1
|
Aranjuez GF, Patel O, Patel D, Jewett TJ. The N-terminus of the Chlamydia trachomatis effector Tarp engages the host Hippo pathway. Microbiol Spectr 2025; 13:e0259624. [PMID: 40062849 PMCID: PMC11960468 DOI: 10.1128/spectrum.02596-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate, intracellular Gram-negative bacteria and the leading bacterial sexually transmitted infection in the United States. Chlamydia manipulates the host cell biology using various secreted bacterial effectors during its intracellular development. The early effector translocated actin-recruiting phosphoprotein (Tarp), important for Chlamydia entry, has a well-characterized C-terminal region which can polymerize and bundle F-actin. In contrast, not much is known about the function of the N-terminus of Tarp (N-Tarp), though present in many Chlamydia spp. To address this, we use Drosophila melanogaster as an in vivo cell biology platform to study N-Tarp-host interactions. Transgenic expression of N-Tarp in Drosophila results in developmental phenotypes consistent with altered host Salvador-Warts-Hippo signaling, a conserved signaling cascade that regulates host cell proliferation and survival. We studied the N-Tarp function in larval imaginal wing discs, which are sensitive to perturbations in Hippo signaling. N-Tarp causes wing disc overgrowth and a concomitant increase in adult wing size, phenocopying overexpression of the Hippo co-activator Yorkie. N-Tarp also causes upregulation of Hippo target genes. Last, N-Tarp-induced phenotypes can be rescued by reducing the levels of Yorkie or the Hippo target genes CycE and Drosophila inhibitor of apoptosis 1 (Diap1). Thus, we provide evidence that the N-terminal region of the Chlamydia effector Tarp is sufficient to alter host Hippo signaling and acts upstream of the co-activator Yorkie. IMPORTANCE The survival of obligate intracellular bacteria like Chlamydia depends on the survival of the host cell itself. It is not surprising that Chlamydia-infected cells are resistant to cell death, though the exact molecular mechanism is largely unknown. Here, we establish that the N-terminal region of the well-known Ct early effector Tarp can alter Hippo signaling in vivo. Only recently implicated in Chlamydia infection, the Hippo pathway is known to promote cell survival. Our findings illuminate one possible mechanism for Chlamydia to promote host cell survival during infection. We further demonstrate the utility of Drosophila melanogaster as a tool in the study of effector function.
Collapse
Affiliation(s)
- George F. Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Om Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Dev Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J. Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Aranjuez GF, Patel O, Patel D, Jewett TJ. The N-terminus of the Chlamydia trachomatis effector Tarp engages the host Hippo pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612603. [PMID: 39314337 PMCID: PMC11419093 DOI: 10.1101/2024.09.12.612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chlamydia trachomatis is an obligate, intracellular Gram-negative bacteria and the leading bacterial STI in the United States. Chlamydia's developmental cycle involves host cell entry, replication within a parasitophorous vacuole called an inclusion, and induction of host cell lysis to release new infectious particles. During development, Chlamydia manipulates the host cell biology using various secreted bacterial effectors. The early effector Tarp is important for Chlamydia entry via its well-characterized C-terminal region which can polymerize and bundle F-actin. In contrast, not much is known about the function of Tarp's N-terminus (N-Tarp), though this N-terminal region is present in many Chlamydia species. To address this, we use Drosophila melanogaster as an in vivo cell biology platform to study N-Tarp-host interactions. Drosophila development is well-characterized such that developmental phenotypes can be traced back to the perturbed molecular pathway. Transgenic expression of N-Tarp in Drosophila tissues results in phenotypes consistent with altered host Hippo signaling. The Salvador-Warts-Hippo pathway is a conserved signaling cascade that regulates host cell proliferation and survival during normal animal development. We studied N-Tarp function in larval imaginal wing discs, which are sensitive to perturbations in Hippo signaling. N-Tarp causes wing disc overgrowth and a concomitant increase in adult wing size, phenocopying overexpression of the Hippo co-activator Yorkie. N-Tarp also causes upregulation of Hippo target genes. Last, N-Tarp-induced phenotypes can be rescued by reducing the levels of Yorkie, or the Hippo target genes CycE and Diap1. Thus, we provide the first evidence that the N-terminal region of the Chlamydia effector Tarp is sufficient to alter host Hippo signaling and acts upstream of the co-activator Yorkie. Chlamydia alters host cell apoptosis during infection, though the exact mechanism remains unknown. Our findings implicate the N-terminal region of Tarp as a way to manipulate the host Hippo signaling pathway, which directly influences cell survival.
