1
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining Distinct RNA-Protein Interactomes of SARS-CoV-2 Genomic and Subgenomic RNAs. J Proteome Res 2024; 23:149-160. [PMID: 38043095 PMCID: PMC10804885 DOI: 10.1021/acs.jproteome.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M'bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining distinct RNA-protein interactomes of SARS-CoV-2 genomic and subgenomic RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540806. [PMID: 37293069 PMCID: PMC10245570 DOI: 10.1101/2023.05.15.540806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral defense mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA at either of two time points. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. The interactomes indicated viral associations with cell response pathways including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We validated the significance of five protein interactors predicted to exhibit antiviral activity (APOBEC3F, TRIM71, PPP1CC, LIN28B, and MSI2) using siRNA knockdowns, with each knockdown yielding increases in viral production. This study describes new technology for studying SARS-CoV-2 and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T. Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Rachel A. Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - M’bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| |
Collapse
|
3
|
Li ZC, Lu LF, Zhang C, Wang XL, Tong JF, Han KJ, Chen DD, Li XY, Zhou L, Gui JF, Li S. GCRV NS38 counteracts SVCV proliferation by intracellular antagonization during co-infection. Virol Sin 2023; 38:142-156. [PMID: 36526167 PMCID: PMC10006313 DOI: 10.1016/j.virs.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Viral co-infection has been found in animals; however, the mechanisms of co-infection are unclear. The abundance and diversity of viruses in water make fish highly susceptible to co-infection. Here, we reported a co-infection in fish, which resulted in reduced host lethality and illustrated the intracellular molecular mechanism of viral co-infection. The spring viremia of carp virus (SVCV) is a highly lethal virus that infects Cyprinidae, such as zebrafish. The mortality of SVCV infection was significantly reduced when co-infected with the grass carp reovirus (GCRV). The severity of tissue damage and viral proliferation of SVCV was also reduced in co-infection with GCRV. The transcriptome bioinformatics analysis demonstrated that the effect on the host transcripts in response to SVCV infection was significantly reduced in co-infection. After excluding the extracellular interactions of these two viruses, the intracellular mechanisms were studied. We found that the GCRV NS38 remarkably decreased SVCV infection and viral proliferation. The interaction between GCRV NS38 and SVCV nucleoprotein (N) and phosphoprotein (P) proteins was identified, and NS38 downregulated both N and P proteins. Further analysis demonstrated that the N protein was degraded by NS38 indispensable of the autophagy receptor, sequestosome 1 (p62). Meanwhile, K63-linked ubiquitination of the P protein was reduced by NS38, leading to ubiquitinated degradation of the P protein. These results reveal that the intracellular viral protein interactions are a crucial mechanism of co-infection and influence the host pathology and expand our understanding in intracellular viral interactions co-infection.
Collapse
Affiliation(s)
- Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Li Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Jin-Feng Tong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke-Jia Han
- University of Chinese Academy of Sciences, Beijing, 100049, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Commun Biol 2023; 6:28. [PMID: 36631662 PMCID: PMC9834402 DOI: 10.1038/s42003-023-04427-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein-protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein-protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.
Collapse
|
5
|
Yang CW, Shi ZL. Uncovering potential host proteins and pathways that may interact with eukaryotic short linear motifs in viral proteins of MERS, SARS and SARS2 coronaviruses that infect humans. PLoS One 2021; 16:e0246150. [PMID: 33534852 PMCID: PMC7857568 DOI: 10.1371/journal.pone.0246150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A coronavirus pandemic caused by a novel coronavirus (SARS-CoV-2) has spread rapidly worldwide since December 2019. Improved understanding and new strategies to cope with novel coronaviruses are urgently needed. Viruses (especially RNA viruses) encode a limited number and size (length of polypeptide chain) of viral proteins and must interact with the host cell components to control (hijack) the host cell machinery. To achieve this goal, the extensive mimicry of SLiMs in host proteins provides an effective strategy. However, little is known regarding SLiMs in coronavirus proteins and their potential targets in host cells. The objective of this study is to uncover SLiMs in coronavirus proteins that are present within host cells. These SLiMs have a high possibility of interacting with host intracellular proteins and hijacking the host cell machinery for virus replication and dissemination. In total, 1,479 SLiM hits were identified in the 16 proteins of 590 coronaviruses infecting humans. Overall, 106 host proteins were identified that may interact with SLiMs in 16 coronavirus proteins. These SLiM-interacting proteins are composed of many intracellular key regulators, such as receptors, transcription factors and kinases, and may have important contributions to virus replication, immune evasion and viral pathogenesis. A total of 209 pathways containing proteins that may interact with SLiMs in coronavirus proteins were identified. This study uncovers potential mechanisms by which coronaviruses hijack the host cell machinery. These results provide potential therapeutic targets for viral infections.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Center for Applied Artificial Intelligence Research, Soochow University, Taipei, Taiwan
- * E-mail:
| | - Zhi-Ling Shi
- Ocean School of Fuzhou University, Fuzhou University, Fuzhou, China
| |
Collapse
|
6
|
Abdollahi H, Rezaei-Tavirani M, Ghalyanchilangeroudi A, Maghsoudloo H, Hashemzadeh M, Hosseini H, Barin A. Coronavirus: proteomics analysis of chicken kidney tissue infected with variant 2 (IS-1494)-like avian infectious bronchitis virus. Arch Virol 2020; 166:101-113. [PMID: 33083914 PMCID: PMC7574675 DOI: 10.1007/s00705-020-04845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
