1
|
Koide K, Kim H, Whelan MVX, Belotindos LP, Tanomsridachchai W, Changkwanyeun R, Usui M, Ó Cróinín T, Thapa J, Nakajima C, Suzuki Y. WQ-3810, a fluoroquinolone with difluoropyridine derivative as the R1 group exerts high potency against quinolone-resistant Campylobacter jejuni. Microbiol Spectr 2024; 12:e0432223. [PMID: 39162520 PMCID: PMC11448395 DOI: 10.1128/spectrum.04322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Quinolone-resistant Campylobacter jejuni have been increasing worldwide. Quinolones exert their antibacterial activity by inhibiting DNA gyrase, but most of the isolates acquire quinolone resistance via an amino acid substitution in the A subunit of DNA gyrase. WQ-3810 is a quinolone antibiotic that has been reported to have high potency even to DNA gyrase with amino acid substitutions in several bacterial species; however, there was no information on C. jejuni. Hence, this study aimed to evaluate the activity of WQ-3810 to inhibit wild-type/mutant DNA gyrases of C. jejuni and the bacterial growth for accessing the potency for the treatment of quinolone-resistant C. jejuni infection. The inhibitory activity of WQ-3810 was assessed and compared with ciprofloxacin and nalidixic acid by calculating the half maximal inhibitory concentration (IC50) against wild-type/mutant DNA gyrases. Next, the minimum inhibitory concentration (MIC) of WQ-3810 and five other quinolones was determined for C. jejuni including quinolone-resistant strains with amino acid substitutions in GyrA. Furthermore, the interaction between WQ-3810 and wild-type/mutant DNA gyrase was speculated using docking simulations. The IC50 of WQ-3810 against wild-type DNA gyrase was 1.03 µg/mL and not different from that of ciprofloxacin. However, those of WQ-3810 against mutant DNA gyrases were much lower than ciprofloxacin. The MICs of WQ-3810 ranged <0.016-0.031 µg/mL and were the lowest against both quinolone-susceptible and quinolone-resistant strains among the examined quinolones. The results obtained by the docking simulation agreed well with this observation. WQ-3810 seems to be a promising antimicrobial agent for the infections caused by quinolone-resistant C. jejuni. IMPORTANCE WQ-3810, a relatively new quinolone antibiotic, demonstrates exceptional antibacterial properties against certain pathogens in previous studies. However, its efficacy against quinolone-resistant Campylobacter jejuni was not previously reported. The prevalence of quinolone-resistant C. jejuni as a cause of foodborne illnesses is increasing, prompting this investigation into the effectiveness of WQ-3810 as a countermeasure. This study revealed high inhibitory activity of WQ-3810 against both wild-type and mutant DNA gyrases of C. jejuni. WQ-3810 was equally efficacious as ciprofloxacin against wild-type DNA gyrases but showed superior effectiveness against mutant DNA gyrases. WQ-3810 also demonstrated the lowest minimum inhibitory concentrations, highlighting its enhanced potency against both susceptible and resistant strains of C. jejuni. This observation was well supported by the results of the in silico analysis. Consequently, WQ-3810 exhibits a higher level of bactericidal activity compared to existing quinolones in combating both susceptible and resistant C. jejuni isolates.
Collapse
Affiliation(s)
- Kentaro Koide
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Lawrence P Belotindos
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Wimonrat Tanomsridachchai
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | | | - Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| |
Collapse
|
2
|
Miura-Ajima N, Suwanthada P, Kongsoi S, Kim H, Pachanon R, Koide K, Mori S, Thapa J, Nakajima C, Suzuki Y. Effect of WQ-3334 on Campylobacter jejuni carrying a DNA gyrase with dominant amino acid substitutions conferring quinolone resistance. J Infect Chemother 2024; 30:1028-1034. [PMID: 38580055 DOI: 10.1016/j.jiac.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
INTRODUCTION Campylobacteriosis stands as one of the most frequent bacterial gastroenteritis worldwide necessitating antibiotic treatment in severe cases and the rise of quinolones-resistant Campylobacter jejuni poses a significant challenge. The predominant mechanism of quinolones-resistance in this bacterium involves point mutations in the gyrA, resulting in amino acid substitution from threonine to isoleucine at 86th position, representing more than 90% of mutant DNA gyrase, and aspartic acid to asparagine at 90th position. WQ-3334, a novel quinolone, has demonstrated strong inhibitory activity against various bacteria. This study aims to investigate the effectiveness of WQ-3334, and its analogues, WQ-4064 and WQ-4065, with a unique modification in R1 against quinolones-resistant C. jejuni. METHODS The structure-activity relationship of the examined drugs was investigated by measuring IC50 and their antimicrobial activities were accessed by MIC against C. jejuni strains. Additionally, in silico docking simulations were carried out using the crystal structure of the Escherichia coli DNA gyrase. RESULT WQ-3334 exhibited the lowest IC50 against WT (0.188 ± 0.039 mg/L), T86I (11.0 ± 0.7 mg/L) and D90 N (1.60 ± 0.28 mg/L). Notably, DNA gyrases with T86I substitutions displayed the highest IC50 values among the examined WQ compounds. Moreover, WQ-3334 demonstrated the lowest MICs against wild-type and mutant strains. The docking simulations further confirmed the interactions between WQ-3334 and DNA gyrases. CONCLUSION WQ-3334 with 6-amino-3,5-difluoropyridine-2-yl at R1 severed as a remarkable candidate for the treatment of foodborne diseases caused by quinolones-resistant C. jejuni as shown by the high inhibitory activity against both wild-type and the predominant quinolones-resistant strains.
Collapse
Affiliation(s)
- Nami Miura-Ajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Pondpan Suwanthada
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | | | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Ruttana Pachanon
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; Hokkaido University Institute for Vaccine Research and Development, Sapporo, 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; Hokkaido University Institute for Vaccine Research and Development, Sapporo, 001-0020, Japan.
| |
Collapse
|
3
|
Schiaffino F, Parker CT, Paredes Olortegui M, Pascoe B, Manzanares Villanueva K, Garcia Bardales PF, Mourkas E, Huynh S, Peñataro Yori P, Romaina Cachique L, Gray HK, Salvatierra G, Silva Delgado H, Sheppard SK, Cooper KK, Kosek MN. Genomic resistant determinants of multidrug-resistant Campylobacter spp. isolates in Peru. J Glob Antimicrob Resist 2024; 36:309-318. [PMID: 38272215 PMCID: PMC11092888 DOI: 10.1016/j.jgar.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES Antimicrobial resistant (AMR) Campylobacter is a global health threat; however, there is limited information on genomic determinants of resistance in low- and middle-income countries. We evaluated genomic determinants of AMR using a collection of whole genome sequenced Campylobacter jejuni and C. coli isolates from Iquitos, Peru. METHODS Campylobacter isolates from two paediatric cohort studies enriched with isolates that demonstrated resistance to ciprofloxacin and azithromycin were sequenced and mined for AMR determinants. RESULTS The gyrA mutation leading to the Thr86Ile amino acid change was the only gyrA mutation associated with fluoroquinolone resistance identified. The A2075G mutation in 23S rRNA was present, but three other 23S rRNA mutations previously associated with macrolide resistance were not identified. A resistant-enhancing variant of the cmeABC efflux pump genotype (RE-cmeABC) was identified in 36.1% (35/97) of C. jejuni genomes and 17.9% (12/67) of C. coli genomes. Mutations identified in the CmeR-binding site, an inverted repeat sequence in the cmeABC promoter region that increases expression of the operon, were identified in 24/97 C. jejuni and 14/67 C. coli genomes. The presence of these variants, in addition to RE-cmeABC, was noted in 18 of the 24 C. jejuni and 9 of the 14 C. coli genomes. CONCLUSIONS Both RE-cmeABC and mutations in the CmeR-binding site were strongly associated with the MDR phenotype in C. jejuni and C. coli. This is the first report of RE-cmeABC in Peru and suggests it is a major driver of resistance to the principal therapies used to treat human campylobacteriosis in this setting.
Collapse
Affiliation(s)
- Francesca Schiaffino
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia; Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Craig T Parker
- Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, California
| | | | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Steven Huynh
- Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, California
| | - Pablo Peñataro Yori
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia; Asociacion Benefica Prisma, Iquitos, Peru
| | | | - Hannah K Gray
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Guillermo Salvatierra
- School of Veterinary Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | | | - Samuel K Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona; The BIO5 Institute, University of Arizona, Tucson, Arizona.
| | - Margaret N Kosek
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia; Asociacion Benefica Prisma, Iquitos, Peru.
| |
Collapse
|
4
|
Rama EN, Bailey M, Kumar S, Leone C, den Bakker H, Thippareddi H, Singh M. Prevalence and Antimicrobial Resistance of Campylobacter in Conventional and No Antibiotics Ever Broiler Farms. J Food Prot 2024; 87:100238. [PMID: 38331218 DOI: 10.1016/j.jfp.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Campylobacter is a leading cause of enteric disease worldwide. No antibiotics ever (NAE) poultry has become increasingly popular, yet little is known about the incidence and antimicrobial resistance (AMR) of Campylobacter in this production system. This study was conducted to determine the prevalence, concentration, and AMR of Campylobacter in conventional (CV) and NAE-raised broilers. Two CV and two NAE commercial broiler flocks were included in this study. Cecum (n = 420) and ileum (n = 420) of chickens were collected at different stages during the broiler grow-out phase and following transportation to the processing plant. Samples of litter (n = 24), feed (n = 24), and water (n = 24) were also collected. Screening for Campylobacter was conducted using real-time PCR assay, and enumeration was performed by direct plating on Campy Cefex agar. Campylobacter isolates were confirmed by real-time PCR, and antimicrobial susceptibility was evaluated following the National Antimicrobial Resistance Monitoring System (NARMS) methods. Whole Genome Sequencing (WGS) was used to identify AMR genes carried by the resistant isolates. Campylobacter prevalence reached 100% within the first 3 weeks of summer production under both NAE and CV rearing. A lower Campylobacter prevalence was detected in conventionally raised broilers during fall (P ≤ 0.05), yet no change in prevalence was observed in NAE birds (P > 0.05). Populations were high in the cecum, carrying an average of 6.6 Log10 CFU/g after transportation, and antimicrobial-resistant Campylobacter was isolated from CV broilers during the fall. Three isolates (1.2%), identified as C. coli, carrying the gyrA and tet(O) genes, exhibited simultaneous resistance to ciprofloxacin, tetracycline, and nalidixic acid. Results from this study can help identify important shifts in gut microbial community dynamics and Campylobacter prevalence associated with antibiotic administration within commercial poultry operations.
Collapse
Affiliation(s)
- Estefanía Novoa Rama
- University of Georgia, Department of Food Science and Technology, 100 Cedar St, Athens, GA 30602, USA
| | - Matthew Bailey
- Auburn University, Department of Poultry Science, 260 Lem Morrison Dr., Auburn, AL 36849, USA
| | - Sanjay Kumar
- University of Georgia, Department of Poultry Science, 110 Cedar St, Athens, GA 30602, USA
| | - Cortney Leone
- University of Georgia, Department of Food Science and Technology, 100 Cedar St, Athens, GA 30602, USA
| | - Hendrik den Bakker
- University of Georgia, Department of Food Science and Technology, 100 Cedar St, Athens, GA 30602, USA
| | | | - Manpreet Singh
- University of Georgia, Department of Food Science and Technology, 100 Cedar St, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Zarske M, Luu HQ, Deneke C, Knüver MT, Thieck M, Hoang HTT, Bretschneider N, Pham NT, Huber I, Stingl K. Identification of knowledge gaps in whole-genome sequence analysis of multi-resistant thermotolerant Campylobacter spp. BMC Genomics 2024; 25:156. [PMID: 38331708 PMCID: PMC10851486 DOI: 10.1186/s12864-024-10014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Campylobacter spp. is the most frequent cause of bacterial food-borne gastroenteritis and a high priority antibiotic resistant bacterium according to the World Health Organization (WHO). European monitoring of thermotolerant Campylobacter spp. does not reflect the global burden of resistances already circulating within the bacterial population worldwide. METHODS We systematically compared whole genome sequencing with comprehensive phenotypic antimicrobial susceptibility, analyzing 494 thermotolerant Campylobacter poultry isolates from Vietnam and Germany. Any discrepancy was checked by repeating the wet lab and improving the dry lab part. Selected isolates were additionally analyzed via long-read Oxford Nanopore technology, leading to closed chromosomes and plasmids. RESULTS Overall, 22 different resistance genes and gene variants (e. g. erm(B), aph(3')-IIIa, aph(2'')-If, catA, lnu(C), blaOXA, sat4) and point mutations in three distinct genes (gyrA, 23S rRNA, rpsL) associated with AMR were present in the Campylobacter isolates. Two AMR genes were missing in the database and one falsely associated with resistance. Bioinformatic analysis based on short-read data partly failed to identify tet(O) and aadE, when the genes were present as duplicate or homologous gene variants. Intriguingly, isolates also contained different determinants, redundantly conferring resistance to chloramphenicol, gentamicin, kanamycin, lincomycin and streptomycin. We found a novel tet(W) in tetracycline sensitive strains, harboring point mutations. Furthermore, analysis based on assemblies from short-read data was impaired to identify full length phase variable aad9, due to variations of the poly-C tract within the gene. The genetic determinant responsible for gentamicin resistance of one isolate from Germany could not be identified. GyrT86I, presenting the main determinant for (fluoro-)quinolone resistance led to a rare atypical phenotype of ciprofloxacin resistance but nalidixic acid sensitivity. Long-read sequencing predicted AMR genes were mainly located on the chromosome, and rarely on plasmids. Predictions from long- and short-read sequencing, respectively, often differed. AMR genes were often organized in multidrug resistance islands (MDRI) and partially located in proximity to transposase genes, suggesting main mobilization of resistance determinants is via natural transformation and transposition in Campylobacter. CONCLUSIONS The results of this study suggest that there is frequent resistance gene duplication, mosaicism, and mutation leading to gene variation and truncation in Campylobacter strains that have not been reported in previous studies and are missing from databases. Furthermore, there is a need for deciphering yet unknown resistance mechanisms and resistance spread in thermotolerant Campylobacter spp. that may pose a challenge to global food safety.
