1
|
Engelhardt IC, Holden N, Daniell TJ, Dupuy LX. Mobility and growth in confined spaces are important mechanisms for the establishment of Bacillus subtilis in the rhizosphere. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001477. [PMID: 39106481 PMCID: PMC11574552 DOI: 10.1099/mic.0.001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024]
Abstract
The rhizosphere hosts complex and abundant microbiomes whose structure and composition are now well described by metagenomic studies. However, the dynamic mechanisms that enable micro-organisms to establish along a growing plant root are poorly characterized. Here, we studied how a motile bacterium utilizes the microhabitats created by soil pore space to establish in the proximity of plant roots. We have established a model system consisting of Bacillus subtilis and lettuce seedlings co-inoculated in transparent soil microcosms. We carried out live imaging experiments and developed image analysis pipelines to quantify the abundance of the bacterium as a function of time and position in the pore space. Results showed that the establishment of the bacterium in the rhizosphere follows a precise sequence of events where small islands of mobile bacteria were first seen forming near the root tip within the first 12-24 h of inoculation. Biofilm was then seen forming on the root epidermis at distances of about 700-1000 µm from the tip. Bacteria accumulated predominantly in confined pore spaces within 200 µm from the root or the surface of a particle. Using probabilistic models, we could map the complete sequence of events and propose a conceptual model of bacterial establishment in the pore space. This study therefore advances our understanding of the respective role of growth and mobility in the efficient colonization of bacteria in the rhizosphere.
Collapse
Affiliation(s)
| | - Nicola Holden
- Department of Rural Land Use, Scotland’s Rural College, Aberdeen AB21 9YA, UK
| | - Tim J. Daniell
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lionel X. Dupuy
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
2
|
Ho HVN, Dunigan DD, Salsbery ME, Agarkova IV, Al Ameeli Z, Van Etten JL, DeLong JP. Viral Chemotaxis of Paramecium Bursaria Altered by Algal Endosymbionts. MICROBIAL ECOLOGY 2023; 86:2904-2909. [PMID: 37650927 DOI: 10.1007/s00248-023-02292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Chemotaxis is widespread across many taxa and often aids resource acquisition or predator avoidance. Species interactions can modify the degree of movement facilitated by chemotaxis. In this study, we investigated the influence of symbionts on Paramecium bursaria's chemotactic behavior toward chloroviruses. To achieve this, we performed choice experiments using chlorovirus and control candidate attractors (virus stabilization buffer and pond water). We quantified the movement of Paramecia grown with or without algal and viral symbionts toward each attractor. All Paramecia showed some chemotaxis toward viruses, but cells without algae and viruses showed the most movement toward viruses. Thus, the endosymbiotic algae (zoochlorellae) appeared to alter the movement of Paramecia toward chloroviruses, but it was not clear that ectosymbiotic viruses (chlorovirus) also had this effect. The change in behavior was consistent with a change in swimming speed, but a change in attraction remains possible. The potential costs and benefits of chemotactic movement toward chloroviruses for either the Paramecia hosts or its symbionts remain unclear.
Collapse
Affiliation(s)
- Huy V N Ho
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-2083, USA
| | - David D Dunigan
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0722, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Miranda E Salsbery
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-2083, USA
| | - Irina V Agarkova
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0722, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Zeina Al Ameeli
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0722, USA
- Medical Technical Institutes, Middle Technical University, Baghdad, Iraq
| | - James L Van Etten
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0722, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-2083, USA.
| |
Collapse
|
3
|
Huang Z, Zhu Y, Li X, Yao Z, Ge R. The mechanisms of metronidazole resistance of Helicobacter pylori: A transcriptomic and biochemical study. Microb Pathog 2023; 183:106303. [PMID: 37595811 DOI: 10.1016/j.micpath.2023.106303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Helicobacter pylori (H. pylori) is a bacterial pathogen in the stomach, causing gastritis, gastric ulcer, duodenal ulcer and even gastric cancer. The triple therapy containing one bismuth-containing compound or a proton-pump inhibitor with two antibiotics was the cornerstone of the treatment of H. pylori infections. However the drug resistance of Helicobacter pylori is more and more common, which leads to the continued decline in the radical cure rate. The purpose of this study was to investigate the mechanism of metronidazole resistance of H. pylori through transcriptomics and biochemical characterizations. In this study, a 128-time-higher metronidazole-resistant H. pylori strain compared to the sensitive strain was domesticated, and 374 significantly differential genes were identified by transcriptomic sequencing as compared to the metronidazole-sensitive strain. Through GO and KEGG enrichment analysis, antibiotic-resistance pathways were found to be mainly involved in redox, biofilm formation and ABC transportation, and the results were verified by qRT-PCR. The subsequent biochemical analysis found that the urease activity of the drug-resistant strain decreased, and whereas the capabilities of bacterial energy production, membrane production and diffusion ability increased. The work here will drop hints for the mechanisms of antibiotic-resistance of H. pylori and provide promising biomarkers for the further development of new-kind drugs to treat metronidazole-resistant H. pylori.
