1
|
Xu W, Lai S, Zhao J, Wei S, Fang X, Liu Y, Rong X, Guo J. The blockade of the TGF-β pathway alleviates abnormal glucose and lipid metabolism of lipodystrophy not obesity. Pharmacol Res Perspect 2024; 12:e1160. [PMID: 38174807 PMCID: PMC10765454 DOI: 10.1002/prp2.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
TGF-β is thought to be involved in the physiological functions of early organ development and pathological changes in substantial organ fibrosis, while studies around adipose tissue function and systemic disorders of glucolipid metabolism are still scarce. In this investigation, two animal models, aP2-SREBP-1c mice and ob/ob mice, were used. TGF-β pathway showed up-regulated in the inguinal white adipose tissue (iWAT) of the two models. SB431542, a TGF-β inhibitor, successfully increased inguinal white adipocyte size by more than 1.5 times and decreased the weight of Peripheral organs including liver, Spleen and Kidney to 73.05%/62.18%/73.23% of pre-administration weights. The iWAT showed elevated expression of GLUTs and lipases, followed by a recovery of circulation GLU, TG, NEFA, and GLYCEROL to the wild-type levels in aP2-SREBP-1c mice. In contrast, TGF-β inhibition did not have similar effects on that of ob/ob mice. In vitro, TGF-β blocker treated mature adipocytes had considerably higher levels of glycerol and triglycerides than the control group, whereas GLUTs and lipases expression levels were unchanged. These findings show that inhibiting the abnormally upregulated TGF-β pathway will only restore iWAT expansion and ameliorate the global metabolic malfunction of glucose and lipids in lipodystrophy, not obesity.
Collapse
Affiliation(s)
- Wen‐Dong Xu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shui‐Zheng Lai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jia Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shi‐Jie Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xue‐Ying Fang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi‐Yi Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiang‐Lu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
2
|
Liu ZW, Zhang YM, Zhang LY, Zhou T, Li YY, Zhou GC, Miao ZM, Shang M, He JP, Ding N, Liu YQ. Duality of Interactions Between TGF-β and TNF-α During Tumor Formation. Front Immunol 2022; 12:810286. [PMID: 35069596 PMCID: PMC8766837 DOI: 10.3389/fimmu.2021.810286] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment is essential for the formation and development of tumors. Cytokines in the microenvironment may affect the growth, metastasis and prognosis of tumors, and play different roles in different stages of tumors, of which transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α) are critical. The two have synergistic and antagonistic effect on tumor regulation. The inhibition of TGF-β can promote the formation rate of tumor, while TGF-β can promote the malignancy of tumor. TNF-α was initially determined to be a natural immune serum mediator that can induce tumor hemorrhagic necrosis, it has a wide range of biological activities and can be used clinically as a target to immune diseases as well as tumors. However, there are few reports on the interaction between the two in the tumor microenvironment. This paper combs the biological effect of the two in different aspects of different tumors. We summarized the changes and clinical medication rules of the two in different tissue cells, hoping to provide a new idea for the clinical application of the two cytokines.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China.,Gansu Institute of Cardiovascular Diseases, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ming Shang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jin-Peng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Nan- Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Qian S, Tang Y, Tang QQ. Adipose tissue plasticity and the pleiotropic roles of BMP signaling. J Biol Chem 2021; 296:100678. [PMID: 33872596 PMCID: PMC8131923 DOI: 10.1016/j.jbc.2021.100678] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissues, including white, beige, and brown adipose tissue, have evolved to be highly dynamic organs. Adipose tissues undergo profound changes during development and regeneration and readily undergo remodeling to meet the demands of an everchanging metabolic landscape. The dynamics are determined by the high plasticity of adipose tissues, which contain various cell types: adipocytes, immune cells, endothelial cells, nerves, and fibroblasts. There are numerous proteins that participate in regulating the plasticity of adipose tissues. Among these, bone morphogenetic proteins (BMPs) were initially found to regulate the differentiation of adipocytes, and they are being reported to have pleiotropic functions by emerging studies. Here, in the first half of the article, we summarize the plasticity of adipocytes and macrophages, which are two groups of cells targeted by BMP signaling in adipose tissues. We then review how BMPs regulate the differentiation, death, and lipid metabolism of adipocytes. In addition, the potential role of BMPs in regulating adipose tissue macrophages is considered. Finally, the expression of BMPs in adipose tissues and their metabolic relevance are discussed.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The proportion of overweight and obese persons with HIV (PWH) has increased since the introduction of antiretroviral therapy (ART). We aim to summarize recent literature on risks of weight gain, discuss adipose tissue changes in HIV and obesity, and synthesize current understanding of how excess adiposity and HIV contribute to metabolic complications. RECENT FINDINGS Recent studies have implicated contemporary ART regimens, including use of integrase strand transfer inhibitors and tenofovir alafenamide, as a contributor to weight gain, though the mechanisms are unclear. Metabolic dysregulation is linked to ectopic fat and alterations in adipose immune cell populations that accompany HIV and obesity. These factors contribute to an increasing burden of metabolic diseases in the aging HIV population. Obesity compounds an increasing burden of metabolic disease among PWH, and understanding the role of fat partitioning and HIV- and ART-related adipose tissue dysfunction may guide prevention and treatment strategies.