Collapse
Affiliation(s)
- Michael Zarske
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Huong Quynh Luu
- National Institute of Veterinary Research (NIVR), 86 Truong Chinh Street, Hanoi, Dong Da District, Vietnam
| | - Carlus Deneke
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Marie-Theres Knüver
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Maja Thieck
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Ha Thi Thu Hoang
- Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin Street, Hanoi, Trung District, Vietnam
| | - Nancy Bretschneider
- Department of Molecular Biology and Gene Technology, Bavarian Health and Food Safety Authority, Oberschleissheim, D-85764, Germany
| | - Ngoc Thi Pham
- National Institute of Veterinary Research (NIVR), 86 Truong Chinh Street, Hanoi, Dong Da District, Vietnam
| | - Ingrid Huber
- Department of Molecular Biology and Gene Technology, Bavarian Health and Food Safety Authority, Oberschleissheim, D-85764, Germany
| | - Kerstin Stingl
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany.
| |
Collapse
|
6
|
Phu DH, Narinthorn R, Nhung NT, Chansiripornchai N, Blackall PJ, Turni C, Carrique-Mas J, Thomrongsuwannakij T. The characterization and correlation between the phenotypic and genotypic resistance of Campylobacter spp . isolates from commercial broilers and native chickens in the south of Thailand. Avian Pathol 2024; 53:1-13. [PMID: 37722832 DOI: 10.1080/03079457.2023.2260322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
RESEARCH HIGHLIGHTS High Campylobacter prevalence in chickens; C. jejuni more prevalent than C. coli.Susceptibility to macrolides but resistance to quinolones/tetracyclines in isolates.Homogeneous resistance patterns within farms; higher in broilers than in native birds.Partial association between phenotypic and genotypic resistance among isolates.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Ruethai Narinthorn
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- Centre for One Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Niwat Chansiripornchai
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Australia
| | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi, Vietnam
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- Centre for One Health, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
7
|
Garcia-Fernandez A, Janowicz A, Marotta F, Napoleoni M, Arena S, Primavilla S, Pitti M, Romantini R, Tomei F, Garofolo G, Villa L. Antibiotic resistance, plasmids, and virulence-associated markers in human strains of Campylobacter jejuni and Campylobacter coli isolated in Italy. Front Microbiol 2024; 14:1293666. [PMID: 38260875 PMCID: PMC10800408 DOI: 10.3389/fmicb.2023.1293666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis, a prevalent foodborne gastrointestinal infection in Europe, is primarily caused by Campylobacter jejuni and Campylobacter coli, with rising global concerns over antimicrobial resistance in these species. This study comprehensively investigates 133 human-origin Campylobacter spp. strains (102 C. jejuni and 31 C. coli) collected in Italy from 2013 to 2021. The predominant Multilocus Sequence Typing Clonal complexes (CCs) were ST-21 CC and ST-206 CC in C. jejuni and ST-828 CC in C. coli. Ciprofloxacin and tetracycline resistance, mainly attributed to GyrA (T86I) mutation and tet(O) presence, were prevalent, while erythromycin resistance was associated with 23S rRNA gene mutation (A2075G), particularly in C. coli exhibiting multidrug-resistant pattern CipTE. Notable disparities in virulence factors among strains were observed, with C. jejuni exhibiting a higher abundance compared to C. coli. Notably, specific C. jejuni sequence types, including ST-21, ST-5018, and ST-1263, demonstrated significantly elevated counts of virulence genes. This finding underscores the significance of considering both the species and strain-level variations in virulence factor profiles, shedding light on potential differences in the pathogenicity and clinical outcomes associated with distinct C. jejuni lineages. Campylobacter spp. plasmids were classified into three groups comprising pVir-like and pTet-like plasmids families, exhibiting diversity among Campylobacter spp. The study underscores the importance of early detection through Whole Genome Sequencing to identify potential emergent virulence, resistance/virulence plasmids, and new antimicrobial resistance markers. This approach provides actionable public health data, supporting the development of robust surveillance programs in Italy.
Collapse
Affiliation(s)
| | - Anna Janowicz
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Maira Napoleoni
- Centro di Riferimento Regionale Patogeni Enterici, CRRPE, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, Perugia, Italy
| | - Sergio Arena
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Primavilla
- Centro di Riferimento Regionale Patogeni Enterici, CRRPE, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, Perugia, Italy
| | - Monica Pitti
- Centro di Riferimento per la Tipizzazione delle Salmonelle, CeRTiS, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Romina Romantini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Yan R, M'ikanatha NM, Nachamkin I, Hudson LK, Denes TG, Kovac J. Prevalence of ciprofloxacin resistance and associated genetic determinants differed among Campylobacter isolated from human and poultry meat sources in Pennsylvania. Food Microbiol 2023; 116:104349. [PMID: 37689423 DOI: 10.1016/j.fm.2023.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
Poultry is the primary source of Campylobacter infections and severe campylobacteriosis cases are treated with macrolides and fluoroquinolones. However, these drugs are less effective against antimicrobial-resistant strains. Here, we investigated the prevalence of phenotypic antimicrobial resistance and associated resistance genetic determinants in Campylobacter isolates collected from human clinical (N = 123) and meat (N = 80) sources in Pennsylvania in 2017 and 2018. Our goal was to assess potential differences in the prevalence of antimicrobial resistance in Campylobacter isolated from human and poultry meat sources in Pennsylvania and to assess the accuracy of predicting antimicrobial resistance phenotypes based on resistance genotypes. We whole genome sequenced isolates and identified genetic resistance determinants using the National Antimicrobial Resistance Monitoring System Campylobacter AMR workflow v2.0 in GalaxyTrakr. Phenotypic antimicrobial susceptibility testing was carried out using the E-Test and Sensititre CAMPYCMV methods for human clinical and poultry meat isolates, respectively, and the results were interpreted using the EUCAST epidemiological cutoff values. The 193 isolates were represented by 85 MLST sequence types and 23 clonal complexes, suggesting high genetic diversity. Resistance to erythromycin was confirmed in 6% human and 4% meat isolates. Prevalence of ciprofloxacin resistance was significantly higher in human isolates as compared to meat isolates. A good concordance was observed between phenotypic resistance and the presence of the corresponding known resistance genetic determinants.
Collapse
Affiliation(s)
- Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
9
|
Gao F, Tu L, Chen M, Chen H, Zhang X, Zhuang Y, Luo J, Chen M. Erythromycin resistance of clinical Campylobacter jejuni and Campylobacter coli in Shanghai, China. Front Microbiol 2023; 14:1145581. [PMID: 37260688 PMCID: PMC10229067 DOI: 10.3389/fmicb.2023.1145581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023] Open
Abstract
Campylobacter species are zoonotic pathogens, as well as the prevalent cause of foodborne bacterial gastroenteritis. The spread of antimicrobial-resistant strains poses a serious threat to global public health and attracts attention worldwide, but information about clinical Campylobacter is relatively limited compared to isolates from food and animals. The current study illustrated the prevalence and antimicrobial resistance profiles of Campylobacter jejuni and Campylobacter coli isolates collected from a consecutive surveillance program between 2012 and 2019 in Shanghai, China, using antimicrobial susceptibility testing and whole-genome sequencing. Among the 891 Campylobacter strains (761 C. jejuni and 130 C. coli) isolates collected, high portions above 90% of resistance to ciprofloxacin, nalidixic acid, and tetracycline were observed for both C. jejuni and C. coli. The most common MDR profiles represented by C. jejuni and C. coli were combination of ciprofloxacin, tetracycline, florfenicol and nalidixic acid (5.39%), and azithromycin, ciprofloxacin, erythromycin, gentamicin, tetracycline, clindamycin, nalidixic acid (28.46%), respectively. The erythromycin resistance of C. coli (59.23%) is higher than C. jejuni (2.50%). A total of 76 erythromycin resistant isolates (16 C. jejuni and 60 C. coli) were sequenced using Illumina platform for determining the genotypes, antimicrobial resistance patterns and phylogeny analysis. Multilocus sequence typing (MLST) analysis showed a high genetic diversity with 47 sequence types (STs), including 4 novel alleles and 12 new STs. The most abundant clonal complexes (CCs) were CC-403 (31.25%) and CC-828 (88.33%) for C. jejuni and C. coli, respectively. Among the 76 erythromycin-resistant isolates, mutation A2075G in 23S rRNA and erm(B) gene were detected in 53.95 and 39.47%, respectively. The erm(B) gene was identified exclusively in 30 C. coli isolates. All these erm(B) positive isolates were multi-drug resistant. Furthermore, comparison of the erm(B)-carrying isolates of multiple sources worldwide demonstrated the possibility of zoonotic transmission of erm(B) in Campylobacter. These findings highlight the importance of continuous surveillance of erythromycin resistance dissemination in Campylobacter which may compromise the effectiveness of antimicrobial therapy.
Collapse
Affiliation(s)
- Fen Gao
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lihong Tu
- Department of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hongyou Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
10
|
Talukdar PK, Crockett TM, Gloss LM, Huynh S, Roberts SA, Turner KL, Lewis STE, Herup-Wheeler TL, Parker CT, Konkel ME. The bile salt deoxycholate induces Campylobacter jejuni genetic point mutations that promote increased antibiotic resistance and fitness. Front Microbiol 2022; 13:1062464. [PMID: 36619995 PMCID: PMC9812494 DOI: 10.3389/fmicb.2022.1062464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage to DNA is a significant source of mutations in living organisms. While DNA damage must be repaired to maintain the integrity of the genome and cell survival, errors made during DNA repair may contribute to evolution. Previous work has revealed that Campylobacter jejuni growth in the presence of bile salt deoxycholate (DOC) causes an increase in reactive oxygen species and the occurrence of 8-oxo-deoxyguanosine (8-oxo-dG) DNA lesions. The fundamental goal of this project was to determine if C. jejuni growth in a medium containing DOC contributes to DNA mutations that provide a fitness advantage to the bacterium. Co-culture experiments revealed that C. jejuni growth in a DOC-supplemented medium increases the total number of ciprofloxacin-resistant isolates compared to C. jejuni grown in the absence of DOC. We recovered two individual isolates grown in a medium with DOC that had a point mutation in the gene encoding the EptC phosphoethanolamine transferase. Transformants harboring the EptC variant protein showed enhanced resistance to the antimicrobial agent polymyxin B and DOC when compared to an eptC deletion mutant or the isolate complemented with a wild-type copy of the gene. Finally, we found that the base excision repair (BER), homologous recombination repair (HRR), and nucleotide excision repair (NER) are involved in general oxidative damage repair in C. jejuni but that the BER pathway plays the primary role in the repair of the 8-oxo-dG lesion. We postulate that bile salts drive C. jejuni mutations (adaptations) and enhance bacterial fitness in animals.
Collapse
Affiliation(s)
- Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Torin M. Crockett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Steven Huynh
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Steven A. Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kyrah L. Turner
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sebastien T. E. Lewis
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Tristin L. Herup-Wheeler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Craig T. Parker
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States,*Correspondence: Craig T. Parker, ✉
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Michael E. Konkel, ✉
| |
Collapse
|
11
|
Oka D, Changkwanyeun R, Yamaguchi T, Nakajima C, Suzuki Y, Matsumoto M. In vitro antibacterial activity of OPS-2071 against Gram-positive and Gram-negative enteropathogenic bacteria. J Antimicrob Chemother 2022; 77:3248-3255. [PMID: 36101508 DOI: 10.1093/jac/dkac308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Enteric infections are a major public health issue in developing countries. Antimicrobial resistance is also a problem for enteric infection. OPS-2071 is a novel quinolone antibiotic with low oral absorption and potent antibacterial activity against Clostridioides difficile. OBJECTIVES This study was conducted to confirm the antimicrobial activity of OPS-2071 against major enteropathogenic bacteria and to evaluate the risk of emergence of drug resistance. METHODS The antibacterial activity was evaluated by the agar dilution method. The inhibitory activity against DNA gyrase and topoisomerase IV was determined by supercoiling assay and decatenation assay, respectively. The mutant prevention concentration and frequency of spontaneous resistance were determined by inoculation on drug-containing agar. RESULTS Compared with the reference drugs, the antibacterial activity of OPS-2071 was more potent against Gram-positive bacteria and Campylobacter jejuni, including quinolone-resistant strains. Against other Gram-negative bacteria, OPS-2071 was comparable to existing quinolones. The inhibitory activities against DNA gyrase with quinolone-resistant mutations closely correlated with the antibacterial activity. Spontaneous resistance to OPS-2071 was not observed in Staphylococcus aureus and Escherichia coli and was lower than that of existing quinolones and higher than that of azithromycin in C. jejuni. The mutant prevention concentration of OPS-2071 was lower than that of tested compounds in S. aureus and C. jejuni and slightly higher than that of existing quinolones in E. coli. CONCLUSIONS The broad and potent in vitro antibacterial activity and lower risk of drug resistance suggested that OPS-2071 may be useful for enteric infections caused by major pathogens including quinolone-resistant Campylobacter.