Avian infectious bronchitis virus is one of the most important gammacoronaviruses, which causes a highly contagious disease. In this study, we investigated changes in the proteome of kidney tissue of specific-pathogen-free (SPF) chickens that were infected with an isolate of the nephrotropic variant 2 genotype (IS/1494/06) of avian coronavirus. Twenty 1-day-old SPF White Leghorn chickens were randomly divided into two groups, each comprising 10 chickens, which were kept in separate positive-pressure isolators. Chickens in group A served as a virus-free control group up to the end of the experiment, whereas chickens in group B were inoculated with 0.1 ml of 104.5 EID50 of the IBV/chicken/Iran/UTIVO-C/2014 isolate of IBV, and kidney tissue samples were collected at 2 and 7 days post-inoculation (dpi) from both groups. Sequencing of five protein spots at 2 dpi and 22 spots at 7 dpi that showed differential expression by two-dimensional electrophoresis (2DE) along with fold change greater than 2 was done by MS-MALDI/TOF/TOF. Furthermore, the corresponding protein-protein interaction (PPI) networks at 2 and 7 dpi were identified to develop a detailed understanding of the mechanism of molecular pathogenesis. Topological graph analysis of this undirected PPI network revealed the effect of 10 genes in the 2 dpi PPI network and nine genes in the 7 dpi PPI network during virus pathogenesis. Proteins that were found by 2DE analysis and MS/TOF-TOF mass spectrometry to be down- or upregulated were subjected to PPI network analysis to identify interactions with other cellular components. The results show that cellular metabolism was altered due to viral infection. Additionally, multifunctional heat shock proteins with a significant role in host cell survival may be employed circuitously by the virus to reach its target. The data from this study suggest that the process of pathogenesis that occurs during avian coronavirus infection involves the regulation of vital cellular processes and the gradual disruption of critical cellular functions.
Collapse
Affiliation(s)
- Hamed Abdollahi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,National Reference Laboratory, Diagnosis & Applied Studies Center, Iran Veterinary Organization, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Hossein Maghsoudloo
- National Reference Laboratory, Diagnosis & Applied Studies Center, Iran Veterinary Organization, Tehran, Iran
| | | | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Islamic Azad University, Alborz, Iran
| | - Abbas Barin
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Khodadadi E, Maroufi P, Khodadadi E, Esposito I, Ganbarov K, Espsoito S, Yousefi M, Zeinalzadeh E, Kafil HS. Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microb Pathog 2020; 146:104241. [PMID: 32387389 PMCID: PMC7199731 DOI: 10.1016/j.micpath.2020.104241] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The recent epidemic outbreak of a novel human coronavirus called SARS-CoV-2 and causing the respiratory tract disease COVID-19 has reached worldwide resonance and a global effort is being undertaken to characterize the molecular features and evolutionary origins of this virus. Therefore, rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments, saving people's lives and preventing epidemics. Additionally, general treatments, coronavirus-specific treatments, and antiviral treatments useful in fighting COVID-19 are addressed. This review sets out to shed light on the SARS-CoV-2 and host receptor recognition, a crucial factor for successful virus infection and taking immune-informatics approaches to identify B- and T-cell epitopes for surface glycoprotein of SARS-CoV-2. A variety of improved or new approaches also have been developed. It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coronavirus infection. Moreover, the genomic sequence of the virus responsible for COVID-19, as well as the experimentally determined three-dimensional structure of the Main protease (Mpro) is available. The reported structure of the target Mpro was described in this review to identify potential drugs for COVID-19 using virtual high throughput screening.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parham Maroufi
- Department of Orthopedy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Ellinger B, Pohlmann D, Woens J, Jäkel FM, Reinshagen J, Stocking C, Prassolov VS, Fehse B, Riecken K. A High-Throughput HIV-1 Drug Screening Platform, Based on Lentiviral Vectors and Compatible with Biosafety Level-1. Viruses 2020; 12:E580. [PMID: 32466195 PMCID: PMC7290285 DOI: 10.3390/v12050580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022] Open
Abstract
HIV-1 infection is a complex, multi-step process involving not only viral, but also multiple cellular factors. To date, drug discovery methods have primarily focused on the inhibition of single viral proteins. We present an efficient and unbiased approach, compatible with biosafety level 1 (BSL-1) conditions, to identify inhibitors of HIV-1 reverse transcription, intracellular trafficking, nuclear entry and genome integration. Starting with a fluorescent assay setup, we systematically improved the screening methodology in terms of stability, efficiency and pharmacological relevance. Stability and throughput were optimized by switching to a luciferase-based readout. BSL-1 compliance was achieved without sacrificing pharmacological relevance by using lentiviral particles pseudo-typed with the mouse ecotropic envelope protein to transduce human PM1 T cells gene-modified to express the corresponding murine receptor. The cellular assay was used to screen 26,048 compounds selected for maximum diversity from a 200,640-compound in-house library. This yielded z' values greater than 0.8 with a hit rate of 3.3% and a confirmation rate of 50%. We selected 93 hits and enriched the collection with 279 similar compounds from the in-house library to identify promising structural features. The most active compounds were validated using orthogonal assay formats. The similarity of the compound profiles across the different platforms demonstrated that the reported lentiviral assay system is a robust and versatile tool for the identification of novel HIV-1 inhibitors.
