodes. In schizophrenia, 34.0% of the variance in the BCPS-worsening score was explained by IgA to K. pneumoniae, OSTOX, and number of episodes. Increased IgA to K. pneumoniae was the single best predictor of residual psychotic symptoms in FES and MES. This study delineated different mechanistic processes in FES, including breakdown of adherens junctions, bacterial translocation, and IgA CIC-C1q formation, and MES, including immune and oxidative neurotoxic pathways. FES and MES comprise different staging subtypes, i.e., FES and MES with and without worsening.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- IMPACT Strategic Research Center, Deakin University, Vic, Geelong, Australia.
| | - Aristo Vojdani
- Immunosciences Lab., Inc., Los Angeles, CA, USA
- Cyrex Labs, LLC, Phoenix, AZ, USA
- Department of Preventive Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | - Decio S Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Endothelial Dysfunction and Neutrophil Degranulation as Central Events in Sepsis Physiopathology. Int J Mol Sci 2021; 22:ijms22126272. [PMID: 34200950 PMCID: PMC8230689 DOI: 10.3390/ijms22126272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a major health problem worldwide. It is a time-dependent disease, with a high rate of morbidity and mortality. In this sense, an early diagnosis is essential to reduce these rates. The progressive increase of both the incidence and prevalence of sepsis has translated into a significant socioeconomic burden for health systems. Currently, it is the leading cause of noncoronary mortality worldwide and represents one of the most prevalent pathologies both in hospital emergency services and in intensive care units. In this article, we review the role of both endothelial dysfunction and neutrophil dysregulation in the physiopathology of this disease. The lack of a key symptom in sepsis makes it difficult to obtain a quick and accurate diagnosis of this condition. Thus, it is essential to have fast and reliable diagnostic tools. In this sense, the use of biomarkers can be a very important alternative when it comes to achieving these goals. Both new biomarkers and treatments related to endothelial dysfunction and neutrophil dysregulation deserve to be further investigated in order to open new venues for the diagnosis, treatment and prognosis of sepsis.
Collapse
|
19
|
Tan X, Petri B, DeVinney R, Jenne CN, Chaconas G. The Lyme disease spirochete can hijack the host immune system for extravasation from the microvasculature. Mol Microbiol 2021; 116:498-515. [PMID: 33891779 DOI: 10.1111/mmi.14728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Lyme disease is the most common tick-transmitted disease in the northern hemisphere and is caused by the spirochete Borrelia burgdorferi and related Borrelia species. The constellation of symptoms attributable to this malady results from vascular dissemination of B. burgdorferi throughout the body to invade various tissue types. However, little is known about the mechanism by which the spirochetes can breach the blood vessel wall to reach distant tissues. We have studied this process by direct observation of spirochetes in the microvasculature of living mice using multi-laser spinning-disk intravital microscopy. Our results show that in our experimental system, instead of phagocytizing B. burgdorferi, host neutrophils are involved in the production of specific cytokines that activate the endothelium and potentiate B. burgdorferi escape into the surrounding tissue. Spirochete escape is not induced by paracellular permeability and appears to occur via a transcellular pathway. Neutrophil repurposing to promote bacterial extravasation represents a new and innovative pathogenic strategy.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Björn Petri
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Rebekah DeVinney
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
21
|
Li Y, Suo L, Fu Z, Li G, Zhang J. Pivotal role of endothelial cell autophagy in sepsis. Life Sci 2021; 276:119413. [PMID: 33794256 DOI: 10.1016/j.lfs.2021.119413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a fatal organ dysfunction resulting from a disordered host response to infection. Endothelial cells (ECs) are usually the primary targets of inflammatory mediators in sepsis; damage to ECs plays a pivotal part in vital organ failure. In recent studies, autophagy was suggested to play a critical role in the ECs injury although the mechanisms by which ECs are injured in sepsis are not well elucidated. Autophagy is a highly conserved catabolic process that includes sequestrating plasma contents and transporting cargo to lysosomes for recycling the vital substrates required for metabolism. This pathway also counteracts microbial invasion to balance and retain homeostasis, especially during sepsis. Increasing evidence indicates that autophagy is closely associated with endothelial function. The role of autophagy in sepsis may or may not be favorable depending upon conditions. In the present review, the current knowledge of autophagy in the process of sepsis and its influence on ECs was evaluated. In addition, the potential of targeting EC autophagy for clinical treatment of sepsis was discussed.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shengjing Hospital of China Medical University, No. 44 Xiaoheyan Road, Shengyang, Liaoning 110042, PR China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Guoqing Li