Collapse
Affiliation(s)
- Daisuke Oka
- Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Ruchirada Changkwanyeun
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tomoyuki Yamaguchi
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Makoto Matsumoto
- Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| |
Collapse
|
12
|
Antimicrobial Resistance Challenged with Platinum(II) and Palladium(II) Complexes Containing 1,10-Phenanthroline and 5-Amino-1,3,4-Thiadiazole-2(3H)-Thione in Campylobacter jejuni. Antibiotics (Basel) 2022; 11:antibiotics11111645. [PMID: 36421289 PMCID: PMC9687049 DOI: 10.3390/antibiotics11111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
This work describes the synthesis and characterization of two metal complexes of the type [M(L1)2(phen)], where M = Pt2+ (complex I) or Pd2+ (complex II), L1 = 5-amino-1,3,4-thiadiazole-2(3H)-thiolate and phen = 1,10-phenanthroline. The in vitro antibacterial activity of these complexes was investigated in isolation and synergistically with ciprofloxacin (CIP) and erythromycin (ERY) in three strains of Campylobacter jejuni (MIC = 32 mg/L for CIP and ERY), selected from a bank of 235 strains representative of three poultry exporting states of the country (A, B and C), previously analyzed for epidemiology and resistance to CIP and ERY. A total of 53/235 (22.55%) strains showed co-resistance to CIP and ERY. Isolated resistance to CIP was higher than to ERY. Epidemiological analysis showed that resistance to CIP was more evident in state B (p < 0.0001), as well as a higher susceptibility to ERY in state C (p = 0.0028). Co-resistance was expressive in state A and in the spring and fall seasons. The evaluation of I alone and in synergy with CIP and ERY found values up to 0.25 mg/L not significant for ERY. Complex II did not show an antimicrobial effect on the three strains of tested C. jejuni. The effect provided by complex I represents a promising alternative for control of resistant strains of C. jejuni.
Collapse
|
13
|
Antibiotic Resistance in Bacteria—A Review. Antibiotics (Basel) 2022; 11:antibiotics11081079. [PMID: 36009947 PMCID: PMC9404765 DOI: 10.3390/antibiotics11081079] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Collapse
|
14
|
Šoprek S, Duvnjak S, Kompes G, Jurinović L, Tambić Andrašević A. Resistome Analysis of Campylobacter jejuni Strains Isolated from Human Stool and Primary Sterile Samples in Croatia. Microorganisms 2022; 10:1410. [PMID: 35889129 PMCID: PMC9322926 DOI: 10.3390/microorganisms10071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacteriosis represents a global health challenge due to continuously increasing trends of antimicrobial resistance in Campylobacter jejuni. C. jejuni can sometimes cause life-threatening and severe systematic infections (bacteremia, meningitis, and other extraintestinal infections) with very few antibiotics left as treatment options. Bearing in mind that C. jejuni is the predominant species in humans, in this paper, we present a study of the C. jejuni differences in antimicrobial resistance and genotype distribution between strains isolated from stool and primary sterile sites. We compared the genomic data obtained through whole genome sequencing (WGS) and phenotypic susceptibility data of C. jejuni strains. Once antimicrobial susceptibility testing of C. jejuni strains was carried out by the broth microdilution method for six of interest, results were compared to the identified genotypic determinants derived from WGS. The high rate of resistance to fluoroquinolones presented in this study is in accordance with national surveillance data. The proportion of strains with acquired resistance was 71% for ciprofloxacin and 20% for tetracycline. When invasive isolates were analysed separately, 40% exhibited MIC values of ciprofloxacin higher than the ECOFFs, suggesting a lower flouroquinolone resistance rate in invasive isolates. All isolates demonstrated wilde-type phenotype for chloramphenicol, erythromycin, gentamicin, and ertapenem. A special focus and review in this study was performed on a group of C.jejuni strains found in primary sterile samples. Apart from demonstrating a lower resistance rate, these isolates seem genetically more uniform, showing epidemiologically more homogenous patterns, which cluster to several clonal complexes, with CC49 being the most represented clonal complex.
Collapse
Affiliation(s)
- Silvija Šoprek
- Department of Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", 10000 Zagreb, Croatia
| | - Sanja Duvnjak
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Gordan Kompes
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Luka Jurinović
- Laboratory for Bacteriology, Poultry Centre, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Arjana Tambić Andrašević
- Department of Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia. Antibiotics (Basel) 2022; 11:antibiotics11070830. [PMID: 35884085 PMCID: PMC9312241 DOI: 10.3390/antibiotics11070830] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance in foodborne pathogens is an emergent global health concern. The objectives of this study were to assess antimicrobial resistance (AMR) in Campylobacter isolates from chicken carcasses and to investigate the AMR molecular mechanisms as well as the presence of virulence determinants. The study was performed on 257 samples collected from abattoirs and retail shops in northeastern Tunisia. Forty-eight Campylobacter isolates were recovered and identified as C. jejuni (n = 33) and C. coli (n = 15). Antibiotic resistance was tested against eight antibiotics and high resistance rates were observed against tetracycline (100%), erythromycin (97.9%), ciprofloxacin (73%), nalidixic acid (85.4%), ampicillin (83.3%), amoxicillin/clavulanic acid (22.9%), chloramphenicol (75%), and gentamicin (27.1%). All isolates were multidrug-resistant, and 22 resistance patterns were found. All isolates were screened for AMR genes (tet(O), tet(A), tet(B), tet(L), cmeB, ermB, blaOXA-61, and aphA-3), and for point mutations in gyrA (C257T substitution) and 23SrRNA (A2075G/A2074C) genes. All screened AMR genes, as well as the C257T and the A2075G mutations, were detected. The virulence genotypes were also determined, and all isolates carried the motility (flaA) and invasion (cadF) genes. Most of them also harbored the cdtA, cdtB, and cdtC genes, encoding the Campylobacter toxin. The screening of the cgtB and the wlaN genes, involved in Guillain-Barré Syndrome expression, revealed the presence of the cgtB in 21.2% of C. jejuni strains, whereas none of them carried the wlaN gene. Our findings highlight the emergence of Campylobacter strains simultaneously harboring several virulence and AMR determinants, which emphasizes the risk of transmission of MDR strains to humans via the food chain. Hence, controlling the dissemination of foodborne pathogens “from the farm to the fork” as well as restricting the use of antimicrobials in husbandry are mandatory to prevent the risk for consumers and to mitigate the dissemination of MDR pathogens.
Collapse
|
16
|
Hanafy Z, Osborne JA, Miller WG, Parker CT, Olson JW, Jackson JH, Kathariou S. Differences in the Propensity of Different Antimicrobial Resistance Determinants to Be Disseminated via Transformation in Campylobacter jejuni and Campylobacter coli. Microorganisms 2022; 10:microorganisms10061194. [PMID: 35744712 PMCID: PMC9227638 DOI: 10.3390/microorganisms10061194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Campylobacter jejuni and Campylobacter coli are leading zoonotic foodborne pathogens, and the drugs of choice for human campylobacteriosis are macrolides (e.g., erythromycin) and fluoroquinolones. C. jejuni and C. coli are naturally competent for transformation via naked DNA uptake, but potential differences in transformation frequency (TF) for different antimicrobial resistance (AMR) markers remain poorly understood. We determined TFs for resistance to different antibiotics using as recipient a derivative of C. jejuni NCTC 11168 (strain SN:CM) with donor DNA from multidrug-resistant C. jejuni or C. coli. TF for nalidixic acid resistance ranked significantly highest (~1.4 × 10−3), followed by resistance to streptomycin and gentamicin. Tetracycline resistance via chromosomal tet(O) was less commonly transferred (~7.6 × 10−7), while transformation to erythromycin resistance was rare (≤4.7 × 10−8). We also determined TFs with the contemporary poultry-derived strains C. jejuni FSIS 11810577 and C. coli FSIS 1710488 as recipients. TFs to nalidixic acid and streptomycin resistance remained the highest (~7 × 10−4). However, TF for gentamicin resistance was remarkably low in certain recipient–donor combinations, while average TF for erythromycin resistance was noticeably higher (~3 × 10−6) than with SN:CM. Findings from this experimental model provide insights into factors that may impact transformation-mediated transfer of AMR leading to AMR dissemination in the agricultural ecosystem.
Collapse
Affiliation(s)
- Zahra Hanafy
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Z.H.); (J.H.J.III)
| | - Jason A. Osborne
- Department of Statistics, College of Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA; (W.G.M.); (C.T.P.)
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA; (W.G.M.); (C.T.P.)
| | - Jonathan W. Olson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - James H. Jackson
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Z.H.); (J.H.J.III)
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Z.H.); (J.H.J.III)
- Correspondence:
| |
Collapse
|
17
|
Feucherolles M, Nennig M, Becker SL, Martiny D, Losch S, Penny C, Cauchie HM, Ragimbeau C. Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp. Front Microbiol 2022; 12:804484. [PMID: 35250909 PMCID: PMC8894766 DOI: 10.3389/fmicb.2021.804484] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
While MALDI-TOF mass spectrometry (MS) is widely considered as the reference method for the rapid and inexpensive identification of microorganisms in routine laboratories, less attention has been addressed to its ability for detection of antimicrobial resistance (AMR). Recently, some studies assessed its potential application together with machine learning for the detection of AMR in clinical pathogens. The scope of this study was to investigate MALDI-TOF MS protein mass spectra combined with a prediction approach as an AMR screening tool for relevant foodborne pathogens, such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224 C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin, streptomycin, and ampicillin, independently, and were submitted, after an on- and off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average spectra per isolate and type of extraction. Overall, high performance was observed for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were reached. No significant prediction performance differences were observed between on- and off-plate types of protein extractions. Finally, three putative AMR biomarkers for fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current study. Combination of MALDI-TOF MS and machine learning could be an efficient and inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may enable a rapid initiation of a precise, targeted antibiotic treatment.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- *Correspondence: Maureen Feucherolles,
| | - Morgane Nennig
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Delphine Martiny
- National Reference Centre for Campylobacter, Laboratoire des Hôpitaux Universitaires de Bruxelles-Universitaire Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
- Université de Mons (UMONS), Mons, Belgium
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l’Etat, Dudelange, Luxembourg
| | - Christian Penny
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- Chambre des Députés du Grand-Duché de Luxembourg, Parliamentary Research Service, Luxembourg, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- Henry-Michel Cauchie,
| | - Catherine Ragimbeau
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| |
Collapse
|
18
|
Quino W, Caro-Castro J, Hurtado V, Flores-León D, Gonzalez-Escalona N, Gavilan RG. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in Peru. Front Microbiol 2022; 12:802404. [PMID: 35087501 PMCID: PMC8787162 DOI: 10.3389/fmicb.2021.802404] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 01/22/2023] Open
Abstract
Campylobacter is the leading cause of human bacterial gastroenteritis worldwide and has a major impact on global public health. Whole Genome Sequencing (WGS) is a powerful tool applied in the study of foodborne pathogens. The objective of the present study was to apply WGS to determine the genetic diversity, virulence factors and determinants of antimicrobial resistance of the populations of C. jejuni and C. coli in Peru. A total of 129 Campylobacter strains (108 C. jejuni and 21 C. coli) were sequenced using Illumina Miseq platform. In silico MLST analysis identified a high genetic diversity among those strains with 30 sequence types (STs), several of them within 11 clonal complexes (CC) for C. jejuni, while the strains of C. coli belonged to a single CC with 8 different STs. Phylogeny analysis showed that Peruvian C. jejuni strains were divided into 2 clades with 5 populations, while C. coli formed a single clade with 4 populations. Furthermore, in silico analyses showed the presence of several genes associated with adherence, colonization and invasion among both species: cadF (83.7%), jlpA (81.4%), racR (100%), dnaJ (83.7%), pebA (83.7%), pldA (82.1%), porA (84.5%), ceuE (82.9%), ciaB (78.3%), iamB (86.8%), and flaC (100%). The majority (82.9%) of the Campylobacter strains carried the cdtABC operon which code for cytolethal distending toxin (CDT). Half of them (50.4%) carried genes associated with the presence of T6SS, while the frequency of genes associated with T4SS were relatively low (11.6%). Genetic markers associated with resistance to quinolones, tetracycline (tetO, tetW/N/W), beta-lactamases (blaoxa–61), macrolides (A2075G in 23S rRNA) were found in 94.5, 21.7, 66.7, 6.2, 69.8, and 18.6% of strains, respectively. The cmeABC multidrug efflux operon was present in 78.3% of strains. This study highlights the importance of using WGS in the surveillance of emerging pathogens associated with foodborne diseases, providing genomic information on genetic diversity, virulence mechanisms and determinants of antimicrobial resistance. The description of several Campylobacter genotypes having many virulence factors and resistance to quinolones and tetracyclines circulating in Peru provides important information which helps in the monitoring, control and prevention strategies of this emerging pathogen in our country.