Collapse
Affiliation(s)
- Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 22525 Hamburg, Germany; (B.E.); (J.R.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Partner site Hamburg, 22525 Hamburg, Germany
| | - Daniel Pohlmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
| | - Jannis Woens
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
| | - Felix M. Jäkel
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
| | - Jeanette Reinshagen
- Department ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 22525 Hamburg, Germany; (B.E.); (J.R.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Partner site Hamburg, 22525 Hamburg, Germany
| | - Carol Stocking
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Vladimir S. Prassolov
- Engelhardt-Institute of Molecular Biology, Russian Academy of Sciences, 117984 Moscow, Russia;
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
- German Center for Infection Research (DZIF), Partner site Hamburg, 20246 Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
| |
Collapse
|
9
|
Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, Narykov O, Sun M, Korkin D. Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses 2020; 12:v12040360. [PMID: 32218151 PMCID: PMC7232164 DOI: 10.3390/v12040360] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
During its first two and a half months, the recently emerged 2019 novel coronavirus, SARS-CoV-2, has already infected over one-hundred thousand people worldwide and has taken more than four thousand lives. However, the swiftly spreading virus also caused an unprecedentedly rapid response from the research community facing the unknown health challenge of potentially enormous proportions. Unfortunately, the experimental research to understand the molecular mechanisms behind the viral infection and to design a vaccine or antivirals is costly and takes months to develop. To expedite the advancement of our knowledge, we leveraged data about the related coronaviruses that is readily available in public databases and integrated these data into a single computational pipeline. As a result, we provide comprehensive structural genomics and interactomics roadmaps of SARS-CoV-2 and use this information to infer the possible functional differences and similarities with the related SARS coronavirus. All data are made publicly available to the research community.
Collapse
Affiliation(s)
- Suhas Srinivasan
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Hongzhu Cui
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Ziyang Gao
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Ming Liu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Winnie Mkandawire
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Oleksandr Narykov
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Mo Sun
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Dmitry Korkin
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Correspondence:
| |
Collapse
|
10
|
Nayak TK, Mamidi P, Sahoo SS, Kumar PS, Mahish C, Chatterjee S, Subudhi BB, Chattopadhyay S, Chattopadhyay S. P38 and JNK Mitogen-Activated Protein Kinases Interact With Chikungunya Virus Non-structural Protein-2 and Regulate TNF Induction During Viral Infection in Macrophages. Front Immunol 2019; 10:786. [PMID: 31031770 PMCID: PMC6473476 DOI: 10.3389/fimmu.2019.00786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 02/02/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne Alphavirus, is endemic in different parts of the globe. The host macrophages are identified as the major cellular reservoirs of CHIKV during infection and this virus triggers robust TNF production in the host macrophages, which might be a key mediator of virus induced inflammation. However, the molecular mechanism underneath TNF induction is not understood yet. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV to address the above-mentioned question. It was observed that CHIKV induces both p38 and JNK phosphorylation in macrophages in a time-dependent manner and p-p38 inhibitor, SB203580 is effective in reducing infection even at lower concentration as compared to the p-JNK inhibitor, SP600125. However, inhibition of p-p38 and p-JNK decreased CHIKV induced TNF production in the host macrophages. Moreover, CHIKV induced macrophage derived TNF was found to facilitate TCR driven T cell activation. Additionally, it was noticed that the expressions of key transcription factors involved mainly in antiviral responses (p-IRF3) and TNF production (p-c-jun) were induced significantly in the CHIKV infected macrophages as compared to the corresponding mock cells. Further, it was demonstrated that CHIKV mediated TNF production in the macrophages is dependent on p38 and JNK MAPK pathways linking p-c-jun transcription factor. Interestingly, it was found that CHIKV nsP2 interacts with both p-p38 and p-JNK MAPKs in the macrophages. This observation was supported by the in silico protein-protein docking analysis which illustrates the specific amino acids responsible for the nsP2-MAPKs interactions. A strong polar interaction was predicted between Thr-180 (within the phosphorylation lip) of p38 and Gln-273 of nsP2, whereas, no such polar interaction was predicted for the phosphorylation lip of JNK which indicates the differential roles of p-p38 and p-JNK during CHIKV infection in the host macrophages. In summary, for the first time it has been shown that CHIKV triggers robust TNF production in the host macrophages via both p-p38 and p-JNK/p-c-jun pathways and the interaction of viral protein, nsP2 with these MAPKs during infection. Hence, this information might shed light in rationale-based drug designing strategies toward a possible control measure of CHIKV infection in future.
