1
|
Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. J Neuroimmune Pharmacol 2022; 17:76-93. [PMID: 34993905 DOI: 10.1007/s11481-021-10046-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.
Collapse
|
2
|
Lashgari NA, Roudsari NM, Zandi N, Pazoki B, Rezaei A, Hashemi M, Momtaz S, Rahimi R, Shayan M, Dehpour AR, Abdolghaffari AH. Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Mol Biol Rep 2021; 48:855-874. [PMID: 33394234 DOI: 10.1007/s11033-020-06095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023]
Abstract
Inflammatory bowel diseases (IBD) belong to a subgroup of persistent, long-term, progressive, and relapsing inflammatory conditions. IBD may spontaneously develop in the colon, resulting in tumor lesions in inflamed regions of the intestine, such as invasive carcinoma. The benefit of opioids for IBD treatment is still questionable, thereby we investigated databases to provide an overview in this context. This review demonstrates the controversial role of opioids in IBD therapy, their physiological and pharmacological functions in attenuating the IBD symptoms, and in improving inflammatory, oxidative stress, and the quality of life factors in IBD subjects. Data were extracted from clinical, in vitro, and in vivo studies in English, between 1995 and 2019, from PubMed, Google Scholar, Scopus, and Cochrane library. Based on recent reports, there are promising opportunities to target the opioid system and control the IBD symptoms. This study suggests a novel approach for future treatment of functional and inflammatory disorders such as IBD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atiyeh Rezaei
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnoosh Hashemi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. .,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran. .,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Abstract
Research on the effects of opioids on immune responses was stimulated in the 1980s by the intersection of use of intravenous heroin and HIV infection, to determine if opioids were enhancing HIV progression. The majority of experiments administering opioid alkaloids (morphine and heroin) in vivo, or adding these drugs to cell cultures in vitro, showed that they were immunosuppressive. Immunosuppression was reported as down-regulation: of Natural Killer cell activity; of responses of T and B cells to mitogens; of antibody formation in vivo and in vitro; of depression of phagocytic and microbicidal activity of neutrophils and macrophages; of cytokine and chemokine production by macrophages, microglia, and astrocytes; by sensitization to various infections using animal models; and by enhanced replication of HIV in vitro. The specificity of the receptor involved in the immunosuppression was shown to be the mu opioid receptor (MOR) by using pharmacological antagonists and mice genetically deficient in MOR. Beginning with a paper published in 2005, evidence was presented that morphine is immune-stimulating via binding to MD2, a molecule associated with Toll-like Receptor 4 (TLR4), the receptor for bacterial lipopolysaccharide (LPS). This concept was pursued to implicate inflammation as a mechanism for the psychoactive effects of the opioid. This review considers the validity of this hypothesis and concludes that it is hard to sustain. The experiments demonstrating immunosuppression were carried out in vivo in rodent strains with normal levels of TLR4, or involved use of cells taken from animals that were wild-type for expression of TLR4. Since engagement of TLR4 is universally accepted to result in immune activation by up-regulation of NF-κB, if morphine were binding to TLR4, it would be predicted that opioids would have been found to be pro-inflammatory, which they were not. Further, morphine is immunosuppressive in mice with a defective TLR4 receptor. Morphine and morphine withdrawal have been shown to permit leakage of Gram-negative bacteria and LPS from the intestinal lumen. LPS is the major ligand for TLR4. It is proposed that an occult variable in experiments where morphine is being proposed to activate TLR4 is actually underlying sepsis induced by the opioid.