Collapse
Affiliation(s)
- Willi Quino
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Junior Caro-Castro
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Verónica Hurtado
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Diana Flores-León
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru.,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Ronnie G Gavilan
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru.,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| |
Collapse
|
19
|
Differences in Genotype and Antimicrobial Resistance between Campylobacter spp. Isolated from Organic and Conventionally Produced Chickens in Sweden. Pathogens 2021; 10:pathogens10121630. [PMID: 34959585 PMCID: PMC8705472 DOI: 10.3390/pathogens10121630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance is a major challenge worldwide and increased resistance to quinolones in Campylobacter is being reported. Analysis of antibiotic resistance was performed on 157 Campylobacter strains (123 C. jejuni and 34 C. coli) from conventional and organic chickens produced in Sweden. Susceptibility for tetracycline, ciprofloxacin, erythromycin, nalidixic acid, streptomycin, and gentamycin was determined by microdilution. All 77 isolates from organic chickens were sensitive to all antibiotics, except two C. jejuni that were resistant to tetracycline. Of the 80 isolates from conventional chickens, 22.5% of C. jejuni and 11.1% of C. coli were resistant to quinolones and 5.6% of C. jejuni were resistant to tetracycline. Whole-genome sequencing resulted in 50 different sequence types of C. jejuni and six of C. coli. Nine sequence types were found in both organic and conventional chickens. Two of these (ST-19 and ST-257) included isolates from conventional broilers with different resistance phenotypes to the remaining isolates from conventional and organic broilers. There are management differences between the production systems, such as feed, breed, use of coccidiostats, and access to outdoor area. It is unlikely that quinolone resistance has arisen due to use of antimicrobials, since fluoroquinolones are not permitted in Swedish broiler production.
Collapse
|
20
|
Aleksić E, Miljković-Selimović B, Tambur Z, Aleksić N, Biočanin V, Avramov S. Resistance to Antibiotics in Thermophilic Campylobacters. Front Med (Lausanne) 2021; 8:763434. [PMID: 34859016 PMCID: PMC8632019 DOI: 10.3389/fmed.2021.763434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most frequent causes of bacterial enterocolitis globally. The disease in human is usually self-limiting, but when complications arise antibiotic therapy is required at a time when resistance to antibiotics is increasing worldwide. Mechanisms of antibiotic resistance in bacteria are diverse depending on antibiotic type and usage and include: enzymatic destruction or drug inactivation; alteration of the target enzyme; alteration of cell membrane permeability; alteration of ribosome structure and alteration of the metabolic pathway(s). Resistance of Campylobacter spp. to antibiotics, especially fluoroquinolones is now a major public health problem in developed and developing countries. In this review the mechanisms of resistance to fluoroquinolones, macrolides, tetracycline, aminoglycoside and the role of integrons in resistance of Campylobacter (especially at the molecular level) are discussed, as well as the mechanisms of resistance to β-lactam antibiotics, sulphonamides and trimethoprim. Multiple drug resistance is an increasing problem for treatment of campylobacter infections and emergence of resistant strains and resistance are important One Health issues.
Collapse
Affiliation(s)
- Ema Aleksić
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | | | - Zoran Tambur
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | - Nikola Aleksić
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia.,Institute for Cardiovascular Disease "Dedinje, "Belgrade, Serbia
| | - Vladimir Biočanin
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | - Stevan Avramov
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia.,Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Guernier-Cambert V, Trachsel J, Maki J, Qi J, Sylte MJ, Hanafy Z, Kathariou S, Looft T. Natural Horizontal Gene Transfer of Antimicrobial Resistance Genes in Campylobacter spp. From Turkeys and Swine. Front Microbiol 2021; 12:732969. [PMID: 34646252 PMCID: PMC8504540 DOI: 10.3389/fmicb.2021.732969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 12/01/2022] Open
Abstract
Antibiotic-resistant Campylobacter constitutes a serious threat to public health. The clonal expansion of resistant strains and/or the horizontal spread of resistance genes to other strains and species can hinder the clinical effectiveness of antibiotics to treat severe campylobacteriosis. Still, gaps exist in our understanding of the risks of acquisition and spread of antibiotic resistance in Campylobacter. While the in vitro transfer of antimicrobial resistance genes between Campylobacter species via natural transformation has been extensively demonstrated, experimental studies have favored the use of naked DNA to obtain transformants. In this study, we used experimental designs closer to real-world conditions to evaluate the possible transfer of antimicrobial resistance genes between Campylobacter strains of the same or different species (Campylobacter coli or Campylobacter jejuni) and originating from different animal hosts (swine or turkeys). This was evaluated in vitro through co-culture experiments and in vivo with dual-strain inoculation of turkeys, followed by whole genome sequencing of parental and newly emerged strains. In vitro, we observed four independent horizontal gene transfer events leading to the acquisition of resistance to beta-lactams (blaOXA), aminoglycosides [aph(2′′)-If and rpsL] and tetracycline [tet(O)]. Observed events involved the displacement of resistance-associated genes by a mutated version, or the acquisition of genomic islands harboring a resistance determinant by homologous recombination; we did not detect the transfer of resistance-carrying plasmids even though they were present in some strains. In vivo, we recovered a newly emerged strain with dual-resistance pattern and identified the replacement of an existing non-functional tet(O) by a functional tet(O) in the recipient strain. Whole genome comparisons allowed characterization of the events involved in the horizontal spread of resistance genes between Campylobacter following in vitro co-culture and in vivo dual inoculation. Our study also highlights the potential for antimicrobial resistance transfer across Campylobacter species originating from turkeys and swine, which may have implications for farms hosting both species in close proximity.
Collapse
Affiliation(s)
- Vanina Guernier-Cambert
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States.,Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| | - Joel Maki
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States.,Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jing Qi
- Shandong Academy of Agricultural Sciences, Institute of Animal Science and Veterinary Medicine, Jinan, China
| | - Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| | - Zahra Hanafy
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| |
Collapse
|
22
|
Zhang X, Zhou Q, Tang M, Pu J, Zhang J, Lu J, Zhang Y, Gao Y. Aminoglycoside Resistance and Possible Mechanisms in Campylobacter Spp. Isolated From Chicken and Swine in Jiangsu, China. Front Microbiol 2021; 12:716185. [PMID: 34690960 PMCID: PMC8531746 DOI: 10.3389/fmicb.2021.716185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Campylobacter is a major food-borne pathogen in humans, and previous studies reported a high prevalence of gentamicin-resistant Campylobacter isolates from food-producing animals in China. This study aimed to investigate the aminoglycoside resistance of Campylobacter isolated from chicken and swine in Jiangsu province, China and understand the possible mechanisms responsible for aminoglycoside resistance. One hundred and eighty-five Campylobacter isolates of chicken and swine origins in 2017 and 2018 were analyzed for gentamicin and kanamycin resistance. Some aminoglycoside resistance genes were selected for PCR detection in all strains. The genomic DNAs of two strains with high resistance to gentamicin were used as donors to subject C. jejuni NCTC11168 to natural transformation. The transformants were investigated by whole-genome sequencing and analyzed comparatively with C. jejuni NCTC11168. In total, 30.5% (29/95) of C. jejuni isolates and 42.2% (38/90) of C. coli isolates were resistant to gentamicin and kanamycin. The prevalence of the aph(2")-If gene and aac(6')-Ie/aph(2")-Ia gene was 65.4% (121/185) and 36.2% (67/185) in Campylobacter isolates, respectively. The aadE-sat4-aphA-3 cluster was identified in 8.7% (8/92) and 20.4% (19/93) of all Campylobacter isolates in each year. With each donor DNA, aminoglycoside-resistant transformants were obtained. The transformants showed ≥128-fold increases in the MICs of gentamicin, kanamycin, and tobramycin. A 5200-bp segment was found to be inserted between the highly conserved genes Cj0299 and panB of Campylobacter. A total of 9.7% (18/185) strains showing high resistance to aminoglycosides had this segment by PCR detection. The genetic diversity of the insertion-fragment positive strains was determined by MLST, and seven sequence types were identified for these strains.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Qian Zhou
- Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Mengjun Tang
- Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Junhua Pu
- Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Jing Zhang
- Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Junxian Lu
- Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Yunzeng Zhang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yushi Gao
- Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Jiangsu Institute of Poultry Science, Yangzhou, China
| |
Collapse
|
23
|
Detection of Campylobacter jejuni and Salmonella typhimurium in chicken using PCR for virulence factor hipO and invA genes (Saudi Arabia). Biosci Rep 2021; 41:229774. [PMID: 34519329 PMCID: PMC8458795 DOI: 10.1042/bsr20211790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni and Salmonella typhimurium are the leading causes of bacterial food contamination in chicken carcasses. Contamination is particularly associated with the slaughtering process. The present study isolated C. jejuni and S. typhimurim from fifty chicken carcass samples, all of which were acquired from different companies in Riyadh, Saudi Arabia. The identification of C. jejuni was performed phenotypically by using a hippurate test and genetically using a polymerase chain reaction with primers for 16S rRNA and hippurate hydrolase (hipO gene). For the dentification of S. typhimurim, a serological Widal test was carried out using serum anti-S. typhimurium antibodies. Strains were genetically detected using invA gene primers. The positive isolates for C. jejuni showed a specific molecular size of 1448 bp for 16S rRNA and 1148 bp for hipO genes. However, the positive isolates of the invA gene exhibited a specific molecular size at 244 bp using polymerase chain reaction (PCR). Comparing sequencing was performed with respect to the invA gene and the BLAST nucleotide isolates that were identified as Salmonella enterica subsp. enterica serovar typhimurium strain ST45, thereby producing a similarity of 100%. The testing identified C.jejuni for hippuricase, GenBank: Z36940.1. While many isolates of Salmonella spp. that contained the invA gene were not necessarily identified as S. typhimurim, the limiting factor for the Widal test used antiS. typhimurum antibodies. The multidrug resistance (MDR) of C. jejuni isolates in chickens was compared with the standard C. jejuni strain ATCC 22931. Similarly, S. typhimurium isolates were compared with the standard S. typhimurium strain ATCC 14028.
Collapse
|
24
|
Kleinubing NR, Ramires T, Würfel SDFR, Haubert L, Scheik LK, Kremer FS, Lopes GV, Silva WPD. Antimicrobial resistance genes and plasmids in Campylobacter jejuni from broiler production chain in Southern Brazil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Goyal D, Watkins LKF, Montgomery MP, Jones SMB, Caidi H, Friedman CR. Antimicrobial susceptibility testing and successful treatment of hospitalised patients with extensively drug-resistant Campylobacter jejuni infections linked to a pet store puppy outbreak. J Glob Antimicrob Resist 2021; 26:84-90. [PMID: 34048979 PMCID: PMC8448951 DOI: 10.1016/j.jgar.2021.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: Most patients with Campylobacter infection do not require antibiotics; however, they are indicated in severe cases. Clinical breakpoints for many antibiotics are not yet established by the CLSI, making antibiotic selection for resistant infections challenging. During an outbreak of pet store puppy-associated XDR Campylobacter jejuni infections resistant to seven antibiotic classes, several patients required antibiotics. This study aimed to determine MICs of the outbreak strain for various antibiotics and describes the successful treatment of two patients using imipenem/cilastatin, a drug not traditionally used for Campylobacter infections. Methods: We used whole-genome multilocus sequence typing (wgMLST) to determine the genetic relatedness of Campylobacter isolates collected from two human patients’ stool samples with the outbreak strain. We performed extended antimicrobial susceptibility testing on 14 outbreak isolates and 6 control strains to determine MICs for 30 antibiotics (14 classes). Results: Isolates from both patients were highly related to the outbreak strain by wgMLST. MICs indicated resistance of the outbreak strain to most antibiotic classes, except phenicols, glycylcyclines and carbapenems. Due to potential side effects of phenicols and safety issues precluding use of glycylcyclines such as tigecycline when alternatives agents are available, we used carbapenems to treat patients who were severely ill from the outbreak strain infections. Conclusion: Stewardship and clinical vigilance are warranted when deciding whether and how to treat patients with suspected C. jejuni diarrhoea with antibiotics. Clinicians should maintain a high index of suspicion for XDR Campylobacter when patients fail to improve and consider the use of carbapenems in such settings.