Collapse
Affiliation(s)
- Zeyuan Huang
- The Laboratory of Metalloproteins, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yulin Zhu
- The Laboratory of Metalloproteins, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinhang Li
- The Laboratory of Metalloproteins, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zihui Yao
- The Laboratory of Metalloproteins, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruiguang Ge
- The Laboratory of Metalloproteins, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Ma J, Zhao H, Mo S, Li J, Ma X, Tang Y, Li H, Liu Z. Acquisition of Type I methyltransferase via horizontal gene transfer increases the drug resistance of Aeromonas veronii. Microb Genom 2023; 9:001107. [PMID: 37754275 PMCID: PMC10569733 DOI: 10.1099/mgen.0.001107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Aeromonas veronii is an opportunistic pathogen that affects both fish and mammals, including humans, leading to bacteraemia, sepsis, meningitis and even death. The increasing virulence and drug resistance of A. veronii are of significant concern and pose a severe risk to public safety. The Type I restriction-modification (RM) system, which functions as a bacterial defence mechanism, can influence gene expression through DNA methylation. However, little research has been conducted to explore its origin, evolutionary path, and relationship to virulence and drug resistance in A. veronii. In this study, we analysed the pan-genome of 233 A. veronii strains, and the results indicated that it was 'open', meaning that A. veronii has acquired additional genes from other species. This suggested that A. veronii had the potential to adapt and evolve rapidly, which might have contributed to its drug resistance. One Type I methyltransferase (MTase) and two complete Type I RM systems were identified, namely AveC4I, AveC4II and AveC4III in A. veronii strain C4, respectively. Notably, AveC4I was exclusive to A. veronii C4. Phylogenetic analysis revealed that AveC4I was derived from horizontal gene transfer from Thiocystis violascens and exchanged genes with the human pathogen Comamonas kerstersii. Single molecule real-time sequencing was applied to identify the motif methylated by AveC4I, which was unique and not recognized by any reported MTases in the REBASE database. We also annotated the functions and pathways of the genes containing the motif, revealing that AveC4I may control drug resistance in A. veronii C4. Our findings provide new insight on the mechanisms underlying drug resistance in pathogenic bacteria. By identifying the specific genes and pathways affected by AveC4I, this study may aid in the development of new therapeutic approaches to combat A. veronii infections.
Collapse
Affiliation(s)
- Jiayue Ma
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Honghao Zhao
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Shuangyi Mo
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, PR China
| |
Collapse
|
5
|
Zhou Y, Wang Y, Yang L, Kong Q, Zhang H. Microbial degradation mechanisms of surface petroleum contaminated seawater in a typical oil trading port. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121420. [PMID: 36906058 DOI: 10.1016/j.envpol.2023.121420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/14/2023] [Accepted: 03/04/2023] [Indexed: 05/25/2023]
Abstract
Petroleum hydrocarbons are significant new persistent organic pollutants for marine oil spill risk areas. Oil trading ports, in turn, have become major bearers of the risk of offshore oil pollution. However, studies on the molecular mechanisms of microbial degradation of petroleum pollutants by natural seawater are limited. Here, an in situ microcosm study was conducted. Combined with metagenomics, differences in metabolic pathways and in the gene abundances of total petroleum hydrocarbons (TPH) are revealed under different conditions. About 88% degradation of TPH was shown after 3 weeks of treatment. The positive responders to TPH were concentrated in the genera Cycloclasticus, Marivita and Sulfitobacter of the orders Rhodobacterales and Thiotrichales. The genera Marivita, Roseobacter, Lentibacter and Glaciecola were key degradation species when mixing dispersants with oil, and all of the above are from the Proteobacteria phylum. The analysis showed that the biodegradability of aromatic compounds, polycyclic aromatic hydrocarbon and dioxin were enhanced after the oil spill, and genes with higher abundances of bphAa, bsdC, nahB, doxE and mhpD were found, but the photosynthesis-related mechanism was inhibited. The dispersant treatment effectively stimulated the microbial degradation of TPH and then accelerated the succession of microbial communities. Meanwhile, functions such as bacterial chemotaxis and carbon metabolism (cheA, fadeJ and fadE) were better developed, but the degradation of persistent organic pollutants such as polycyclic aromatic hydrocarbons was weakened. Our study provides insights into the metabolic pathways and specific functional genes for oil degradation by marine microorganisms and will help improve the application and practice of bioremediation.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Likun Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China.
| |
Collapse
|
6
|
Collective behavior and nongenetic inheritance allow bacterial populations to adapt to changing environments. Proc Natl Acad Sci U S A 2022; 119:e2117377119. [PMID: 35727978 DOI: 10.1073/pnas.2117377119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collective behaviors require coordination among a group of individuals. As a result, individuals that are too phenotypically different from the rest of the group can be left out, reducing heterogeneity, but increasing coordination. If individuals also reproduce, the offspring can have different phenotypes from their parent(s). This raises the question of how these two opposing processes-loss of diversity by collective behaviors and generation of it through growth and inheritance-dynamically shape the phenotypic composition of an isogenic population. We examine this question theoretically using collective migration of chemotactic bacteria as a model system, where cells of different swimming phenotypes are better suited to navigate in different environments. We find that the differential loss of phenotypes caused by collective migration is environment-dependent. With cell growth, this differential loss enables migrating populations to dynamically adapt their phenotype compositions to the environment, enhancing migration through multiple environments. Which phenotypes are produced upon cell division depends on the level of nongenetic inheritance, and higher inheritance leads to larger composition adaptation and faster migration at steady state. However, this comes at the cost of slower responses to new environments. Due to this trade-off, there is an optimal level of inheritance that maximizes migration speed through changing environments, which enables a diverse population to outperform a nondiverse one. Growing populations might generally leverage the selection-like effects provided by collective behaviors to dynamically shape their own phenotype compositions, without mutations.
Collapse
|
7
|
Bacterial chemotaxis to saccharides is governed by a trade-off between sensing and uptake. Biophys J 2022; 121:2046-2059. [PMID: 35526093 DOI: 10.1016/j.bpj.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations. However, this is not necessarily the case for saccharides, such as maltose, which are transported into the periplasm via a specific porin. Previous observations have shown that, under various conditions, E. coli limits maltoporin abundance so that, for extracellular micromolar concentrations of maltose, there are predicted to be only nanomolar concentrations of free maltose in the periplasm. Thus, in the micromolar regime, the total uptake of maltose from the external environment into the cytoplasm is limited not by the abundance of cytoplasmic transport proteins but by the abundance of maltoporins. Here we present results from experiments and modeling suggesting that this porin-limited transport enables E. coli to sense micromolar gradients of maltose despite having a high-affinity ABC transport system that is saturated at these micromolar levels. We used microfluidic assays to study chemotaxis of E. coli in various gradients of maltose and methyl-aspartate and leveraged our experimental observations to develop a mechanistic transport-and-sensing chemotaxis model. Incorporating this model into agent-based simulations, we discover a trade-off between uptake and sensing: although high-affinity transport enables higher uptake rates at low nutrient concentrations, it severely limits the range of dynamic sensing. We thus propose that E. coli may limit periplasmic uptake to increase its chemotactic sensitivity, enabling it to use maltose as an environmental cue.
