1
|
Kwack DW, Lee S, Lee DH, Kim DW. Changes in gut microbiome can be associated with abrupt seizure exacerbation in epilepsy patients. Clin Neurol Neurosurg 2024; 246:108556. [PMID: 39299008 DOI: 10.1016/j.clineuro.2024.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Seizures can be triggered by a variety of endogenous or exogenous factors. We hypothesized that alterations in the gut microbiome may be a seizure precipitant and analyzed the composition and characteristics of the gut microbiome in epilepsy patients who experienced an abrupt seizure exacerbation without a clear seizure precipitant. METHODS We prospectively enrolled 25 adult patients with epilepsy and collected fecal samples on the admission and after seizure recovery for next-generation sequencing analysis. We performed nonparametric paired t-test analysis to evaluate changes in the gut microbiota as seizures worsened and when it recovered and also estimated alpha and beta diversities in each category. RESULTS A total of 19 patients (13 males) aged between 19 and 78 years (mean 45.2 years) were included in the study. The composition of the gut microbiota underwent a significant change following an abrupt seizure exacerbation. At the phylum level, the relative abundance of Fusobacteria and Synergistetes was decreased in the seizure recovery state compared to the acute seizure exacerbation. A similar trend was observed at the lower hierarchical levels, with a decrease in the relative abundance of Fusobacteria, Tissierellia, and Synergistia at the class level, and that of Synergistales, Tissierellales, and Fusobacteriales at the order level. At the family level, the relative abundance of Fusobacteriaceae and Staphylococcaceae was decreased, whereas that of Leuconostocaceae was increased. No statistical differences were observed in alpha and beta diversity between the pre- and post-acute seizure exacerbation periods. SIGNIFICANCE Our study suggests that the changes in Fusobacteriaceae and Lecuonostocaceae may be associated with acute seizure exacerbation in epilepsy patients. Given that Fusobacteriaceae are associated with various systemic diseases due to their invasive properties and that Leuconostocaceae are known to produce GABA, our results may suggest a gut microbiome-based treatment option for epilepsy patients.
Collapse
Affiliation(s)
- Dong Won Kwack
- Department of Neurology, Konkuk University Hospital, Seoul, South Korea
| | - Sunghee Lee
- Ildong Pharmaceutical CO., Ltd., Hwaseong, Gyeonggi, South Korea
| | - Dong-Hoon Lee
- Ildong Pharmaceutical CO., Ltd., Hwaseong, Gyeonggi, South Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University Hospital, Seoul, South Korea.
| |
Collapse
|
2
|
Nie D, Wang D, Wang Z, Fang Q, Wang H, Xie W, Li C, Zhang Y. The gut microbiome in patients with Cushing's disease affects depression- and anxiety-like behavior in mice. MICROBIOME 2024; 12:225. [PMID: 39482760 PMCID: PMC11529176 DOI: 10.1186/s40168-024-01939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Depression and anxiety significantly impact the quality of life in individuals with Cushing's disease (CD), which originates from pituitary neuroendocrine tumors (PitNETs), yet our understanding of the underlying mechanisms is limited. There is substantial evidence linking gut microbes to depression, anxiety, and endocrinology. RESULTS The gut bacterial phenotype of patients with Cushing's disease was significantly different from that of the control group, and when the mice were treated with fecal bacteria from these patients, both anxiety- and depression-like behavior were significantly increased. However, this effect can be alleviated by supplementing with 2-(14, 15-epoxyeicosatrienoyl) glycerol (2-14,15-EG) which was found at reduced levels in the peripheral blood of mice treated with coprofecal bacteria from Cushing's disease. In this process, the effects of hormone levels and immune factors were not significant. In addition, in an animal model, corticosterone has been observed to affect behavioral changes in mice through gut microbiota composition, clarifying the cause-and-effect relationship between hormones, microbiota, and behavior. Finally, there was no significant difference in gut microbiome composition and its effects on mouse behavior in patients with Cushing's disease with different levels of depression and anxiety. CONCLUSIONS In summary, this research enhances our current understanding of how gut microbes in patients with Cushing's disease contribute to depression and anxiety, offering novel insights for clinical treatment approaches. Video Abstract.