Collapse
Affiliation(s)
- Tapas Kumar Nayak
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Subhransu Sekhar Sahoo
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| | - P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| | - Chandan Mahish
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| | | | - Bharat Bhusan Subudhi
- School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| |
Collapse
|
11
|
Interaction of the intrinsically disordered C-terminal domain of the sesbania mosaic virus RNA-dependent RNA polymerase with the viral protein P10 in vitro: modulation of the oligomeric state and polymerase activity. Arch Virol 2019; 164:971-982. [PMID: 30721364 DOI: 10.1007/s00705-019-04163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
The RNA-dependent RNA polymerase (RdRp) of sesbania mosaic virus (SeMV) was previously shown to interact with the viral protein P10, which led to enhanced polymerase activity. In the present investigation, the equilibrium dissociation constant for the interaction between the two proteins was determined to be 0.09 µM using surface plasmon resonance, and the disordered C-terminal domain of RdRp was shown to be essential for binding to P10. The association with P10 brought about a change in the oligomeric state of RdRp, resulting in reduced aggregation and increased polymerase activity. Interestingly, unlike the wild-type RdRp, C-terminal deletion mutants (C del 43 and C del 72) were found to exist predominantly as monomers and were as active as the RdRp-P10 complex. Thus, either the deletion of the C-terminal disordered domain or its masking by binding to P10 results in the activation of polymerase activity. Further, deletion of the C-terminal 85 residues of RdRp resulted in complete loss of activity. Mutation of a conserved tyrosine (RdRp Y480) within motif E, located between 72 and 85 residues from the C-terminus of RdRp, rendered the protein inactive, demonstrating the importance of motif E in RNA synthesis in vitro.
Collapse
|
12
|
Qin Y, Zheng SJ. Infectious Bursal Disease Virus-Host Interactions: Multifunctional Viral Proteins that Perform Multiple and Differing Jobs. Int J Mol Sci 2017; 18:E161. [PMID: 28098808 PMCID: PMC5297794 DOI: 10.3390/ijms18010161] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/24/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poultry disease caused by IBD virus (IBDV). The consequent immunosuppression increases susceptibility to other infectious diseases and the risk of subsequent vaccination failure as well. Since the genome of IBDV is relatively small, it has a limited number of proteins inhibiting the cellular antiviral responses and acting as destroyers to the host defense system. Thus, these virulence factors must be multifunctional in order to complete the viral replication cycle in a host cell. Insights into the roles of these viral proteins along with their multiple cellular targets in different pathways will give rise to a rational design for safer and effective vaccines. Here we summarize the recent findings that focus on the virus-cell interactions during IBDV infection at the protein level.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China.
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China.
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Durmuş S, Ülgen KÖ. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses. FEBS Open Bio 2017; 7:96-107. [PMID: 28097092 PMCID: PMC5221455 DOI: 10.1002/2211-5463.12167] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/06/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023] Open
Abstract
Viruses are obligatory intracellular pathogens and completely depend on their hosts for survival and reproduction. The strategies adopted by viruses to exploit host cell processes and to evade host immune systems during infections may differ largely with the type of the viral genetic material. An improved understanding of these viral infection mechanisms is only possible through a better understanding of the pathogen-host interactions (PHIs) that enable viruses to enter into the host cells and manipulate the cellular mechanisms to their own advantage. Experimentally-verified protein-protein interaction (PPI) data of pathogen-host systems only became available at large scale within the last decade. In this study, we comparatively analyzed the current PHI networks belonging to DNA and RNA viruses and their human host, to get insights into the infection strategies used by these viral groups. We investigated the functional properties of human proteins in the PHI networks, to observe and compare the attack strategies of DNA and RNA viruses. We observed that DNA viruses are able to attack both human cellular and metabolic processes simultaneously during infections. On the other hand, RNA viruses preferentially interact with human proteins functioning in specific cellular processes as well as in intracellular transport and localization within the cell. Observing virus-targeted human proteins, we propose heterogeneous nuclear ribonucleoproteins and transporter proteins as potential antiviral therapeutic targets. The observed common and specific infection mechanisms in terms of viral strategies to attack human proteins may provide crucial information for further design of broad and specific next-generation antiviral therapeutics.