Collapse
Affiliation(s)
- Toby K. Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Vakharia RM, Donnally CJ, Rush AJ, Vakharia AM, Berglund DD, Shah NV, Wang MY. Comparison of implant survivability in primary 1- to 2-level lumbar fusion amongst opioid abusers and non-opioid abusers. JOURNAL OF SPINE SURGERY 2018; 4:568-574. [PMID: 30547120 DOI: 10.21037/jss.2018.07.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Primary lumbar fusion (LF) is a treatment option for degenerative disc disease. The literature is limited regarding postoperative complications in opioid abusers undergoing LF. The purpose of this study was to compare 2-year short term implant-related complications, infection rates, 90-day readmission rates, in-hospital length of stay, and cost of care amongst opioid abusers (OAS) and non-opioid abusers (NAS) undergoing primary 1- to 2-level primary lumbar fusion (1-2LF). Methods A retrospective review was performed using the Medicare Standard Analytical Files from an administrative database. Patients undergoing LF were queried using the International Classification of Disease, ninth revision (ICD-9) procedure codes 81.04-81.08. Patients who underwent 1-2LF were filtered using ICD-9 procedure code 81.62. Inclusion criteria for the study group consisted of patients undergoing primary 1-2LF with a diagnosis of opioid abuse and dependency 90-day prior to the procedure. NAS undergoing 1-2LF served as controls. Patients in the study group were matched to controls according to age, gender, and Charlson-Comorbidity Index (CCI). Two mutually exclusive cohorts were formed and outcome measures analyzed and compared were implant complications, infection rates, 90-day readmission rates, LOS, and cost of care. Results After the matching process 13,342 patients were identified with equal cohort distribution. OAS had higher odds implant related complications (OR: 2.78, P<0.001) such as prosthetic joint dislocation (OR: 3.83, P<0.001), requiring revision (OR: 2.89, P<0.001), pseudarthrosis (OR: 2.50, P<0.001), and spine related infections (OR: 1.58, P<0.001) compared to NAS. OAS had higher 90-day readmission rates, (OR: 1.29, P<0.001), higher hospital costs ($143,057.38 vs. $121,450.45, P<0.001), and greater in-hospital LOS (P<0.001). Conclusions OAS are susceptible to complications following primary 1-2LF. Appropriate patient counseling regarding the effects of opioids on lumbar fusion should be given priority to maximize patient outcomes. Future studies should investigate the impact of pre-operative opioid abuse versus post-operative opioid use.
Collapse
Affiliation(s)
- Rushabh M Vakharia
- Orthopedic Research Institute, Holy Cross Hospital, Ft. Lauderdale, FL, USA
| | - Chester J Donnally
- Department of Orthopaedic Surgery, University of Miami Hospital, Miami, FL, USA
| | - Augustus J Rush
- Department of Orthopaedic Surgery, University of Miami Hospital, Miami, FL, USA
| | | | - Derek D Berglund
- Orthopedic Research Institute, Holy Cross Hospital, Ft. Lauderdale, FL, USA
| | - Neil V Shah
- Department of Orthopedic Surgery, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Michael Y Wang
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, Zhang L, Dauer P, Chen C, Dalluge J, Johnson T, Roy S. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol 2016; 9:1418-1428. [PMID: 26906406 PMCID: PMC4996771 DOI: 10.1038/mi.2016.9] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/30/2015] [Indexed: 02/04/2023]
Abstract
