1
|
Akhmatova NK, Kurbatova EA, Zaytsev AE, Akhmatova EA, Yastrebova NE, Sukhova EV, Yashunsky DV, Tsvetkov YE, Nifantiev NE. Synthetic BSA-conjugated disaccharide related to the Streptococcus pneumoniae serotype 3 capsular polysaccharide increases IL-17A Levels, γδ T cells, and B1 cells in mice. Front Immunol 2024; 15:1388721. [PMID: 38840926 PMCID: PMC11150546 DOI: 10.3389/fimmu.2024.1388721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The disaccharide (β-D-glucopyranosyluronic acid)-(1→4)-β-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.
Collapse
MESH Headings
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/chemical synthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Streptococcus pneumoniae/chemistry
- Streptococcus pneumoniae/immunology
- Aluminum Hydroxide/administration & dosage
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/chemistry
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/chemistry
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/chemical synthesis
- Streptococcal Vaccines/chemistry
- Streptococcal Vaccines/immunology
- Adjuvants, Vaccine/administration & dosage
- Immunogenicity, Vaccine
- Animals
- Mice
- Pneumococcal Infections/immunology
- Pneumococcal Infections/microbiology
- Pneumococcal Infections/prevention & control
- Interleukin-17/blood
- Interleukin-17/immunology
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Intraepithelial Lymphocytes/immunology
- Serogroup
- Mice, Inbred BALB C
- Male
- Bacterial Capsules/chemistry
- Bacterial Capsules/immunology
- B-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Nelli K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Anton E. Zaytsev
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A. Akhmatova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Natalya E. Yastrebova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Dmitriy V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
2
|
Cipolla EM, Yue M, Nickolich KL, Huckestein BR, Antos D, Chen W, Alcorn JF. Heterotypic Influenza Infections Mitigate Susceptibility to Secondary Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:760-771. [PMID: 35914833 PMCID: PMC9378502 DOI: 10.4049/jimmunol.2200261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/17/2022] [Indexed: 01/04/2023]
Abstract
Influenza-associated bacterial superinfections have devastating impacts on the lung and can result in increased risk of mortality. New strains of influenza circulate throughout the population yearly, promoting the establishment of immune memory. Nearly all individuals have some degree of influenza memory before adulthood. Due to this, we sought to understand the role of immune memory during bacterial superinfections. An influenza heterotypic immunity model was established using influenza A/Puerto Rico/8/34 and influenza A/X31. We report in this article that influenza-experienced mice are more resistant to secondary bacterial infection with methicillin-resistant Staphylococcus aureus as determined by wasting, bacterial burden, pulmonary inflammation, and lung leak, despite significant ongoing lung remodeling. Multidimensional flow cytometry and lung transcriptomics revealed significant alterations in the lung environment in influenza-experienced mice compared with naive animals. These include changes in the lung monocyte and T cell compartments, characterized by increased expansion of influenza tetramer-specific CD8+ T cells. The protection that was seen in the memory-experienced mouse model is associated with the reduction in inflammatory mechanisms, making the lung less susceptible to damage and subsequent bacterial colonization. These findings provide insight into how influenza heterotypic immunity reshapes the lung environment and the immune response to a rechallenge event, which is highly relevant to the context of human infection.
Collapse
Affiliation(s)
- Ellyse M Cipolla
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Molin Yue
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kara L Nickolich
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Brydie R Huckestein
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Wei Chen
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| |
Collapse
|
3
|
Kennedy II DE, Mody P, Gout JF, Tan W, Seo KS, Olivier AK, Rosch JW, Thornton JA. Contribution of Puma to Inflammatory Resolution During Early Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:886901. [PMID: 35694536 PMCID: PMC9177954 DOI: 10.3389/fcimb.2022.886901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis of cells at the site of infection is a requirement for shutdown of inflammatory signaling, avoiding tissue damage, and preventing progression of sepsis. Puma+/+ and Puma-/- mice were challenged with TIGR4 strain pneumococcus and cytokines were quantitated from lungs and blood using a magnetic bead panel analysis. Puma-/- mice exhibited higher lung and blood cytokine levels of several major inflammatory cytokines, including IL-6, G-CSF, RANTES, IL-12, IFN-ϒ, and IP-10. Puma-/- mice were more susceptible to bacterial dissemination and exhibited more weight loss than their wild-type counterparts. RNA sequencing analysis of whole pulmonary tissue revealed Puma-dependent regulation of Nrxn2, Adam19, and Eln. Enrichment of gene ontology groups differentially expressed in Puma-/- tissues were strongly correlated to IFN-β and -ϒ signaling. Here, we demonstrate for the first time the role of Puma in prohibition of the cytokine storm during bacterial pneumonia. These findings further suggest a role for targeting immunomodulation of IFN signaling during pulmonary inflammation. Additionally, our findings suggest previously undemonstrated roles for genes encoding regulatory and binding proteins during the early phase of the innate immune response of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Daniel E. Kennedy II
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Perceus Mody
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Wei Tan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Alicia K. Olivier
- Department of Population and Pathobiology, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Justin A. Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- *Correspondence: Justin A. Thornton,
| |
Collapse
|
4
|
Patel S, Tucker HR, Gogoi H, Mansouri S, Jin L. cGAS-STING and MyD88 Pathways Synergize in Ly6C hi Monocyte to Promote Streptococcus pneumoniae-Induced Late-Stage Lung IFNγ Production. Front Immunol 2021; 12:699702. [PMID: 34512626 PMCID: PMC8427188 DOI: 10.3389/fimmu.2021.699702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
The cyclic GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) pathway senses DNA and induces type I interferon (IFN) production. Whether and how the STING pathway crosstalk to other innate immune pathways during pathogen infection, however, remains unclear. Here, we showed that STING was needed for Streptococcus pneumoniae-induced late, not early, stage of lung IFNγ production. Using knockout mice, IFNγ reporter mice, intracellular cytokine staining, and adoptive cell transfer, we showed that cGAS–STING-dependent lung IFNγ production was independent of type I IFNs. Furthermore, STING expression in monocyte/monocyte-derived cells governed IFNγ production in the lung via the production of IL-12p70. Surprisingly, DNA stimulation alone could not induce IL-12p70 or IFNγ in Ly6Chi monocyte. The production of IFNγ required the activation by both DNA and heat-killed S. pneumococcus. Accordingly, MyD88−/− monocyte did not generate IL-12p70 or IFNγ. In summary, the cGAS–STING pathway synergizes with the MyD88 pathway in monocyte to promote late-stage lung IFNγ production during pulmonary pneumococcal infection.
Collapse
Affiliation(s)
- Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Heidi R Tucker
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Okimura T, Jiang Z, Komatsubara H, Hirasaka K, Oda T. Therapeutic effects of an orally administered edible seaweed-derived polysaccharide preparation, ascophyllan HS, on a Streptococcus pneumoniae infection mouse model. Int J Biol Macromol 2020; 154:1116-1122. [PMID: 31712141 DOI: 10.1016/j.ijbiomac.2019.11.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/19/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Ascophyllan HS is a commercially available preparation of the edible brown alga Ascophyllum nodosum containing ascophyllan, a sulfated polysaccharide with diverse beneficial biological activities. In this study, the effects of ascophyllan HS were evaluated in a severe intranasal Streptococcus pneumoniae infection mouse model. The control untreated mice started to die on day 7 and 80% had died by day 14 post-infection. Continuous oral administration of ascophyllan HS before and after bacterial infection resulted in a remarkable increase in survival rate, with 90% of the low (167 mg/kg body weight/day) and 100% of the high (500 mg/kg body weight/day) dose ascophyllan HS-treated mice surviving at day 14 post-infection. Histopathological observation of the lungs of the infected mice revealed the induction of typical pneumonia features in the alveolar spaces of the untreated control mice, such as extensive infiltration of inflammatory cells, edema, and fibrin deposition. In contrast, notable levels of lung injuries or alterations were not observed in the ascophyllan HS-treated mice, and only a minor lesion was observed in one mouse. Furthermore, bacterial burdens in the lungs were significantly reduced in the ascophyllan HS-treated mice as compared to the control mice at day 4 post-infection. Significantly higher levels of IL-12 were detected in the serum of ascophyllan HS-treated mice than that of control mice measured at the end of the infection experiment (day 14). These results suggest that orally administered ascophyllan HS exerts a therapeutic effect on S. pneumoniae infection by activating the host defense systems. This is the first report of the therapeutic effect of an orally administered seaweed polysaccharide preparation on S. pneumoniae infection. Our findings suggest that ascophyllan HS has the potential to be developed as nutraceuticals and pharmaceuticals applicable for humans as well as a safe and promising therapeutic agent against S. pneumoniae infection.