Collapse
Affiliation(s)
- Saliha Durmuş
- Computational Systems Biology GroupDepartment of BioengineeringGebze Technical UniversityKocaeliTurkey
| | - Kutlu Ö. Ülgen
- Department of Chemical EngineeringBoğaziçi UniversityİstanbulTurkey
| |
Collapse
|
14
|
Mehta S, Sreenivasamurthy S, Banerjee S, Mukherjee S, Prasad K, Chowdhary A. Pathway Analysis of Proteomics Profiles in Rabies Infection: Towards Future Biomarkers? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:97-109. [PMID: 26871867 DOI: 10.1089/omi.2015.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rabies is a zoonotic viral disease that invariably leads to fatal encephalitis, which can be prevented provided post-exposure prophylaxis is initiated timely. Ante-mortem diagnostic tests are inconclusive, and rabies is nontreatable once the clinical signs appear. A large number of host factors are responsible for the altered neuronal functions observed in rabies; however their precise role remains uninvestigated. We therefore used two-dimensional electrophoresis and mass spectrometry analysis to identify differentially expressed host proteins in an experimental murine model of rabies. We identified 143 proteins corresponding to 45 differentially expressed spots (p < 0.05) in neuronal tissues of Swiss albino mice in response to infection with neurovirulent rabies strains. Time series analyses revealed that a majority of the alterations occur at 4 to 6 days post infection, in particular affecting the host's cytoskeletal architecture. Extensive pathway analysis and protein interaction studies using the bioinformatic tools such as Ingenuity Pathway Analysis and STRING revealed novel pathways and molecules (e.g., protein ubiquitination) unexplored hitherto. Further activation/inhibition studies of these pathway molecular leads would be relevant to identify novel biomarkers and mechanism-based therapeutics for rabies, a disease that continues to severely impact global health.
Collapse
Affiliation(s)
- Shraddha Mehta
- 1 Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Mumbai, India
| | - Sreelakshmi Sreenivasamurthy
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 Manipal University , Madhav Nagar, Manipal, India
| | - Shefali Banerjee
- 1 Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Mumbai, India
| | - Sandeepan Mukherjee
- 1 Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Mumbai, India
| | - Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India
| | - Abhay Chowdhary
- 1 Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Mumbai, India
| |
Collapse
|
15
|
Sztuba-Solinska J, Diaz L, Kumar MR, Kolb G, Wiley MR, Jozwick L, Kuhn JH, Palacios G, Radoshitzky SR, J Le Grice SF, Johnson RF. A small stem-loop structure of the Ebola virus trailer is essential for replication and interacts with heat-shock protein A8. Nucleic Acids Res 2016; 44:9831-9846. [PMID: 27651462 PMCID: PMC5175359 DOI: 10.1093/nar/gkw825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/03/2023] Open
Abstract
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA–RNA and RNA–protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2′-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3′ stem-loop (nucleotides 1868–1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- RT Biochemistry Section, Basic Research Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Larissa Diaz
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Mia R Kumar
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gaëlle Kolb
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Michael R Wiley
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Lucas Jozwick
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- RT Biochemistry Section, Basic Research Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
16
|
Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol 2015; 89:6352-63. [PMID: 25855731 PMCID: PMC4474317 DOI: 10.1128/jvi.00315-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoV) are a significant cause of acute gastroenteritis in the developed world, and yet our understanding of the molecular pathways involved in norovirus replication and pathogenesis has been limited by the inability to efficiently culture these viruses in the laboratory. Using the murine norovirus (MNV) model, we have recently identified a network of host factors that interact with the 5' and 3' extremities of the norovirus RNA genome. In addition to a number of well-known cellular RNA binding proteins, the molecular chaperone Hsp90 was identified as a component of the ribonucleoprotein complex. Here, we show that the inhibition of Hsp90 activity negatively impacts norovirus replication in cell culture. Small-molecule-mediated inhibition of Hsp90 activity using 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) revealed that Hsp90 plays a pleiotropic role in the norovirus life cycle but that the stability of the viral capsid protein is integrally linked to Hsp90 activity. Furthermore, we demonstrate that both the MNV-1 and the HuNoV capsid proteins require Hsp90 activity for their stability and that targeting Hsp90 in vivo can significantly reduce virus replication. In summary, we demonstrate that targeting cellular proteostasis can inhibit norovirus replication, identifying a potential novel therapeutic target for the treatment of norovirus infections. IMPORTANCE HuNoV are a major cause of acute gastroenteritis around the world. RNA viruses, including noroviruses, rely heavily on host cell proteins and pathways for all aspects of their life cycle. Here, we identify one such protein, the molecular chaperone Hsp90, as an important factor required during the norovirus life cycle. We demonstrate that both murine and human noroviruses require the activity of Hsp90 for the stability of their capsid proteins. Furthermore, we demonstrate that targeting Hsp90 activity in vivo using small molecule inhibitors also reduces infectious virus production. Given the considerable interest in the development of Hsp90 inhibitors for use in cancer therapeutics, we identify here a new target that could be explored for the development of antiviral strategies to control norovirus outbreaks and treat chronic norovirus infection in immunosuppressed patients.