Morphine and its pharmacological derivatives are the most prescribed analgesics for moderate to severe pain management. However, chronic use of morphine reduces pathogen clearance and induces bacterial translocation across the gut barrier. The enteric microbiome has been shown to have a critical role in the preservation of the mucosal barrier function and metabolic homeostasis. Here, we show for the first time, using bacterial 16s rDNA sequencing, that chronic morphine treatment significantly alters the gut microbial composition and induces preferential expansion of Gram-positive pathogenic and reduction in bile-deconjugating bacterial strains. A significant reduction in both primary and secondary bile acid levels was seen in the gut, but not in the liver with morphine treatment. Morphine-induced microbial dysbiosis and gut barrier disruption was rescued by transplanting placebo-treated microbiota into morphine-treated animals, indicating that microbiome modulation could be exploited as a therapeutic strategy for patients using morphine for pain management.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Surgery, 515 Delaware St SE, Moos 11-204, University
of Minnesota, MN 55455, USA
| | - Gregory Sindberg
- Department of Veterinary Medicine, 515 Delaware St SE, Moos 11-204,
University of Minnesota, MN 55455, USA
| | - Fuyuan Wang
- Department of Veterinary Medicine, 515 Delaware St SE, Moos 11-204,
University of Minnesota, MN 55455, USA
| | - Jingjing Meng
- Department of Surgery, 515 Delaware St SE, Moos 11-204, University
of Minnesota, MN 55455, USA
| | - Umakant Sharma
- Department of Surgery, 515 Delaware St SE, Moos 11-204, University
of Minnesota, MN 55455, USA
| | - Li Zhang
- Department of Pharmacology, 515 Delaware St SE, Moos 11-204,
University of Minnesota, MN 55455, USA
| | - Patricia Dauer
- Department of Pharmacology, 515 Delaware St SE, Moos 11-204,
University of Minnesota, MN 55455, USA
| | - Chi Chen
- Department of Food Science and Nutrition, 515 Delaware St SE, Moos
11-204, University of Minnesota, MN 55455, USA
| | - Joseph Dalluge
- Department of Chemistry, 515 Delaware St SE, Moos 11-204, University
of Minnesota, MN 55455, USA
| | - Timothy Johnson
- Department of Veterinary Medicine, 515 Delaware St SE, Moos 11-204,
University of Minnesota, MN 55455, USA
| | - Sabita Roy
- Department of Surgery, 515 Delaware St SE, Moos 11-204, University
of Minnesota, MN 55455, USA,Department of Pharmacology, 515 Delaware St SE, Moos 11-204,
University of Minnesota, MN 55455, USA,To whom correspondence should be addressed. Prof. Sabita
Roy, Director, Division of Infection, Inflammation and Vascular Biology,
Department of Surgery and Pharmacology Telephone Number: 612-624-4615, Fax
Number 612 626-4900,
| |
Collapse
|
6
|
Opioid Exacerbation of Gram-positive sepsis, induced by Gut Microbial Modulation, is Rescued by IL-17A Neutralization. Sci Rep 2015; 5:10918. [PMID: 26039416 PMCID: PMC4454150 DOI: 10.1038/srep10918] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022] Open
Abstract
Sepsis is the predominant cause of mortality in ICUs, and opioids are the preferred analgesic in this setting. However, the role of opioids in sepsis progression has not been well characterized. The present study demonstrated that morphine alone altered the gut microbiome and selectively induced the translocation of Gram-positive gut bacteria in mice. Using a murine model of poly-microbial sepsis, we further demonstrated that morphine treatment led to predominantly Gram-positive bacterial dissemination. Activation of TLR2 by disseminated Gram-positive bacteria induced sustained up-regulation of IL-17A and IL-6. We subsequently showed that overexpression of IL-17A compromised intestinal epithelial barrier function, sustained bacterial dissemination and elevated systemic inflammation. IL-17A neutralization protected barrier integrity and improved survival in morphine-treated animals. We further demonstrated that TLR2 expressed on both dendritic cells and T cells play essential roles in IL-17A production. Additionally, intestinal sections from sepsis patients on opioids exhibit similar disruption in gut epithelial integrity, thus establishing the clinical relevance of this study. This is the first study to provide a mechanistic insight into the opioid exacerbation of sepsis and show that neutralization of IL-17A might be an effective therapeutic strategy to manage Gram-positive sepsis in patients on an opioid regimen.