Collapse
Affiliation(s)
- George F Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Om Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Dev Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Travis J Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| |
Collapse
|
3
|
Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071065. [PMID: 35888153 PMCID: PMC9323215 DOI: 10.3390/life12071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Currently, Chlamydia trachomatis still possesses a significant impact on public health, with more than 130 million new cases each year, alongside a high prevalence of asymptomatic infections (approximately 80% in women and 50% in men). C. trachomatis infection involves a wide range of different cell types, from cervical epithelial cells, testicular Sertoli cells to Synovial cells, leading to a broad spectrum of pathologies of varying severity both in women and in men. Several two-dimensional in vitro cellular models have been employed for investigating C. trachomatis host–cell interaction, although they present several limitations, such as the inability to mimic the complex and dynamically changing structure of in vivo human host-tissues. Here, we present a brief overview of the most cutting-edge three-dimensional cell-culture models that mimic the pathophysiology of in vivo human tissues and organs for better translating experimental findings into a clinical setting. Future perspectives in the field of C. trachomatis research are also provided.
Collapse
|
4
|
Abisoye-Ogunniyan A, Carrano IM, Weilhammer DR, Gilmore SF, Fischer NO, Pal S, de la Maza LM, Coleman MA, Rasley A. A Survey of Preclinical Studies Evaluating Nanoparticle-Based Vaccines Against Non-Viral Sexually Transmitted Infections. Front Pharmacol 2021; 12:768461. [PMID: 34899322 PMCID: PMC8662999 DOI: 10.3389/fphar.2021.768461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
A worldwide estimate of over one million STIs are acquired daily and there is a desperate need for effective preventive as well as therapeutic measures to curtail this global health burden. Vaccines have been the most effective means for the control and potential eradication of infectious diseases; however, the development of vaccines against STIs has been a daunting task requiring extensive research for the development of safe and efficacious formulations. Nanoparticle-based vaccines represent a promising platform as they offer benefits such as targeted antigen presentation and delivery, co-localized antigen-adjuvant combinations for enhanced immunogenicity, and can be designed to be biologically inert. Here we discuss promising types of nanoparticles along with outcomes from nanoparticle-based vaccine preclinical studies against non-viral STIs including chlamydia, syphilis, gonorrhea, and recommendations for future nanoparticle-based vaccines against STIs.
Collapse
Affiliation(s)
- Abisola Abisoye-Ogunniyan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Isabella M Carrano
- Department of Plant and Microbial Biology, Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, United States
| | - Dina R Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sean F Gilmore
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O Fischer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
5
|
Liu C, Hufnagel K, O'Connell CM, Goonetilleke N, Mokashi N, Waterboer T, Tollison TS, Peng X, Wiesenfeld HC, Hillier SL, Zheng X, Darville T. Reduced Endometrial Ascension and Enhanced Reinfection Associated with IgG Antibodies to Specific Chlamydia trachomatis Proteins in Women at Risk for Chlamydia. J Infect Dis 2021; 225:846-855. [PMID: 34610131 DOI: 10.1093/infdis/jiab496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous research revealed antibodies targeting Chlamydia trachomatis (CT) elementary bodies was not associated with reduced endometrial or incident infection in CT-exposed women. However, data on the role of CT protein-specific antibodies in protection are limited. METHODS A whole-proteome CT array screening serum pools from CT-exposed women identified 121 immunoprevalent proteins. Individual sera were probed using a focused array. IgG antibody frequencies and endometrial or incident infection relationships were examined using Wilcoxon Rank sum test. The impact of breadth and magnitude of protein-specific IgGs on ascension and incident infection were examined using multivariable stepwise logistic regression. Complementary RNA-sequencing quantified CT gene transcripts in cervical swabs from infected women. RESULTS IgG to Pgp3 and CT005 were associated with reduced endometrial infection; anti-CT443, -CT486 and -CT123 were associated with increased incident infection. Increased breadth of protein recognition did not however predict protection from endometrial or incident infection. mRNAs for immunoprevalent CT proteins were highly abundant in the cervix. CONCLUSIONS Protein-specific CT antibodies are not sufficient to protect against ascending or incident infection but broad recognition of CT proteins by IgG correlates with cervical CT gene transcript abundance, suggesting CT protein abundance correlates with immunogenicity and signifies their potential as vaccine candidates.