Collapse
|
8
|
Keegstra JM, Carrara F, Stocker R. The ecological roles of bacterial chemotaxis. Nat Rev Microbiol 2022; 20:491-504. [PMID: 35292761 DOI: 10.1038/s41579-022-00709-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities. Although bacterial chemotaxis has been observed in a wide range of environmental settings, insights into the phenomenon are mostly based on laboratory studies of model organisms. In this Review, we highlight how observing individual and collective migratory behaviour of bacteria in different settings informs the quantification of trade-offs, including between chemotaxis and growth. We argue that systematically mapping when and where bacteria are motile, in particular by transgenerational bacterial tracking in dynamic environments and in situ approaches from guts to oceans, will open the door to understanding the rich interplay between metabolism and growth and the contribution of chemotaxis to microbial life.
Collapse
Affiliation(s)
| | - Francesco Carrara
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Piñas GE, DeSantis MD, Cassidy CK, Parkinson JS. Hexameric rings of the scaffolding protein CheW enhance response sensitivity and cooperativity in Escherichia coli chemoreceptor arrays. Sci Signal 2022; 15:eabj1737. [PMID: 35077199 DOI: 10.1126/scisignal.abj1737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Escherichia coli chemoreceptor array is a supramolecular assembly that enables cells to respond to extracellular cues dynamically and with great precision and sensitivity. In the array, transmembrane receptors organized as trimers of dimers are connected at their cytoplasmic tips by hexameric rings of alternating subunits of the kinase CheA and the scaffolding protein CheW (CheA-CheW rings). Interactions of CheW molecules with the members of receptor trimers not directly bound to CheA-CheW rings may lead to the formation of hexameric CheW rings in the chemoreceptor array. Here, we detected such CheW rings with a cellular cysteine-directed cross-linking assay and explored the requirements for their formation and their participation in array assembly. We found that CheW ring formation varied with cellular CheW abundance, depended on the presence of receptors capable of a trimer-of-dimers arrangement, and did not require CheA. Cross-linking studies of a CheA~CheW fusion protein incapable of forming homomeric CheW oligomers demonstrated that CheW rings were not essential for the assembly of CheA-containing arrays. Förster resonance energy transfer (FRET)-based kinase assays of arrays containing variable amounts of CheW rings revealed that CheW rings enhanced the cooperativity and the sensitivity of the responses to attractants. We propose that six-membered CheW rings provide the additional interconnectivity required for optimal signaling and gradient tracking performance by chemosensory arrays.
Collapse
Affiliation(s)
- Germán E Piñas
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D DeSantis
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Preoperative fasting confers protection against intestinal ischaemia/reperfusion injury by modulating gut microbiota and their metabolites in a mouse model. Br J Anaesth 2021; 128:501-512. [PMID: 34930601 DOI: 10.1016/j.bja.2021.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Intestinal ischaemia/reperfusion (I/R) injury is a grave surgical event with high morbidity and mortality. Preoperative fasting might confer protection against intestinal I/R injury by altering the composition of gut microbiota and their respective metabolites. METHODS An intestinal I/R mouse model was established and subjected to preoperative fasting for 24 h or fed ad libitum. Intestinal I/R injury was assessed using histological examination and survival analysis. Faecal samples were collected for 16S rDNA sequencing and metabolomic analysis. Faecal transplantation of fasted and non-fasted mice and humans was conducted to evaluate the effects of gut microbiota on intestinal I/R. Murine small intestinal cells wecre subjected to oxygen and glucose deprivation/reoxygenation as an in vitro I/R model. RESULTS Preoperative fasting protected against intestinal I/R injury and improved survival in mice (P<0.001). In addition, 16S rDNA sequencing revealed that preoperative fasting increased the diversity and restructured the composition of the gut microbiota after intestinal I/R. Mice that received microbiota from fasted mice and humans showed less intestinal damage than those that received microbiota from fed subjects. Metabolomic analysis showed that the profiles of gut microbial metabolites differed between fasted and fed groups. Specifically, the concentration of petroselinic acid was significantly higher in the fasted group (P=0.009). Treatment of intestinal I/R mice with petroselinic acid alleviated intestinal injury in vivo and decreased cell apoptosis by mediating AMP-activated protein kinase-mammalian target of rapamycin-P70S6K signaling in vitro. CONCLUSIONS Preoperative fasting protected against intestinal I/R injury by modulating gut microbiota and petroselinic acid, suggesting a novel therapeutic strategy.
Collapse
|
11
|
Mattingly HH, Kamino K, Machta BB, Emonet T. Escherichia coli chemotaxis is information limited. NATURE PHYSICS 2021; 17:1426-1431. [PMID: 35035514 PMCID: PMC8758097 DOI: 10.1038/s41567-021-01380-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/10/2021] [Indexed: 05/08/2023]
Abstract
Organisms acquire and use information from their environment to guide their behaviour. However, it is unclear whether this information quantitatively limits their behavioural performance. Here, we relate information to the ability of Escherichia coli to navigate up chemical gradients, the behaviour known as chemotaxis. First, we derive a theoretical limit on the speed with which cells climb gradients, given the rate at which they acquire information. Next, we measure cells' gradient-climbing speeds and the rate of information acquisition by their chemotaxis signaling pathway. We find that E. coli make behavioural decisions with much less than the one bit required to determine whether they are swimming up-gradient. Some of this information is irrelevant to gradient climbing, and some is lost in communication to behaviour. Despite these limitations, E. coli climb gradients at speeds within a factor of two of the theoretical bound. Thus, information can limit the performance of an organism, and sensory-motor pathways may have evolved to efficiently use information acquired from the environment.