Collapse
Affiliation(s)
- Ding Nie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dawei Wang
- Department of Neurosurgery, Air Force Medical University Tangdu Hospital, Xi'an, China
| | - Zhenhua Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hongyun Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Zhao C, Chen F, Li Q, Zhang W, Peng L, Yue C. Causal relationship between oral microbiota and epilepsy risk: Evidence from Mendelian randomization analysis in East Asians. Epilepsia Open 2024. [PMID: 39382490 DOI: 10.1002/epi4.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Gut microbiota can traverse into the brain, activate the vagus nerve, and modulate immune responses and inflammatory processes, thereby influencing the onset of epileptic seizures. However, research on oral microbiota and epilepsy remains limited, and observational studies have been inconsistent. We aim to estimate the potential links between oral microbiota and epilepsy and elucidate which specific oral microbes may directly influence the pathogenesis of epilepsy. METHODS A two-sample MR analysis was conducted using genome-wide association study (GWAS) data specific to OM and epilepsy in East Asian individuals. Single nucleotide polymorphisms (SNPs) independent of confounders served as instrumental variables (IVs) to deduce causality. MR methodologies, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighed mode methods, were utilized. Sensitivity analysis, including Cochrane's Q test, MR-Egger intercept test, and leave-one-out analysis, was applied to confirm the robustness of results. RESULTS Among the 3117 bacterial taxa examined, we observed that 14 OM, like s_Streptococcus_mitis, s_Streptococcus_pneumoniae, and s_Haemophilus, were positively associated with epilepsy, while 7 OM, like g_Fusobacterium and g_Aggregatibacter, were negatively related to epilepsy. The MR-Egger intercept suggested that no evidence of horizontal pleiotropy was observed (p > 0.05). The leave-one-out analysis validated the robustness of the results. SIGNIFICANCE This study underscores the effect of OM on epilepsy, suggesting potential mechanisms between the OM and epilepsy. Further investigation into the potential role of the OM is needed to enhance our in-depth understanding of the pathogenesis of epilepsy. PLAIN LANGUAGE SUMMARY Previous research has demonstrated that the microbiota may influence the onset of epileptic seizures. We applied 3117 oral microbiota from the newest publicly available database of East Asian populations. Mendelian randomization analysis was utilized to estimate the causal relationship between oral microbiota and epilepsy. Our results showed that a causal effect exists between 21 oral microbiota and epilepsy. We provided genetic evidence for risk assessment and early intervention in epilepsy.
Collapse
Affiliation(s)
- Chenyang Zhao
- The First People's Hospital of Chenzhou, Chenzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fei Chen
- Huadong Hospital, Fudan University, Shanghai, China
| | - Qiong Li
- The First People's Hospital of Chenzhou, Chenzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zhang
- The First People's Hospital of Chenzhou, Chenzhou, China
| | - Lixiu Peng
- The First People's Hospital of Chenzhou, Chenzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chaoyan Yue
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Retuerto M, Al-Shakhshir H, Herrada J, McCormick TS, Ghannoum MA. Analysis of Gut Bacterial and Fungal Microbiota in Children with Autism Spectrum Disorder and Their Non-Autistic Siblings. Nutrients 2024; 16:3004. [PMID: 39275319 PMCID: PMC11396985 DOI: 10.3390/nu16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes.