Collapse
Affiliation(s)
- Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi 750-8608, Japan
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | | | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
6
|
Nucleic Acid-Sensing Toll-Like Receptors Play a Dominant Role in Innate Immune Recognition of Pneumococci. mBio 2020; 11:mBio.00415-20. [PMID: 32209688 PMCID: PMC7157524 DOI: 10.1128/mbio.00415-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae (or pneumococcus) is a highly prevalent human pathogen. Toll-like receptors (TLRs) function as immune sensors that can trigger host defenses against this bacterium. Defects in TLR-activated signaling pathways, including deficiency in the adaptor protein myeloid differentiation factor 88 (MyD88), are associated with markedly increased susceptibility to infection. However, the individual MyD88-dependent TLRs predominantly involved in antipneumococcal defenses have not been identified yet. Here we find that triple knockout mice simultaneously lacking TLR7, TLR9, and TLR13, which sense the presence of bacterial DNA (TLR9) and RNA (TLR7 and TLR13) in the phagolysosomes of phagocytic cells, display a phenotype that largely resembles that of MyD88-deficient mice and rapidly succumb to pneumococcal pneumonitis due to defective neutrophil influx into the lung. Accordingly, TLR7/9/13 triple knockout resident alveolar macrophages were largely unable to respond to pneumococci with the production of neutrophil-attracting chemokines and cytokines. Mice with single deficiencies of TLR7, TLR9, or TLR13 showed unaltered ability to control lung infection but were moderately more susceptible to encephalitis, in association with a decreased ability of microglia to mount cytokine responses in vitro Our data point to a dominant, tissue-specific role of nucleic acid-sensing pathways in innate immune recognition of S. pneumoniae and also show that endosomal TLRs are largely capable of compensating for the absence of each other, which seems crucial to prevent pneumococci from escaping immune recognition. These results may be useful to develop novel strategies to treat infections by antibiotic-resistant pneumococci based on stimulation of the innate immune system.IMPORTANCE The pneumococcus is a bacterium that frequently causes infections in the lungs, ears, sinus cavities, and meninges. During these infections, body defenses are triggered by tissue-resident cells that use specialized receptors, such as Toll-like receptors (TLRs), to sense the presence of bacteria. We show here that pneumococci are predominantly detected by TLRs that are located inside intracellular vacuoles, including endosomes, where these receptors can sense the presence of nucleic acids released from ingested bacteria. Mice that simultaneously lacked three of these receptors (specifically, TLR7, TLR9, and TLR13) were extremely susceptible to lung infection and rapidly died after inhalation of pneumococci. Moreover, tissue-resident macrophages from these mice were impaired in their ability to respond to the presence of pneumococci by producing inflammatory mediators capable of recruiting polymorphonuclear leucocytes to infection sites. This information may be useful to develop drugs to treat pneumococcal infections, particularly those caused by antibiotic-resistant strains.
Collapse
|
7
|
Abe Y, Yamamoto N, Nakamura K, Arai K, Sakurai C, Hatsuzawa K, Ogura Y, Iseki K, Tase C, Kanemitsu K. IL-13 attenuates early local CXCL2-dependent neutrophil recruitment for Candida albicans clearance during a severe murine systemic infection. Immunobiology 2018; 224:15-29. [PMID: 30514570 DOI: 10.1016/j.imbio.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/29/2023]
Abstract
To investigate the role of IL-13 during a severe systemic Candida albicans infection, BALB/c control and IL-13-/- mice were examined for colony forming units (CFU) in the kidneys and survival days after intravenous infection. Proinflammatory mediators and cell recruitment into the tissue were measured by quantitative real-time PCR, a multiple ELISA system, and morphological cell differentiation. The IL-13-/- group exhibited a lower CFU number in the kidneys at 4 days and survived longer than the control mice, which was accompanied by significantly higher expression of C-X-C motif ligand 2 (CXCL2), IFN-γ, and polymorphonuclear neutrophils (PMNs) in the infected kidneys. By contrast, the expression of transforming growth factor β (TGF-β) and IL-17 A on day 10 were significantly higher in the control mice than in the IL-13-/- group. When using an intratracheal infection model, the IL-13-/- group recruited a greater number of PMNs in 6 h, with rapidly increased CXCL2 in the alveolar space. In vitro testing with cultured bone-marrow-derived cells demonstrated rapid CXCL2 mRNA upregulation at 3 h after contact with C. albicans, which decreased with recombinant IL-13 pretreatment, whereas rIL-13 retained TGF-β upregulation. In a murine model of Candida systemic infection, preexistent IL-13 limits both the rapid CXCL2 elevation and PMN aggregation in the target organ to suppress inflammatory mediators, which also attenuates local pathogen clearance within four days.
Collapse
Affiliation(s)
- Yoshinobu Abe
- Department of Emergency and Critical Care Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Natsuo Yamamoto
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan; Health and Welfare Center of Sendai City, Taihaku Ward Branch Office, Taihaku-ku, Nagamachi-minami 1-15, Sendai, 982-8601, Japan.
| | - Kiwamu Nakamura
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazuaki Arai
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Chiye Sakurai
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Yasunori Ogura
- Division of Human Life and Environmental Sciences, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Choichiro Tase
- Department of Emergency and Critical Care Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Keiji Kanemitsu
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
8
|
Siemens N, Oehmcke-Hecht S, Mettenleiter TC, Kreikemeyer B, Valentin-Weigand P, Hammerschmidt S. Port d'Entrée for Respiratory Infections - Does the Influenza A Virus Pave the Way for Bacteria? Front Microbiol 2017; 8:2602. [PMID: 29312268 PMCID: PMC5742597 DOI: 10.3389/fmicb.2017.02602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial and viral co-infections of the respiratory tract are life-threatening and present a global burden to the global community. Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes are frequent colonizers of the upper respiratory tract. Imbalances through acquisition of seasonal viruses, e.g., Influenza A virus, can lead to bacterial dissemination to the lower respiratory tract, which in turn can result in severe pneumonia. In this review, we summarize the current knowledge about bacterial and viral co-infections of the respiratory tract and focus on potential experimental models suitable for mimicking this disease. Transmission of IAV and pneumonia is mainly modeled by mouse infection. Few studies utilizing ferrets, rats, guinea pigs, rabbits, and non-human primates are also available. The knowledge gained from these studies led to important discoveries and advances in understanding these infectious diseases. Nevertheless, mouse and other infection models have limitations, especially in translation of the discoveries to humans. Here, we suggest the use of human engineered lung tissue, human ex vivo lung tissue, and porcine models to study respiratory co-infections, which might contribute to a greater translation of the results to humans and improve both, animal and human health.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Peter Valentin-Weigand
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Baranek T, Morello E, Valayer A, Aimar RF, Bréa D, Henry C, Besnard AG, Dalloneau E, Guillon A, Dequin PF, Narni-Mancinelli E, Vivier E, Laurent F, Wei Y, Paget C, Si-Tahar M. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol 2017; 8:123. [PMID: 28243234 PMCID: PMC5303898 DOI: 10.3389/fimmu.2017.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2−/− mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2−/− mice were infected with Streptococcus pneumoniae. FHL2−/− mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2−/− mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection.
Collapse
Affiliation(s)
- Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Eric Morello
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Alexandre Valayer
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Rose-France Aimar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Déborah Bréa
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Clemence Henry
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Anne-Gaelle Besnard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Emilie Dalloneau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Pierre-François Dequin
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS , Marseille , France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France; Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | - Yu Wei
- Hépacivirus et immunité innée, Institut Pasteur , Paris , France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| |
Collapse
|
10
|
IFNγ is Required for Optimal Antibody-Mediated Immunity against Genital Chlamydia Infection. Infect Immun 2016; 84:3232-3242. [PMID: 27600502 PMCID: PMC5067755 DOI: 10.1128/iai.00749-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Defining the mechanisms of immunity conferred by the combination of antibody and CD4+ T cells is fundamental to designing an efficacious chlamydial vaccine. Using the Chlamydia muridarum genital infection model of mice, which replicates many features of human C. trachomatis infection and avoids the characteristic low virulence of C. trachomatis in the mouse, we previously demonstrated a significant role for antibody in immunity to chlamydial infection. We found that antibody alone was not protective. Instead, protection appeared to be conferred through an undefined antibody-cell interaction. Using gene knockout mice and in vivo cellular depletion methods, our data suggest that antibody-mediated protection is dependent on the activation of an effector cell population in genital tract tissues by CD4+ T cells. Furthermore, the CD4+ T cell-secreted cytokine gamma interferon (IFN-γ) was found to be a key component of the protective antibody response. The protective function of IFN-γ was not related to the immunoglobulin class or to the magnitude of the Chlamydia-specific antibody response or to recruitment of an effector cell population to genital tract tissue. Rather, IFN-γ appears to be necessary for activation of the effector cell population that functions in antibody-mediated chlamydial immunity. Our results confirm the central role of antibody in immunity to chlamydia reinfection and demonstrate a key function for IFN-γ in antibody-mediated protection.
Collapse
|
11
|
Ribes S, Abdullah MR, Saleh M, Hanisch UK, Nau R, Hammerschmidt S. Thioredoxins and Methionine Sulfoxide Reductases in the Pathophysiology of Pneumococcal Meningitis. J Infect Dis 2016; 214:953-61. [DOI: 10.1093/infdis/jiw268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/23/2016] [Indexed: 11/13/2022] Open
|
12
|
Yamamoto N, Kerfoot SM, Hutchinson AT, Dela Cruz CS, Nakazawa N, Szczepanik M, Majewska-Szczepanik M, Nazimek K, Ohana N, Bryniarski K, Mori T, Muramatsu M, Kanemitsu K, Askenase PW. Expression of activation-induced cytidine deaminase enhances the clearance of pneumococcal pneumonia: evidence of a subpopulation of protective anti-pneumococcal B1a cells. Immunology 2016; 147:97-113. [PMID: 26456931 DOI: 10.1111/imm.12544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
We describe a protective early acquired immune response to pneumococcal pneumonia that is mediated by a subset of B1a cells. Mice deficient in B1 cells (xid), or activation-induced cytidine deaminase (AID(-/-) ), or invariant natural killer T (iNKT) cells (Jα18(-/-) ), or interleukin-13 (IL-13(-/-) ) had impaired early clearance of pneumococci in the lung, compared with wild-type mice. In contrast, AID(-/-) mice adoptively transferred with AID(+/+) B1a cells, significantly cleared bacteria from the lungs as early as 3 days post infection. We show that this early bacterial clearance corresponds to an allergic contact sensitivity-like cutaneous response, probably due to a subpopulation of initiating B1a cells. In the pneumonia model, these B1a cells were found to secrete higher affinity antigen-specific IgM. In addition, as in contact sensitivity, iNKT cells were required for the anti-pneumococcal B1a cell initiating response, probably through early production of IL-13, given that IL-13(-/-) mice also failed to clear infection. Our study is the first to demonstrate the importance of AID in generating an appropriate B1a cell response to pathogenic bacteria. Given the antibody affinity and pneumonia resistance data, natural IgM produced by conventional B1a cells are not responsible for pneumonia clearance compared with the AID-dependent subset.