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning 116001, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
22
|
Plasencia-Muñoz B, Avelar-González FJ, De la Garza M, Jacques M, Moreno-Flores A, Guerrero-Barrera AL. Actinobacillus pleuropneumoniae Interaction With Swine Endothelial Cells. Front Vet Sci 2020; 7:569370. [PMID: 33195549 PMCID: PMC7658479 DOI: 10.3389/fvets.2020.569370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Actinobacillus pleuropneumonia is a swine (host) specific respiratory pathogen and the etiological agent of swine pleuropneumonia which affects pigs of all ages, many being asymptomatic carriers. This pathogen has high morbidity and mortality rates which generates large economic losses for the pig industry. Actinobacillus pleuropneumoniae is a widely studied bacterium, however its pathogenesis is not yet fully understood. The prevalence of the 18 serotypes of A. pleuropneumoniae varies by geographic region, in North American area, more specifically in Mexico, serotypes 1, 3, 5b, and 7 show higher prevalence. Actinobacillus pleuropneumoniae is described as a strict extracellular pathogen with tropism for lower respiratory tract. However, this study depicts the ability of these serotypes to adhere to non-phagocytic cells, using an endothelial cell model, as well as their ability to internalize them, proposing it could be considered as an intracellular pathogen.
Collapse
Affiliation(s)
- Berenice Plasencia-Muñoz
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J Avelar-González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Mireya De la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Adriana Moreno-Flores
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
23
|
Monie DD, Meyer FB. Ependymal Petechial Hemorrhages in Bacterial Meningitis. Mayo Clin Proc 2020; 95:1940-1941. [PMID: 32861336 PMCID: PMC8556137 DOI: 10.1016/j.mayocp.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Dileep D Monie
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Fredric B Meyer
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, Rochester, MN.
| |
Collapse
|
24
|
Hannachi N, Ogé-Ganaye E, Baudoin JP, Fontanini A, Bernot D, Habib G, Camoin-Jau L. Antiplatelet Agents Have a Distinct Efficacy on Platelet Aggregation Induced by Infectious Bacteria. Front Pharmacol 2020; 11:863. [PMID: 32581813 PMCID: PMC7291881 DOI: 10.3389/fphar.2020.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/26/2020] [Indexed: 02/01/2023] Open
Abstract
Platelets are the cornerstone of hemostasis. However, their exaggerated aggregation induces deleterious consequences. In several diseases, such as infectious endocarditis and sepsis, the interaction between platelets and bacteria leads to platelet aggregation. Despite platelet involvement, no antiplatelet therapy is currently recommended in these infectious diseases. We aimed here, to evaluate, in vitro, the effect of antiplatelet drugs on platelet aggregation induced by two of the bacterial pathogens most involved in infectious endocarditis, Staphylococcus aureus and Streptococcus sanguinis. Blood samples were collected from healthy donors (n = 43). Treated platelet rich plasmas were incubated with three bacterial strains of each species tested. Platelet aggregation was evaluated by Light Transmission Aggregometry. CD62P surface exposure was evaluated by flow cytometry. Aggregate organizations were analyzed by scanning electron microscopy. All the strains tested induced a strong platelet aggregation. Antiplatelet drugs showed distinct effects depending on the bacterial species involved with different magnitude between strains of the same species. Ticagrelor exhibited the highest inhibitory effect on platelet activation (p <0.001) and aggregation (p <0.01) induced by S. aureus. In the case of S. sanguinis, platelet activation and aggregation were better inhibited using the combination of both aspirin and ticagrelor (p <0.05 and p <0.001 respectively). Aggregates ultrastructure and effect of antiplatelet drugs observed by scanning electron microscopy depended on the species involved. Our results highlighted that the effect of antiplatelet drugs depended on the bacterial species involved. We might recommend therefore to consider the germ involved before introduction of an optimal antiplatelet therapy.