Collapse
Affiliation(s)
- Mauricio Retuerto
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hilmi Al-Shakhshir
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Janet Herrada
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Medical Mycology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Bian X, Shao X. Advances in the study of gut microbes in pediatric epilepsy. Epilepsy Behav 2024; 157:109899. [PMID: 38885595 DOI: 10.1016/j.yebeh.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Epilepsy a prevalent childhood neurological disorder, arises from chronic brain dysfunction caused by oversynchronized firing of neurons. Frequent seizures often lead to both physical and intellectual damage in children, seriously affecting their growth and development, life and health. Recent research studies have shown that the intestinal microbes in pediatric epilepsy is significantly different from that of healthy children, characterised by changes in the abundance of specific microbe communities and a reduction in diversity. These alterations may influence epileptic seizures through various pathways, including the microbiota-gut-brain axis by modulating neurotransmitters metabolism, affecting gut barrier function and immune responses, and directly impacting brain activity via the vagus nerves. This review highlights the alterations in gut microbes and their metabolites in epileptic children, analyzes their impact on seizures, and explores potential associations.
Collapse
Affiliation(s)
- Xueying Bian
- Pediatrics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiaoli Shao
- Pediatrics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
6
|
Li Q, Gu Y, Liang J, Yang Z, Qin J. A long journey to treat epilepsy with the gut microbiota. Front Cell Neurosci 2024; 18:1386205. [PMID: 38988662 PMCID: PMC11233807 DOI: 10.3389/fncel.2024.1386205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a common neurological disorder that affects approximately 10.5 million children worldwide. Approximately 33% of affected patients exhibit resistance to all available antiseizure medications, but the underlying mechanisms are unknown and there is no effective treatment. Increasing evidence has shown that an abnormal gut microbiota may be associated with epilepsy. The gut microbiota can influence the function of the brain through multiple pathways, including the neuroendocrine, neuroimmune, and autonomic nervous systems. This review discusses the interactions between the central nervous system and the gastrointestinal tract (the brain-gut axis) and the role of the gut microbiota in the pathogenesis of epilepsy. However, the exact gut microbiota involved in epileptogenesis is unknown, and no consistent results have been obtained based on current research. Moreover, the target that should be further explored to identify a novel antiseizure drug is unclear. The role of the gut microbiota in epilepsy will most likely be uncovered with the development of genomics technology.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Youyu Gu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jingjing Liang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Teixeira L. The nervous system and associated disorders. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2024; 33:194-199. [PMID: 38386518 DOI: 10.12968/bjon.2024.33.4.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Disorders of the nervous system, encompassing the brain, spinal cord and peripheral nerves, have emerged as a significant public health issue, with profound implications for individuals worldwide. These conditions result in significant morbidity and mortality. Many patients with neurological disorders often have comorbidities, further complicating their clinical presentation. Therefore, nurses must possess a comprehensive understanding of the nervous system and its associated disorders to formulate detailed care plans that address the unique needs of each patient. This article aims to explore the underlying pathophysiology of some of the most prevalent neurological disorders and how this informs effective patient assessment and diagnostic strategies. A further article will build on this to consider patient assessment and formulating a care plan in more detail.
Collapse
Affiliation(s)
- Luis Teixeira
- Lecturer in Adult Nursing Complex Care, Kings College London
| |
Collapse
|
8
|