Collapse
Affiliation(s)
- Natsuo Yamamoto
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Steven M Kerfoot
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew T Hutchinson
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Naomi Nakazawa
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Marian Szczepanik
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Biology, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Majewska-Szczepanik
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Biology, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Nazimek
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Noboru Ohana
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Krzysztof Bryniarski
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Tsutomu Mori
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Keiji Kanemitsu
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Philip W Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
PSGL-1 on Leukocytes is a Critical Component of the Host Immune Response against Invasive Pneumococcal Disease. PLoS Pathog 2016; 12:e1005500. [PMID: 26975045 PMCID: PMC4790886 DOI: 10.1371/journal.ppat.1005500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Bacterial uptake by phagocytic cells is a vital event in the clearance of invading pathogens such as Streptococcus pneumoniae. A major role of the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes against invasive pneumococcal disease is described in this study. Phagocytosis experiments using different serotypes demonstrated that PSGL-1 is involved in the recognition, uptake and killing of S. pneumoniae. Co-localization of several clinical isolates of S. pneumoniae with PSGL-1 was demonstrated, observing a rapid and active phagocytosis in the presence of PSGL-1. Furthermore, the pneumococcal capsular polysaccharide and the main autolysin of the bacterium ―the amidase LytA― were identified as bacterial ligands for PSGL-1. Experimental models of pneumococcal disease including invasive pneumonia and systemic infection showed that bacterial levels were markedly increased in the blood of PSGL-1−/− mice. During pneumonia, PSGL-1 controls the severity of pneumococcal dissemination from the lung to the bloodstream. In systemic infection, a major role of PSGL-1 in host defense is to clear the bacteria in the systemic circulation controlling bacterial replication. These results confirmed the importance of this receptor in the recognition and clearance of S. pneumoniae during invasive pneumococcal disease. Histological and cellular analysis demonstrated that PSGL-1−/− mice have increased levels of T cells migrating to the lung than the corresponding wild-type mice. In contrast, during systemic infection, PSGL-1−/− mice had increased numbers of neutrophils and macrophages in blood, but were less effective controlling the infection process due to the lack of this functional receptor. Overall, this study demonstrates that PSGL-1 is a novel receptor for S. pneumoniae that contributes to protection against invasive pneumococcal disease. S. pneumoniae is one of the most important and devastating human pathogens worldwide, mainly affecting young children, elderly people and immunocompromised patients. In terms of host immune defense against invasive pneumococcal isolates, professional phagocytes require receptor-mediated recognition of certain ligands on the bacterial surface for the uptake and clearance of the microorganism. In this study, we demonstrate that the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes is involved in the phagocytosis process of S. pneumoniae by targeting the capsule and the surface protein LytA as pathogen-associated molecular patterns. To explore this process in more detail, we have used wild-type mice and mice deficient in PSGL-1 demonstrating that lack of PSGL-1 is detrimental for the host by increasing the susceptibility to the infection and the severity of the pneumococcal invasive disease. Overall, these data show the importance of PSGL-1 on leukocytes in host defense against S. pneumoniae and confirm that PSGL-1 plays a critical protective role against invasive bacterial disease.
Collapse
|
14
|
Toll-Like Receptor 3/TRIF-Dependent IL-12p70 Secretion Mediated by Streptococcus pneumoniae RNA and Its Priming by Influenza A Virus Coinfection in Human Dendritic Cells. mBio 2016; 7:e00168-16. [PMID: 26956584 PMCID: PMC4810485 DOI: 10.1128/mbio.00168-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A functional immune response is crucial to prevent and limit infections with Streptococcus pneumoniae. Dendritic cells (DCs) play a central role in orchestrating the adaptive and innate immune responses by communicating with other cell types via antigen presentation and secretion of cytokines. In this study, we set out to understand how pneumococci activate human monocyte-derived DCs to produce interleukin-12 (IL-12) p70, an important cytokine during pneumococcal infections. We show that IL-12p70 production requires uptake of bacteria as well as the presence of the adaptor molecule TRIF, which is known to transfer signals of Toll-like receptor 3 (TLR3) or TLR4 from the endosome into the cell. While TLR4 is redundant for IL-12p70 production in DCs, we found that TLR3 is required to induce full IL-12p70 secretion. Influenza A virus (IAV) infection of DCs did not induce IL-12p70 but markedly upregulated TLR3 expression that during coinfection with S. pneumoniae significantly enhanced IL-12p70 secretion. Finally, we show that pneumococcal RNA can act as a bacterial stimulus for TLR3 and that it is a key signal to induce IL-12p70 production during challenge of DCs with pneumococci. Streptococcus pneumoniae, a common colonizer of the nose, is the causative agent of severe and deadly diseases. A well-orchestrated immune response is vital to prevent and limit these diseases. Dendritic cells (DCs) reside in the mucosal linings of the lungs and sample antigens. They are activated by pathogens to present antigens and secrete cytokines. While many studies focus on murine models, we focused our work on human monocyte-derived DCs. We found that pneumococcal RNA is an important stimulus in DCs to activate the endosomal receptor TLR3, a receptor previously not identified to sense pneumococci, and its adaptor molecule TRIF. This leads to secretion of the cytokine interleukin-12 (IL-12). Severe pneumococcal pneumonia occurs closely after influenza A virus (IAV) infection. We show that IAV infection upregulates TLR3 in DCs, which sensitizes the cells to endosomal pneumococcal RNA. This new insight contributes to unlock the interplay between pneumococci, IAV, and humans.
Collapse
|
15
|
Akahori Y, Miyasaka T, Toyama M, Matsumoto I, Miyahara A, Zong T, Ishii K, Kinjo Y, Miyazaki Y, Saijo S, Iwakura Y, Kawakami K. Dectin-2-dependent host defense in mice infected with serotype 3 Streptococcus pneumoniae. BMC Immunol 2016; 17:1. [PMID: 26727976 PMCID: PMC4700738 DOI: 10.1186/s12865-015-0139-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/23/2015] [Indexed: 12/01/2022] Open
Abstract
Background Streptococcus pneumoniae, a major causative bacterial pathogen of community-acquired pneumonia, possesses a thick polysaccharide capsule. Host defense against this bacterium is mediated by activation of innate immune cells that sense bacterial components. Recently, C-type lectin receptors (CLRs) have garnered much attention in elucidating the recognition mechanism of pathogen-derived polysaccharides. Methods In the present study, we first compared the clinical course and neutrophil accumulation in the lungs of Dectin-2 knock-out (KO) and wild type (WT) mice. Mice were infected intratracheally with a serotype 3 strain of S. pneumoniae, and S. pneumoniae bacterial engulfment by neutrophils and inflammatory cytokine and anti-pneumococcal polysaccharide-specific IgG levels were evaluated in bronchoalveolar lavage fluid (BALF). We also examined the effect of Dectin-2 deficiency on interleukin (IL)-12 production by bone marrow-derived dendritic cells (BM-DCs) stimulated with the bacterial components. Results S. pneumonia-infected Dectin-2KO mice had a shorter survival time, larger bacterial burden and lower interferon gamma (IFN-γ) production in the lungs than WT mice. Although neutrophilic infiltration in the lungs was equivalent between Dectin-2KO mice and WT mice, S. pneumonia engulfment by neutrophils was attenuated in Dectin-2KO mice compared to WT mice. The anti-pneumococcal polysaccharide-specific IgG and IgG3 levels in BALF were lower in Dectin-2KO mice than in WT mice. When BM-DCs were stimulated with S. pneumoniae culture supernatant or its Concanavalin A (ConA)-bound fraction, IL-12 production was abrogated in Dectin-2KO mice compared to WT mice. Conclusions We demonstrated that Dectin-2 is intimately involved in the host defense against infection with a serotype 3 strain of S. pneumoniae. Dectin-2-dependent IL-12 production may contribute to IFN-γ synthesis and subsequent production of serotype-specific anti-capsular polysaccharide IgG after S. pneumoniae infection, which may promote S. pneumoniae bacterial opsonization for engulfment.
Collapse
Affiliation(s)
- Yukiko Akahori
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan. .,Present address: Japanese Red Cross Society, Tokyo, Japan.
| | - Tomomitsu Miyasaka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan. .,Present address: Department of Pathophysiology, Tohoku Pharmaceutical University, Miyagi, Japan.
| | - Masahiko Toyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan. .,Present address: Ibaraki Prefectural Hospital, Ibaraki, Japan.