Collapse
Affiliation(s)
- Nadji Hannachi
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
| | - Emma Ogé-Ganaye
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| | - Jean-Pierre Baudoin
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
| | - Anthony Fontanini
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
| | - Denis Bernot
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| | - Gilbert Habib
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
- Département de cardiologie, Hôpital de la Timone, AP-HM, Boulevard Jean-Moulin, Marseille, France
| | - Laurence Camoin-Jau
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| |
Collapse
|
25
|
Hannachi N, Baudoin JP, Prasanth A, Habib G, Camoin-Jau L. The distinct effects of aspirin on platelet aggregation induced by infectious bacteria. Platelets 2019; 31:1028-1038. [PMID: 31856631 DOI: 10.1080/09537104.2019.1704717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteria induce platelet aggregation triggered by several mechanisms. The goal of this work was to characterize platelet aggregates induced by different bacterial strains and to quantify the effect of aspirin treatment using aggregation tests, as well as a novel approach based on confocal analysis. Blood samples were obtained from either healthy donors (n = 27) or patients treated with long-term aspirin (n = 15). The bacterial species included were Staphylococcus aureus, Enterococcus faecalis, and Streptococcus sanguinis. The different aggregate's ultrastructures depending on the bacterial strain were analyzed using Scanning electron microscopy. Quantification of the size of the platelet aggregates, their mean number as well as the bacterial impregnation within the aggregates was performed using confocal laser scanning light microscopy. Light Transmission Aggregometry was also performed. Our results reported distinct characteristics of platelet aggregates depending on the bacterial strain. Using confocal analysis, we have shown that aspirin significantly reduced platelet aggregation induced by S. aureus (p = .003) and E. faecalis (p = .006) with no effect in the case of S. sanguinis (p = .529). The results of the aggregometry were concordant with those of the confocal technique in the case of S. aureus and S. sanguinis. Interestingly, aggregation induced by E. faecalis was detected only with confocal analysis. In conclusion, our confocal scanning microscopy allowed a detailed study of the platelet aggregation induced by bacteria. We showed that aspirin acts on bacterial-induced platelet aggregation depending on the species. These results are in favor of the use of aspirin considering the species and the bacterial strain involved.
Collapse
Affiliation(s)
- Nadji Hannachi
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France
| | - Jean-Pierre Baudoin
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France
| | - Arsha Prasanth
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France
| | - Gilbert Habib
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France.,Département de cardiologie, la Timone Hospital, AP-HM , Marseille, France
| | - Laurence Camoin-Jau
- Département d'infectiologie, MEPHI, IHU Méditerranée infection, Aix Marseille Univ, IRD, AP-HM , Marseille, France.,Laboratoire d'Hématologie, La Timone Hospital, APHM , Marseille, France
| |
Collapse
|
26
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
27
|
Lubkin A, Lee WL, Alonzo F, Wang C, Aligo J, Keller M, Girgis NM, Reyes-Robles T, Chan R, O'Malley A, Buckley P, Vozhilla N, Vasquez MT, Su J, Sugiyama M, Yeung ST, Coffre M, Bajwa S, Chen E, Martin P, Kim SY, Loomis C, Worthen GS, Shopsin B, Khanna KM, Weinstock D, Lynch AS, Koralov SB, Loke P, Cadwell K, Torres VJ. Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice. Cell Host Microbe 2019; 25:463-470.e9. [PMID: 30799265 DOI: 10.1016/j.chom.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 01/16/2023]
Abstract
The pathogenesis of Staphylococcus aureus is thought to depend on the production of pore-forming leukocidins that kill leukocytes and lyse erythrocytes. Two leukocidins, Leukocidin ED (LukED) and γ-Hemolysin AB (HlgAB), are necessary and sufficient to kill mice upon infection and toxin challenge. We demonstrate that LukED and HlgAB cause vascular congestion and derangements in vascular fluid distribution that rapidly cause death in mice. The Duffy antigen receptor for chemokines (DARC) on endothelial cells, rather than leukocytes or erythrocytes, is the critical target for lethality. Consistent with this, LukED and HlgAB injure primary human endothelial cells in a DARC-dependent manner, and mice with DARC-deficient endothelial cells are resistant to toxin-mediated lethality. During bloodstream infection in mice, DARC targeting by S. aureus causes increased tissue damage, organ dysfunction, and host death. The potential for S. aureus leukocidins to manipulate vascular integrity highlights the importance of these virulence factors.