Collapse
Affiliation(s)
- Samuel S Bailin
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232-2582, USA
| | - Curtis L Gabriel
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232-2582, USA
| | - John R Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232-2582, USA.
| |
Collapse
|
5
|
Lake JE, Debroy P, Ng D, Erlandson KM, Kingsley LA, Palella FJ, Budoff MJ, Post WS, Brown TT. Associations between subcutaneous fat density and systemic inflammation differ by HIV serostatus and are independent of fat quantity. Eur J Endocrinol 2019; 181:451-459. [PMID: 31430720 PMCID: PMC6992471 DOI: 10.1530/eje-19-0296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Adipose tissue (AT) density measurement may provide information about AT quality among people living with HIV. We assessed AT density and evaluated relationships between AT density and immunometabolic biomarker concentrations in men with HIV. DESIGN Cross-sectional analysis of men enrolled in the Multicenter AIDS Cohort Study. METHODS Abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) density (Hounsfield units, HU; less negative = more dense) were quantified from computed tomography (CT) scans. Multivariate linear regression models described relationships between abdominal AT density and circulating biomarker concentrations. RESULTS HIV+ men had denser SAT (-95 vs -98 HU HIV-, P < 0.001), whereas VAT density was equivalent by HIV serostatus men (382 HIV-, 462 HIV+). Historical thymidine analog nucleoside reverse transcriptase inhibitor (tNRTI) use was associated with denser SAT but not VAT. In adjusted models, a 1 s.d. greater SAT or VAT density was associated with higher levels of adiponectin, leptin, HOMA-IR and triglyceride:HDL cholesterol ratio and lower hs-CRP concentrations in HIV- men. Conversely, in HIV+ men, each s.d. greater SAT density was not associated with metabolic parameter improvements and was significantly (P < 0.05) associated with higher systemic inflammation. Trends toward higher inflammatory biomarker concentrations per 1 s.d. greater VAT density were also observed among HIV+ men. CONCLUSIONS Among men living with HIV, greater SAT density was associated with greater systemic inflammation independent of SAT area. AT density measurement provides additional insight into AT density beyond measurement of AT quantity alone, and may have implications for metabolic disease risk.
Collapse
Affiliation(s)
- J E Lake
- University of Texas Health Sciences Center, Houston, Texas, USA
| | - P Debroy
- University of Texas Health Sciences Center, Houston, Texas, USA
| | - D Ng
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | - L A Kingsley
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - F J Palella
- Northwestern University, Chicago, Illinois, USA
| | - M J Budoff
- Torrance Los Angeles Biomedical Research Institute, Torrence, California, USA
| | - W S Post
- Johns Hopkins University, Baltimore, Maryland, USA
| | - T T Brown
- Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW We aim to provide an in-depth review of recent literature highlighting the role of inflammation involving the adipose tissue, liver, skeletal muscles, and gastrointestinal tract in the development of metabolic complications among persons living with HIV (PLWH). RECENT FINDINGS Recent studies in PLWH have demonstrated a significant association between circulating inflammatory markers and development of insulin resistance and metabolic complications. In adipose tissue, pro-inflammatory cytokine expression inhibits adipocyte insulin signaling, which alters lipid and glucose homeostasis. Increased lipolysis and lipogenesis elevate levels of circulating free fatty acids and promote ectopic fat deposition in liver and skeletal muscles. This leads to lipotoxicity characterized by a pro-inflammatory response with worsening insulin resistance. Finally, HIV is associated with gastrointestinal tract inflammation and changes in the gut microbiome resulting in reduced diversity, which is an additional risk factor for diabetes. Metabolic complications in PLWH are in part due to chronic, multisite tissue inflammation resulting in dysregulation of glucose and lipid trafficking, utilization, and storage.