Collapse
Affiliation(s)
- Dheeraj Goyal
- Department of Infectious Diseases, Mercy Fairfield Hospital, Fairfield, Ohio, USA.
| | - Louise K Francois Watkins
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martha P Montgomery
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA; Ohio Department of Health, Columbus, Ohio, USA
| | - Sonya M Bodeis Jones
- US Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland, USA
| | - Hayat Caidi
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cindy R Friedman
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
26
|
El Baaboua A, El Maadoudi M, Bouyahya A, Kounnoun A, Bougtaib H, Belmehdi O, Senhaji NS, Abrini J. Prevalence and antimicrobial profiling of Campylobacter spp. isolated from meats, animal, and human feces in Northern of Morocco. Int J Food Microbiol 2021; 349:109202. [PMID: 33991875 DOI: 10.1016/j.ijfoodmicro.2021.109202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 01/20/2023]
Abstract
The present work was carried out to understand the occurrence and antimicrobial susceptibility of Campylobacter spp., in various samples in Northern of Morocco. For this purpose, a random sampling was undertaken from butcher shops, traditional markets, and slaughterhouse. First, the research of Campylobacter was performed according to the Moroccan standard NM ISO: 10272-1 (2008). Second, the isolates were identified by biochemical tests and real time PCR. After the biochemical and molecular identification of suspected colonies, a disk diffusion method was executed to determine the sensitivity of Campylobacter spp. against 18 antibiotics. The results showed a moderate prevalence of Campylobacter species (130/466) recovered mainly on the Campylobacter blood base agar, where C. coli (108/130) were more prevalent comparable to C. jejuni (22/130) in poultry and cattle meat, raw milk, cloacal and surface swabs, and stool of patient suffering from diarrhea. The findings supported also the sensitivity of multiplex qPCR to detect Campylobacter strains compared to Moroccan standard NM ISO: 10272-1 (2008). Among our isolates, C. jejuni were the most susceptible strain toward colistin, florfenicol, gentamicin, streptomycin, and erythromycin. Nonetheless, the presence of multidrug Campylobacter resistant strains was highly observed in C. jejuni isolated, particularly, from broiler chickens toward the antibiotic classes of cephalosporin, penicillin, monobactam, quinolone, fluoroquinolone, sulfamide, as well as tetracycline. This may be due to common use of these drugs in veterinary medicine and farms as growth factor, which limits the usefulness of these molecules. Hence, the study highlights the importance of resistance profile monitoring of these pathogens in Northern of Morocco, in order to develop appropriate control measures and to reduce the emergence of multidrug-resistant strains.
Collapse
Affiliation(s)
- Aicha El Baaboua
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco; Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco.
| | - Mohamed El Maadoudi
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, Genomic Center of Human Pathology, Mohammed V University in Rabat, Morocco.
| | - Ayoub Kounnoun
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco; Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Hajar Bougtaib
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco; Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Omar Belmehdi
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Nadia Skali Senhaji
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Jamal Abrini
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| |
Collapse
|
27
|
Adiguzel MC, Goulart DB, Wu Z, Pang J, Cengiz S, Zhang Q, Sahin O. Distribution of CRISPR Types in Fluoroquinolone-Resistant Campylobacter jejuni Isolates. Pathogens 2021; 10:345. [PMID: 33809410 PMCID: PMC8000906 DOI: 10.3390/pathogens10030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022] Open
Abstract
To aid development of phage therapy against Campylobacter, we investigated the distribution of the clustered regularly interspaced short palindromic repeats (CRISPR) systems in fluoroquinolone (FQ)-resistant Campylobacter jejuni. A total of 100 FQ-resistant C. jejuni strains from different sources were analyzed by PCR and DNA sequencing to determine resistance-conferring mutation in the gyrA gene and the presence of various CRISPR systems. All but one isolate harbored 1-5 point mutations in gyrA, and the most common mutation was the Thr86Ile change. Ninety-five isolates were positive with the CRISPR PCR, and spacer sequences were found in 86 of them. Among the 292 spacer sequences identified in this study, 204 shared 93-100% nucleotide homology to Campylobacter phage D10, 44 showed 100% homology to Campylobacter phage CP39, and 3 had 100% homology with Campylobacter phage CJIE4-5. The remaining 41 spacer sequences did not match with any phages in the database. Based on the results, it was inferred that the FQ-resistant C. jejuni isolates analyzed in this study were potentially resistant to Campylobacter phages D10, CP39, and CJIE4-5 as well as some unidentified phages. These phages should be excluded from cocktails of phages that may be utilized to treat FQ-resistant Campylobacter.
Collapse
Affiliation(s)
- Mehmet Cemal Adiguzel
- Department of Microbiology, College of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (M.C.A.); (S.C.)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Debora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Seyda Cengiz
- Department of Microbiology, College of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (M.C.A.); (S.C.)
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
28
|
Olkkola S, Rossi M, Jaakkonen A, Simola M, Tikkanen J, Hakkinen M, Tuominen P, Huitu O, Niemimaa J, Henttonen H, Kivistö R. Host-Dependent Clustering of Campylobacter Strains From Small Mammals in Finland. Front Microbiol 2021; 11:621490. [PMID: 33584588 PMCID: PMC7873845 DOI: 10.3389/fmicb.2020.621490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023] Open
Abstract
Small mammals are known to carry Campylobacter spp.; however, little is known about the genotypes and their role in human infections. We studied intestinal content from small wild mammals collected in their natural habitats in Finland in 2010-2017, and in close proximity to 40 pig or cattle farms in 2017. The animals were trapped using traditional Finnish metal snap traps. Campylobacter spp. were isolated from the intestinal content using direct plating on mCCDA. A total of 19% of the captured wild animals (n = 577) and 41% of the pooled farm samples (n = 227) were positive for C. jejuni, which was the only Campylobacter species identified. The highest prevalence occurred in yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) which carried Campylobacter spp. in 66.3 and 63.9% of the farm samples and 41.5 and 24.4% of individual animals trapped from natural habitats, respectively. Interestingly, all house mouse (Mus musculus) and shrew (Sorex spp.) samples were negative for Campylobacter spp. C. jejuni isolates (n = 145) were further characterized by whole-genome sequencing. Core genome multilocus sequence typing (cgMLST) clustering showed that mouse and vole strains were separated from the rest of the C. jejuni population (636 and 671 allelic differences, 94 and 99% of core loci, respectively). Very little or no alleles were shared with C. jejuni genomes described earlier from livestock or human isolates. FastANI results further indicated that C. jejuni strains from voles are likely to represent a new previously undescribed species or subspecies of Campylobacter. Core-genome phylogeny showed that there was no difference between isolates originating from the farm and wild captured animals. Instead, the phylogeny followed the host species-association. There was some evidence (one strain each) of livestock-associated C. jejuni occurring in a farm-caught A. flavicollis and a brown rat (Rattus norvegicus), indicating that although small mammals may not be the original reservoir of Campylobacter colonizing livestock, they may sporadically carry C. jejuni strains occurring mainly in livestock and be associated with disease in humans.
Collapse
Affiliation(s)
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- European Food Safety Authority (EFSA), Parma, Italy
| | | | | | | | | | | | - Otso Huitu
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jukka Niemimaa
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Nennig M, Llarena AK, Herold M, Mossong J, Penny C, Losch S, Tresse O, Ragimbeau C. Investigating Major Recurring Campylobacter jejuni Lineages in Luxembourg Using Four Core or Whole Genome Sequencing Typing Schemes. Front Cell Infect Microbiol 2021; 10:608020. [PMID: 33489938 PMCID: PMC7819963 DOI: 10.3389/fcimb.2020.608020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis, which has motivated the monitoring of genetic profiles circulating in Luxembourg since 13 years. From our integrated surveillance using a genotyping strategy based on an extended MLST scheme including gyrA and porA markers, an unexpected endemic pattern was discovered in the temporal distribution of genotypes. We aimed to test the hypothesis of stable lineages occurrence by implementing whole genome sequencing (WGS) associated with comprehensive and internationally validated schemes. This pilot study assessed four WGS-based typing schemes to classify a panel of 108 strains previously identified as recurrent or sporadic profiles using this in-house typing system. The strain collection included four common lineages in human infection (N = 67) initially identified from recurrent combination of ST-gyrA-porA alleles also detected in non-human samples: veterinary (N = 19), food (N = 20), and environmental (N = 2) sources. An additional set of 19 strains belonging to sporadic profiles completed the tested panel. All the strains were processed by WGS by using Illumina technologies and by applying stringent criteria for filtering sequencing data; we ensure robustness in our genomic comparison. Four typing schemes were applied to classify the strains: (i) the cgMLST SeqSphere+ scheme of 637 loci, (ii) the cgMLST Oxford scheme of 1,343 loci, (iii) the cgMLST INNUENDO scheme of 678 loci, and (iv) the wgMLST INNUENDO scheme of 2,795 loci. A high concordance between the typing schemes was determined by comparing the calculated adjusted Wallace coefficients. After quality control and analyses with these four typing schemes, 60 strains were confirmed as members of the four recurrent lineages regardless of the method used (N = 32, 12, 7, and 9, respectively). Our results indicate that, regardless of the typing scheme used, epidemic or endemic signals were detected as reflected by lineage B (ST2254-gyrA9-porA1) in 2014 or lineage A (ST19-gyrA8-porA7), respectively. These findings support the clonal expansion of stable genomes in Campylobacter population exhibiting a multi-host profile and accounting for the majority of clinical strains isolated over a decade. Such recurring genotypes suggest persistence in reservoirs, sources or environment, emphasizing the need to investigate their survival strategy in greater depth.
Collapse
Affiliation(s)
- Morgane Nennig
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg.,INRAE, Oniris, SECALIM, Nantes, France
| | - Ann-Katrin Llarena
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Malte Herold
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Joël Mossong
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Christian Penny
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Belvaux, Luxembourg
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l'Etat, Veterinary Services Administration, Dudelange, Luxembourg
| | | | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| |
Collapse
|
30
|
Hansson I, Tamminen LM, Frosth S, Fernström LL, Emanuelson U, Boqvist S. Occurrence of Campylobacter spp. in Swedish calves, common sequence types and antibiotic resistance patterns. J Appl Microbiol 2020; 130:2111-2122. [PMID: 33119192 PMCID: PMC8246890 DOI: 10.1111/jam.14914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Aims Cattle are the second most important cause of human campylobacteriosis, after poultry, but there are knowledge gaps regarding Campylobacter in cattle. This study examined the occurrence of Campylobacter, the species present, sequence types and antibiotic resistance in Swedish cattle. Methods and Results Faeces samples collected from 154 calves on seven Swedish farms, and 69 follow‐up samples from a second collection occasion, were analysed. Campylobacter were isolated from 77% of calves at the first sampling, with Campylobacter jejuni as the most frequently isolated species. Animals kept on deep straw bedding were less likely to be colonized with Campylobacter. Whole‐genome sequencing of 90 C. jejuni samples resulted in 11 sequence types, among which ST‐19 and ST‐21 were most frequent. Antimicrobial resistance analyses showed that 46% of 142 isolates analysed were resistant to quinolones, while all isolates belonging to ST‐19, ST‐22 and ST‐441 were resistant to ciprofloxacin and nalidixic acid. Conclusions Campylobacter jejuni was the species most frequently isolated in calves and a strong association was found between sequence type and antimicrobial resistance pattern. Significance and Impact of the Study The high proportion of calves with quinolone‐resistant Campylobacter jejuni should be considered in a One Health perspective.
Collapse
Affiliation(s)
- I Hansson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - L-M Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S Frosth
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - L-L Fernström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - U Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S Boqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
31
|
Frazão MR, Cao G, Medeiros MIC, Duque SDS, Allard MW, Falcão JP. Antimicrobial Resistance Profiles and Phylogenetic Analysis of Campylobacter jejuni Strains Isolated in Brazil by Whole Genome Sequencing. Microb Drug Resist 2020; 27:660-669. [PMID: 33021437 DOI: 10.1089/mdr.2020.0184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aims: The objectives of this work were to use whole genome sequencing (WGS) to determine the antimicrobial resistance genotypes of 116 Campylobacter jejuni strains isolated in Brazil and to compare it with the results obtained by antimicrobial susceptibility testing (AST). In addition, WGS was used to uncover the phylogenetic relationship among those strains. Results: By AST, the C. jejuni strains resistant to ciprofloxacin, tetracycline, doxycycline, and erythromycin were 51 (44%), 41 (35.3%), 41 (35.3%), and 6 (5.2%), respectively. By WGS, the genes aph(3')III, aadE, blaOXA-449, blaOXA-184, blaOXA-61, and tet(O) were detected in 6 (5.2%), 3 (2.6%), 1 (0.9%), 10 (8.6%), 55 (47.4%), and 44 (38%) strains, respectively. Fifty-four (46.6%) strains showed the mutation T86I in the gyrA gene, and four (3.4%) strains presented the mutation A2075G in the 23S rRNA gene. The correlation between AST and WGS was 100% for ciprofloxacin, 97.5% for tetracyclines, and 66.7% for erythromycin. The whole genome single nucleotide polymorphism (SNP) tree clustered the C. jejuni strains into two clades comprising strains that were highly related from different sources, places, and years. Conclusion: The high rates of C. jejuni strains resistant to ciprofloxacin and tetracyclines are of concern and may represent a public health problem. WGS has a potential to be a powerful tool for the prediction of resistance of antibiotics used to treat campylobacteriosis. The results obtained by whole genome SNP analysis suggested the potential for transmission between clinical and nonclinical sources and between human and animal sources over the course of 20 years in Brazil.