Collapse
Affiliation(s)
- Chuwen Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrin Hufnagel
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Neha Mokashi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Tammy S Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Xiaojing Zheng
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Murray SM, McKay PF. Chlamydia trachomatis: Cell biology, immunology and vaccination. Vaccine 2021; 39:2965-2975. [PMID: 33771390 DOI: 10.1016/j.vaccine.2021.03.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chlamydia trachomatis is the causative agent of a highly prevalent sexually transmitted bacterial disease and is associated with a number of severe disease complications. Current therapy options are successful at treating disease, but patients are left without protective immunity and do not benefit the majority asymptomatic patients who do not seek treatment. As such, there is a clear need for a broad acting, protective vaccine that can prevent transmission and protect against symptomatic disease presentation. There are three key elements that underlie successful vaccine development: 1) Chlamydia biology and immune-evasion adaptations, 2) the correlates of protection that prevent disease in natural and experimental infection, 3) reflection upon the evidence provided by previous vaccine attempts. In this review, we give an overview of the unique intra-cellular biology of C. trachomatis and give insight into the dynamic combination of adaptations that allow Chlamydia to subvert host immunity and survive within the cell. We explore the current understanding of chlamydial immunity in animal models and in humans and characterise the key immune correlates of protection against infection. We discuss in detail the specific immune interactions involved in protection, with relevance placed on the CD4+ T lymphocyte and B lymphocyte responses that are key to pathogen clearance. Finally, we provide a timeline of C. trachomatis vaccine research to date and evaluate the successes and failures in development so far. With insight from these three key elements of research, we suggest potential solutions for chlamydial vaccine development and promising avenues for further exploration.
Collapse
Affiliation(s)
- Sam M Murray
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
7
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
8
|
Marschall MT, Simnacher U, Walther P, Essig A, Hagemann JB. The Putative Type III Secreted Chlamydia abortus Virulence-Associated Protein CAB063 Targets Lamin and Induces Apoptosis. Front Microbiol 2020; 11:1059. [PMID: 32523581 PMCID: PMC7261910 DOI: 10.3389/fmicb.2020.01059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 01/15/2023] Open
Abstract
Since intracellular survival of all chlamydiae depends on the manipulation of the host cell through type III secreted effector proteins, their characterization is crucial for the understanding of chlamydial pathogenesis. We functionally characterized the putative type III secreted Chlamydia abortus protein CAB063, describe its intracellular localization and identified pro- and eukaryotic binding partners. Based on an experimental infection model and plasmid transfections, we investigated the subcellular localization of CAB063 by immunofluorescence microscopy, immunoelectron microscopy, and Western blot analysis. Pro- and eukaryotic targets were identified by co-immunofluorescence, co-immunoprecipitation, and mass spectrometry. Transmission electron microscopy and flow cytometry were used for morphological and functional investigations on host cell apoptosis. CAB063 localized in the nuclear membrane of the host cell nucleus and we identified the chaperone HSP70 and lamin A/C as pro- and eukaryotic targets, respectively. CAB063-dependent morphological alterations of the host cell nucleus correlated with increased apoptosis rates of infected and CAB063-transfected cells. We provide evidence that CAB063 is a chaperone-folded type III secreted C. abortus virulence factor that targets lamin thereby altering the host cell nuclear membrane structure. This process may be responsible for an increased apoptosis rate at the end of the chlamydial developmental cycle, at which CAB063 is physiologically expressed.
Collapse
Affiliation(s)
| | - Ulrike Simnacher
- Institute of Medical Microbiology and Hygiene, Ulm University Hospital, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Andreas Essig
- Institute of Medical Microbiology and Hygiene, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
9
|
Epidermal Growth Factor Receptor and Transforming Growth Factor β Signaling Pathways Cooperate To Mediate Chlamydia Pathogenesis. Infect Immun 2020; 88:IAI.00819-19. [PMID: 31964750 DOI: 10.1128/iai.00819-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Human genital Chlamydia infection is a major public health concern due to the serious reproductive system complications. Chlamydia binds several receptor tyrosine kinases (RTKs) on host cells, including the epidermal growth factor receptor (EGFR), and activates cellular signaling cascades for host invasion, cytoskeletal remodeling, optimal inclusion development, and induction of pathogenic epithelial-mesenchyme transition (EMT). Chlamydia also upregulates transforming growth factor beta (TGF-β) expression, whose signaling pathway synergizes with the EGFR cascade, but its role in infectivity, inclusions, and EMT induction is unknown. We hypothesized that the EGFR and TGF-β signaling pathways cooperate during chlamydial infection for optimal inclusion development and stable EMT induction. The results revealed that Chlamydia upregulated TGF-β expression as early as 6 h postinfection of epithelial cells and stimulated both the EGFR and TGF-β signaling pathways. Inhibition of either the EGFR or TGF-βR1 signaling substantially reduced inclusion development; however, the combined inhibition of both EGFR and TGF-βR1 signaling reduced inclusions by over 90% and prevented EMT induction. Importantly, EGFR inhibition suppressed TGF-β expression, and an inhibitory thrombospondin-1 (Tsp1)-based peptide inhibited chlamydia-induced EMT, revealing a major source of active TGF-β during infection. Finally, TGF-βR signaling inhibition suppressed the expression of transforming acidic coiled-coil protein-3 (TACC3), which stabilizes EGFR signaling, suggesting reciprocal regulation between TGF-β and EGFR signaling during chlamydial infection. Thus, RTK-mediated host invasion by chlamydia upregulated TGF-β expression and signaling, which cooperated with other cellular signaling cascades and cytoskeletal remodeling to support optimal inclusion development and EMT induction. This finding may provide new targets for chlamydial disease biomarkers and prevention.