Elfers K, Watanangura A, Hoffmann P, Suchodolski JS, Khattab MR, Pilla R, Meller S, Volk HA, Mazzuoli-Weber G. Fecal supernatants from dogs with idiopathic epilepsy activate enteric neurons. Front Neurosci 2024; 18:1281840. [PMID: 38356649 PMCID: PMC10864448 DOI: 10.3389/fnins.2024.1281840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Alterations in the composition and function of the gut microbiome have been reported in idiopathic epilepsy (IE), however, interactions of gut microbes with the enteric nervous system (ENS) in this context require further study. This pilot study examined how gastrointestinal microbiota (GIM), their metabolites, and nutrients contained in intestinal contents communicate with the ENS. Methods Fecal supernatants (FS) from healthy dogs and dogs with IE, including drug-naïve, phenobarbital (PB) responsive, and PB non-responsive dogs, were applied to cultured myenteric neurons to test their activation using voltage-sensitive dye neuroimaging. Additionally, the concentrations of short-chain fatty acids (SCFAs) in the FS were quantified. Results Our findings indicate that FS from all examined groups elicited neuronal activation. Notably, FS from PB non-responsive dogs with IE induced action potential discharge in a higher proportion of enteric neurons compared to healthy controls, which exhibited the lowest burst frequency overall. Furthermore, the highest burst frequency in enteric neurons was observed upon exposure to FS from drug-naïve dogs with IE. This frequency was significantly higher compared to that observed in PB non-responsive dogs with IE and showed a tendency to surpass that of healthy controls. Discussion Although observed disparities in SCFA concentrations across the various FS samples might be associated with the induced neuronal activity, a direct correlation remains elusive at this point. The obtained results hint at an involvement of the ENS in canine IE and set the basis for future studies.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Mohammad R. Khattab
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
9
|
Zhu H, Wang W, Li Y. The interplay between microbiota and brain-gut axis in epilepsy treatment. Front Pharmacol 2024; 15:1276551. [PMID: 38344171 PMCID: PMC10853364 DOI: 10.3389/fphar.2024.1276551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/12/2024] [Indexed: 08/12/2024] Open
Abstract
The brain-gut axis plays a vital role in connecting the cognitive and emotional centers of the brain with the intricate workings of the intestines. An imbalance in the microbiota-mediated brain-gut axis extends far beyond conditions like Irritable Bowel Syndrome (IBS) and obesity, playing a critical role in the development and progression of various neurological disorders, including epilepsy, depression, Alzheimer's disease (AD), and Parkinson's disease (PD). Epilepsy, a brain disorder characterized by unprovoked seizures, affects approximately 50 million people worldwide. Accumulating evidence suggests that rebuilding the gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and ketogenic diets (KD) can benefit drug-resistant epilepsy. The disturbances in the gut microbiota could contribute to the toxic side effects of antiepileptic drugs and the development of drug resistance in epilepsy patients. These findings imply the potential impact of the gut microbiota on epilepsy and suggest that interventions targeting the microbiota, such as the KD, hold promise for managing and treating epilepsy. However, the full extent of the importance of microbiota in epilepsy treatment is not yet fully understood, and many aspects of this field remain unclear. Therefore, this article aims to provide an overview of the clinical and animal evidence supporting the regulatory role of gut microbiota in epilepsy, and of potential pathways within the brain-gut axis that may be influenced by the gut microbiota in epilepsy. Furthermore, we will discuss the recent advancements in epilepsy treatment, including the KD, fecal microbiota transplantation, and antiseizure drugs, all from the perspective of the gut microbiota.
Collapse
Affiliation(s)
- Hanxiao Zhu
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| | - Wei Wang
- Neurobiology Laboratory, China Agricultural University, Beijing, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| |
Collapse
|
10
|
Wang J, Liu C, Wang SP, Zhang TX, Chen JY, Zhou Q, Hou Y, Yan ZG. BDE-209-induced genotoxicity, intestinal damage and intestinal microbiota dysbiosis in zebrafish (Danio Rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167009. [PMID: 37704147 DOI: 10.1016/j.scitotenv.2023.167009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The environmental presence of polybrominated diphenyl ethers (PBDEs) is ubiquitous due to their wide use as brominated flame retardants in industrial products. As a common congener of PBDEs, decabromodiphenyl ether (BDE-209) can pose a health risk to animals as well as humans. However, to date, few studies have explored BDE-209's toxic effects on the intestinal tract, and its relevant mechanism of toxicity has not been elucidated. In this study, adult male zebrafish were exposed to BDE-209 at 6 μg/L, 60 μg/L and 600 μg/L for 28 days, and intestinal tissue and microbial samples were collected for analysis to reveal the underlying toxic mechanisms. Transcriptome