Collapse
|
17
|
Maier HJ, Bickerton E, Britton P, Jones LM, Neveu G, Roussarie JP, Rottier PJM, Tangy F, de Haan CAM. A field-proven yeast two-hybrid protocol used to identify coronavirus-host protein-protein interactions. Methods Mol Biol 2014; 1282:213-29. [PMID: 25720483 PMCID: PMC7121825 DOI: 10.1007/978-1-4939-2438-7_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Over the last 2 decades, yeast two-hybrid became an invaluable technique to decipher protein-protein interaction networks. In the field of virology, it has proven instrumental to identify virus-host interactions that are involved in viral embezzlement of cellular functions and inhibition of immune mechanisms. Here, we present a yeast two-hybrid protocol that has been used in our laboratory since 2006 to search for cellular partners of more than 300 viral proteins. Our aim was to develop a robust and straightforward pipeline, which minimizes false-positive interactions with a decent coverage of target cDNA libraries, and only requires a minimum of equipment. We also discuss reasons that motivated our technical choices and compromises that had to be made. This protocol has been used to screen most non-structural proteins of murine hepatitis virus (MHV), a member of betacoronavirus genus, against a mouse brain cDNA library. Typical results were obtained and are presented in this report.
Collapse
Affiliation(s)
- Helena Jane Maier
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| | - Erica Bickerton
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| | - Paul Britton
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Greco TM, Diner BA, Cristea IM. The Impact of Mass Spectrometry-Based Proteomics on Fundamental Discoveries in Virology. Annu Rev Virol 2014; 1:581-604. [PMID: 26958735 DOI: 10.1146/annurev-virology-031413-085527] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, mass spectrometry has emerged as a core component of fundamental discoveries in virology. As a consequence of their coevolution, viruses and host cells have established complex, dynamic interactions that function either in promoting virus replication and dissemination or in host defense against invading pathogens. Thus, viral infection triggers an impressive range of proteome changes. Alterations in protein abundances, interactions, posttranslational modifications, subcellular localizations, and secretion are temporally regulated during the progression of an infection. Consequently, understanding viral infection at the molecular level requires versatile approaches that afford both breadth and depth of analysis. Mass spectrometry is uniquely positioned to bridge this experimental dichotomy. Its application to both unbiased systems analyses and targeted, hypothesis-driven studies has accelerated discoveries in viral pathogenesis and host defense. Here, we review the contributions of mass spectrometry-based proteomic approaches to understanding viral morphogenesis, replication, and assembly and to characterizing host responses to infection.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Benjamin A Diner
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
19
|
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones D, Kim PM, Kriwacki R, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright P, Babu MM. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631. [PMID: 24773235 PMCID: PMC4095912 DOI: 10.1021/cr400525m] [Citation(s) in RCA: 1494] [Impact Index Per Article: 135.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Robin van der Lee
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Centre
for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The
Netherlands
| | - Marija Buljan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Benjamin Lang
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gary W. Daughdrill
- Department
of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 3720 Spectrum Boulevard, Suite 321, Tampa, Florida 33612, United States
| | - A. Keith Dunker
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary
| | - Julian Gough
- Department
of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, United Kingdom
| | - Joerg Gsponer
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David
T. Jones
- Bioinformatics
Group, Department of Computer Science, University
College London, London, WC1E 6BT, United Kingdom
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular
Genetics, and Department of Computer Science, University
of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Richard
W. Kriwacki
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
| | - Christopher J. Oldfield
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Peter Tompa
- VIB Department
of Structural Biology, Vrije Universiteit
Brussel, Brussels, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vladimir N. Uversky
- Department
of Molecular Medicine and USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation,
Russian Academy of Sciences, Pushchino,
Moscow Region, Russia
| | - Peter
E. Wright
- Department
of Integrative Structural and Computational Biology and Skaggs Institute
of Chemical Biology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Madan Babu
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
20
|
Govind K, Bakshi A, Savithri HS. Interaction of Sesbania mosaic virus (SeMV) RNA-dependent RNA polymerase (RdRp) with the p10 domain of polyprotein 2a and its implications in SeMV replication. FEBS Open Bio 2014; 4:362-9. [PMID: 24918050 PMCID: PMC4050190 DOI: 10.1016/j.fob.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 01/10/2023] Open
Abstract
SeMV RdRp strongly interacts with p10 domain of polyprotein 2a. C-terminal disordered domain of RdRp is required for interaction with p10. p10 acts as a positive regulator of RdRp activity.
Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp–p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, CΔ43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp.