Collapse
|
10
|
Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions. Med Microbiol Immunol 2020; 209:265-275. [PMID: 32072248 PMCID: PMC7223518 DOI: 10.1007/s00430-020-00663-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023]
Abstract
A central challenge in infection medicine is to determine the structure and function of host-pathogen protein-protein interactions to understand how these interactions facilitate bacterial adhesion, dissemination and survival. In this review, we focus on proteomics, electron cryo-microscopy and structural modeling to showcase instances where affinity-purification (AP) and cross-linking (XL) mass spectrometry (MS) has advanced our understanding of host-pathogen interactions. We highlight cases where XL-MS in combination with structural modeling has provided insight into the quaternary structure of interspecies protein complexes. We further exemplify how electron cryo-tomography has been used to visualize bacterial-human interactions during attachment and infection. Lastly, we discuss how AP-MS, XL-MS and electron cryo-microscopy and -tomography together with structural modeling approaches can be used in future studies to broaden our knowledge regarding the function, dynamics and evolution of such interactions. This knowledge will be of relevance for future drug and vaccine development programs.
Collapse
|
11
|
Di Pietro M, Filardo S, Romano S, Sessa R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019; 7:microorganisms7050140. [PMID: 31100923 PMCID: PMC6560445 DOI: 10.3390/microorganisms7050140] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Research in Chlamydia trachomatis and Chlamydia pneumoniae has gained new traction due to recent advances in molecular biology, namely the widespread use of the metagenomic analysis and the development of a stable genomic transformation system, resulting in a better understanding of Chlamydia pathogenesis. C. trachomatis, the leading cause of bacterial sexually transmitted diseases, is responsible of cervicitis and urethritis, and C. pneumoniae, a widespread respiratory pathogen, has long been associated with several chronic inflammatory diseases with great impact on public health. The present review summarizes the current evidence regarding the complex interplay between C. trachomatis and host defense factors in the genital micro-environment as well as the key findings in chronic inflammatory diseases associated to C. pneumoniae.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| |
Collapse
|
12
|
Naveed M, Mehboob MZ, Hussain A, Ikram K, Talat A, Zeeshan N. Structural and Functional Annotation of Conserved Virulent Hypothetical Proteins in Chlamydia Trachomatis: An In-Silico Approach. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181107111259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Though after a start of genome sequencing most of the protein sequences are deposited in databases, some proteins remain to be unannotated and functionally uncharacterized. Chlamydia trachomatis L2C is a gram-negative pathogen bacterium involved in causing severe disorders like lymphogranuloma venereum, nongonococcal urethritis, and cervicitis. <P> Objectives: Analyzing and annotating the hypothetical proteins can help to understand its pathogenicity and therapeutic hotspots. Its genome encodes a total of 221 hypothetical proteins and out of these, 14 hypothetical proteins are declared as virulent by virulence prediction server (VirulentPred). <P> Methods: In this study, the functional and structural analysis was carried out by conserve domain finding servers, protein function annotators and physiochemical properties predictors. Proteinprotein interactions studies revealed the involvement of these virulent HPs in a number of pathways, which would be of interest for drug designers. <P> Results: Classifier tool was used to classify the virulent hypothetical proteins into enzymes, membrane protein, transporter and regulatory protein groups. <P> Conclusion: Our study would help to understand the mechanisms of pathogenesis and new potential therapeutic targets for a couple of diseases caused by C. trachomatis.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | | | - Aadil Hussain
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Khadija Ikram
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Attha Talat
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| |
Collapse
|
13
|