Collapse
Affiliation(s)
- H H Mattingly
- Department of Molecular, Cellular, and Developmental Biology, Yale University
- Quantitative Biology Institute, Yale University
| | - K Kamino
- Department of Molecular, Cellular, and Developmental Biology, Yale University
- Quantitative Biology Institute, Yale University
| | - B B Machta
- Department of Physics, Yale University
- Systems Biology Institute, West Campus, Yale University
| | - T Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University
- Quantitative Biology Institute, Yale University
- Department of Physics, Yale University
| |
Collapse
|
12
|
Narla AV, Cremer J, Hwa T. A traveling-wave solution for bacterial chemotaxis with growth. Proc Natl Acad Sci U S A 2021; 118:e2105138118. [PMID: 34819366 PMCID: PMC8640786 DOI: 10.1073/pnas.2105138118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial cells navigate their environment by directing their movement along chemical gradients. This process, known as chemotaxis, can promote the rapid expansion of bacterial populations into previously unoccupied territories. However, despite numerous experimental and theoretical studies on this classical topic, chemotaxis-driven population expansion is not understood in quantitative terms. Building on recent experimental progress, we here present a detailed analytical study that provides a quantitative understanding of how chemotaxis and cell growth lead to rapid and stable expansion of bacterial populations. We provide analytical relations that accurately describe the dependence of the expansion speed and density profile of the expanding population on important molecular, cellular, and environmental parameters. In particular, expansion speeds can be boosted by orders of magnitude when the environmental availability of chemicals relative to the cellular limits of chemical sensing is high. Analytical understanding of such complex spatiotemporal dynamic processes is rare. Our analytical results and the methods employed to attain them provide a mathematical framework for investigations of the roles of taxis in diverse ecological contexts across broad parameter regimes.
Collapse
Affiliation(s)
- Avaneesh V Narla
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Jonas Cremer
- Biology Department, Stanford University, Stanford, CA 94305
| | - Terence Hwa
- Department of Physics, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
13
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
14
|
Ren H, Wang H, Yu Z, Zhang S, Qi X, Sun L, Wang Z, Zhang M, Ahmed T, Li B. Effect of Two Kinds of Fertilizers on Growth and Rhizosphere Soil Properties of Bayberry with Decline Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112386. [PMID: 34834750 PMCID: PMC8624721 DOI: 10.3390/plants10112386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Decline disease causes severe damage to bayberry. However, the cause of this disease remains unclear. Interestingly, our previous studies found that the disease severity is related with the level of soil fertilizer. This study aims to explore the effect and mechanism of compound fertilizer (CF) and bio-organic fertilizer (OF) in this disease by investigating the vegetative growth, fruit characters, soil property, rhizosphere microflora and metabolites. Results indicated that compared with the disease control, CF and OF exhibited differential effect in plant healthy and soil quality, together with the increase in relative abundance of Burkholderia and Mortierella, and the reduction in that of Rhizomicrobium and Acidibacter, Trichoderma, and Cladophialophora reduced. The relative abundance of Geminibasidium were increased by CF (251.79%) but reduced by OF (13.99%). In general, the composition of bacterial and fungal communities in rhizosphere soil was affected significantly at genus level by exchangeable calcium, available phosphorus, and exchangeable magnesium, while the former two variables had a greater influence in bacterial communities than fungal communities. Analysis of GC-MS metabonomics indicated that compared to the disease control, CF and OF significantly changed the contents of 31 and 45 metabolites, respectively, while both fertilizers changed C5-branched dibasic acid, galactose, and pyrimidine metabolic pathway. Furthermore, a significant correlation was observed at the phylum, order and genus levels between microbial groups and secondary metabolites of bayberry rhizosphere soil. In summary, the results provide a new way for rejuvenation of this diseased bayberry trees.
Collapse
Affiliation(s)
- Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Hongyan Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.W.); (B.L.)
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
- Correspondence: (Z.W.); (B.L.)
| |
Collapse
|
15
|
Hazaimeh MD, Ahmed ES. Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54238-54259. [PMID: 34387817 DOI: 10.1007/s11356-021-15598-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The marine environment is often affected by petroleum hydrocarbon pollution due to industrial activities and petroleum accidents. This pollution has recalcitrant and persistent compounds that pose a high risk to the ecological system and human health. For this reason, the world claims to seek to clean up these pollutants. Bioremediation is an attractive approach for removing petroleum pollution. It is considered a low-cost and highly effective approach with fewer side effects compared to chemical and physical techniques. This depends on the metabolic capability of microorganisms involved in the degradation of hydrocarbons through enzymatic reactions. Bioremediation activities mostly depend on environmental conditions such as temperature, pH, salinity, pressure, and nutrition availability. Understanding the effects of environmental conditions on microbial hydrocarbon degraders and microbial interactions with hydrocarbon compounds could be assessed for the successful degradation of petroleum pollution. The current review provides a critical view of petroleum pollution in seawater, the bioavailability of petroleum compounds, the contribution of microorganisms in petroleum degradation, and the mechanisms of degradation under aerobic and anaerobic conditions. We consider different biodegradation approaches such as biostimulation, bioaugmentation, and phytoremediation.
Collapse
Affiliation(s)
- Mohammad Daher Hazaimeh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia.