Collapse
Key Words
- 3AT, 3 amino-1,2,4 triazol
- CP, coat protein
- IPTG, isopropyl-1thio-β-d-galactopyranoside
- LB, Luria Bertani broth
- LacZ, β-galactosidase
- MEL1, α-galactosidase
- MP, movement protein
- Ni–NTA, nickel–nitrilo tri-acetic acid
- ONPG, ortho-nitrophenyl-β-galactoside
- PBST, phosphate buffered saline with 0.1% TWEEN 20
- Pro, protease
- Protein-protein interactions
- RNA-dependent RNA polymerase (RdRp)
- RdRp, RNA-dependent RNA polymerase
- Replication
- SD, synthetic dropout
- SeMV, Sesbania mosaic virus
- Sesbania mosaic virus
- Sobemovirus
- VPg, viral protein genome linked
- Y2H, yeast two hybrid
Collapse
Affiliation(s)
- Kunduri Govind
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Bakshi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
21
|
Komarova AV, Combredet C, Sismeiro O, Dillies MA, Jagla B, Sanchez David RY, Vabret N, Coppée JY, Vidalain PO, Tangy F. Identification of RNA partners of viral proteins in infected cells. RNA Biol 2013; 10:944-56. [PMID: 23595062 PMCID: PMC4111734 DOI: 10.4161/rna.24453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 12/20/2022] Open
Abstract
RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of protein-protein and RNA-protein interactions within a cell to achieve efficient replication and spreading. Deciphering these interactions is essential to reach a comprehensive understanding of the viral infection process. To study RNA-protein complexes directly in infected cells, we developed a new approach based on recombinant viruses expressing tagged viral proteins that were purified together with their specific RNA partners. High-throughput sequencing was then used to identify these RNA molecules. As a proof of principle, this method was applied to measles virus nucleoprotein (MV-N). It revealed that in addition to full-length genomes, MV-N specifically interacted with a unique population of 5' copy-back defective interfering RNA genomes that we characterized. Such RNA molecules were able to induce strong activation of interferon-stimulated response element promoter preferentially via the cytoplasmic pattern recognition receptor RIG-I protein, demonstrating their biological functionality. Thus, this method provides a new platform to explore biologically active RNA-protein networks that viruses establish within infected cells.
Collapse
Affiliation(s)
- Anastassia V. Komarova
- Unité de Génomique virale et Vaccination; Institut Pasteur; CNRS URA-3015; Paris, France
| | - Chantal Combredet
- Unité de Génomique virale et Vaccination; Institut Pasteur; CNRS URA-3015; Paris, France
| | - Odile Sismeiro
- Plateforme Transcriptome et Epigénome – Génopole; Institut Pasteur; Paris, France
| | - Marie-Agnès Dillies
- Plateforme Transcriptome et Epigénome – Génopole; Institut Pasteur; Paris, France
| | - Bernd Jagla
- Plateforme Transcriptome et Epigénome – Génopole; Institut Pasteur; Paris, France
| | | | - Nicolas Vabret
- Unité de Génomique virale et Vaccination; Institut Pasteur; CNRS URA-3015; Paris, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigénome – Génopole; Institut Pasteur; Paris, France
| | | | - Frédéric Tangy
- Unité de Génomique virale et Vaccination; Institut Pasteur; CNRS URA-3015; Paris, France
| |
Collapse
|
22
|
Neveu G, Cassonnet P, Vidalain PO, Rolloy C, Mendoza J, Jones L, Tangy F, Muller M, Demeret C, Tafforeau L, Lotteau V, Rabourdin-Combe C, Travé G, Dricot A, Hill DE, Vidal M, Favre M, Jacob Y. Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase. Methods 2012; 58:349-59. [PMID: 22898364 DOI: 10.1016/j.ymeth.2012.07.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 04/26/2012] [Accepted: 07/28/2012] [Indexed: 10/28/2022] Open
Abstract
Comparative interactomics is a strategy for inferring potential interactions among orthologous proteins or "interologs". Herein we focus, in contrast to standard homology-based inference, on the divergence of protein interaction profiles among closely related organisms, showing that the approach can correlate specific traits to phenotypic differences. As a model, this new comparative interactomic approach was applied at a large scale to human papillomaviruses (HPVs) proteins. The oncogenic potential of HPVs is mainly determined by the E6 and E7 early proteins. We have mapped and overlapped the virus-host protein interaction networks of E6 and E7 proteins from 11 distinct HPV genotypes, selected for their different tropisms and pathologies. We generated robust and comprehensive datasets by combining two orthogonal protein interaction assays: yeast two-hybrid (Y2H), and our recently described "high-throughput Gaussia princeps protein complementation assay" (HT-GPCA). HT-GPCA detects protein interaction by measuring the interaction-mediated reconstitution of activity of a split G. princeps luciferase. Hierarchical clustering of interaction profiles recapitulated HPV phylogeny and was used to correlate specific virus-host interaction profiles with pathological traits, reflecting the distinct carcinogenic potentials of different HPVs. This comparative interactomics constitutes a reliable and powerful strategy to decipher molecular relationships in virtually any combination of microorganism-host interactions.