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| |
Collapse
|
16
|
|
17
|
Role of Interleukin-12 in Protection against Pulmonary Infection with Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:6308-16. [PMID: 26248370 DOI: 10.1128/aac.00968-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/21/2015] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen associated with nosocomial pneumonia and is an increasing threat for severe community-acquired pneumonia. We have now investigated the role of interleukin-12 (IL-12) in protective immunity against lung infection with MRSA. The importance of IL-12 in protection from pulmonary MRSA infection was demonstrated by the finding that IL-12p35-deficient mice had a lower survival rate, higher bacterial burdens in lung and spleen, and decreased expression of interferon gamma (IFN-γ) in the lung compared to wild-type mice. These effects were completely reversed by replacement intranasal therapy with recombinant IL-12. Furthermore, exogenous IL-12 treatment of wild-type mice 24 h before pulmonary challenge with a lethal dose of MRSA significantly improved bacterial clearance and resulted in protection from death. The IL-12-treated mice had increased numbers of lung natural killer (NK) cells and neutrophils and higher levels of IFN-γ in the lung and serum compared to untreated mice. The major source of IL-12-driven IFN-γ expression in the lung was the NK cell, and the direct target of pulmonary IFN-γ was the lung macrophage, as shown using mice with a macrophage-specific defect in interferon gamma (IFN-γ) signaling (MIIG mice). Importantly, combination therapy with linezolid and IL-12 following intranasal MRSA infection significantly increased survival compared to that of mice receiving linezolid or IL-12 alone. These results indicate that IL-12-based immunotherapy may hold promise for treatment of MRSA pneumonia.
Collapse
|
18
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
19
|
Majewska-Szczepanik M, Yamamoto N, Askenase PW, Szczepanik M. Epicutaneous immunization with phosphorylcholine conjugated to bovine serum albumin (PC-BSA) and TLR9 ligand CpG alleviates pneumococcal pneumonia in mice. Pharmacol Rep 2014; 66:570-5. [PMID: 24948056 DOI: 10.1016/j.pharep.2014.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 01/13/2014] [Accepted: 02/13/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Epicutaneous (EC) immunization is a potential new strategy of a needle-free and self-administrable immunization by using a topically applied patch to deliver vaccine. We have previously shown that EC immunization with various protein antigens inhibits both Th1- and Tc1-mediated contact hypersensitivity (CHS) in mice. Our further work showed that maneuver of EC immunization with an antigen and Toll-like receptor (TLR) ligands prior to hapten sensitization reverses skin-induced suppression. METHODS Animal model of pneumococcal pneumonia was used to study efficacy of EC induced immunopotentiation. RESULTS Current work showed that EC immunization with phosphorylcholine conjugated to bovine serum albumin (PC-BSA) and CpG prior to Streptococcus pneumoniae infection results in smaller decrease of body weight when compared to PBS treated mice. Consistent with the behavioral observations and body weight, smaller numbers of bacteria were quantitated in lung homogenates of mice patched with PC-BSA and CpG prior inoculation with S. pneumonia when compared to mice patched with PBS alone. In vitro experiments showed that lymph node cells and spleen cells from mice EC immunized with PC-BSA plus CpG produced high levels of IFN-γ and IL-17A when compared to PBS or PC-BSA or CpG treated mice. CONCLUSION This work shows that EC immunization with PC-BSA plus TLR9 ligand CpG may be a potential tool to boost immunity to S. pneumoniae.
Collapse
Affiliation(s)
| | - Natsuo Yamamoto
- Department of Infection Control, Fukushima Medical University, Fukushima City, Japan
| | - Philip W Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Immunology, Yale University School of Medicine, New Haven, USA
| | - Marian Szczepanik
- Department of Medical Biology, Jagiellonian University College of Medicine, Kraków, Poland
| |
Collapse
|
20
|
Miyasaka T, Akahori Y, Toyama M, Miyamura N, Ishii K, Saijo S, Iwakura Y, Kinjo Y, Miyazaki Y, Oishi K, Kawakami K. Dectin-2-dependent NKT cell activation and serotype-specific antibody production in mice immunized with pneumococcal polysaccharide vaccine. PLoS One 2013; 8:e78611. [PMID: 24205278 PMCID: PMC3808275 DOI: 10.1371/journal.pone.0078611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/14/2013] [Indexed: 01/26/2023] Open
Abstract
Although thymus-independent type 2 antigens generally do not undergo Ig class switching from IgM to IgG, pneumococcal polysaccharide vaccine (PPV) induces the production of serotype-specific IgG. How this happens remains unclear, however. In the present study, PPV immunization induced production of IgG as well as IgM specific for a serotype 3-pneumococcal polysaccharide in the sera of wild-type (WT) mice, but this phenomenon was significantly reduced in Dectin-2 knockout (KO) mice. Immunization with PPV caused IL-12p40 production in WT mice, but this response was significantly reduced in Dectin-2KO mice. Likewise, immunization with PPV activated natural killer T (NKT) cells in WT mice but not in Dectin-2KO mice. Furthermore, administration of α-galactosylceramide, recombinant (r)IL-12 or rIFN-γ improved the reduced IgG levels in Dectin-2KO mice, and treatment with neutralizing anti-IFN-γ mAb resulted in the reduction of IgG synthesis in PPV-immunized WT mice. Transfer of spleen cells from PPV-immunized WT mice conferred protection against pneumococcal infection on recipient mice, whereas this effect was cancelled when the transferred spleen cells were harvested from PPV-immunized Dectin-2KO mice. These results suggest that the detection of PPV antigens via Dectin-2 triggers IL-12 production, which induces IFN-γ synthesis by NKT cells and subsequently the production of serotype-specific IgG.
Collapse
Affiliation(s)
- Tomomitsu Miyasaka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Akahori
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiko Toyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Namiko Miyamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Division of Laboratory Animal, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuki Kinjo
- Laboratory of Immune Regulation, Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Laboratory of Immune Regulation, Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
21
|
Mitchell AJ, Yau B, McQuillan JA, Ball HJ, Too LK, Abtin A, Hertzog P, Leib SL, Jones CA, Gerega SK, Weninger W, Hunt NH. Inflammasome-Dependent IFN-γ Drives Pathogenesis inStreptococcus pneumoniaeMeningitis. THE JOURNAL OF IMMUNOLOGY 2012; 189:4970-80. [DOI: 10.4049/jimmunol.1201687] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Aronoff DM, Bergin IL, Lewis C, Goel D, O'Brien E, Peters-Golden M, Mancuso P. E-prostanoid 2 receptor signaling suppresses lung innate immunity against Streptococcus pneumoniae. Prostaglandins Other Lipid Mediat 2012; 98:23-30. [PMID: 22575745 DOI: 10.1016/j.prostaglandins.2012.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Pneumonia is a major global health problem. Prostaglandin (PG) E(2) is an immunomodulatory lipid with anti-inflammatory, immunosuppressive, and pro-resolving actions. Data suggest that the E-prostanoid (EP) 2 receptor mediates immunomodulatory effects of PGE(2), but the extent to which this occurs in Streptococcus pneumoniae infection is unknown. Intratracheal lung infection of C57BL/6 mice possessing (EP2(+/+)) or lacking (EP2(-/-)) the EP2 receptor was performed, as were in vitro studies of alveolar macrophage (AM) host defense functions. Bacterial clearance and survival were significantly improved in vivo in EP2(-/-) mice and it correlated with greater neutrophilic inflammation and higher lung IL-12 levels. Upon ex vivo challenge with pneumococcus, EP2(-/-)cells expressed greater amounts of TNF-α and MIP-2 than did EP2(+/+) AMs, and had improved phagocytosis, intracellular killing, and reactive oxygen intermediate generation. These data suggest that PGE(2)-EP2 signaling may provide a novel pharmacological target for treating pneumococcal pneumonia in combination with antimicrobials.
Collapse
Affiliation(s)
- David M Aronoff
- Divisions of Infectious Diseases, The University of Michigan, Ann Arbor, MI 48109-5680, United States.
| | | | | | | | | | | | | |
Collapse
|
23
|
Tsuchiya T, Nakao N, Yamamoto S, Hirai Y, Miyamoto K, Tsujibo H. NK1.1+ cells regulate neutrophil migration in mice with Acinetobacter baumannii pneumonia. Microbiol Immunol 2012; 56:107-16. [DOI: 10.1111/j.1348-0421.2011.00402.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Maeda Y, Ohtsuka H, Tomioka M, Tanabe T, Nambo Y, Uematsu H, Oikawa MA. Effect of progesterone on the in vitro response of peripheral blood mononuclear cells stimulated by Escherichia coli in mares. J Vet Med Sci 2011; 74:629-32. [PMID: 22167103 DOI: 10.1292/jvms.11-0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escherichia coli(E. coli) isolated from the uterus of a Thoroughbred mare with bacterial endometritis was used to evaluate the effect of progesterone (P(4)) on the immune response of mares. Peripheral blood mononuclear cells (PBMCs) were collected from 10 nonpregnant clinically healthy adult mares (range, 4-12 years) during diestrus, four Thoroughbreds and six Hokkaido native horses. Cell proliferation and expression of cytokine mRNA, including interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-10, of PBMCs stimulated with E. coli and P(4) were examined in vitro. P(4) was shown to have significantly inhibited E. coli induced proliferation and expression of IFN-γ in PBMCs. These results indicate that P(4) inhibits the immune response to E. coli in mares.