Sánchez-Anguiano LF, Velázquez-Hernández N, Guerra-Infante FM, Aguilar-Durán M, Pérez-Álamos AR, Estrada-Martínez S, Navarrete-Flores JA, Sandoval-Carrillo AA, Antuna-Salcido EI, Hernández-Tinoco J, Alvarado-Esquivel C. Prevalence of Chlamydia trachomatis Infection Diagnosed by Polymerase Chain Reaction in Female Sex Workers in a Northern Mexican City. Eur J Microbiol Immunol (Bp) 2019; 9:5-8. [PMID: 30967969 PMCID: PMC6444802 DOI: 10.1556/1886.2018.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose We aimed to determine the association between Chlamydia trachomatis infection and female sex work, and the association between sociodemographic, obstetric, and behavioral characteristics of female sex workers and C. trachomatis infection. Methods Through a case–control study design, we studied 201 female sex workers and 201 age-matched women without sex work in Durango City, Mexico. C. trachomatis DNA was detected in cervical swab samples using polymerase chain reaction. Results C. trachomatis DNA was detected in 32 (15.9%) of the 201 cases and in 6 (3.0%) of the 201 controls (odds ratio [OR] = 6.15; 95% confidence interval [CI]: 2.5–15.0; P < 0.001). The frequency of infection with C. trachomatis in female sex workers did not vary (P > 0.05) regardless of the history of pregnancies, deliveries, cesarean sections, or miscarriages. Regression analysis of the behavioral characteristics showed that infection with C. trachomatis was associated only with consumption of alcohol (OR = 2.39; 95% CI: 1.0–5.71; P = 0.04). Conclusions: We conclude that C. trachomatis infection is associated with female sex work in Durango City, Mexico. This is the first age-matched case–control study on the prevalence of C. trachomatis infection in female sex workers in Mexico using detection of C. trachomatis DNA in cervical samples.
Collapse
Affiliation(s)
- Luis Francisco Sánchez-Anguiano
- Institute for Scientific Research "Dr. Roberto Rivera-Damm ", Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - Nadia Velázquez-Hernández
- Institute for Scientific Research "Dr. Roberto Rivera-Damm ", Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - Fernando Martín Guerra-Infante
- Departamento de Infectología, Laboratorio de Virología del Instituto Nacional de Perinatología, Departamento de Microbiología de la Escuela Nacional de Ciencias Biólogicas, Instituto Politécnico Nacional, D.F México
| | - Marisela Aguilar-Durán
- Institute for Scientific Research "Dr. Roberto Rivera-Damm ", Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - Alma Rosa Pérez-Álamos
- Institute for Scientific Research "Dr. Roberto Rivera-Damm ", Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - Sergio Estrada-Martínez
- Institute for Scientific Research "Dr. Roberto Rivera-Damm ", Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - José Antonio Navarrete-Flores
- Institute for Scientific Research "Dr. Roberto Rivera-Damm ", Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - Ada Agustina Sandoval-Carrillo
- Institute for Scientific Research "Dr. Roberto Rivera-Damm ", Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - Elizabeth Irasema Antuna-Salcido
- Institute for Scientific Research "Dr. Roberto Rivera-Damm ", Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - Jesús Hernández-Tinoco
- Faculty of Medicine and Nutrition, Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| | - Cosme Alvarado-Esquivel
- Faculty of Medicine and Nutrition, Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Mexico
| |
Collapse
|
14
|
Lausen M, Christiansen G, Bouet Guldbæk Poulsen T, Birkelund S. Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection. Microbes Infect 2018; 21:73-84. [PMID: 30528899 DOI: 10.1016/j.micinf.2018.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/03/2023]
Abstract
Infections caused by the intracellular bacterium Chlamydia trachomatis are a global health burden affecting more than 100 million people annually causing damaging long-lasting infections. In this review, we will present and discuss important aspects of the interaction between C. trachomatis and monocytes/macrophages.
Collapse
Affiliation(s)
- Mads Lausen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000 Aarhus, Denmark
| | | | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark
| |
Collapse
|
15
|
Li L, Wang C, Wen Y, Hu Y, Xie Y, Xu M, Liang M, Liu W, Liu L, Wu Y. ERK1/2 and the Bcl-2 Family Proteins Mcl-1, tBid, and Bim Are Involved in Inhibition of Apoptosis During Persistent Chlamydia psittaci Infection. Inflammation 2018; 41:1372-1383. [PMID: 29666982 DOI: 10.1007/s10753-018-0785-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chlamydia psittaci is an obligate intracellular pathogen that can cause zoonosis. Persistent C. psittaci infection can inhibit apoptosis in host cells, thus extending their survival and enabling them to complete their growth cycle. In this study, the antiapoptotic effects of persistent C. psittaci infection, induced by treatment with IFN-γ, were found to be associated with both the death receptor and the mitochondrial pathways of apoptosis. These effects were mediated by Bcl-2 family members, as evidenced by the decreased expression of proapoptotic proteins, such as tBid and Bim. Simultaneously, the antiapoptotic protein Mcl-1 was upregulated by persistent C. psittaci infection. Increased phosphorylation of ERK1/2 was observed; however, the expression of Bad, unlike that of other proapoptotic proteins, did not seem to be involved in this process. In summary, persistent chlamydial infection exerts antiapoptotic effects through both the death receptor and the mitochondrial pathways, in a process that is regulated by the ERK1/2 and apoptotic proteins of the Bcl-2 family.