Collapse
|
7
|
Sobczak M, Sałaga M, Storr MA, Fichna J. Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: current concepts and future perspectives. J Gastroenterol 2014; 49:24-45. [PMID: 23397116 PMCID: PMC3895212 DOI: 10.1007/s00535-013-0753-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/10/2013] [Indexed: 02/04/2023]
Abstract
Opioid receptors are widely distributed in the human body and are crucially involved in numerous physiological processes. These include pain signaling in the central and the peripheral nervous system, reproduction, growth, respiration, and immunological response. Opioid receptors additionally play a major role in the gastrointestinal (GI) tract in physiological and pathophysiological conditions. This review discusses the physiology and pharmacology of the opioid system in the GI tract. We additionally focus on GI disorders and malfunctions, where pathophysiology involves the endogenous opioid system, such as opioid-induced bowel dysfunction, opioid-induced constipation or abdominal pain. Based on recent reports in the field of pharmacology and medicinal chemistry, we will also discuss the opportunities of targeting the opioid system, suggesting future treatment options for functional disorders and inflammatory states of the GI tract.
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Maciej Sałaga
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Martin A. Storr
- Division of Gastroenterology, Department of Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | - Jakub Fichna
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
8
|
Banerjee S, Meng J, Das S, Krishnan A, Haworth J, Charboneau R, Zeng Y, Ramakrishnan S, Roy S. Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a. Sci Rep 2013; 3:1977. [PMID: 23756365 PMCID: PMC3679508 DOI: 10.1038/srep01977] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/24/2013] [Indexed: 12/22/2022] Open
Abstract
Development of tolerance to endotoxin prevents sustained hyper inflammation during systemic infections. Here we report for the first time that chronic morphine treatment tempers endotoxin tolerance resulting in persistent inflammation, septicemia and septic shock. Morphine was found to down-regulate endotoxin/LPS induced miR-146a and 155 in macrophages. However, only miR-146a over expression, but not miR-155 abrogates morphine mediated hyper-inflammation. Conversely, antagonizing miR-146a (but not miR-155) heightened the severity of morphine-mediated hyper-inflammation. These results suggest that miR-146a acts as a molecular switch controlling hyper-inflammation in clinical and/or recreational use of morphine.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Meng J, Yu H, Ma J, Wang J, Banerjee S, Charboneau R, Barke RA, Roy S. Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PLoS One 2013; 8:e54040. [PMID: 23349783 PMCID: PMC3548814 DOI: 10.1371/journal.pone.0054040] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/07/2012] [Indexed: 01/08/2023] Open
Abstract
Opiates are among the most prescribed drugs for pain management. However, morphine use or abuse results in significant gut bacterial translocation and predisposes patients to serious infections with gut origin. The mechanism underlying this defect is still unknown. In this report, we investigated the mechanisms underlying compromised gut immune function and bacterial translocation following morphine treatment. We demonstrate significant bacterial translocation to mesenteric lymph node (MLN) and liver following morphine treatment in wild-type (WT) animals that was dramatically and significantly attenuated in Toll-like receptor (TLR2 and 4) knockout mice. We further observed significant disruption of tight junction protein organization only in the ileum but not in the colon of morphine treated WT animals. Inhibition of myosin light chain kinase (MLCK) blocked the effects of both morphine and TLR ligands, suggesting the role of MLCK in tight junction modulation by TLR. This study conclusively demonstrates that morphine induced gut epithelial barrier dysfunction and subsequent bacteria translocation are mediated by TLR signaling and thus TLRs can be exploited as potential therapeutic targets for alleviating infections and even sepsis in morphine-using or abusing populations.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Haidong Yu
- Department of Surgery, Division of Infection, Inflammation, and Vascular Biology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jing Ma
- Department of Surgery, Division of Infection, Inflammation, and Vascular Biology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jinghua Wang
- Department of Surgery, Division of Infection, Inflammation, and Vascular Biology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Santanu Banerjee
- Department of Surgery, Division of Infection, Inflammation, and Vascular Biology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Rick Charboneau
- Department of Surgery, Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