Collapse
Affiliation(s)
- Yousuke Maeda
- School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 Bancho, Towada, Aomori 034-8628, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Protection against Streptococcus pneumoniae serotype 1 acute infection shows a signature of Th17- and IFN-γ-mediated immunity. Immunobiology 2011; 217:420-9. [PMID: 22204818 DOI: 10.1016/j.imbio.2011.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 12/22/2022]
Abstract
Acute pneumonia caused by Streptococcus pneumoniae is a major cause of child mortality. Antibodies are considered the main effectors of protection in this clinical presentation of pneumococcal invasive disease. To get new insights into the mechanisms involved in the protective immunity, we established a murine experimental model of protection against acute pneumococcal pneumonia and then evaluated the transcriptional, humoral and cellular responses in protected and non-protected animals. We found that intranasal inoculation of a sublethal dose of S. pneumoniae serotype 1 conferred complete protection against a subsequent challenge with a lethal dose of the same strain. Sublethal infection elicited a strong IgM and IgG antibody response against the capsular polysaccharide, as assessed one week later, and an exacerbated influx of neutrophils into the lungs immediately after the lethal challenge. Genome-wide microarray-based transcriptional analysis of whole lungs showed 149 differentially expressed genes among which we found upregulation of Il17a, Ifng and several IL-17A- and IFN-γ-related genes in protected versus non-protected mice. Kinetics analysis showed higher expression levels of Il17a in protected animals at all time points whereas Ifng was upregulated early in the protected mice and later in the non-protected animals. Intracelluar cytokine staining demonstrated that CD4(+) T cells account for a great proportion of the IL-17A produced in the lungs of protected animals. Overall, these results showed that an upregulation of IL-17A- and a timely regulation of IFN-γ-related gene expression, together with development of a Th17 response, are relevant characteristics of the protective immunity against S. pneumoniae acute pneumonia.
Collapse
|
26
|
Lingappa JR, Dumitrescu L, Zimmer SM, Lynfield R, McNicholl JM, Messonnier NE, Whitney CG, Crawford DC. Identifying host genetic risk factors in the context of public health surveillance for invasive pneumococcal disease. PLoS One 2011; 6:e23413. [PMID: 21858107 PMCID: PMC3156135 DOI: 10.1371/journal.pone.0023413] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/16/2011] [Indexed: 11/18/2022] Open
Abstract
Host genetic factors that modify risk of pneumococcal disease may help target future public health interventions to individuals at highest risk of disease. We linked data from population-based surveillance for invasive pneumococcal disease (IPD) with state-based newborn dried bloodspot repositories to identify biological samples from individuals who developed invasive pneumococcal disease. Genomic DNA was extracted from 366 case and 732 anonymous control samples. TagSNPs were selected in 34 candidate genes thought to be associated with host response to invasive pneumococcal disease, and a total of 326 variants were successfully genotyped. Among 543 European Americans (EA) (182 cases and 361 controls), and 166 African Americans (AA) (53 cases and 113 controls), common variants in surfactant protein D (SFTPD) are consistently underrepresented in IPD. SFTPD variants with the strongest association for IPD are intronic rs17886286 (allelic OR 0.45, 95% confidence interval (CI) [0.25, 0.82], with p = 0.007) in EA and 5' flanking rs12219080 (allelic OR 0.32, 95%CI [0.13, 0.78], with p = 0.009) in AA. Variants in CD46 and IL1R1 are also associated with IPD in both EA and AA, but with effects in different directions; FAS, IL1B, IL4, IL10, IL12B, SFTPA1, SFTPB, and PTAFR variants are associated (p≤0.05) with IPD in EA or AA. We conclude that variants in SFTPD may protect against IPD in EA and AA and genetic variation in other host response pathways may also contribute to risk of IPD. While our associations are not corrected for multiple comparisons and therefore must be replicated in additional cohorts, this pilot study underscores the feasibility of integrating public health surveillance with existing, prospectively collected, newborn dried blood spot repositories to identify host genetic factors associated with infectious diseases.
Collapse
Affiliation(s)
- Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia, meningitis, and sepsis in children. Human immunity to pneumococcal infections has been assumed to depend on anticapsular antibodies. However, recent findings from murine models suggest that alternative mechanisms, dependent on T helper cells, are also involved. Although the immunological events in which T helper cells contribute to acquired immunity have been studied in mice, little is known about how these responses are generated in humans. Therefore, we examined bacterial and host factors involved in the induction of Th1 and Th17 responses, using a coculture model of human monocytes and CD4(+) T cells. We show that monocytes promote effector cytokine production by memory T helper cells, leading to a mixed Th1/Th17 (gamma interferon [IFN-γ]/interleukin-17 [IL-17]) profile. Both T helper cytokines were triggered by purified pneumococcal peptidoglycan; however, the balance between the two immune effector arms depended on bacterial viability. Accordingly, live pneumococci triggered a Th1-biased response via monocyte production of IL-12p40, whereas heat-killed pneumococci triggered a Th17 response through TLR2 signaling. An increased understanding of human T helper responses is essential for the development of novel pneumococcal vaccines designed to elicit cell-mediated immunity.
Collapse
|
28
|
Matsumoto T, Hayamizu K, Marubayashi S, Shimizu K, Hamamoto A, Yamaguchi T, Hashizume J, Onabe T, Asahara T, Ohdan H. Relationship between the cAMP levels in leukocytes and the cytokine balance in patients surviving gram negative bacterial pneumonia. J Clin Biochem Nutr 2011; 48:134-41. [PMID: 21373266 PMCID: PMC3045686 DOI: 10.3164/jcbn.10-72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/04/2010] [Indexed: 01/11/2023] Open
Abstract
Lipopolysaccharide-stimulated leukocytes secrete proinflammatory cytokines including tumor necrosis factor-α and interleukin-12. Over-activation of host defense systems may result in severe tissue damage and requires regulation. Granulocyte colony-stimulating factor and interleukin-10 are candidate cytokines for inducing tolerance to lipopolysaccharide re-stimulation. We compared cytokines secreted by lipopolysaccharide-stimulated blood cells from patients who had survived gram negative bacterial pneumonia (Pseudomonas aeruginosa, Escherichia coli or Proteus mirabilis, n = 26) and age-matched healthy volunteers (n = 18). Interleukin-12p70 and tumor necrosis factor-α expression was significantly lower in patients (p = 0.0039 and p<0.001) compared to healthy controls, while granulocyte colony-stimulating factor production was markedly higher in patients (p<0.001). Levels of interleukin-10 were comparable. Granulocyte colony-stimulating factor expression was inversely correlated with interleukin-12p70 (R = -0.71, p<0.001) and tumor necrosis factor-α (R = -0.64, p<0.001) expression; interleukin-10 showed no significant correlation. In unstimulated leukocytes from patients, cAMP levels were significantly raised (p = 0.020) and were correlated inversely with interleukin-12p70 levels (R = -0.81, p<0.001) and directly with granulocyte colony-stimulating factor (R = 0.72, p = 0.0020), matrix metalloproteinase-9 (R = 0.67, p = 0.0067) and interleukin-10 (R = 0.54, p = 0.039) levels. Our results demonstrate that granulocyte colony-stimulating factor production by lipopolysaccharide-stimulated leukocytes is a useful indicator of tolerance induction in surviving pneumonia patients and that measuring cAMP in freshly isolated leukocytes may also be clinically significant.
Collapse
Affiliation(s)
- Tomio Matsumoto
- Department of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Keisuke Hayamizu
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, 555-36 Kurose-gakuendai, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| | - Seiji Marubayashi
- Department of Surgery, Ajina Tsuchiya Hospital, 4-51-5 Ajina, Hatsukaichi, Hiroshima 738-0054, Japan
| | - Kiyoshi Shimizu
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, 555-36 Kurose-gakuendai, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| | - Aki Hamamoto
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, 555-36 Kurose-gakuendai, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| | - Tsuyoshi Yamaguchi
- Department of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Junji Hashizume
- Department of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Takashi Onabe
- Department of Surgery, Onabe Surgical Hospital, 1-9-12 Kokutaiji-cho, Naka-ku, Hiroshima, Hiroshima 730-0042, Japan
| | - Toshimasa Asahara
- Department of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Hideki Ohdan
- Department of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| |
Collapse
|
29
|
Weber SE, Tian H, Pirofski LA. CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice. THE JOURNAL OF IMMUNOLOGY 2010; 186:432-42. [PMID: 21135172 DOI: 10.4049/jimmunol.1001963] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite the success of the pneumococcal conjugate vaccine, pneumococcal pneumonia remains a significant clinical problem, and there is still much to learn about natural resistance and cellular immunity to pneumococcus. We investigated the role of T lymphocytes in resistance to serotype (ST) 3 Streptococcus pneumoniae in an intranasal infection model in C57BL/6 (wild-type [Wt]) and CD8(+) (CD8(-/-))- and CD4(+) (MHC class II(-/-))-deficient mice. CD8(-/-) mice exhibited significantly more bacterial dissemination and lung inflammation and a significantly more lethal phenotype than Wt mice. However, there was no difference in the bacterial dissemination, lung inflammation, or survival of Wt and MHC class II(-/-) mice. Perforin (Pfn)(-/-) and IFN-γ(-/-) mice, which were used to dissect the role of CD8(+) T cells in our model, also exhibited a more lethal survival phenotype than Wt mice. Comparison of lung chemokine/cytokine levels by Luminex and cellular recruitment by FACS in Wt mice and knockout strains revealed that CD8(-/-) and IFN-γ(-/-) mice, which had the most lethal survival phenotype, had more CD4(+)IL-17(+) T (Th17) cells, IL-17, neutrophil chemoattractants, and lung neutrophils, and fewer regulatory T cells than Wt mice. CD4(+) T cell depletion improved the survival of ST-infected CD8(-/-) mice, and survival studies in Th17-deficient mice revealed that the Th17 response was dispensable for ST3 resistance in our model. Taken together, these findings demonstrate that CD8(+) cells are required, but CD4(+) T cells are dispensable for resistance to ST3 pneumonia in mice and suggest a previously unsuspected role for CD8(+) cells in modulating the inflammatory response to ST3.