Collapse
Affiliation(s)
- Li Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.,Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Chuan Wang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yating Wen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuming Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Yafeng Xie
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Man Xu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Mingxing Liang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Wei Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Liangzhuan Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yimou Wu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
16
|
Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog 2018; 14:e1007051. [PMID: 29727463 PMCID: PMC5955597 DOI: 10.1371/journal.ppat.1007051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Accepted: 04/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogens hijack host endocytic pathways to force their own entry into eukaryotic target cells. Many bacteria either exploit receptor-mediated zippering or inject virulence proteins directly to trigger membrane reorganisation and cytoskeletal rearrangements. By contrast, extracellular C. trachomatis elementary bodies (EBs) apparently employ facets of both the zipper and trigger mechanisms and are only ~400 nm in diameter. Our cryo-electron tomography of C. trachomatis entry revealed an unexpectedly diverse array of host structures in association with invading EBs, suggesting internalisation may progress by multiple, potentially redundant routes or several sequential events within a single pathway. Here we performed quantitative analysis of actin organisation at chlamydial entry foci, highlighting filopodial capture and phagocytic cups as dominant and conserved morphological structures early during internalisation. We applied inhibitor-based screening and employed reporters to systematically assay and visualise the spatio-temporal contribution of diverse endocytic signalling mediators to C. trachomatis entry. In addition to the recognised roles of the Rac1 GTPase and its associated nucleation-promoting factor (NPF) WAVE, our data revealed an additional unrecognised pathway sharing key hallmarks of macropinocytosis: i) amiloride sensitivity, ii) fluid-phase uptake, iii) recruitment and activity of the NPF N-WASP, and iv) the localised generation of phosphoinositide-3-phosphate (PI3P) species. Given their central role in macropinocytosis and affinity for PI3P, we assessed the role of SNX-PX-BAR family proteins. Strikingly, SNX9 was specifically and transiently enriched at C. trachomatis entry foci. SNX9-/- cells exhibited a 20% defect in EB entry, which was enhanced to 60% when the cells were infected without sedimentation-induced EB adhesion, consistent with a defect in initial EB-host interaction. Correspondingly, filopodial capture of C. trachomatis EBs was specifically attenuated in SNX9-/- cells, implicating SNX9 as a central host mediator of filopodial capture early during chlamydial entry. Our findings identify an unanticipated complexity of signalling underpinning cell entry by this major human pathogen, and suggest intriguing parallels with viral entry mechanisms. Chlamydia trachomatis remains the leading bacterial agent of sexually transmitted disease worldwide and causes a form of blindness called trachoma in Developing nations, which is recognised by the World Health Organisation as a neglected tropical disease. Despite this burden, we know comparatively little about how it causes disease at a molecular level. Chlamydia must live inside human cells to survive, and here we study the mechanism of how it enters cells, which is critical to the lifecycle. We study how the bacterium exploits signalling pathways inside the cell to its own advantage to deform the cell membrane by reorganising the underlying cell skeleton, and identify new factors involved in this process. Our findings suggest intriguing similarities with how some viruses enter cells. A better understanding of these processes may help to develop future vaccines and new treatments.
Collapse
|
17
|
Prasad P, Singh N, Das B, Raisuddin S, Dudeja M, Rastogi S. Cytokine-induced expression of nitric oxide synthases in Chlamydia trachomatis-infected spontaneous aborters. J Matern Fetal Neonatal Med 2018; 32:3511-3519. [PMID: 29720007 DOI: 10.1080/14767058.2018.1465914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose: The aim of study was to evaluate expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) in Chlamydia trachomatis (CT)-infected spontaneous aborters (SA). Materials and methods: Endometrial curettage tissue was collected from 140 SA (sporadic SA- 70; recurrent SA- 70) (Group I) and 140 age-matched controls (Group II) from Department of Obstetrics and Gynecology, Safdarjung Hospital, New Delhi, India. Polymerase chain reaction was performed for diagnosis of CT. The expression of iNOS/ eNOS/ IFN-γ/ TNF-α was assessed by real-time polymerase chain reaction (PCR). Results: 15.7% SA were CT-positive (Group I); none in controls. Sporadic spontaneous aborters (SSA) (n = 8/70), recurrent spontaneous aborters (RSA) (n = 14/70) diagnosed as CT-positive (Group-I). Significant upregulation of iNOS/ eNOS was found in CT-positive SSA/RSA compared with CT-negative SSA/RSA and healthy controls. TNF-α and IFN-γ were expressed in CT-positive SSA/RSA compared with negative SSA/controls. iNOS showed a significant strong positive correlation with TNF-α and IFN-γ in CT-infected SA. eNOS showed a significant positive correlation with TNF-α and no correlation with IFN-γ in CT-infected SA. TNF-α was positively correlated with IFN-γ. Conclusions: Significantly high expression of iNOS/ eNOS and proinflammatory cytokines affected pregnancy in CT-infected RSA, thereby implying that there occurs cytokine-induced expression of nitric oxide synthase (NOS).