| | - Enas S Ahmed
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Lingam M. Theoretical Constraints Imposed by Gradient Detection and Dispersal on Microbial Size in Astrobiological Environments. ASTROBIOLOGY 2021; 21:813-830. [PMID: 33902321 DOI: 10.1089/ast.2020.2392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to sense gradients efficiently and acquire information about the ambient environment confers many advantages such as facilitating movement toward nutrient sources or away from toxic chemicals. The amplified dispersal evinced by organisms endowed with motility is possibly beneficial in related contexts. Hence, the connections between information acquisition, motility, and microbial size are explored from an explicitly astrobiological standpoint. By using prior theoretical models, the constraints on organism size imposed by gradient detection and motility are elucidated in the form of simple heuristic scaling relations. It is argued that environments such as alkaline hydrothermal vents, which are distinguished by the presence of steep gradients, might be conducive to the existence of "small" microbes (with radii of ≳0.1 μm) in principle, when only the above two factors are considered; other biological functions (e.g., metabolism and genetic exchange) could, however, regulate the lower bound on microbial size and elevate it. The derived expressions are potentially applicable to a diverse array of settings, including those entailing solvents other than water; for example, the lakes and seas of Titan. The article concludes with a brief exposition of how this formalism may be of practical and theoretical value to astrobiology.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Science, Florida Institute of Technology, Melbourne, Florida, USA
- Institute for Theory and Computation, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Kirby D, Rothschild J, Smart M, Zilman A. Pleiotropy enables specific and accurate signaling in the presence of ligand cross talk. Phys Rev E 2021; 103:042401. [PMID: 34005921 DOI: 10.1103/physreve.103.042401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Living cells sense their environment through the binding of extracellular molecular ligands to cell surface receptors. Puzzlingly, vast numbers of signaling pathways exhibit a high degree of cross talk between different signals whereby different ligands act through the same receptor or shared components downstream. It remains unclear how a cell can accurately process information from the environment in such cross-wired pathways. We show that a feature which commonly accompanies cross talk-signaling pleiotropy (the ability of a receptor to produce multiple outputs)-offers a solution to the cross-talk problem. In a minimal model we show that a single pleiotropic receptor can simultaneously identify and accurately sense the concentrations of arbitrary unknown ligands present individually or in a mixture. We calculate the fundamental limits of the signaling specificity and accuracy of such signaling schemes. The model serves as an elementary "building block" toward understanding more complex cross-wired receptor-ligand signaling networks.
Collapse
Affiliation(s)
- Duncan Kirby
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Jeremy Rothschild
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Matthew Smart
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.,Institute for Bioengineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
18
|
Collins M, Afolayan S, Igiraneza AB, Schiller H, Krespan E, Beiting DP, Dyall-Smith M, Pfeiffer F, Pohlschroder M. Mutations Affecting HVO_1357 or HVO_2248 Cause Hypermotility in Haloferax volcanii, Suggesting Roles in Motility Regulation. Genes (Basel) 2020; 12:58. [PMID: 33396553 PMCID: PMC7824242 DOI: 10.3390/genes12010058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Motility regulation plays a key role in prokaryotic responses to environmental stimuli. Here, we used a motility screen and selection to isolate hypermotile Haloferax volcanii mutants from a transposon insertion library. Whole genome sequencing revealed that hypermotile mutants were predominantly affected in two genes that encode HVO_1357 and HVO_2248. Alterations of these genes comprised not only transposon insertions but also secondary genome alterations. HVO_1357 contains a domain that was previously identified in the regulation of bacteriorhodopsin transcription, as well as other domains frequently found in two-component regulatory systems. The genes adjacent to hvo_1357 encode a sensor box histidine kinase and a response regulator, key players of a two-component regulatory system. None of the homologues of HVO_2248 have been characterized, nor does it contain any of the assigned InterPro domains. However, in a significant number of Haloferax species, the adjacent gene codes for a chemotaxis receptor/transducer. Our results provide a foundation for characterizing the root causes underlying Hfx. volcanii hypermotility.
Collapse
Affiliation(s)
- Michiyah Collins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.C.); (S.A.); (A.B.I.); (H.S.)
| | - Simisola Afolayan
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.C.); (S.A.); (A.B.I.); (H.S.)
| | - Aime B. Igiraneza
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.C.); (S.A.); (A.B.I.); (H.S.)
| | - Heather Schiller
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.C.); (S.A.); (A.B.I.); (H.S.)
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.K.); (D.P.B.)
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.K.); (D.P.B.)
| | - Mike Dyall-Smith
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville 3010, Australia;
- Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Mechthild Pohlschroder
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.C.); (S.A.); (A.B.I.); (H.S.)
| |
Collapse
|
19
|
Abstract
There is growing interest in the use of associative, plant growth-promoting bacteria (PGPB) as biofertilizers to serve as a sustainable alternative for agriculture application. While a variety of mechanisms have been proposed to explain bacterial plant growth promotion, the molecular details of this process remain unclear. The plant rhizosphere harbors a diverse population of microorganisms, including beneficial plant growth-promoting bacteria (PGPB), that colonize plant roots and enhance growth and productivity. In order to specifically define bacterial traits that contribute to this beneficial interaction, we used high-throughput transposon mutagenesis sequencing (TnSeq) in two model root-bacterium systems associated with Setaria viridis: Azoarcus olearius DQS4T and Herbaspirillum seropedicae SmR1. This approach identified ∼100 significant genes for each bacterium that appeared to confer a competitive advantage for root colonization. Most of the genes identified specifically in A. olearius encoded metabolism functions, whereas genes identified in H. seropedicae were motility related, suggesting that each strain requires unique functions for competitive root colonization. Genes were experimentally validated by site-directed mutagenesis, followed by inoculation of the mutated bacteria onto S. viridis roots individually, as well as in competition with the wild-type strain. The results identify key bacterial functions involved in iron uptake, polyhydroxybutyrate metabolism, and regulation of aromatic metabolism as important for root colonization. The hope is that by improving our understanding of the molecular mechanisms used by PGPB to colonize plants, we can increase the adoption of these bacteria in agriculture to improve the sustainability of modern cropping systems.