Collapse
Affiliation(s)
- Sarah E Weber
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
30
|
Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:75-81. [PMID: 21047997 DOI: 10.1128/cvi.00263-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is a respiratory pathogen, and mucosal immune response plays a significant role in the defense against pneumococcal infections. Thus, intranasal vaccination may be an alternative approach to current immunization strategies, and effective delivery systems to mucosal organism are necessary. In this study, BALB/c mice were immunized intranasally with chitosan-DNA nanoparticles expressing pneumococcal surface antigen A (PsaA). Compared to levels in mice immunized with naked DNA or chitosan-pVAX1, anti-PsaA IgG antibody in serum and anti-IgA antibody in mucosal lavages were elevated significantly in mice immunized with chitosan-psaA. The balanced IgG1/IgG2a antibody ratio in serum, enhanced gamma interferon (IFN-γ) and IL-17A levels in spleen lymphocytes, and mucosal washes of mice immunized with chitosan-psaA suggested that cellular immune responses were induced. Furthermore, significantly fewer pneumococci were recovered from the nasopharynx of mice immunized with chitosan-psaA than for the control group following intranasal challenge with ATCC 6303 (serotype 3). These results demonstrated that mucosal immunization with chitosan-psaA may successfully generate mucosal and systemic immune responses and prevent pneumococcal nasopharyngeal colonization. Hence, a chitosan-DNA nanoparticle vaccine expressing pneumococcal major immunodominant antigens after intranasal administration could be developed to prevent pneumococcal infections.
Collapse
|
31
|
Inhibition of T cells provides protection against early invasive pneumococcal disease. Infect Immun 2010; 78:5287-94. [PMID: 20855509 DOI: 10.1128/iai.00431-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections caused by Streptococcus pneumoniae are major causes of morbidity and mortality, which are in part mediated by immune cell-dependent mechanisms. Yet, the specific contributions of individual cell types to immunopathology are only partially understood. T cells are well characterized with respect to their function in protective humoral immune responses; however, their roles during early stages of infection and invasive pneumococcal disease (IPD) are less well defined. Using a mouse model of pneumococcal sepsis, we found that CD4(+) T cells were recruited to the lung as early as 12 h after intranasal infection. Recruitment was accompanied by upregulation of CD69 and B7-H1, reflecting T-cell activation. Unexpectedly, major histocompatibility complex (MHC) class II-deficient mice, which lack CD4(+) T cells, displayed an increased survival despite comparable bacterial titers in the blood, spleen, and lung. The higher survival correlated with a lower cytokine and chemokine response upon S. pneumoniae challenge in MHC class II-deficient mice, suggesting that inflammation may contribute to the mortality of IPD. Comparable to the case for MHC class II-deficient mice, antibody-mediated depletion of CD4(+) T cells and drug-induced inhibition of T-cell function with cyclosporine, or interference with T-cell activation using CTLA4-immunoglobulin (Abatacept), led to significant increases in survival during IPD. Our results reveal an important and adverse role of CD4(+) T cells in the pathogenesis of IPD and suggest that modulation of T-cell activation during early phases of S. pneumoniae invasive infection may provide a therapeutic option.
Collapse
|
32
|
Abstract
Despite the development of vaccines and antibiotics, Streptococcus pneumoniae (the pneumococcus) continues to be a major cause of human morbidity and mortality throughout the world. In recent years our understanding of how the host innate immune system recognizes and responds to pneumococcal infection has advanced significantly. Herein, we highlight some of the key features of the innate response to the pneumococcus.
Collapse
Affiliation(s)
- Gavin K Paterson
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
33
|
Abstract
Pneumococcus remains the most common cause of community-acquired pneumonia worldwide. Streptococcus pneumoniae is well adapted to people, and is a frequent inhabitant of the upper airways in healthy hosts. This seemingly innocuous state of colonisation is a dynamic and competitive process in which the pathogen attempts to engage the host, proliferate, and invade the lower airways. The host in turn continuously deploys an array of innate and acquired cellular and humoral defences to prevent pneumococci from breaching tissue barriers. Discoveries into essential molecular mechanisms used by pneumococci to evade host-sensing systems that are designed to contain the pathogen provide new insights into potential treatment options. Versatility of the genome of pneumococci and the bacteria's polygenic virulence capabilities show that a multifaceted approach with many vaccine antigens, antibiotic combinations, and immunoadjuvant therapies will be needed to control this microbe.
Collapse
Affiliation(s)
- Tom van der Poll
- Centre for Infection and Immunity Amsterdam, Centre for Experimental and Molecular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | | |
Collapse
|
34
|
Streptococcus pneumoniae autolysis prevents phagocytosis and production of phagocyte-activating cytokines. Infect Immun 2009; 77:3826-37. [PMID: 19528220 DOI: 10.1128/iai.00290-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus pneumoniae is a major pathogen in humans. The pathogenicity of this organism is related to its many virulence factors, the most important of which is the thick pneumococcal capsule that minimizes phagocytosis. Another virulence-associated trait is the tendency of this bacterium to undergo autolysis in stationary phase through activation of the cell wall-bound amidase LytA, which breaks down peptidoglycan. The exact function of autolysis in pneumococcal pathogenesis is, however, unclear. Here, we show the selective and specific inefficiency of wild-type S. pneumoniae for inducing production of phagocyte-activating cytokines in human peripheral blood mononuclear cells (PBMC). Indeed, clinical pneumococcal strains induced production of 30-fold less tumor necrosis factor (TNF), 15-fold less gamma interferon (IFN-gamma), and only negligible amounts of interleukin-12 (IL-12) compared with other closely related Streptococcus species, whereas the levels of induction of IL-6, IL-8, and IL-10 production were similar. If pneumococcal LytA was inactivated by mutation or by culture in a medium containing excess choline, the pneumococci induced production of significantly more TNF, IFN-gamma, and IL-12 in PBMC, whereas the production of IL-6, IL-8, and IL-10 was unaffected. Further, adding autolyzed pneumococci to intact bacteria inhibited production of TNF, IFN-gamma, and IL-12 in a dose-dependent manner but did not inhibit production of IL-6, IL-8, and IL-10 in response to the intact bacteria. Fragments from autolyzed bacteria inhibited phagocytosis of intact bacteria and reduced the in vitro elimination of pneumococci from human blood. Our results suggest that fragments generated by autolysis of bacteria with reduced viability interfere with phagocyte-mediated elimination of live pneumococci.
Collapse
|
35
|
Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:636-45. [PMID: 19279169 DOI: 10.1128/cvi.00395-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pneumococcal surface protein A (PspA) and PspC are virulence factors that are involved in the adhesion of Streptococcus pneumoniae to epithelial cells and/or evasion from the immune system. Here, the immune responses induced by mucosal vaccines composed of both antigens as recombinant proteins or delivered by Lactobacillus casei were evaluated. None of the PspC vaccines protected mice against an invasive challenge with pneumococcal strain ATCC 6303. On the other hand, protection was observed for immunization with vaccines composed of PspA from clade 5 (PspA5 or L. casei expressing PspA5) through the intranasal route. The protective response was distinguished by a Th1 profile with high levels of immunoglobulin G2a production, efficient complement deposition, release of proinflammatory cytokines, and infiltration of neutrophils. Intranasal immunization with PspA5 elicited the highest level of protection, characterized by increased levels of secretion of interleukin-17 and gamma interferon by lung and spleen cells, respectively, and low levels of tumor necrosis factor alpha in the respiratory tract.
Collapse
|
36
|
Sutherland RE, Olsen JS, McKinstry A, Villalta SA, Wolters PJ. Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing. THE JOURNAL OF IMMUNOLOGY 2008; 181:5598-605. [PMID: 18832718 DOI: 10.4049/jimmunol.181.8.5598] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pleiotropic cytokine IL-6 has favorable and harmful effects on survival from bacterial infections. Although many innate immune cells produce IL-6, little is known about relevant sources in vivo and the nature of its contributions to host responses to severe bacterial infections. To examine these roles, we subjected mast cell-specific IL-6-deficient mice to the cecal ligation and puncture model of septic peritonitis, finding that survival in these mice is markedly worse than in controls. Following intranasal or i.p. inoculation with Klebsiella pneumoniae, IL-6 (-/-) mice are less likely to survive than wild-type controls and at the time of death have higher numbers of bacteria but not inflammatory cells in lungs and peritoneum. Similarly, mast cell-specific IL-6-deficient mice have diminished survival and higher numbers of K. pneumoniae following i.p. infection. Neutrophils lacking IL-6 have greater numbers of live intracellular K. pneumonia, suggesting impaired intracellular killing contributes to reduced clearance in IL-6(-/-) mice. These results establish that mast cell IL-6 is a critical mediator of survival following K. pneumoniae infection and sepsis and suggest that IL-6 protects from death by augmenting neutrophil killing of bacteria.