Collapse
|
7
|
Prior exposure to thymidine analogs and didanosine is associated with long-lasting alterations in adipose tissue distribution and cardiovascular risk factors. AIDS 2019; 33:675-683. [PMID: 30585844 DOI: 10.1097/qad.0000000000002119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thymidine analogs and didanosine (ddI) have been associated with redistribution of body fat from subcutaneous adipose tissue (SAT) to visceral adipose tissue (VAT), which, in turn, is a risk factor for cardiovascular disease. We explored differences in adipose tissue distribution between people living with HIV (PLWH) with prior exposure to thymidine analogs and/or ddI, without exposure, and uninfected controls and the association with cardiovascular disease risk factors. METHODS In all, 761 PLWH from the Copenhagen Comorbidity in HIV Infection study, and 2283 age and sex-matched uninfected controls from the Copenhagen General Population Study were included. PLWH were stratified according to prior exposure to thymidine analogs and/or ddI. VAT and SAT were determined by abdominal computed tomography scan. Hypotheses were tested using regression analyses. RESULTS Exposure to thymidine analogs and/or ddI was associated with 21.6 cm larger VAT (13.8-29.3) compared to HIV infection without exposure. HIV-negative status was associated with similar VAT compared to HIV infection without exposure. Cumulative exposure to thymidine analogs and/or ddI [3.7 cm per year (2.3-5.1)], but not time since discontinuation [-1.1 cm per year (-3.4 to 1.1)], was associated with VAT. Prior exposure to thymidine analogs and/or ddI was associated with excess risk of hypertension [adjusted odds ratio (aOR) 1.62 (1.13-2.31)], hypercholesterolemia [aOR 1.49 (1.06-2.11)], and low high-density lipoprotein [aOR 1.40 (0.99-1.99)]. CONCLUSIONS This study suggests a potentially irreversible and harmful association of thymidine analogs and ddI with VAT accumulation, which appears be involved in the increased risk of hypertension, hypercholesterolemia, and low high-density lipoprotein found in PLWH with prior exposure to thymidine analogs and/or ddI, even years after treatment discontinuation.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize knowledge of the prevalence, relevant physiology, and consequences of obesity and visceral adiposity in HIV-infected adults, including highlighting gaps in current knowledge and future research directions. RECENT FINDINGS Similar to the general population, obesity prevalence is increasing among HIV-infected persons, and obesity and visceral adiposity are associated with numerous metabolic and inflammatory sequelae. However, HIV- and antiretroviral therapy (ART)-specific factors may contribute to fat gain and fat quality in treated HIV infection, particularly to the development of visceral adiposity, and sex differences may exist. Obesity and visceral adiposity commonly occur in HIV-infected persons and have significant implications for morbidity and mortality. Future research should aim to better elucidate the HIV- and ART-specific contributors to obesity and visceral adiposity in treated HIV infection, with the goal of developing targeted therapies for the prevention and treatment of obesity and visceral adiposity in the modern ART era.
Collapse
Affiliation(s)
- Jordan E Lake
- University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Erlandson KM, Lake JE. Fat Matters: Understanding the Role of Adipose Tissue in Health in HIV Infection. Curr HIV/AIDS Rep 2016; 13:20-30. [PMID: 26830284 DOI: 10.1007/s11904-016-0298-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
More than one-third of adults in the USA are obese and obesity-related disease accounts for some of the leading causes of preventable death. Mid-life obesity may be a strong predictor of physical function impairment later in life regardless of body mass index (BMI) in older age, highlighting the benefits of obesity prevention on health throughout the lifespan. Adipose tissue disturbances including lipodystrophy and obesity are prevalent in the setting of treated and untreated HIV infection. This article will review current knowledge on fat disturbances in HIV-infected persons, including therapeutic options and future directions.
Collapse
Affiliation(s)
- Kristine M Erlandson
- University of Colorado-Anschutz Medical Center, 12700 E 19th Ave, Mailstop B168, Aurora, CO, USA.
| | - Jordan E Lake
- University of California, Los Angeles, 11075 Santa Monica Blvd., Ste. 100, Los Angeles, CA, USA.
| |
Collapse
|