Collapse
Affiliation(s)
- Miliane Rodrigues Frazão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, Brazil
| | - Guojie Cao
- Division of Microbiology, Office of Regular Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | | | | | - Marc William Allard
- Division of Microbiology, Office of Regular Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, Brazil
| |
Collapse
|
32
|
Dahl LG, Joensen KG, Østerlund MT, Kiil K, Nielsen EM. Prediction of antimicrobial resistance in clinical Campylobacter jejuni isolates from whole-genome sequencing data. Eur J Clin Microbiol Infect Dis 2020; 40:673-682. [PMID: 32974772 PMCID: PMC7979593 DOI: 10.1007/s10096-020-04043-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 01/06/2023]
Abstract
Campylobacter jejuni is recognised as the leading cause of bacterial gastroenteritis in industrialised countries. Although the majority of Campylobacter infections are self-limiting, antimicrobial treatment is necessary in severe cases. Therefore, the development of antimicrobial resistance (AMR) in Campylobacter is a growing public health challenge and surveillance of AMR is important for bacterial disease control. The aim of this study was to predict antimicrobial resistance in C. jejuni from whole-genome sequencing data. A total of 516 clinical C. jejuni isolates collected between 2014 and 2017 were subjected to WGS. Resistance phenotypes were determined by standard broth dilution, categorising isolates as either susceptible or resistant based on epidemiological cutoffs for six antimicrobials: ciprofloxacin, nalidixic acid, erythromycin, gentamicin, streptomycin, and tetracycline. Resistance genotypes were identified using an in-house database containing reference genes with known point mutations and the presence of resistance genes was determined using the ResFinder database and four bioinformatical methods (modified KMA, ABRicate, ARIBA, and ResFinder Batch Upload). We identified seven resistance genes including tet(O), tet(O/32/O), ant(6)-Ia, aph(2″)-If, blaOXA, aph(3')-III, and cat as well as mutations in three genes: gyrA, 23S rRNA, and rpsL. There was a high correlation between phenotypic resistance and the presence of known resistance genes and/or point mutations. A correlation above 98% was seen for all antimicrobials except streptomycin with a correlation of 92%. In conclusion, we found that WGS can predict antimicrobial resistance with a high degree of accuracy and have the potential to be a powerful tool for AMR surveillance.
Collapse
Affiliation(s)
- Louise Gade Dahl
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Mark Thomas Østerlund
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kristoffer Kiil
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Eva Møller Nielsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
33
|
Rivera-Mendoza D, Martínez-Flores I, Santamaría RI, Lozano L, Bustamante VH, Pérez-Morales D. Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. Front Microbiol 2020; 11:513070. [PMID: 33042043 PMCID: PMC7518152 DOI: 10.3389/fmicb.2020.513070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the blaOXA–493 and blaOXA–576 genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the blaOXA–493 gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria.
Collapse
Affiliation(s)
- Daniel Rivera-Mendoza
- Programa de Maestría en Biotecnología, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Irma Martínez-Flores
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosa I Santamaría
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Deyanira Pérez-Morales
- CONACYT-Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
34
|
Campylobacter jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates against (Fluoro)quinolones and Tetracyclines. Pathogens 2020; 9:pathogens9090691. [PMID: 32842457 PMCID: PMC7558055 DOI: 10.3390/pathogens9090691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter (C.) spp. from poultry is the main source of foodborne human campylobacteriosis, but diseased pets and cattle shedding Campylobacter spp. may contribute sporadically as a source of human infection. As fluoroquinolones are one of the drugs of choice for the treatment of severe human campylobacteriosis, the resistance rates of C. jejuni and C. coli from poultry against antibiotics, including fluoroquinolones, are monitored within the European program on antimicrobial resistance (AMR) in livestock. However, much less is published on the AMR rates of C.jejuni and C. coli from pets and cattle. Therefore, C. jejuni and C. coli isolated from diseased animals were tested phenotypically for AMR, and associated AMR genes or mutations were identified by whole genome sequencing. High rates of resistance to (fluoro)quinolones (41%) and tetracyclines (61.1%) were found in C. jejuni (n = 29/66). (Fluoro)quinolone resistance was associated with the known point mutation in the quinolone resistance-determining region (QRDR) of gyrA, and tetracycline resistance was mostly caused by the tet(O) gene. These high rates of resistance, especially to critically important antibiotics in C. jejuni and C. coli, are worrisome not only in veterinary medicine. Efforts to preserve the efficacy of important antimicrobial treatment options in human and veterinary medicine have to be strengthened in the future.
Collapse
|
35
|
Lynch CT, Lynch H, Burke S, Hawkins K, Buttimer C, Mc Carthy C, Egan J, Whyte P, Bolton D, Coffey A, Lucey B. Antimicrobial Resistance Determinants Circulating among Thermophilic Campylobacter Isolates Recovered from Broilers in Ireland Over a One-Year Period. Antibiotics (Basel) 2020; 9:E308. [PMID: 32521746 PMCID: PMC7344827 DOI: 10.3390/antibiotics9060308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Campylobacteriosis is the leading cause of human bacterial gastroenteritis, very often associated with poultry consumption. Thermophilic Campylobacter (Campylobacter jejuni and Campylobacter coli) isolates (n = 158) recovered from broiler neck skin and caecal contents in Ireland over a one-year period, resistant to at least one of three clinically relevant antimicrobial classes, were screened for resistance determinants. All ciprofloxacin-resistant isolates (n = 99) harboured the C257T nucleotide mutation (conferring the Thr-86-Ile substitution) in conjunction with other synonymous and nonsynonymous mutations, which may have epidemiological value. The A2075G nucleotide mutation and amino acid substitutions in L4 and L22 were detected in all erythromycin-resistant isolates (n = 5). The tetO gene was detected in 100% (n = 119) of tetracycline-resistant isolates and three of which were found to harbour the mosaic tetracycline resistance gene tetO/32/O. Two streptomycin-resistant C. jejuni isolates (isolated from the same flock) harboured ant(6)-Ib, located in a multidrug resistance genomic island, containing aminoglycoside, streptothricin (satA) and tetracycline resistance genes (truncated tetO and mosaic tetO/32/O). The ant(6)-Ie gene was identified in two streptomycin-resistant C. coli isolates. This study highlights the widespread acquisition of antimicrobial resistance determinants among chicken-associated Campylobacter isolates, through horizontal gene transfer or clonal expansion of resistant lineages. The stability of such resistance determinants is compounded by the fluidity of mobile genetic element.
Collapse
Affiliation(s)
- Caoimhe T. Lynch
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Helen Lynch
- NRL Campylobacter, Backweston Laboratory Complex, Young’s Cross, Celbridge, W23 X3PH Kildare, Ireland; (H.L.); (J.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Sarah Burke
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Kayleigh Hawkins
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Conor Mc Carthy
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - John Egan
- NRL Campylobacter, Backweston Laboratory Complex, Young’s Cross, Celbridge, W23 X3PH Kildare, Ireland; (H.L.); (J.E.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin 15, Ireland;
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| |
Collapse
|
36
|
Palma E, Tilocca B, Roncada P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int J Mol Sci 2020; 21:E1914. [PMID: 32168903 PMCID: PMC7139321 DOI: 10.3390/ijms21061914] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) represents one of the most important human- and animal health-threatening issues worldwide. Bacterial capability to face antimicrobial compounds is an ancient feature, enabling bacterial survival over time and the dynamic surrounding. Moreover, bacteria make use of their evolutionary machinery to adapt to the selective pressure exerted by antibiotic treatments, resulting in reduced efficacy of the therapeutic intervention against human and animal infections. The mechanisms responsible for both innate and acquired AMR are thoroughly investigated. Commonly, AMR traits are included in mobilizable genetic elements enabling the homogeneous diffusion of the AMR traits pool between the ecosystems of diverse sectors, such as human medicine, veterinary medicine, and the environment. Thus, a coordinated multisectoral approach, such as One-Health, provides a detailed comprehensive picture of the AMR onset and diffusion. Following a general revision of the molecular mechanisms responsible for both innate and acquired AMR, the present manuscript focuses on reviewing the contribution of veterinary medicine to the overall issue of AMR. The main sources of AMR amenable to veterinary medicine are described, driving the attention towards the indissoluble cross-talk existing between the diverse ecosystems and sectors and their cumulative cooperation to this warning phenomenon.
Collapse
Affiliation(s)
| | | | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (E.P.); (B.T.)
| |
Collapse
|
37
|
Elhadidy M, Ali MM, El-Shibiny A, Miller WG, Elkhatib WF, Botteldoorn N, Dierick K. Antimicrobial resistance patterns and molecular resistance markers of Campylobacter jejuni isolates from human diarrheal cases. PLoS One 2020; 15:e0227833. [PMID: 31951631 PMCID: PMC6968864 DOI: 10.1371/journal.pone.0227833] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to characterize the antimicrobial resistance of Campylobacter jejuni recovered from diarrheal patients in Belgium, focusing on the genetic diversity of resistant strains and underlying molecular mechanisms of resistance among Campylobacter jejuni resistant strains isolated from diarrheal patients in Belgium. Susceptibility profile of 199 clinical C. jejuni isolates was determined by minimum inhibitory concentrations against six commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, streptomycin, gentamicin, and erythromycin). High rates of resistance were observed against nalidixic acid (56.3%), ciprofloxacin (55.8%) and tetracycline (49.7%); these rates were similar to those obtained from different national reports in broilers intended for human consumption. Alternatively, lower resistance rates to streptomycin (4.5%) and erythromycin (2%), and absolute sensitivity to gentamicin were observed. C. jejuni isolates resistant to tetracycline or quinolones (ciprofloxacin and/or nalidixic acid) were screened for the presence of the tetO gene and the C257T mutation in the quinolone resistance determining region (QRDR) of the gyrase gene gyrA, respectively. Interestingly, some of the isolates that displayed phenotypic resistance to these antimicrobials lacked the corresponding genetic determinants. Among erythromycin-resistant isolates, a diverse array of potential molecular resistance mechanisms was investigated, including the presence of ermB and mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the regulatory region of the cmeABC operon. Two of the four erythromycin-resistant isolates harboured the A2075G transition mutation in the 23S rRNA gene; one of these isolates exhibited further mutations in rplD, rplV and in the cmeABC regulatory region. This study expands the current understanding of how different genetic determinants and particular clones shape the epidemiology of antimicrobial resistance in C. jejuni in Belgium. It also reveals many questions in need of further investigation, such as the role of other undetermined molecular mechanisms that may potentially contribute to the antimicrobial resistance of Campylobacter.
Collapse
Affiliation(s)
- Mohamed Elhadidy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Medhat Ali
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman El-Shibiny
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| | - William G. Miller
- Prodce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States of America
| | - Walid F. Elkhatib
- Department of Microbiology and Immunology, School of Pharmacy & Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Cairo, Egypt
| | | | - Katelijne Dierick
- National Reference Laboratory for Campylobacter, Sciensano, Scientific Service: Foodborne Pathogens, Brussels, Belgium
| |
Collapse
|
38
|
Prevalence, Risk Factors, and Antimicrobial Resistance Profiles of Thermophilic Campylobacter Species in Humans and Animals in Sub-Saharan Africa: A Systematic Review. Int J Microbiol 2020; 2020:2092478. [PMID: 32025233 PMCID: PMC6983289 DOI: 10.1155/2020/2092478] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/25/2019] [Accepted: 12/26/2019] [Indexed: 01/03/2023] Open
Abstract
Thermophilic Campylobacter species are clinically important aetiologies of gastroenteritis in humans throughout the world. The colonization of different animal reservoirs by Campylobacter poses an important risk for humans through shedding of the pathogen in livestock waste and contamination of water sources, environment, and food. A review of published articles was conducted to obtain information on the prevalence and antimicrobial resistance (AMR) profiles of thermophilic Campylobacter species in humans and animals in sub-Saharan Africa (SSA). Electronic databases, namely, PubMed, Google Scholar, Research4life-HINARI Health, and Researchgate.net, were searched using the following search terms “thermophilic Campylobacter,” “Campylobacter jejuni,” “Campylobacter coli,” “diarrhea/diarrhoea,” “antimicrobial resistance,” “antibiotic resistance,” “humans,” “animals,” “Sub-Saharan Africa,” and “a specific country name.” Initially, a total of 614 articles were identified, and the lists of references were screened in which 22 more articles were identified. After screening, 33 articles on humans and 34 on animals and animal products were included in this review. In humans, Nigeria reported the highest prevalence (62.7%), followed by Malawi (21%) and South Africa (20.3%). For Campylobacter infections in under-five children, Kenya reported 16.4%, followed by Rwanda (15.5%) and Ethiopia (14.5%). The country-level mean prevalence in all ages and under-five children was 18.6% and 9.4%, respectively. The prevalence ranged from 1.7%–62.7% in humans and 1.2%–80% in animals. The most reported species were C. jejuni and C. coli. The AMR to commonly used antimicrobials ranged from 0–100% in both humans and animals. Poultry consumption and drinking surface water were the main risk factors for campylobacteriosis. The present review provides evidence of thermophilic Campylobacter occurrence in humans and animals and high levels of AMR in SSA, emphasizing the need for strengthening both national and regional multisectoral antimicrobial resistance standard surveillance protocols to curb both the campylobacteriosis burden and increase of antimicrobial resistance in the region.