| | - Roderick A. Barke
- Department of Surgery, Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
| | - Sabita Roy
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Surgery, Division of Infection, Inflammation, and Vascular Biology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
11
|
Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, Kirchner VA, Koodie L, Ma J, Meng J, Barke RA. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J Neuroimmune Pharmacol 2011; 6:442-65. [PMID: 21789507 PMCID: PMC3601186 DOI: 10.1007/s11481-011-9292-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/27/2011] [Indexed: 12/13/2022]
Abstract
Infection rate among intravenous drug users (IDU) is higher than the general public, and is the major cause of morbidity and hospitalization in the IDU population. Epidemiologic studies provide data on increased prevalence of opportunistic bacterial infections such as TB and pneumonia, and viral infections such as HIV-1 and hepatitis in the IDU population. An important component in the intravenous drug abuse population and in patients receiving medically indicated chronic opioid treatment is opioid withdrawal. Data on bacterial virulence in the context of opioid withdrawal suggest that mice undergoing withdrawal had shortened survival and increased bacterial load in response to Salmonella infection. As the body of evidence in support of opioid dependency and its immunosuppressive effects is growing, it is imperative to understand the mechanisms by which opioids exert these effects and identify the populations at risk that would benefit the most from the interventions to counteract opioid immunosuppressive effects. Thus, it is important to refine the existing animal model to closely match human conditions and to cross-validate these findings through carefully controlled human studies. Better understanding of the mechanisms will facilitate the search for new therapeutic modalities to counteract adverse effects including increased infection rates. This review will summarize the effects of morphine on innate and adaptive immunity, identify the role of the mu opioid receptor in these functions and the signal transduction activated in the process. The role of opioid withdrawal in immunosuppression and the clinical relevance of these findings will also be discussed.
Collapse
Affiliation(s)
- Sabita Roy
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rafati A, Hamzehie Taj S, Azarpira N, Zarifkar A, Noorafshan A, Najafizadeh P. Chronic morphine consumption increase allograft rejection rate in rat through inflammatory reactions. IRANIAN BIOMEDICAL JOURNAL 2011; 15:85-91. [PMID: 21987114 PMCID: PMC3639742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Although opioids suppressive effects on immune system function have been reported, this study demonstrates inflammatory reactions, such as production of pro-inflammatory cytokines and suppression of anti-inflammatory cytokines, are the main causes at organ's allotransplantation rejection in chronic morphine-treated recipients. METHODS 28 rats were categorized in 4 groups through intra-peritoneal administrations: control, sham, morphine treated animals (20 mg/kg injected of morphine daily until biopsy day), morphine and naloxane treated animals (20 mg/kg morphine and 2mg/kg naloxane daily injected until biopsy day), which their donors were normal rats. The grafts were done at the 14th day of the experiment. Plasma interleukins levels (IL-6 and IL-10) in three sampling times were measured by ELISA. With almost 80% of macroscopic rejection signs in rats of one group, full thickness skin biopsy has been taken and histological parameters like perivascular infiltrates, epidermal changes, and stromal changes were detected. The statistical significance differences between the control and experimental groups were analyzed using the Kruskal-Wallis, followed by ANOVA post hoc test. RESULTS Accelerated skin allograft rejection by chronic morphine consumption can be resulted of increased IL-6 concentration and decreased IL-10. The enhancing effects of morphine on the graft inflammation were partially antagonized by Naloxane. It can illustrate the complexity of opiates and immune system connections and should be considered during organ transplantation of opiate addicts. CONCLUSION Expansion of skin cells in recipient with chronic morphine administration history may be resulted in failure.
Collapse
Affiliation(s)
- Ali Rafati
- Dept. of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz;
| | - Sommaye Hamzehie Taj
- Dept. of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz;
| | - Negar Azarpira
- Research Center of Transplantation of Shiraz University of Medical Sciences, Shiraz;
| | - Assadollah Zarifkar
- Dept. of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz;
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz;
| | - Parvaneh Najafizadeh
- Dept. of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|