Collapse
Affiliation(s)
- Priya Prasad
- a Microbiology Laboratory , National Institute of Pathology (ICMR), Safdarjung Hospital Campus , New Delhi , India
| | - Namita Singh
- a Microbiology Laboratory , National Institute of Pathology (ICMR), Safdarjung Hospital Campus , New Delhi , India
| | - Banashree Das
- b Department of Obstetrics and Gynecology , Vardhaman Mahavir Medical College (VMMC) & Safdarjung Hospital , New Delhi , India
| | - Sheikh Raisuddin
- c Department of Medical Elementology and Toxicology , Jamia Hamdard, Hamdard University , New Delhi , India
| | - Mridu Dudeja
- d Department of Microbiology , Hamdard Institute of Medical Sciences and Research (HIMSR) , New Delhi , India
| | - Sangita Rastogi
- a Microbiology Laboratory , National Institute of Pathology (ICMR), Safdarjung Hospital Campus , New Delhi , India
| |
Collapse
|
18
|
Otten C, Brilli M, Vollmer W, Viollier PH, Salje J. Peptidoglycan in obligate intracellular bacteria. Mol Microbiol 2018; 107:142-163. [PMID: 29178391 PMCID: PMC5814848 DOI: 10.1111/mmi.13880] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Peptidoglycan is the predominant stress-bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted 'peptidoglycan-intermediate' organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan-negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan-intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan-like sacculus and/or division septum.
Collapse
Affiliation(s)
- Christian Otten
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Matteo Brilli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE)University of Padova. Agripolis ‐ V.le dell'Università, 16 | 35020 Legnaro PadovaItaly
- Present address:
Department of BiosciencesUniversity of Milan, via Celoria 26(MI)Italy
| | - Waldemar Vollmer
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Patrick H. Viollier
- Department of Microbiology and Molecular MedicineInstitute of Genetics & Genomics in Geneva (iGE3), University of GenevaGenevaSwitzerland
| | - Jeanne Salje
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| |
Collapse
|
19
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
20
|
Chlamydia trachomatis: the Persistent Pathogen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00203-17. [PMID: 28835360 DOI: 10.1128/cvi.00203-17] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium whose only natural host is humans. Although presenting as asymptomatic in most women, genital tract chlamydial infections are a leading cause of pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. C. trachomatis has evolved successful mechanisms to avoid destruction by autophagy and the host immune system and persist within host epithelial cells. The intracellular form of this organism, the reticulate body, can enter into a persistent nonreplicative but viable state under unfavorable conditions. The infectious form of the organism, the elementary body, is again generated when the immune attack subsides. In its persistent form, C. trachomatis ceases to produce its major structural and membrane components, but synthesis of its 60-kDa heat shock protein (hsp60) is greatly upregulated and released from the cell. The immune response to hsp60, perhaps exacerbated by repeated cycles of productive infection and persistence, may promote damage to fallopian tube epithelial cells, scar formation, and tubal occlusion. The chlamydial and human hsp60 proteins are very similar, and hsp60 is one of the first proteins produced by newly formed embryos. Thus, the development of immunity to epitopes in the chlamydial hsp60 that are also present in the corresponding human hsp60 may increase susceptibility to pregnancy failure in infected women. Delineation of host factors that increase the likelihood that C. trachomatis will avoid immune destruction and survive within host epithelial cells and utilization of this knowledge to design individualized preventative and treatment protocols are needed to more effectively combat infections by this persistent pathogen.