Collapse
|
39
|
Boukerb AM, Penny C, Serghine J, Walczak C, Cauchie HM, Miller WG, Losch S, Ragimbeau C, Mossong J, Mégraud F, Lehours P, Bénéjat L, Gourmelon M. Campylobacter armoricus sp. nov., a novel member of the Campylobacter lari group isolated from surface water and stools from humans with enteric infection. Int J Syst Evol Microbiol 2019; 69:3969-3979. [PMID: 31714200 DOI: 10.1099/ijsem.0.003836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a study on the prevalence and diversity of members of the genus Campylobacter in a shellfish-harvesting area and its catchment in Brittany, France, six urease-positive isolates of members of the genus Campylobacter were recovered from surface water samples, as well as three isolates from stools of humans displaying enteric infection in the same period. These strains were initially identified as members of the Campylobacter lari group by MALDI-TOF mass spectrometry and placed into a distinct group in the genus Campylobacter, following atpA gene sequence analysis based on whole-genome sequencing data. This taxonomic position was confirmed by phylogenetic analysis of the 16S rRNA, rpoB and hsp60 (groEL) loci, and an analysis of the core genome that provided an improved phylogenetic resolution. The average nucleotide identity between the representative strain CA656T (CCUG 73571T=CIP 111675T) and the type strain of the most closely related species Campylobacter ornithocola WBE38T was 88.5 %. The strains were found to be microaerobic and anaerobic, motile, non-spore-forming, Gram-stain-negative, spiral-shaped bacteria that exhibit catalase, oxidase and urease activities but not nitrate reduction. This study demonstrates clearly that the nine isolates represent a novel species within the C. lari group, for which the name Campylobacter armoricus is proposed. Here, we present phenotypic and morphological features of the nine strains and the description of their genome sequences. The proposed type strain CA656T has a 1.589 Mbp chromosome with a DNA G+C content of 28.5 mol% and encodes 1588 predicted coding sequences, 38 tRNAs, and 3 rRNA operons.
Collapse
Affiliation(s)
- Amine M Boukerb
- Ifremer, RBE-SGMM-LSEM, Laboratoire Santé Environnement Microbiologie, Plouzané, France.,Present address: Laboratory of Microbiology Signals and Microenvironment (LMSM EA4312), University of Rouen Normandy, Normandy University, Evreux, France
| | - Christian Penny
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation Department, Esch-sur-Alzette, Luxembourg
| | - Joëlle Serghine
- Ifremer, RBE-SGMM-LSEM, Laboratoire Santé Environnement Microbiologie, Plouzané, France
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation Department, Esch-sur-Alzette, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation Department, Esch-sur-Alzette, Luxembourg
| | - William G Miller
- US Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Albany, CA, USA
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l'Etat (LMVE), Veterinary Services Administration, Dudelange, Luxembourg
| | - Catherine Ragimbeau
- Laboratoire National de Santé (LNS), Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Joël Mossong
- Laboratoire National de Santé (LNS), Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Francis Mégraud
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France.,French National Reference Centre for Campylobacter and Helicobacter, Pellegrin University Hospital, Bordeaux, France
| | - Philippe Lehours
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France.,French National Reference Centre for Campylobacter and Helicobacter, Pellegrin University Hospital, Bordeaux, France
| | - Lucie Bénéjat
- French National Reference Centre for Campylobacter and Helicobacter, Pellegrin University Hospital, Bordeaux, France
| | - Michèle Gourmelon
- Ifremer, RBE-SGMM-LSEM, Laboratoire Santé Environnement Microbiologie, Plouzané, France
| |
Collapse
|
40
|
Mourkas E, Florez‐Cuadrado D, Pascoe B, Calland JK, Bayliss SC, Mageiros L, Méric G, Hitchings MD, Quesada A, Porrero C, Ugarte‐Ruiz M, Gutiérrez‐Fernández J, Domínguez L, Sheppard SK. Gene pool transmission of multidrug resistance among Campylobacter from livestock, sewage and human disease. Environ Microbiol 2019; 21:4597-4613. [PMID: 31385413 PMCID: PMC6916351 DOI: 10.1111/1462-2920.14760] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
The use of antimicrobials in human and veterinary medicine has coincided with a rise in antimicrobial resistance (AMR) in the food-borne pathogens Campylobacter jejuni and Campylobacter coli. Faecal contamination from the main reservoir hosts (livestock, especially poultry) is the principal route of human infection but little is known about the spread of AMR among source and sink populations. In particular, questions remain about how Campylobacter resistomes interact between species and hosts, and the potential role of sewage as a conduit for the spread of AMR. Here, we investigate the genomic variation associated with AMR in 168 C. jejuni and 92 C. coli strains isolated from humans, livestock and urban effluents in Spain. AMR was tested in vitro and isolate genomes were sequenced and screened for putative AMR genes and alleles. Genes associated with resistance to multiple drug classes were observed in both species and were commonly present in multidrug-resistant genomic islands (GIs), often located on plasmids or mobile elements. In many cases, these loci had alleles that were shared among C. jejuni and C. coli consistent with horizontal transfer. Our results suggest that specific antibiotic resistance genes have spread among Campylobacter isolated from humans, animals and the environment.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
| | | | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
| | - Jessica K. Calland
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
| | - Sion C. Bayliss
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
- Cambridge Baker Systems Genomics InitiativeBaker Heart and Diabetes Institute, 75 Commercial RdMelbourne3004VictoriaAustralia
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | | | - Alberto Quesada
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Veterinary MedicineUniversity of ExtremaduraCáceresSpain
| | - Concepción Porrero
- VISAVET Health Surveillance CentreUniversidad Complutense MadridMadridSpain
| | - María Ugarte‐Ruiz
- VISAVET Health Surveillance CentreUniversidad Complutense MadridMadridSpain
| | | | - Lucas Domínguez
- VISAVET Health Surveillance CentreUniversidad Complutense MadridMadridSpain
- Department of Animal Health, Faculty of Veterinary MedicineUniversidad Complutense MadridMadridSpain
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
- Department of ZoologyUniversity of OxfordOxfordUK
| |
Collapse
|
41
|
Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness. Microorganisms 2019; 7:microorganisms7110579. [PMID: 31752343 PMCID: PMC6920863 DOI: 10.3390/microorganisms7110579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023] Open
Abstract
Campylobacter, a common foodborne human pathogen, is considered sensitive to oxygen. Recently, aerotolerant (AT) Campylobacter jejuni with the ability to survive under aerobic stress has been reported. Here, we investigated the prevalence of hyper-aerotolerant (HAT) Campylobacter coli from duck sources (118 carcasses and meat) and its characteristics to assess potential impacts on public health. Half of 56 C. coli isolates were HAT and most harbored various virulence genes including flaA, cadF, cdtA, ceuB, and wlaN. Moreover, 98.2% of C. coli isolates showed resistance to quinolones, including ciprofloxacin (CIP), and nine (16.1%) showed high-level resistance to ciprofloxacin (Minimum Inhibitory Concentration, MIC ≥ 32 μg/mL) and most of these were HAT. Based on genetic relatedness between C. coli from duck sources and those from human sources (PubMLST and NCBI), HAT isolates sharing the same MLST sequence types were significantly more prevalent than those not sharing the same sequence types as those from human sources. Therefore, HAT C. coli is prevalent in duck sources, and is most likely transmitted to humans through the food chain given its aerotolerance. This being so, it might pose a threat to public health given its virulence and antimicrobial resistance (AMR). This study will assist in improving control strategies to reduce farm-to-table HAT C. coli transmission to humans.
Collapse
|
42
|
Du J, Luo J, Huang J, Wang C, Li M, Wang B, Wang B, Chang H, Ji J, Sen K, He H. Emergence of Genetic Diversity and Multi-Drug Resistant Campylobacter jejuni From Wild Birds in Beijing, China. Front Microbiol 2019; 10:2433. [PMID: 31736887 PMCID: PMC6829156 DOI: 10.3389/fmicb.2019.02433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/09/2019] [Indexed: 01/21/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is considered as an opportunistic zoonotic pathogen that may cause gastroenteritis in humans and other animals. Wild birds may be as potential vectors of C. jejuni around urban and suburban areas. Here, 520 samples were collected from 33 wild bird species in urban and suburban areas, Beijing. In total 57 C. jejuni were isolated from seven species. It was found that Nineteen (33.33%, 19/57) isolates were resistant to at least one of 11 antibiotics, especially streptomycin (36.84%) and four isolates resistant to all. Nineteen (33.33%, 19/57) isolates were multi-drug resistance. Multilocus sequence typing (MLST) analysis of the isolates showed that 36 different sequence types (STs) belonged to four Clonal complexes and unassigned. Twenty STs (55.56%) and six alleles among them were first detected. Virulence genes including flaA, cadF, and the cytolethal distending toxin (CDT) gene cluster, were detected in all isolates, but truncated cdt gene clusters only detected in the isolates from the crow, daurian jackdaw and silver pheasant. In conclusion, it was the first detection of C. jejuni involved truncated cdt gene clusters from the silver pheasant. These wild birds around urban and suburban areas may pose potential public health problems as reservoir vectors of C. jejuni.
Collapse
Affiliation(s)
- Juan Du
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Huang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Chengmin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public, Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Meng Li
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bojun Wang
- Beijing Wildlife Rescue Center, Beijing Municipal Bureau of Landscape and Forestry, Beijing, China
| | - Bo Wang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Han Chang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianwei Ji
- Beijing Wildlife Rescue Center, Beijing Municipal Bureau of Landscape and Forestry, Beijing, China
| | - Keya Sen
- Division of Biological Sciences, Science, Technology, Engineering and Mathematics, University of Washington, Bothell, WA, United States
| | - Hongxuan He
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
A new calcium(II) complex of marbofloxacin showing much lower acute toxicity with retained antibacterial activity. J Inorg Biochem 2019; 203:110905. [PMID: 31707333 DOI: 10.1016/j.jinorgbio.2019.110905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 11/20/2022]
Abstract
Marbofloxacin (MB) is a newly developed veterinary drug with broad-spectrum antibacterial activity. In this study, a new calcium(II)-based complex of marbofloxacin, MB-Ca, was synthesized and structurally characterized by IR, ESI-MS, UV-Vis and single crystal X-ray diffraction analysis. The characterization of this complex in solution state indicated that the coordinated MB-Ca was partly retained, along with the monomeric and dimeric forms of MB. It also showed satisfactory water solubility (1.89 mg/mL), comparing with MB (2.82 mg/mL) at 35 °C. The in vitro antibacterial activity of MB-Ca was also screened towards a series of typical pathogenic bacteria, and determined by the methods of turbidimetry and disc diffusion. The results indicated it showed comparable antibacterial activity to MB. However, it exhibited higher inhibitive ability in vitro on DNA gyrase than MB alone. Furthermore, MB-Ca showed significantly lower acute toxicity (LD50, 3186 mg/kg) than MB (LD50, 1294 mg/kg) in mice, based on the in vivo acute toxicity test. The histopathological examination on the major organs of the mice by the oral administration of MB-Ca did not show obvious organic lesions, which is similar to those treated by MB. The research results suggest that MB-Ca could be further developed into a new promising metal-based veterinary drug and a better substitute of MB, showing unabated antibacterial activity along with lower toxicity.
Collapse
|
44
|
Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob Agents Chemother 2019; 63:AAC.00483-19. [PMID: 31427293 DOI: 10.1128/aac.00483-19] [Citation(s) in RCA: 723] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/11/2019] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major public health problem that requires publicly available tools for rapid analysis. To identify AMR genes in whole-genome sequences, the National Center for Biotechnology Information (NCBI) has produced AMRFinder, a tool that identifies AMR genes using a high-quality curated AMR gene reference database. The Bacterial Antimicrobial Resistance Reference Gene Database consists of up-to-date gene nomenclature, a set of hidden Markov models (HMMs), and a curated protein family hierarchy. Currently, it contains 4,579 antimicrobial resistance proteins and more than 560 HMMs. Here, we describe AMRFinder and its associated database. To assess the predictive ability of AMRFinder, we measured the consistency between predicted AMR genotypes from AMRFinder and resistance phenotypes of 6,242 isolates from the National Antimicrobial Resistance Monitoring System (NARMS). This included 5,425 Salmonella enterica, 770 Campylobacter spp., and 47 Escherichia coli isolates phenotypically tested against various antimicrobial agents. Of 87,679 susceptibility tests performed, 98.4% were consistent with predictions. To assess the accuracy of AMRFinder, we compared its gene symbol output with that of a 2017 version of ResFinder, another publicly available resistance gene detection system. Most gene calls were identical, but there were 1,229 gene symbol differences (8.8%) between them, with differences due to both algorithmic differences and database composition. AMRFinder missed 16 loci that ResFinder found, while ResFinder missed 216 loci that AMRFinder identified. Based on these results, AMRFinder appears to be a highly accurate AMR gene detection system.