Collapse
Affiliation(s)
- Ashira Lubkin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Warren L Lee
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Changsen Wang
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Jason Aligo
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Matthew Keller
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Natasha M Girgis
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Tamara Reyes-Robles
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Rita Chan
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter Buckley
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Nikollaq Vozhilla
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Marilyn T Vasquez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Johnny Su
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Michael Sugiyama
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Stephen T Yeung
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sofia Bajwa
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Eric Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Patricia Martin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, New York University School of Medicine, New York, NY, USA; Office of Collaborative Sciences, NYU School of Medicine, New York, NY, USA; Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, NY, USA; Office of Collaborative Sciences, NYU School of Medicine, New York, NY, USA; Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - G Scott Worthen
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Daniel Weinstock
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Anthony Simon Lynch
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
28
|
Biwer LA, Wallingford MC, Jaffe IZ. Vascular Mineralocorticoid Receptor: Evolutionary Mediator of Wound Healing Turned Harmful by Our Modern Lifestyle. Am J Hypertens 2019; 32:123-134. [PMID: 30380007 DOI: 10.1093/ajh/hpy158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022] Open
Abstract
The mineralocorticoid receptor (MR) is indispensable for survival through its critical role in maintaining blood pressure in response to sodium scarcity or bleeding. Activation of MR by aldosterone in the kidney controls water and electrolyte homeostasis. This review summarizes recent advances in our understanding of MR function, specifically in vascular endothelial and smooth muscle cells. The evolving roles for vascular MR are summarized in the areas of (i) vascular tone regulation, (ii) thrombosis, (iii) inflammation, and (iv) vascular remodeling/fibrosis. Synthesis of the data supports the concept that vascular MR does not contribute substantially to basal homeostasis but rather, MR is poised to be activated when the vasculature is damaged to coordinate blood pressure maintenance and wound healing. Specifically, MR activation in the vascular wall promotes vasoconstriction, inflammation, and exuberant vascular remodeling with fibrosis. A teleological model is proposed in which these functions of vascular MR may have provided a critical evolutionary survival advantage in the face of mechanical vascular injury with bleeding. However, modern lifestyle is characterized by physical inactivity and high fat/high sodium diet resulting in diffuse vascular damage. Under these modern conditions, diffuse, persistent and unregulated activation of vascular MR contributes to post-reproductive cardiovascular disease in growing populations with hypertension, obesity, and advanced age.