Collapse
Affiliation(s)
- Grégory Neveu
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen TW, Gan RRC, Wu TH, Lin WC, Tang P. VIP DB--a viral protein domain usage and distribution database. Genomics 2012; 100:149-56. [PMID: 22735743 DOI: 10.1016/j.ygeno.2012.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/19/2022]
Abstract
During the viral infection and replication processes, viral proteins are highly regulated and may interact with host proteins. However, the functions and interaction partners of many viral proteins have yet to be explored. Here, we compiled a VIral Protein domain DataBase (VIP DB) to associate viral proteins with putative functions and interaction partners. We systematically assign domains and infer the functions of proteins and their protein interaction partners from their domain annotations. A total of 2,322 unique domains that were identified from 2,404 viruses are used as a starting point to correlate GO classification, KEGG metabolic pathway annotation and domain-domain interactions. Of the unique domains, 42.7% have GO records, 39.6% have at least one domain-domain interaction record and 26.3% can also be found in either mammals or plants. This database provides a resource to help virologists identify potential roles for viral protein. All of the information is available at http://vipdb.cgu.edu.tw.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | |
Collapse
|
24
|
Karlin D, Belshaw R. Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS One 2012; 7:e31719. [PMID: 22403617 PMCID: PMC3293882 DOI: 10.1371/journal.pone.0031719] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/18/2012] [Indexed: 11/19/2022] Open
Abstract
Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11-16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins.
Collapse
Affiliation(s)
- David Karlin
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
25
|
Hillung J, Ruiz-López E, Bellón-Echeverría I, Clemente-Casares P, Mas A. Characterization of the interaction between hepatitis C virus NS5B and the human oestrogen receptor alpha. J Gen Virol 2011; 93:780-785. [PMID: 22170636 DOI: 10.1099/vir.0.039396-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is part of the viral replicative complex and plays a crucial role in HCV replication. It has been described that NS5B interacts with cellular proteins, and that interactions between NS5B and host proteins are crucial for viral replication. Some of the host factors involved in the HCV replication cycle include the oestrogen receptor alpha (ESR1), protein kinases (c-Src) and chaperones (Hsp70). In this report, we determine the requirements for the interplay between NS5B and the domain C of ESR1 (ESR1C) by using Förster Resonance Energy Transfer. NS5B-ESR1C and ESR1C-ESR1C interactions are dependent on ionic strength, indicating that contacts are mainly electrostatic. Additionally, NS5B residues involved in NS5B oligomerization were also essential for NS5B-ESR1C interaction. The study of the interactions among viral and host factors will provide data to establish innovative therapeutic strategies and the development of new antiviral drugs.
Collapse
Affiliation(s)
- Julia Hillung
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Elena Ruiz-López
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Itxaso Bellón-Echeverría
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Antonio Mas
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| |
Collapse
|
26
|
Komarova AV, Combredet C, Meyniel-Schicklin L, Chapelle M, Caignard G, Camadro JM, Lotteau V, Vidalain PO, Tangy F. Proteomic analysis of virus-host interactions in an infectious context using recombinant viruses. Mol Cell Proteomics 2011; 10:M110.007443. [PMID: 21911578 DOI: 10.1074/mcp.m110.007443] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of interactions with host cell components to achieve replication and spreading. Ideally, these virus-host protein interactions should be mapped directly in infected cell culture, but such a high standard is often difficult to reach when using conventional approaches. We thus developed a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect physical binding partners during infection. As a proof of concept, we engineered a recombinant measles virus (MV) expressing one of its virulence factors, the MV-V protein, with a One-STrEP amino-terminal tag. This allowed virus-host protein complex analysis directly from infected cells by combining modified tandem affinity chromatography and mass spectrometry analysis. Using this approach, we established a prosperous list of 245 cellular proteins interacting either directly or indirectly with MV-V, and including four of the nine already known partners of this viral factor. These interactions were highly specific of MV-V because they were not recovered when the nucleoprotein MV-N, instead of MV-V, was tagged. Besides key components of the antiviral response, cellular proteins from mitochondria, ribosomes, endoplasmic reticulum, protein phosphatase 2A, and histone deacetylase complex were identified for the first time as prominent targets of MV-V and the critical role of the later protein family in MV replication was addressed. Most interestingly, MV-V showed some preferential attachment to essential proteins in the human interactome network, as assessed by centrality and interconnectivity measures. Furthermore, the list of MV-V interactors also showed a massive enrichment for well-known targets of other viruses. Altogether, this clearly supports our approach based on reverse genetics of viruses combined with high-throughput proteomics to probe the interaction network that viruses establish in infected cells.
Collapse
Affiliation(s)
- Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS URA 3015, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|