Collapse
Affiliation(s)
- Rachel E Sutherland
- Department of Medicine and The Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
37
|
Wright AKA, Briles DE, Metzger DW, Gordon SB. Prospects for use of interleukin-12 as a mucosal adjuvant for vaccination of humans to protect against respiratory pneumococcal infection. Vaccine 2008; 26:4893-903. [PMID: 18602438 DOI: 10.1016/j.vaccine.2008.06.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/15/2008] [Accepted: 06/13/2008] [Indexed: 02/02/2023]
Abstract
Mucosal vaccination against pneumococcal disease offers potential protection against otitis media, pneumonia and invasive disease, including providing herd benefit by reducing pathogen carriage. The major obstacle, however, remains the lack of a suitable adjuvant for use in humans. Animal models have demonstrated success of interleukin-12 (IL-12) as an adjuvant for mucosal vaccines using recombinant pneumococcal protein antigens. This review examines the biology of the IL-12 cytokine family, the toxicity of IL-12 in human studies and suggests approaches by which IL-12 could be developed as a mucosal adjuvant with pneumococcal protein based vaccines, for use in humans.
Collapse
Affiliation(s)
- A K A Wright
- National Institute of Health Research, Biomedical Research Centre, Royal Liverpool, Liverpool, UK. adam.wright@liverpool
| | | | | | | |
Collapse
|
38
|
Optimized immune response elicited by a DNA vaccine expressing pneumococcal surface protein a is characterized by a balanced immunoglobulin G1 (IgG1)/IgG2a ratio and proinflammatory cytokine production. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:499-505. [PMID: 18184825 DOI: 10.1128/cvi.00400-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown that DNA immunization with PspA (pneumococcal surface protein A) DNA is able to elicit protection comparable to that elicited by immunization with PspA protein (with alum as adjuvant), even though the antibody levels elicited by DNA immunization are lower than those elicited by immunization with the protein. This work aims at characterizing the ability of sera to bind to the pneumococcal surface and to mediate complement deposition, using BALB/c wild-type and interleukin-4 knockout mice. We observed that higher anti-PspA levels correlated with intense antibody binding to the pneumococcal surface, while elevated complement deposition was observed with sera that presented balanced immunoglobulin G1 (IgG1)/IgG2a ratios, such as those from DNA-immunized mice. Furthermore, we demonstrated that gamma interferon and tumor necrosis factor alpha were strongly induced after intraperitoneal pneumococcal challenge only in mice immunized with the DNA vaccine. We therefore postulate that although both DNA and recombinant protein immunizations are able to protect mice against intraperitoneal pneumococcal challenge, an optimized response would be achieved by using a DNA vaccine and other strategies capable of inducing balanced Th1/Th2 responses.
Collapse
|
39
|
Peritoneal challenge modulates expression of pneumococcal surface protein C during bacteremia in mice. Infect Immun 2007; 76:1122-7. [PMID: 18160474 DOI: 10.1128/iai.01066-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differential expression of pneumococcal virulence proteins has been demonstrated. We previously demonstrated challenge route-dependent differences in pneumococcal surface protein C (PspC) expression during bacteremia. In this study, we investigated differences in PspC expression during the transition of pneumococci from the peritoneum to the blood. Time course analysis of PspC expression using flow cytometry demonstrated that Streptococcus pneumoniae D39 collected from blood expressed significantly more PspC than did D39 collected from the peritoneum of intraperitoneally (i.p.)-infected mice. Various challenge models were then used to determine whether host responses originating from the peritoneum can influence PspC expressed by pneumococci in the blood. Using heat-inactivated D39 (HI-D39) and sterile peritoneal dialysis fluid (PDF), we investigated whether stimulation of peritoneal responses can influence PspC expression. Injection of mice i.p. with HI-D39 or PDF immediately prior to intravenous (i.v.) infection with D39 caused a significant increase in PspC expressed by D39 in the blood. Finally, we used cytokine array analysis to investigate specific inflammatory mediators that may result in differential PspC expression. Of the 96 inflammatory cytokines assayed, D39 i.p. challenge led to increased expression of 33 cytokines in serum; whereas D39 i.v. challenge led to increased expression of 15 and decreased expression of 11 cytokines relative to serum of the uninfected control. These results indicate that PspC is differentially regulated during growth in vivo and that the level of expression varies depending on the host environment.
Collapse
|
40
|
Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S, Galbo R, Tomasello F, Gambuzza M, Macrì G, Ruggeri A, Leanderson T, Teti G. Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3126-33. [PMID: 17312160 DOI: 10.4049/jimmunol.178.5.3126] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is known that host cells can produce type I IFNs (IFN-alphabeta) after exposure to conserved bacterial products, but the functional consequences of such responses on the outcome of bacterial infections are incompletely understood. We show in this study that IFN-alphabeta signaling is crucial for host defenses against different bacteria, including group B streptococci (GBS), pneumococci, and Escherichia coli. In response to GBS challenge, most mice lacking either the IFN-alphabetaR or IFN-beta died from unrestrained bacteremia, whereas all wild-type controls survived. The effect of IFN-alphabetaR deficiency was marked, with mortality surpassing that seen in IFN-gammaR-deficient mice. Animals lacking both IFN-alphabetaR and IFN-gammaR displayed additive lethality, suggesting that the two IFN types have complementary and nonredundant roles in host defenses. Increased production of IFN-alphabeta was detected in macrophages after exposure to GBS. Moreover, in the absence of IFN-alphabeta signaling, a marked reduction in macrophage production of IFN-gamma, NO, and TNF-alpha was observed after stimulation with live bacteria or with purified LPS. Collectively, our data document a novel, fundamental function of IFN-alphabeta in boosting macrophage responses and host resistance against bacterial pathogens. These data may be useful to devise alternative strategies to treat bacterial infections.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Dipartimento di Patologia e Microbiologia Sperimentale, Università degli Studi di Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cohen MD. Bacterial host resistance models in the evaluation of immunotoxicity. Methods 2007; 41:20-30. [PMID: 17161299 DOI: 10.1016/j.ymeth.2006.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2006] [Indexed: 11/20/2022] Open
Abstract
To assess potential immunomodulatory effects of a drug, pollutant, or natural product, an analysis of an exposed host's ability to resist challenge with a viable bacteria is one of the best gauges. Many factors govern whether a host exposed to a test agent and then infected becomes ill or dies at rates greater than infected control counterparts. Beyond the status of the host's immunocompetence, a bacterium's route of entry into the host and its inherent virulence are important variables determining how (and rate at which) an infection resolves. A pre-determination of endpoint(s) to be defined is critical during planning of resistance assays. If a study is to determine overall changes in immunocompetence due to exposure (regardless of regimen or dosage of test agent), then assessing shifts in morbidity/mortality at a defined lethal dose [LD(x)] value for the chosen route of infection would suffice. However, if a study is to define extent of immunomodulation in a particular body organ/cavity--or specific alterations in particular aspects of the humoral or cell-mediated immune responses--then careful selection of the pathogen, dose of the inoculum, means of infection of target site, and extent of the post-infection period to be examined, need to be made prior to host exposure to the test toxicant. This review will provide the Reader with background information about bacterial infections and how endpoint selection could be approached when designing resistance assays. An overview of protocols involved in the assays (e.g., bacterial preparation, host infection, post-infection endpoint analyses) and information about three bacteria that are among the most commonly employed in resistance assays is provided as well.
Collapse
Affiliation(s)
- Mitchell D Cohen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
42
|
Nakamatsu M, Yamamoto N, Hatta M, Nakasone C, Kinjo T, Miyagi K, Uezu K, Nakamura K, Nakayama T, Taniguchi M, Iwakura Y, Kaku M, Fujita J, Kawakami K. Role of interferon-gamma in Valpha14+ natural killer T cell-mediated host defense against Streptococcus pneumoniae infection in murine lungs. Microbes Infect 2007; 9:364-74. [PMID: 17314060 DOI: 10.1016/j.micinf.2006.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 12/07/2006] [Accepted: 12/18/2006] [Indexed: 12/22/2022]
Abstract
Previously, we demonstrated that Valpha14+ NKT cells and IFN-gamma are important upstream components in neutrophil-mediated host defense against infection with Streptococcus pneumoniae. In the present study, we extended these findings by elucidating the role of IFN-gamma in this Valpha14+ NKT cell-promoted process. Administration of recombinant IFN-gamma to Jalpha18KO mice prolonged the shortened survival, promoted the attenuated clearance of bacteria and improved the reduced accumulation of neutrophils and synthesis of MIP-2 and TNF-alpha in the lungs, in comparison to wild-type (WT) mice. In addition, intravenous transfer of liver mononuclear cells (LMNC) from WT mice into Jalpha18KO mice resulted in complete recovery of the depleted responses listed above, whereas such effects were not detected when LMNC were obtained from IFN-gammaKO or Jalpha18KO mice. Activation of Valpha14+ NKT cells by alpha-galactosylceramide (alpha-GalCer) significantly enhanced the clearance of bacteria, accumulation of neutrophils and synthesis of MIP-2 and TNF-alpha in the infected lungs; this effect was significantly inhibited by a neutralizing anti-IFN-gamma antibody. Finally, in a flow cytometric analysis, TNF-alpha synthesis was detected largely by CD11b(bright+) cells in the infected lungs. Our results demonstrated that IFN-gamma plays an important role in the neutrophil-mediated host protective responses against pneumococcal infection promoted by Valpha14+ NKT cells.