Collapse
|
45
|
Schiaffino F, Platts-Mills J, Kosek MN. A One Health approach to prevention, treatment, and control of campylobacteriosis. Curr Opin Infect Dis 2019; 32:453-460. [PMID: 31305492 DOI: 10.1097/qco.0000000000000570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To review recent findings regarding the control and treatment of campylobacteriosis. RECENT FINDINGS The application of improved diagnostics has led to an upward shift in the attributable burden of Campylobacter infections, in both the United States and Europe as well as in resource-poor settings. Increased focus has brought a fundamental feature of campylobacteriosis -- the ability to cause relapsing disease back into focus, and expanding data on antimicrobial resistance has lead from a switch in first-line therapy for severe diarrhea from quinolones to azithromycin in most contexts, even as evidence of expanding macrolide resistance emerges. SUMMARY Campylobacter spp. infection is a common infection worldwide. Antibiotic-resistant Campylobacter spp. has become an emerging threat with the increase in industrial poultry production, as well as the broad use of antibiotics in both animals and humans.
Collapse
Affiliation(s)
| | - James Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
46
|
Meistere I, Ķibilds J, Eglīte L, Alksne L, Avsejenko J, Cibrovska A, Makarova S, Streikiša M, Grantiņa-Ieviņa L, Bērziņš A. Campylobacter species prevalence, characterisation of antimicrobial resistance and analysis of whole-genome sequence of isolates from livestock and humans, Latvia, 2008 to 2016. Euro Surveill 2019; 24:1800357. [PMID: 31387670 PMCID: PMC6685098 DOI: 10.2807/1560-7917.es.2019.24.31.1800357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
BackgroundCampylobacter is the main cause of bacterial gastroenteritis worldwide. The main transmission route is through consumption of food contaminated with Campylobacter species or contact with infected animals. In Latvia, the prevalence of campylobacteriosis is reported to be low (4.6 cases per 100,000 population in 2016).AimTo determine prevalence, species spectrum and antimicrobial resistance (AMR) of Campylobacter spp. in Latvia, using data from various livestock and human clinical samples.MethodsWe analysed data of Campylobacter microbiological monitoring and AMR (2008 and 2014-16) in Latvia. Data from broilers, poultry, pigs, calves and humans were used to determine prevalence of Campylobacter. Additionally, 45 different origin isolates (22 human) were sequenced on the Illumina MiSeq platform; for each isolate core genome multilocus sequence typing was used and relevant antimicrobial resistance mechanisms were identified.ResultsOverall, Campylobacter prevalence in was 83.3% in pigs, 50.2% in broilers, 16.1% in calves and 5.3% in humans; C. jejuni was the predominant species in all sources except pigs where C. coli was main species. High level of resistance in Campylobacter were observed against fluoroquinolones, tetracycline and streptomycin, in most of sequenced isolates genetic determinants of relevant AMR profiles were identified.ConclusionsIn Latvia, prevalence of Campylobacter in livestock is high, especially in pigs and broilers; prevalence in poultry and humans were lower than in other European countries. AMR analysis reveals increase of streptomycin and tetracycline resistant broiler origin C. jejuni strains. WGS demonstrates a high compliance between resistance phenotype and genotype for quinolones and tetracyclines.
Collapse
Affiliation(s)
- Irēna Meistere
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Lāsma Eglīte
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Laura Alksne
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Jeļena Avsejenko
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Alla Cibrovska
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Svetlana Makarova
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Madara Streikiša
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | | | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| |
Collapse
|
47
|
Redondo N, Carroll A, McNamara E. Molecular characterization of Campylobacter causing human clinical infection using whole-genome sequencing: Virulence, antimicrobial resistance and phylogeny in Ireland. PLoS One 2019; 14:e0219088. [PMID: 31291319 PMCID: PMC6619736 DOI: 10.1371/journal.pone.0219088] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES We characterized clinical isolates of Campylobacter using whole-genome sequencing (WGS) for detection of virulence genes, antimicrobial resistance markers and phylogenetic analysis in order to increase the knowledge on the molecular epidemiology of Campylobacter in Ireland, where there are significant gaps due to the widespread in the use of culture independent methods for the diagnosis of campylobacteriosis. METHODS WGS was applied to 122 Campylobacter human isolates collected over a 10-years period, from diarrhoeal stool samples submitted for routine enteric screening. RESULTS Genes associated with cytotoxin production such as cdtA, cdtB and cdtC were found in 88%, 89% and 89% isolates, respectively; adherence, colonization and invasion genes such as cadF, dnaJ, racR, iam, virB11 and ciaB were found in 99%, 99%, 98%, 99%, 1% and 80% isolates, respectively. Genetic markers associated with resistance to quinolones (C257T in gyrA), beta-lactams (blaoxa-61) and tetracycline (tet(O)) were present in 43%, 71% and 25% isolates, respectively. The cmeABC operon was present in 94% of isolates. No macrolide or aminoglycoside resistance markers were detected. Phylogenetic analysis showed that 112 isolates were assigned to 29 sequence types grouped into 17 clonal complexes. Four clusters previously unidentified were detected. These results shown the similarity of Irish data compared to what has been described globally. CONCLUSIONS WGS has shown a high discriminatory power for cluster detection, demonstrating that its integration in routine laboratory surveillance could improve the detection and management of outbreaks. In addition we were able to demonstrate that virulence genes in clinical Campylobacter infections in Ireland were similar to those known previously. High prevalence of quinolone resistance markers has been found, which has implications for antimicrobial stewardship.
Collapse
Affiliation(s)
- Natalia Redondo
- Public Health Laboratory, Dublin-Health Service Executive, Dublin, Ireland
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Anne Carroll
- Public Health Laboratory, Dublin-Health Service Executive, Dublin, Ireland
| | - Eleanor McNamara
- Public Health Laboratory, Dublin-Health Service Executive, Dublin, Ireland
| |
Collapse
|
48
|
Xia J, Pang J, Tang Y, Wu Z, Dai L, Singh K, Xu C, Ruddell B, Kreuder A, Xia L, Ma X, Brooks KS, Ocal MM, Sahin O, Plummer PJ, Griffith RW, Zhang Q. High Prevalence of Fluoroquinolone-Resistant Campylobacter Bacteria in Sheep and Increased Campylobacter Counts in the Bile and Gallbladders of Sheep Medicated with Tetracycline in Feed. Appl Environ Microbiol 2019; 85:e00008-19. [PMID: 30926726 PMCID: PMC6532027 DOI: 10.1128/aem.00008-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/22/2019] [Indexed: 02/03/2023] Open
Abstract
Campylobacter is a major foodborne pathogen in humans and a significant cause of abortion in sheep. Although ruminants are increasingly recognized as important reservoirs for Campylobacter species, limited information is available about the molecular epidemiology and antimicrobial resistance (AMR) profiles of sheep Campylobacter Here, we describe a two-trial study that examined Campylobacter profiles in sheep and determined whether in-feed tetracycline (TET) influenced the distribution and AMR profiles of Campylobacter Each trial involved 80 commercial sheep naturally infected with Campylobacter: 40 of these sheep were medicated with tetracycline in feed, while the other 40 received feed without antibiotics. Fecal and bile samples were collected for the isolation of Campylobacter The bacterial isolates were analyzed for antimicrobial susceptibility and genotypes. The results revealed that 87.0% and 61.3% of the fecal and bile samples were positive for Campylobacter (Campylobacter jejuni and Campylobacter coli), with no significant differences between the medicated and nonmedicated groups. All but one of the tested Campylobacter isolates were resistant to tetracycline. Although fluoroquinolone (FQ) resistance remained low in C. jejuni (1.7%), 95.0% of the C. coli isolates were resistant to FQ. Genotyping revealed that C. jejuni sequence type 2862 (ST2862) and C. coli ST902 were the predominant genotypes in the sheep. Feed medication with tetracycline did not affect the overall prevalence, species distribution, and AMR profiles of Campylobacter, but it did increase the total Campylobacter counts in bile and gallbladder. These findings identify predominant Campylobacter clones, reveal the high prevalence of FQ-resistant C. coli, and provide new insights into the epidemiology of Campylobacter in sheep.IMPORTANCECampylobacter is a major cause of foodborne illness in humans, and antibiotic-resistant Campylobacter is considered a serious threat to public health in the United States and worldwide. As a foodborne pathogen, Campylobacter commonly exists in the intestinal tract of ruminant animals, such as sheep and cattle. Results from this study reveal the predominant genotypes and high prevalence of tetracycline (TET) and fluoroquinolone (FQ) resistance in sheep Campylobacter The finding on fluoroquinolone resistance in sheep Campylobacter is unexpected, as this class of antibiotics is not used for sheep in the United States, and it may suggest the transmission of fluoroquinolone-resistant Campylobacter from cattle to sheep. Additionally, the results demonstrate that in-feed medication with tetracycline increases Campylobacter counts in gallbladders, suggesting that the antibiotic promotes Campylobacter colonization of the gallbladder. These findings provide new information on Campylobacter epidemiology in sheep, which may be useful for curbing the spread of antibiotic-resistant Campylobacter in animal reservoirs.
Collapse
Affiliation(s)
- Jing Xia
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yizhi Tang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Lei Dai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kritika Singh
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Changyun Xu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Amanda Kreuder
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Lining Xia
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Xiaoping Ma
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kelly S Brooks
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Melda M Ocal
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ronald W Griffith
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
49
|
Schiaffino F, Colston JM, Paredes-Olortegui M, François R, Pisanic N, Burga R, Peñataro-Yori P, Kosek MN. Antibiotic Resistance of Campylobacter Species in a Pediatric Cohort Study. Antimicrob Agents Chemother 2019; 63:e01911-18. [PMID: 30420482 PMCID: PMC6355604 DOI: 10.1128/aac.01911-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to determine the phenotypic patterns of antibiotic resistance and the epidemiology of drug-resistant Campylobacter spp. from a low-resource setting. A birth cohort of 303 patients was followed until 5 years of age. Stool samples from asymptomatic children (n = 10,008) and those with diarrhea (n = 3,175) were cultured for Campylobacter Disk diffusion for ciprofloxacin (CIP), nalidixic acid (NAL), erythromycin (ERY), azithromycin (AZM), tetracycline (TE), gentamicin (GM), ampicillin (AMP), amoxicillin and clavulanic acid (AMC), ceftriaxone (CRO), chloramphenicol (C), and trimethoprim-sulfamethoxazole (TMS) was determined. Antibiotic resistances in Campylobacter jejuni and non-C. jejuni isolates from surveillance and diarrhea samples were compared, and the association between personal macrolide exposure and subsequent occurrence of a macrolide-resistant Campylobacter spp. was assessed. Of 917 Campylobacter isolates, 77.4% of C. jejuni isolates and 79.8% of non-C. jejuni isolates were resistant to ciprofloxacin, while 4.9% of C. jejuni isolates and 24.8% of non-C. jejuni isolates were not susceptible to azithromycin. Of the 303 children, 33.1% had been diagnosed with a Campylobacter strain nonsusceptible to both azithromycin and ciprofloxacin. Personal macrolide exposure did not affect the risk of macrolide-resistant Campylobacter Amoxicillin and clavulanic acid (94.0%) was one of the antibiotics with the highest rates of susceptibility. There is a high incidence of quinolone- and macrolide-resistant Campylobacter infections in infants under 24 months of age. Given the lack of association between personal exposure to macrolides and a subsequent Campylobacter infection resistant to macrolides, there is a need to evaluate the source of multidrug-resistant (MDR) Campylobacter This study provides compelling evidence to propose amoxicillin/clavulanic acid as a treatment for campylobacteriosis.
Collapse
Affiliation(s)
- Francesca Schiaffino
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Faculty of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Josh M Colston
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Ruthly François
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rosa Burga
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Iquitos, Loreto, Peru
| | - Pablo Peñataro-Yori
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Asociación Benéfica Prisma, Iquitos, Loreto, Peru
| | - Margaret N Kosek
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Asociación Benéfica Prisma, Iquitos, Loreto, Peru
| |
Collapse
|
50
|
Abstract
Campylobacter is a major foodborne pathogen and has become increasingly resistant to clinically important antimicrobials. To cope with the selection pressure from antimicrobial use in both veterinary and human medicine, Campylobacter has developed multiple mechanisms for antibiotic resistance, including modification or mutation of antimicrobial targets, modification or inactivation of antibiotics, and reduced drug accumulation by drug efflux pumps. Some of these mechanisms confer resistance to a specific class of antimicrobials, while others give rise to multidrug resistance. Notably, new antibiotic resistance mechanisms continuously emerge in Campylobacter, and some examples include the recently discovered multidrug resistance genomic islands harboring multiple genes involved in the resistance to aminoglycosides and macrolides, a novel Cfr(C) conferring resistance to phenicols and other drugs, and a potent multidrug efflux pump CmeABC variant (RE-CmeABC) that shows a significantly enhanced function in multidrug resistance and is associated with exceedingly high-level resistance to fluoroquinolones. These newly emerged resistance mechanisms are horizontally transferable and greatly facilitate the adaptation of Campylobacter in the food-producing environments where antibiotics are frequently used. In this article, we will discuss how Campylobacter resists the action of various classes of antimicrobials, with an emphasis on newly discovered mechanisms.
Collapse
|