Collapse
|
20
|
Xu Z, Wang D, Tang W, Wang L, Li Q, Lu Z, Liu H, Zhong Y, He T, Guo S. Phytoremediation of cadmium-polluted soil assisted by D-gluconate-enhanced Enterobacter cloacae colonization in the Solanum nigrum L. rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139265. [PMID: 32416401 DOI: 10.1016/j.scitotenv.2020.139265] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Microbe-assisted phytoremediation for Cd-polluted soil is being regarded increasingly. However, the availability of microbes that can collaborate with Cd-hyperaccumulators effectively has become one of bottlenecks restricting the remediation efficiency. A siderophore-producing bacterium (Y16; Enterobacter cloacae) isolated from the rhizospheric soil of Cd-hyperaccumulator Solanum nigrum L. was identified by 16S rRNA gene sequencing and biochemical analysis, and then used for analyzing microbial chemotaxis, carbon source utilization, and insoluble P/Cd mobilization capacities. Besides, a soil-pot trial was performed to underlie the phytoremediation mechanism of Cd-polluted soil assisted by D-gluconate-enhanced Enterobacter cloacae colonization (DEYC) in the Solanum nigrum L. rhizosphere. Results displayed that D-gluconate was an effective chemoattractant and carbon source strengthening Y16 colonization, and Y16 exhibited strong abilities to mobilize insoluble P/Cd in shake flask by extracellular acidification (p < 0.05). In the soil-pot trial, DEYC observably enhanced soil Cd phytoextraction by Solanum nigrum L., and increased microbial diversity according to alpha- and beta-diversity analysis (p < 0.05). Taxonomic distribution and co-occurrence network analysis suggested that DEYC increased relative abundances of dominant microbial taxa associated with soil acidification (Acidobacteria-6), indoleacetic acid secretion (Ensifer adhaerens), soil fertility improvement (Flavisolibacter, Bdellovibrio bacteriovorus, and Candidatus nitrososphaera), and insoluble Cd mobilization (Massilia timonae) at different classification levels. Importantly, COGs analysis further shown that DEYC aroused the up-regulation of key genes related to chemotactic motility, carbon fixation, TCA cycle, and propanoate metabolism. These results indicated that DEYC drove the rhizospheric enrichment of pivotal microbial taxa directly or indirectly involved in soil Cd mobilization, meanwhile distinctly promoted plant growth for accumulating more mobilizable Cd. Therefore, Y16 could be used as bio-inoculants for assisting phytoremediation of Cd-polluted soil.
Collapse
Affiliation(s)
- Zhimin Xu
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Dongsheng Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wanpeng Tang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lili Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Qusheng Li
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ziyan Lu
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Hui Liu
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Yuming Zhong
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Tao He
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shihong Guo
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| |
Collapse
|
21
|
De Matteis V, Rizzello L, Cascione M, Liatsi-Douvitsa E, Apriceno A, Rinaldi R. Green Plasmonic Nanoparticles and Bio-Inspired Stimuli-Responsive Vesicles in Cancer Therapy Application. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1083. [PMID: 32486479 PMCID: PMC7353186 DOI: 10.3390/nano10061083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023]
Abstract
: In the past years, there is a growing interest in the application of nanoscaled materials in cancer therapy because of their unique physico-chemical properties. However, the dark side of their usability is limited by their possible toxic behaviour and accumulation in living organisms. Starting from this assumption, the search for a green alternative to produce nanoparticles (NPs) or the discovery of green molecules, is a challenge in order to obtain safe materials. In particular, gold (Au NPs) and silver (Ag NPs) NPs are particularly suitable because of their unique physico-chemical properties, in particular plasmonic behaviour that makes them useful as active anticancer agents. These NPs can be obtained by green approaches, alternative to conventional chemical methods, owing to the use of phytochemicals, carbohydrates, and other biomolecules present in plants, fungi, and bacteria, reducing toxic effects. In addition, we analysed the use of green and stimuli-responsive polymeric bio-inspired nanovesicles, mainly used in drug delivery applications that have revolutionised the way of drugs supply. Finally, we reported the last examples on the use of metallic and Au NPs as self-propelling systems as new concept of nanorobot, which is able to respond and move towards specific physical or chemical stimuli in biological entities.
Collapse
Affiliation(s)
- Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Loris Rizzello
- The Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10–12, 08028 Barcelona, Spain; (L.R.); (A.A.)
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Eva Liatsi-Douvitsa
- Department of Chemistry, University College London (UCL), 20 Gordon Street, London WC1H 0AJ, UK;
| | - Azzurra Apriceno
- The Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10–12, 08028 Barcelona, Spain; (L.R.); (A.A.)
- Department of Chemistry, University College London (UCL), 20 Gordon Street, London WC1H 0AJ, UK;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| |
Collapse
|
22
|
Takada N, Sutoh S, Toyota M, Yamazaki Y, Kitano-Yamashita N, Ushida C, Yamashita K. Methiin as a nematode attractant inAllium sativum. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Damage to garlic (Allium sativum L.) caused by nematodes (Ditylenchus destructor Thorne) is becoming a serious agricultural hazard, leading to a great loss in garlic production. Once the garlic bulbs are invaded, the pathogenic nematode drastically increases in number along with the rotting of bulbs. It was therefore conceived that nematode attractants are present in the bulbs. Based on this hypothesis, chemical investigations were performed to explore a nematode attractant in A. sativum bulbs, which resulted in the identification of methiin (S-methyl-l-cysteine S-oxide) as an attractant. Bioassay and quantification experiments of methiin in extracts of A. sativum bulb led to the conclusion that methiin possesses sufficient potential to attract D. destructor into A. sativum bulbs. Moreover, an activity comparing study of methiin with its analogs showed that the sulfoxide functionality is essential for attractant activity. Moreover, methiin was revealed to attract Caenorhabditis elegans. Further investigation of methiin will help to elucidate the neuronal system of D. destructor.