Collapse
MESH Headings
- Animals
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Diet, High-Fat
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Evolution, Molecular
- Hemodynamics
- Humans
- Life Style
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, Mineralocorticoid/metabolism
- Risk Factors
- Sedentary Behavior
- Signal Transduction
- Sodium, Dietary/adverse effects
- Vascular Remodeling
- Wound Healing
Collapse
Affiliation(s)
- Lauren A Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mary C Wallingford
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med 2018; 7:E400. [PMID: 30380785 PMCID: PMC6262336 DOI: 10.3390/jcm7110400] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Acute vascular endothelial dysfunction is a central event in the pathogenesis of sepsis, increasing vascular permeability, promoting activation of the coagulation cascade, tissue edema and compromising perfusion of vital organs. Aging and chronic diseases (hypertension, dyslipidaemia, diabetes mellitus, chronic kidney disease, cardiovascular disease, cerebrovascular disease, chronic pulmonary disease, liver disease, or cancer) are recognized risk factors for sepsis. In this article we review the features of endothelial dysfunction shared by sepsis, aging and the chronic conditions preceding this disease. Clinical studies and review articles on endothelial dysfunction in sepsis, aging and chronic diseases available in PubMed were considered. The main features of endothelial dysfunction shared by sepsis, aging and chronic diseases were: (1) increased oxidative stress and systemic inflammation, (2) glycocalyx degradation and shedding, (3) disassembly of intercellular junctions, endothelial cell death, blood-tissue barrier disruption, (4) enhanced leukocyte adhesion and extravasation, (5) induction of a pro-coagulant and anti-fibrinolytic state. In addition, chronic diseases impair the mechanisms of endothelial reparation. In conclusion, sepsis, aging and chronic diseases induce similar features of endothelial dysfunction. The potential contribution of pre-existent endothelial dysfunction to sepsis pathogenesis deserves to be further investigated.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| | - Marta Martín-Fernandez
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Cristina López-Mestanza
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Patricia Duque
- Anesthesiology and Reanimation Service, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain.
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
30
|
殷 商, 朱 俊, 罗 莉, 杨 霞, 梁 华, 罗 艳. [Exogenous agmatine inhibits lipopolysaccharide-induced activation and dysfunction of human umbilical vein endothelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:652-660. [PMID: 29997086 PMCID: PMC6765718 DOI: 10.3969/j.issn.1673-4254.2018.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate whether exogenous agmatine inhibits lipopolysaccharide (LPS)-induced activation and dysfunction of human umbilical vein endothelial cells (HUVECs) by modulating nuclear factor-κB (NF-κB) and MAPK signal pathways and the production of reactive oxygen species (ROS). METHODS Cultured HUVECs were treated with agmatine at the optimized concentration of 1.0 mmolγL, LPS (10 µgγmL), and LPS + agmatine, with or without pretreatment with the inhibitors of NF-κB (PDTC), p38 (SB203580), and ERK (PD98059) for 1 h. The levels of soluble vascular cell adhesion molecule 1 (VCAM-1), soluble intercellular adhesion molecule 1 (sICAM-1), soluble E-selectin and monocyte chemoattractant protein 1 (MCP-1) in the supernatant were determined using ELISA, and their mRNA expressions, along with heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO-1), were assessed using real-time PCR. ROS production in the cells was determined using 2, 7-dichlorofluoresce in diacetate (DCFH-DA) as the fluorescence probe. The protein expressions of VCAM-1, ICAM-1, p65, phospho-p65 (p-p65), IκBα, p-IκBα, ERK, p-ERK, p38, p-p38, JNK, and p-JNK were detected using Western blotting. RESULTS LPS stimulation for 6 and 24 h significantly increased the levels of sVCAM-1, sICAM-1, sE-selectin and MCP-1 in the supernatant, intracellular ROS production, and the mRNA expressions of these molecules (P<0.05). Intervention with 1 mmolγL agmatine, similar with pretreatment with p38, ERK and NF-κB inhibitors, obviously inhibited such effects of LPS in HUVECs (P<0.05). Agmatine significantly up-regulated the mRNA expression of HO-1 (P<0.05), inhibited LPS-induced phosphorylation of p38, ERK, nuclear p65 and cytoplasmic IκBα, and up-regulated the protein expression of cytoplasmic IκBα. CONCLUSION Agmatine inhibits LPS-induced activation and dysfunction of HUVECs by modulating NF-κB and MAPK signal pathways to down-regulate the expressions of adhesion molecules and chemokines and by up-regulating the expression of HO-1 to reduce ROS production.