sequencing results demonstrated a dose-dependent pattern of substantial gene differential expression in the group exposed to BDE-209, and the differentially expressed genes were mainly concentrated in pathways related to protein synthesis and processing, redox reaction, and steroid and lipid metabolism. In addition, BDE-209 exposure caused damage to intestinal structure and barrier function, and promoted intestinal oxidative stress, inflammatory response, apoptosis and steroid and lipid metabolism disorders. Mechanistically, BDE-209 induced intestinal inflammation by increasing the levels of TNF-α and IL-1β and activating the NFκB signaling pathway, and might induce apoptosis through the p53-Bax/Bcl2-Caspase3 pathway. BDE-209 also significantly inhibited the gene expression of rate-limiting enzymes such as Sqle and 3βhsd (p < 0.05) to inhibit cholesterol synthesis. In addition, BDE-209 induced lipid metabolism disorders through the mTOR/PPARγ/RXRα pathway. 16S rRNA sequencing results showed that BDE-209 stress reduced the richness and diversity of intestinal microbiota, and reduced the abundance of probiotics (e.g., Bifidobacterium and Faecalibacterium). Overall, the results of this study help to clarify the intestinal response mechanism of BDE-209 exposure, and provide a basis for evaluating the health risks of BDE-209 in animals.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shu-Ping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tian-Xu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jing-Yi Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Quan Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yin Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
11
|
Nie D, Li C, Zhang Y. PitNETs and the gut microbiota: potential connections, future directions. Front Endocrinol (Lausanne) 2023; 14:1255911. [PMID: 38027221 PMCID: PMC10657991 DOI: 10.3389/fendo.2023.1255911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The role of the gut microbiome has been widely discussed in numerous works of literature. The biggest concern is the association of the gut microbiome with the central nervous system through the microbiome-brain-gut axis in the past ten years. As more and more research has been done on the relationship between the disease of the central nervous system and gut microbes. This fact is being revealed that gut microbes seem to play an important role from the onset and progression of the disease to clinical symptoms, and new treatments. As a special tumor of the central nervous system, pituitary neuroendocrine tumors (PitNETs)are closely related to metabolism, endocrinology, and immunity. These factors are the vectors through which intestinal microbes interact with the central nervous system. However, little is known about the effects of gut microbes on the PitNET. In this review, the relationship of gut microbiota in PitNETs is introduced, the potential effects of the gut-brain axis in this relationship are analyzed, and future research directions are presented.
Collapse
Affiliation(s)
| | | | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Kundu S, Nayak S, Rakshit D, Singh T, Shukla R, Khatri DK, Mishra A. The microbiome-gut-brain axis in epilepsy: pharmacotherapeutic target from bench evidence for potential bedside applications. Eur J Neurol 2023; 30:3557-3567. [PMID: 36880679 DOI: 10.1111/ene.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The gut-brain axis augments the bidirectional communication between the gut and brain and modulates gut homeostasis and the central nervous system through the hypothalamic-pituitary-adrenal axis, enteroendocrine system, neuroendocrine system, inflammatory and immune pathways. Preclinical and clinical reports showed that gut dysbiosis might play a major regulatory role in neurological diseases such as epilepsy, Parkinson's, multiple sclerosis, and Alzheimer's disease. Epilepsy is a chronic neurological disease that causes recurrent and unprovoked seizures, and numerous risk factors are implicated in developing epilepsy. Advanced consideration of the gut-microbiota-brain axis can reduce ambiguity about epilepsy pathology, antiepileptic drugs, and effective therapeutic targets. Gut microbiota sequencing analysis reported that the level of Proteobacteria, Verrucomicrobia, Fusobacteria, and Firmicutes was increased and the level of Actinobacteria and Bacteroidetes was decreased in epilepsy patients. Clinical and preclinical studies also indicated that probiotics, ketogenic diet, faecal microbiota transplantation, and antibiotics can improve gut dysbiosis and alleviate seizure by enhancing the abundance of healthy biota. This study aims to give an overview of the connection between gut microbiota, and epilepsy, how gut microbiome changes may cause epilepsy, and whether gut microbiome restoration could be used as a treatment for epilepsy.