Collapse
Affiliation(s)
- Noboru Takada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Sayaka Sutoh
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Masuru Toyota
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Yoshihisa Yamazaki
- Aomori Prefectural Industrial Technology Research Center, Kuroishi 036-0522, Japan
| | - Nozomi Kitano-Yamashita
- Vegetable Research Institute, Aomori Prefectural Industrial Technology Research Center, Inuotose, Rokunohe-ho, 033-0071, Japan
| | - Chisato Ushida
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Kazuo Yamashita
- Vegetable Research Institute, Aomori Prefectural Industrial Technology Research Center, Inuotose, Rokunohe-ho, 033-0071, Japan
| |
Collapse
|
23
|
Gao X, Li T, Liu W, Zhang Y, Shang D, Gao Y, Qi Y, Qiu L. Enhancing the 1-Aminocyclopropane-1-Carboxylate Metabolic Rate of Pseudomonas sp. UW4 Intensifies Chemotactic Rhizocompetence. Microorganisms 2020; 8:microorganisms8010071. [PMID: 31906548 PMCID: PMC7023479 DOI: 10.3390/microorganisms8010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 11/16/2022] Open
Abstract
1-aminocyclopropane-1-carboxylic acid (ACC) is a strong metabolism-dependent chemoattractant for the plant beneficial rhizobacterium Pseudomonas sp. UW4. It is unknown whether enhancing the metabolic rate of ACC can intensify the chemotaxis activity towards ACC and rhizocompetence. In this study, we selected four promoters to transcribe the UW4 ACC deaminase (AcdS) gene in the UW4 ΔAcdS mutant. PA is the UW4 AcdS gene promoter, PB20, PB10 and PB1 are synthetic promoters. The order of the AcdS gene expression level and AcdS activity of the four strains harboring the promoters were PB20 > PA > PB10 > PB1. Interestingly, the AcdS activity of the four strains and their parent strain UW4 was significantly positively correlated with their chemotactic activity towards ACC, rhizosphere colonization, roots elongation and dry weight promotion. The results released that enhancing the AcdS activity of PGPRenable them to achieve strong chemotactic responses to ACC, rhizocompetence and plant growth promotion.
Collapse
|
24
|
Zhou A, Cao Y, Zhou D, Hu S, Tan W, Xiao X, Yu Y, Li X. Global transcriptomic analysis of Cronobacter sakazakii CICC 21544 by RNA-seq under inorganic acid and organic acid stresses. Food Res Int 2019; 130:108963. [PMID: 32156398 DOI: 10.1016/j.foodres.2019.108963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023]
Abstract
Cronobacter sakazakii is a common foodborne pathogen that can tolerate various stress conditions. Acidic environment is a common stress condition encountered by bacteria in food processing and gastrointestinal digestion, including both inorganic and organic acids. In order to elucidate the Acid Tolerance Response (ATR) of C. sakazakii, we performed high-throughput RNA-seq to compare gene expression under hydrochloric acid and citric acid stresses. In this study, 107 differentially expressed genes (DEGs) were identified in both acids, of which 85 DEGs were functionally related to the regulation of acid tolerance. Multiple layers of mechanisms may be applied by C. sakazakii in response to acid stress: Firstly, in order to reduce excessive intracellular protons, C. sakazakii pumps them out through trans-membrane proteins or consumes them through metabolic reactions. Secondly, under acidic conditions, a large amount of reactive oxygen species and hydroxyl radicals accumulate in the cells, resulting in oxidative damage. C. sakazakii protects cells by up-regulating the antioxidant stress genes such as soxS and madB. Thirdly, C. sakazakii chooses energy efficient metabolic pathways to reduce energy consumption and maintain necessary processes. Finally, genes involved in chemotaxis and motility were differentially expressed to respond to different acidic conditions. This study systematically analyzed the acid-resistant mechanism of C. sakazakii under the stress of organic and inorganic acids, and provided a theoretical basis for better control of its contamination in food.
Collapse
Affiliation(s)
- Ailian Zhou
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center. No. 336 Liuting Street, Haishu District, Ningbo City, Zhejiang Province 315012, China
| | - Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province 518055, China
| | - Wanjing Tan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Yigang Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, 381 Wusan Road, Tianhe District, Guangzhou City 510640, Guangdong Province, China.
| |
Collapse
|
25
|
Rashid S, Long Z, Singh S, Kohram M, Vashistha H, Navlakha S, Salman H, Oltvai ZN, Bar-Joseph Z. Adjustment in tumbling rates improves bacterial chemotaxis on obstacle-laden terrains. Proc Natl Acad Sci U S A 2019; 116:11770-11775. [PMID: 31127043 PMCID: PMC6575235 DOI: 10.1073/pnas.1816315116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of bacterial chemotaxis have been extensively studied for several decades, but how the physical environment influences the collective migration of bacterial cells remains less understood. Previous models of bacterial chemotaxis have suggested that the movement of migrating bacteria across obstacle-laden terrains may be slower compared with terrains without them. Here, we show experimentally that the size or density of evenly spaced obstacles do not alter the average exit rate of Escherichia coli cells from microchambers in response to external attractants, a function that is dependent on intact cell-cell communication. We also show, both by analyzing a revised theoretical model and by experimentally following single cells, that the reduced exit time in the presence of obstacles is a consequence of reduced tumbling frequency that is adjusted by the E. coli cells in response to the topology of their environment. These findings imply operational short-term memory of bacteria while moving through complex environments in response to chemotactic stimuli and motivate improved algorithms for self-autonomous robotic swarms.
Collapse
Affiliation(s)
- Sabrina Rashid
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Zhicheng Long
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Shashank Singh
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Maryam Kohram
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
| | - Saket Navlakha
- Center for Integrative Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260;
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Zoltán N Oltvai
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261;
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Ziv Bar-Joseph
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213;
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
26
|
Xu R, Yang ZH, Zheng Y, Wang QP, Bai Y, Liu JB, Zhang YR, Xiong WP, Lu Y, Fan CZ. Metagenomic analysis reveals the effects of long-term antibiotic pressure on sludge anaerobic digestion and antimicrobial resistance risk. BIORESOURCE TECHNOLOGY 2019; 282:179-188. [PMID: 30861447 DOI: 10.1016/j.biortech.2019.02.120] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Continuous stirred-tank digesters with tetracyclines and sulfonamides were operated to investigate the impacts of antibiotic pressure on sludge anaerobic digestion. The versatile methanogen Methanosarcinales and strictly hydrogenotrophic methanogen Methanobacteriales increased and decreased by 21.1% and 10.9% under antibiotic pressure, respectively. KEGG analysis revealed that hydrogenotrophic and acetoclastic methanogenesis pathways were all affected. The decrease in abundance of function genes involved in lipid metabolism, carbohydrate metabolism, and fatty acid degradation, would lead to a reduction in methane production by 25%. Network analysis indicated positive associations among tetracycline residuals, abundance of resistance genes (ARGs), and specific member of potential hosts. Over 1000 ARG subtypes were widely detected in sludge, including macrolide (28%), tetracycline (24%), fluoroquinolone (20%), and peptide (20%) resistance genes. AD process exposed to long-term antibiotic would increase the diversity and abundance of ARG, enhance the association of ARG with specific microbes, and select bacteria able to perform chemotaxis mechanism.