Collapse
Affiliation(s)
- 商启 殷
- 重庆医科大学附属第一医院检验科,重庆 400016Department of Clinical Laboratory, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 俊宇 朱
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 莉 罗
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 霞 杨
- 四川大学华西医院临床药学部,四川 成都 610041Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 华平 梁
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 艳 罗
- 重庆医科大学附属第一医院检验科,重庆 400016Department of Clinical Laboratory, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
31
|
殷 商, 朱 俊, 罗 莉, 杨 霞, 梁 华, 罗 艳. [Exogenous agmatine inhibits lipopolysaccharide-induced activation and dysfunction of human umbilical vein endothelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:652-660. [PMID: 29997086 PMCID: PMC6765718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To investigate whether exogenous agmatine inhibits lipopolysaccharide (LPS)-induced activation and dysfunction of human umbilical vein endothelial cells (HUVECs) by modulating nuclear factor-κB (NF-κB) and MAPK signal pathways and the production of reactive oxygen species (ROS). METHODS Cultured HUVECs were treated with agmatine at the optimized concentration of 1.0 mmolγL, LPS (10 µgγmL), and LPS + agmatine, with or without pretreatment with the inhibitors of NF-κB (PDTC), p38 (SB203580), and ERK (PD98059) for 1 h. The levels of soluble vascular cell adhesion molecule 1 (VCAM-1), soluble intercellular adhesion molecule 1 (sICAM-1), soluble E-selectin and monocyte chemoattractant protein 1 (MCP-1) in the supernatant were determined using ELISA, and their mRNA expressions, along with heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO-1), were assessed using real-time PCR. ROS production in the cells was determined using 2, 7-dichlorofluoresce in diacetate (DCFH-DA) as the fluorescence probe. The protein expressions of VCAM-1, ICAM-1, p65, phospho-p65 (p-p65), IκBα, p-IκBα, ERK, p-ERK, p38, p-p38, JNK, and p-JNK were detected using Western blotting. RESULTS LPS stimulation for 6 and 24 h significantly increased the levels of sVCAM-1, sICAM-1, sE-selectin and MCP-1 in the supernatant, intracellular ROS production, and the mRNA expressions of these molecules (P<0.05). Intervention with 1 mmolγL agmatine, similar with pretreatment with p38, ERK and NF-κB inhibitors, obviously inhibited such effects of LPS in HUVECs (P<0.05). Agmatine significantly up-regulated the mRNA expression of HO-1 (P<0.05), inhibited LPS-induced phosphorylation of p38, ERK, nuclear p65 and cytoplasmic IκBα, and up-regulated the protein expression of cytoplasmic IκBα. CONCLUSION Agmatine inhibits LPS-induced activation and dysfunction of HUVECs by modulating NF-κB and MAPK signal pathways to down-regulate the expressions of adhesion molecules and chemokines and by up-regulating the expression of HO-1 to reduce ROS production.
Collapse
Affiliation(s)
- 商启 殷
- 重庆医科大学附属第一医院检验科,重庆 400016Department of Clinical Laboratory, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 俊宇 朱
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 莉 罗
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 霞 杨
- 四川大学华西医院临床药学部,四川 成都 610041Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 华平 梁
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 艳 罗
- 重庆医科大学附属第一医院检验科,重庆 400016Department of Clinical Laboratory, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
32
|
Microbial interactions with the intestinal epithelium and beyond: Focusing on immune cell maturation and homeostasis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:47-54. [PMID: 30294506 DOI: 10.1007/s40139-018-0165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbial metabolites influence the function of epithelial, endothelial and immune cells in the intestinal mucosa. Microbial metabolites like SCFAs and B complex vitamins direct macrophage polarization whereas microbial derived biogenic amines modulate intestinal epithelium and immune response. Aberrant bacterial lipopolysaccharide-mediated signaling may be involved in the pathogenesis of chronic intestinal inflammation and colorectal carcinogenesis. Our perception of human microbes has changed from that of opportunistic pathogens to active participants maintaining intestinal and whole body homeostasis. This review attempts to explain the dynamic and enriched interactions between the intestinal epithelial mucosa and commensal bacteria in homeostasis maintenance.
Collapse
|