Collapse
|
21
|
Koch-Edelmann S, Banhart S, Saied EM, Rose L, Aeberhard L, Laue M, Doellinger J, Arenz C, Heuer D. The cellular ceramide transport protein CERT promotes Chlamydia psittaci infection and controls bacterial sphingolipid uptake. Cell Microbiol 2017; 19. [PMID: 28544656 DOI: 10.1111/cmi.12752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/04/2023]
Abstract
Chlamydiaceae are bacterial pathogens that cause diverse diseases in humans and animals. Despite their broad host and tissue tropism, all Chlamydia species share an obligate intracellular cycle of development and have evolved sophisticated mechanisms to interact with their eukaryotic host cells. Here, we have analysed interactions of the zoonotic pathogen Chlamydia psittaci with a human epithelial cell line. We found that C. psittaci recruits the ceramide transport protein (CERT) to its inclusion. Chemical inhibition and CRISPR/Cas9-mediated knockout of CERT showed that CERT is a crucial factor for C. psittaci infections thereby affecting different stages of the infection including inclusion growth and infectious progeny formation. Interestingly, the uptake of fluorescently labelled sphingolipids in bacteria inside the inclusion was accelerated in CERT-knockout cells indicating that C. psittaci can exploit CERT-independent sphingolipid uptake pathways. Moreover, the CERT-specific inhibitor HPA-12 strongly diminished sphingolipid transport to inclusions of infected CERT-knockout cells, suggesting that other HPA-12-sensitive factors are involved in sphingolipid trafficking to C. psittaci. Further analysis is required to decipher these interactions and to understand their contributions to bacterial development, host range, tissue tropism, and disease outcome.
Collapse
Affiliation(s)
- Sophia Koch-Edelmann
- Junior Research Group "Sexually Transmitted Bacterial Pathogens" (NG 5), Robert Koch Institute, Berlin, Germany
| | - Sebastian Banhart
- Junior Research Group "Sexually Transmitted Bacterial Pathogens" (NG 5), Robert Koch Institute, Berlin, Germany
| | - Essa M Saied
- Organic and Bioorganic Chemistry, Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Laura Rose
- Junior Research Group "Sexually Transmitted Bacterial Pathogens" (NG 5), Robert Koch Institute, Berlin, Germany
| | - Lukas Aeberhard
- Junior Research Group "Sexually Transmitted Bacterial Pathogens" (NG 5), Robert Koch Institute, Berlin, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Joerg Doellinger
- Proteomics and Spectroscopy (ZBS 6), Robert Koch Institute, Berlin, Germany
| | - Christoph Arenz
- Organic and Bioorganic Chemistry, Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dagmar Heuer
- Junior Research Group "Sexually Transmitted Bacterial Pathogens" (NG 5), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
22
|
Carter JD, Hudson AP. Recent advances and future directions in understanding and treating Chlamydia-induced reactive arthritis. Expert Rev Clin Immunol 2016; 13:197-206. [PMID: 27627462 DOI: 10.1080/1744666x.2017.1233816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Reactive arthritis (ReA) is an inflammatory disease that can follow gastrointestinal or genitourinary infections. The primary etiologic agent for post-venereal ReA is the bacterium Chlamydia trachomatis; its relative, C pneumoniae, has also been implicated in disease induction although to a lesser degree. Studies have indicated that the arthritis is elicited by chlamydiae infecting synovial tissue in an unusual biologic state designated persistence. We review clinical aspects, host-pathogen interactions, and treatments for the disease. Areas covered: We briefly discuss both the historic and,more extensively, the current medical literature describing ReA, and we provide a discussion of the biology of the chlamydiae as it relates to elicitation of the disease. A summary of clinical aspects of Chlamydia-induced ReA is included to give context for approaches to treatment of the arthritis. Expert commentary: Basic research into the biology and host-pathogen interactions characteristic of C trachomatis has provided a wealth of information that underlies our current understanding of the pathogenic processes occurring in the ReA synovium. Importantly, a promising approach to cure of the disease is at hand. However, both basic and clinical research into Chlamydia-induced ReA has lagged over the last 5 years, including required studies relating to cure of the disease.
Collapse
Affiliation(s)
- John D Carter
- a Department of Internal Medicine, Division of Rheumatology , University of South Florida School of Medicine , Tampa , FL , USA
| | - Alan P Hudson
- b Department of Immunology and Microbiology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
23
|
Greub G, Bleeker-Rovers CP, Carlyon J, Fournier PE, Ojcius D, Puolakkainen M. Intracellular bacterial pathogens: a reemerging field of research rich with breakthroughs and opportunities. Microbes Infect 2015; 17:721-2. [PMID: 26482501 DOI: 10.1016/j.micinf.2015.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland.
| | | | - Jason Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, United States
| | | | - David Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, USA
| | - Mirja Puolakkainen
- Department of Virology and Immunology, Helsinki University Central Hospital Helsinki, Finland
| |
Collapse
|