Collapse
Affiliation(s)
- Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Sudipta Nayak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
13
|
Mengoli M, Conti G, Fabbrini M, Candela M, Brigidi P, Turroni S, Barone M. Microbiota-gut-brain axis and ketogenic diet: how close are we to tackling epilepsy? MICROBIOME RESEARCH REPORTS 2023; 2:32. [PMID: 38045924 PMCID: PMC10688818 DOI: 10.20517/mrr.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023]
Abstract
The microbiota-gut-brain axis refers to the intricate bidirectional communication between commensal microorganisms residing in the digestive tract and the central nervous system, along neuroendocrine, metabolic, immune, and inflammatory pathways. This axis has been suggested to play a role in several neurological disorders, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy, paving the way for microbiome-based intervention strategies for the mitigation and treatment of symptoms. Epilepsy is a multifaceted neurological condition affecting more than 50 million individuals worldwide, 30% of whom do not respond to conventional pharmacological therapies. Among the first-hand microbiota modulation strategies, nutritional interventions represent an easily applicable option in both clinical and home settings. In this narrative review, we summarize the mechanisms underlying the microbiota-gut-brain axis involvement in epilepsy, discuss the impact of antiepileptic drugs on the gut microbiome, and then the impact of a particular dietary pattern, the ketogenic diet, on the microbiota-gut-brain axis in epileptic patients. The investigation of the microbiota response to non-pharmacological therapies is an ever-expanding field with the potential to allow the design of increasingly accessible and successful intervention strategies.
Collapse
Affiliation(s)
- Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
14
|
Liu L, Wang H, Chen X, Xie P. Gut microbiota: a new insight into neurological diseases. Chin Med J (Engl) 2023; 136:1261-1277. [PMID: 35830286 PMCID: PMC10309523 DOI: 10.1097/cm9.0000000000002212] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT In the last decade, it has become increasingly recognized that a balanced gut microbiota plays an important role in maintaining the health of the host. Numerous clinical and preclinical studies have shown that changes in gut microbiota composition are associated with a variety of neurological diseases, e.g., Parkinson's disease, Alzheimer's disease, and myasthenia gravis. However, the underlying molecular mechanisms are complex and remain unclear. Behavioral phenotypes can be transmitted from humans to animals through gut microbiota transplantation, indicating that the gut microbiota may be an important regulator of neurological diseases. However, further research is required to determine whether animal-based findings can be extended to humans and to elucidate the relevant potential mechanisms by which the gut microbiota regulates neurological diseases. Such investigations may aid in the development of new microbiota-based strategies for diagnosis and treatment and improve the clinical management of neurological disorders. In this review, we describe the dysbiosis of gut microbiota and the corresponding mechanisms in common neurological diseases, and discuss the potential roles that the intestinal microbiome may play in the diagnosis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xueyi Chen
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Wei S, Mai Y, Hu L, Zheng R, Zheng D, Chen W, Cai Y, Wang J. Altered gut microbiota in temporal lobe epilepsy with anxiety disorders. Front Microbiol 2023; 14:1165787. [PMID: 37283931 PMCID: PMC10239838 DOI: 10.3389/fmicb.2023.1165787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Patients with epilepsy are particularly vulnerable to the negative effects of anxiety disorders. In particular, temporal lobe epilepsy with anxiety disorders (TLEA) has attracted more attention in epilepsy research. The link between intestinal dysbiosis and TLEA has not been established yet. To gain deeper insight into the link between gut microbiota dysbiosis and factors affecting TLEA, the composition of the gut microbiome, including bacteria and fungi, has been examined. Methods The gut microbiota from 51 temporal lobe epilepsy patients has been subjected to sequencing targeting 16S rDNA (Illumina MiSeq) and from 45 temporal lobe epilepsy patients targeting the ITS-1 region (through pyrosequencing). A differential analysis has been conducted on the gut microbiota from the phylum to the genus level. Results TLEA patients' gut bacteria and fungal microbiota exhibited distinct characteristics and diversity as evidenced by high-throughput sequencing (HTS). TLEA patients showed