Collapse
Affiliation(s)
- Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, PR China
| | - Zhao-Hui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yue Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China
| | - Qing-Peng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Bai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jian-Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yan-Ru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei-Ping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang-Zheng Fan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
27
|
Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. Int J Mol Sci 2019; 20:ijms20112701. [PMID: 31159416 PMCID: PMC6600141 DOI: 10.3390/ijms20112701] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis is an important physiological adaptation that allows many motile bacteria to orientate themselves for better niche adaptation. Chemotaxis is best understood in Escherichia coli. Other representative bacteria, such as Rhodobacter sphaeroides, Pseudomonas species, Helicobacter pylori, and Bacillus subtilis, also have been deeply studied and systemically summarized. These bacteria belong to α-, γ-, ε-Proteobacteria, or Firmicutes. However, β-Proteobacteria, of which many members have been identified as holding chemotactic pathways, lack a summary of chemotaxis. Comamonas testosteroni, belonging to β-Proteobacteria, grows with and chemotactically responds to a range of aromatic compounds. This paper summarizes the latest research on chemotaxis towards aromatic compounds, mainly from investigations of C. testosteroni and other Comamonas species.
Collapse
|
28
|
Meng L, Li W, Bao M, Sun P. Great correlation: Biodegradation and chemotactic adsorption of Pseudomonas synxantha LSH-7' for oil contaminated seawater bioremediation. WATER RESEARCH 2019; 153:160-168. [PMID: 30711791 DOI: 10.1016/j.watres.2019.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/19/2018] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Oil Contaminated Seawaters is treated by biological processes of sorption or degradation. Considering the chemotaxis of bacteria, they migrate towards a better way to survive. However, the information concerning the chemotactic biosorption of microorganism is severely limited thus far. Therefore, chemotactic biosorption a novel way of sorption was put forward. The equation was defined as: A chemotactic biosorption = A extracellular biosorption - A passive extracellular biosorption + E intracellular. Effects of controlling parameters like pollutant, fertilizer, sediments and surfactant on bacterial chemotactic sorption capacity of tetradecane, hexadecane, phenanthrene or pyrene were described in detail. The results showed bacterial chemotactic biosorption would be promoted under the conditions of low pollutant concentration, high sediment concentration and fertilizer. However, Tween 80 would promote the sorption of pollutants onto bacterial cells depending on the concentration of surfactant. Correlational analyses were conducted with the biodegradation rate and the concentration (mg/g) of hydrocarbons measured in the biomass. We concluded there existed great correlation between them. Biodegradation rate were all linearly correlated with the concentration (mg/g) of hydrocarbons measured in the biomass in all respects with tetradecane (R2 = 0.9873), hexadecane (R2 = 0.9705), phenanthrene (R2 = 0.9098) and pyrene (R2 = 0.9424). The above idea may provide a new insight into oil spill bioremediation from sorption to degradation.
Collapse
Affiliation(s)
- Long Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, China
| | - Wen Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, China.
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, China
| |
Collapse
|
29
|
In silico characterization of a novel putative aerotaxis chemosensory system in the myxobacterium, Corallococcus coralloides. BMC Genomics 2018; 19:757. [PMID: 30340510 PMCID: PMC6194562 DOI: 10.1186/s12864-018-5151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background An efficient signal transduction system allows a bacterium to sense environmental cues and then to respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation, biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component regulatory system along with a large array of chemosensory systems to perceive and integrate both external and internal cues. Results Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense (either directly or indirectly) and then respond to changing concentrations of molecular oxygen. Conclusions This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy taxis in only one of the myxobacteria, C. coralloides. Electronic supplementary material The online version of this article (10.1186/s12864-018-5151-6) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Volke DC, Nikel PI. Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
31
|
Fu X, Kato S, Long J, Mattingly HH, He C, Vural DC, Zucker SW, Emonet T. Spatial self-organization resolves conflicts between individuality and collective migration. Nat Commun 2018; 9:2177. [PMID: 29872053 PMCID: PMC5988668 DOI: 10.1038/s41467-018-04539-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/03/2018] [Indexed: 12/24/2022] Open
Abstract
Collective behavior can spontaneously emerge when individuals follow common rules of interaction. However, the behavior of each individual differs due to existing genetic and non-genetic variation within the population. It remains unclear how this individuality is managed to achieve collective behavior. We quantify individuality in bands of clonal Escherichia coli cells that migrate collectively along a channel by following a self-generated gradient of attractant. We discover that despite substantial differences in individual chemotactic abilities, the cells are able to migrate as a coherent group by spontaneously sorting themselves within the moving band. This sorting mechanism ensures that differences between individual chemotactic abilities are compensated by differences in the local steepness of the traveling gradient each individual must navigate, and determines the minimum performance required to travel with the band. By resolving conflicts between individuality and collective migration, this mechanism enables populations to maintain advantageous diversity while on the move. How bacteria migrate collectively despite individual phenotypic variation is not understood. Here, the authors show that cells spontaneously sort themselves within moving bands such that variations in individual tumble bias, a determinant of gradient climbing speed, are compensated by the local gradient steepness experienced by individuals.
Collapse
Affiliation(s)
- X Fu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - S Kato
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
| | - J Long
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Department of Physics, Yale University, New Haven, CT, 06520, USA
| | - H H Mattingly
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - C He
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - D C Vural
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - S W Zucker
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - T Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA. .,Department of Physics, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|