Collapse
MESH Headings
- Animals
- Chemokines/metabolism
- Humans
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Lung/immunology
- Lung/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/immunology
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/mortality
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/pathogenicity
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Masashi Nakamatsu
- Department of Medicine and Therapeutics, Control and Prevention of Infectious Diseases, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sun K, Salmon SL, Lotz SA, Metzger DW. Interleukin-12 promotes gamma interferon-dependent neutrophil recruitment in the lung and improves protection against respiratory Streptococcus pneumoniae infection. Infect Immun 2007; 75:1196-202. [PMID: 17210665 PMCID: PMC1828591 DOI: 10.1128/iai.01403-06] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of exogenous interleukin-12 (IL-12) to elicit protective innate immune responses against the extracellular pathogen Streptococcus pneumoniae was tested by infecting BALB/c mice intranasally (i.n.) with S. pneumoniae after i.n. administration of IL-12. It was found that administration of IL-12 resulted in lower bacterial burdens in the infected mice and significantly improved survival rates. All IL-12-treated mice contained higher levels of pulmonary gamma interferon (IFN-gamma) after infection and significantly more neutrophils than infected mice not treated with IL-12. IFN-gamma was found to be essential for IL-12-induced resistance and for neutrophil influx into the lungs, and the observed changes correlated with increased levels of the IL-8 homologue keratinocyte-derived chemokine (KC). In addition, in vitro tumor necrosis factor alpha (TNF-alpha) production by alveolar macrophages stimulated with heat-killed pneumococci was enhanced by IFN-gamma, and TNF-alpha in turn could enhance production of KC by lung cells. Finally, IL-12-induced protection was dependent upon the presence of neutrophils and the KC receptor CXCR2. Taken together, the results indicate that exogenous IL-12 can improve innate defense in the lung against S. pneumoniae by inducing IFN-gamma production, which in turn enhances chemokine expression, and promotes pulmonary neutrophil recruitment into the infected lung. The findings show that IL-12 and IFN-gamma can mediate a protective effect against respiratory infection caused by extracellular bacterial pathogens.
Collapse
Affiliation(s)
- Keer Sun
- Center for Immunology and Microbial Disease, MC-151, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
44
|
Klein M, Paul R, Angele B, Popp B, Pfister HW, Koedel U. Protein expression pattern in experimental pneumococcal meningitis. Microbes Infect 2006; 8:974-83. [PMID: 16488173 DOI: 10.1016/j.micinf.2005.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/13/2005] [Accepted: 10/19/2005] [Indexed: 11/23/2022]
Abstract
In this study, we investigated cytokine expression during experimental pneumococcal meningitis. Mice were intracisternally infected with Streptococcus pneumoniae and treated with ceftriaxone starting at 24 h after infection. At different time points before and after antibiotic therapy, the cytokine expression pattern was determined in mouse brains using protein arrays. Underlining the power of this method, the meningitis-relevant cytokines interleukin-1beta (IL-1beta), IL-6, KC, macrophage inflammatory protein-2 (MIP-2), and monocyte chemoattractant protein-1 (MCP-1/CCL2) were markedly elevated in infected animals. Newly identified proteins during the acute stage of the disease (until 30 h after infection) included lymphotactin (XCL-1), MIP-1gamma (CCL9) and MCP-5 (CCL12), cytokine responsive gene- 2 (CRG-2/CXCL10) and CXCL16, and insulin-like growth factor binding protein 3 (IGFBP3). During later stages, an induction of T-cell activation-3 (TCA-3/CCL1), platelet factor-4 (PF-4/CXCL4) and stromal derived factor-1alpha (SDF-1alpha/CXCL13), and IL-4 was observed. The validity of this method was supported by an additional ELISA analysis of the expression profile of CXCL16 and IGFBP3, which was identical to that observed by protein array. In conclusion, the use of protein array technology led to an extension of the current picture of protein expression in pneumococcal meningitis. Most important, new factors that might play a role in pneumococcal meningitis were identified.
Collapse
Affiliation(s)
- Matthias Klein
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilian University, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Jones MR, Simms BT, Lupa MM, Kogan MS, Mizgerd JP. Lung NF-kappaB activation and neutrophil recruitment require IL-1 and TNF receptor signaling during pneumococcal pneumonia. THE JOURNAL OF IMMUNOLOGY 2006; 175:7530-5. [PMID: 16301661 PMCID: PMC2723739 DOI: 10.4049/jimmunol.175.11.7530] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary inflammation is an essential component of the host defense against Streptococcus pneumoniae infection of the lungs. The early response cytokines, TNF-alpha and IL-1, are rapidly induced upon microbial exposure. Mice deficient in all TNF- and IL-1-dependent signaling receptors were used to determine the roles of these cytokines during pneumococcal pneumonia. The deficiency of signaling receptors for TNF and IL-1 decreased bacterial clearance. Neutrophil recruitment to alveolar air spaces was impaired by receptor deficiency, as was pulmonary expression of the neutrophil chemokines KC and MIP-2. Because NF-kappaB mediates the expression of both chemokines, we assessed NF-kappaB activation in the lungs. During pneumococcal pneumonia, NF-kappaB proteins translocate to the nucleus and activate gene expression; these functions were largely abrogated by the deficiency of receptors for TNF-alpha and IL-1. Thus, the combined deficiency of TNF and IL-1 signaling reduces innate immune responses to S. pneumoniae in the lungs, probably due to essential roles for these receptors in activating NF-kappaB.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Mizgerd
- Address correspondence and reprint requests to Dr. Joseph Mizgerd, Physiology Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115. E-mail address:
| |
Collapse
|
46
|
van Rossum AMC, Lysenko ES, Weiser JN. Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect Immun 2005; 73:7718-26. [PMID: 16239576 PMCID: PMC1273875 DOI: 10.1128/iai.73.11.7718-7726.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nasopharyngeal colonization is the first step in the interaction between Streptococcus pneumoniae (the pneumococcus) and its human host. Factors that contribute to clearance of colonization are likely to affect the spread of the pneumococcus and the rate of pneumococcal disease in the population. To identify host and bacterial factors contributing to this process, we examined the time course of colonization using genetically modified mice and pneumococci. Severe combined immunodeficient mice remained persistently colonized (>6 weeks). Major histocompatibility complex II-deficient mice, but not microMT mice, were unable to clear colonization and showed a diminished T helper 1 response. Thus, CD4+ T cells, rather than the generation of specific antibody, appear to be required for effective Th1-mediated clearance. In addition, the microbial pattern recognition receptor toll-like receptor 2 (TLR2), but not TLR4, was necessary for efficient clearance of colonization. In contrast, no role of complement component 3, inducible nitric oxide synthetase, interleukin 12 (IL-12), or IL-4 could be demonstrated. Expression of the pneumococcal toxin pneumolysin enhanced acute localized inflammatory responses and promoted clearance of colonization in a TLR4-independent manner. We conclude that both innate and CD4+ T-cell-mediated immunity and proinflammatory bacterial factors, rather than a humoral adaptive immune response, are important for clearance of S. pneumoniae from the murine nasopharynx.
Collapse
|
47
|
Burns T, Abadi M, Pirofski LA. Modulation of the lung inflammatory response to serotype 8 pneumococcal infection by a human immunoglobulin m monoclonal antibody to serotype 8 capsular polysaccharide. Infect Immun 2005; 73:4530-8. [PMID: 16040964 PMCID: PMC1201218 DOI: 10.1128/iai.73.8.4530-4538.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human monoclonal antibody to serotype 8 pneumococcal capsular polysaccharide D11 [immunoglobulin M(kappa)] protects wild-type and complement component 4 knockout (C4 KO) mice against lethal intratracheal challenge with serotype 8 pneumococcus, but it does not promote polymorphonuclear leukocyte (PMN)-mediated pneumococcal killing in vitro. In this study, we investigated the effect of D11 on the blood and lung bacterial burdens and the serum and lung expression of inflammatory chemokines and cytokines in an intratracheal challenge model with serotype 8 pneumococcus in C4 KO mice. Pneumococcus was not detected in the blood of D11-treated mice, whereas control mice had high-grade bacteremia with >10(7) CFU. Control mice had a >5-log increase in lung CFU and D11-treated mice manifested a nearly 3-log increase in lung CFU compared to the original inoculum 24 h after infection. Serum and lung levels of soluble macrophage inflammatory protein 2 (MIP-2) and interleulin-6 (IL-6) as measured by an enzyme-linked immunosorbent assay were lower in D11-treated mice than in control mice 24 h after infection. Real-time PCR was performed to examine lung mRNA chemokine and cytokine expression. The results showed that D11-treated mice had significantly less gamma interferon, MIP-2, IL-12, monocyte chemoattractant protein 1/JE, and tumor necrosis factor alpha expression than control mice 24 h after infection. Histopathology and immunohistochemical staining of lung tissues revealed that D11-treated mice had less inflammation, fewer PMNs, and less myeloperoxidase staining than control mice 24 h after infection. These findings suggest that the efficacy of certain serotype-specific antibodies against pneumococcal pneumonia could be associated with modulation of the lung inflammatory response and a reduction in host damage.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/administration & dosage
- Antibodies, Bacterial/immunology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Bacterial Capsules/immunology
- Chemokine CXCL2
- Chemokines/blood
- Complement C4/genetics
- Complement C4/immunology
- Cytokines/metabolism
- Humans
- Immunoglobulin M/immunology
- Immunohistochemistry
- Interleukin-6/blood
- Lung/immunology
- Lung/metabolism
- Lung/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pneumonia, Pneumococcal/blood
- Pneumonia, Pneumococcal/immunology
- Polysaccharides, Bacterial/immunology
- RNA, Messenger/metabolism
- Streptococcus pneumoniae/immunology
Collapse
Affiliation(s)
- Tamika Burns
- Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|