higher abundances of Escherichia-Shigella (genus), Enterobacterales (order), Enterobacteriaceae (family), Proteobacteria (phylum), Gammaproteobacteria (class), and lower abundances of Clostridia (class), Firmicutes, Lachnospiraceae (family), Lachnospirales (order), and Ruminococcus (genus). Among fungi, Saccharomycetales fam. incertae sedis (family), Saccharomycetales (order), Saccharomycetes (class), and Ascomycota (phylum) were significantly more abundant in TLEA patients than in patients with temporal lobe epilepsy but without anxiety. Adoption and perception of seizure control significantly affected TLEA bacterial community structure, while yearly hospitalization frequency affected fungal community structures in TLEA patients. Conclusion Here, our study validated the gut microbiota dysbiosis of TLEA. Moreover, the pioneering study of bacterial and fungal microbiota profiles will help in understanding the course of TLEA and drive us toward preventing TLEA gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Shouchao Wei
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yingren Mai
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Zhanjiang, China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, China
| | - Ruxing Zheng
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Dongming Zheng
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Wenrong Chen
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yan Cai
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Junjun Wang
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Yang L, Tian J. Changes of intestinal flora in children with febrile seizure. Medicine (Baltimore) 2023; 102:e33730. [PMID: 37335742 PMCID: PMC10194469 DOI: 10.1097/md.0000000000033730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
Febrile seizure (FS) is a highly recurrent neuro-system disorder in children that affects their nervous system development and quality of life. However, the pathogenesis of febrile seizures remains unclear. Our study aims to investigate the potential differences in the intestinal flora and metabolomics between healthy children and those with FS. By examining the relationship between specific flora and different metabolites, we hope to shed light on the pathogenesis of FS. Fecal specimens were collected from healthy children (n = 15) and children with febrile seizures (n = 15), and 16S rDNA sequencing was conducted to characterize intestinal flora. Subsequently, fecal samples from healthy (n = 6) and febrile seizure children (n = 6) were used to characterize metabolomics using linear discriminant analysis of effect size, orthogonal partial least squares discriminant analysis, Kyoto Encyclopedia of Genes and Genomes (pathway enrichment analysis), and Kyoto encyclopedia of genes and genomes topology analysis. Liquid chromatography-mass spectrometry was used to identify metabolites in the fecal samples. The intestinal microbiome in the febrile seizure children significantly differed from that in the healthy children at the phylum level. Ten differentially accumulated metabolites (xanthosine, (S)-abscisic acid, N-palmitoylglycine, (+/-)-2-(5-methyl-5-vinyl-tetrahydrofuran-2-yl) propionaldehyde, (R)-3-hydroxybutyrylcarnitine, lauroylcarnitine, oleoylethanolamide, tetradecyl carnitine, taurine, and lysoPC [18:1 (9z)/0:0] were considered the potential febrile seizure markers. Three metabolic pathways (taurine metabolism; glycine, serine, and threonine metabolism; and arginine biosynthesis) were found essential in febrile seizure. Bacteroides were significantly correlated with the 4 differential metabolites. Adjusting the balance of intestinal flora may be an effective method for preventing and treating febrile seizures.
Collapse
Affiliation(s)
- Lin Yang
- The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Children’s Hospital Affiliated to Suzhou University, Suzhou, China
| | - Jianmei Tian
- Children’s Hospital Affiliated to Suzhou University, Suzhou, China
| |
Collapse
|
17
|
Wang Y, Zhuo Z, Wang H. Epilepsy, gut microbiota, and circadian rhythm. Front Neurol 2023; 14:1157358. [PMID: 37273718 PMCID: PMC10232836 DOI: 10.3389/fneur.2023.1157358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
In recent years, relevant studies have found changes in gut microbiota (GM) in patients with epilepsy. In addition, impaired sleep and circadian patterns are common symptoms of epilepsy. Moreover, the types of seizures have a circadian rhythm. Numerous reports have indicated that the GM and its metabolites have circadian rhythms. This review will describe changes in the GM in clinical and animal studies under epilepsy and circadian rhythm disorder, respectively. The aim is to determine the commonalities and specificities of alterations in GM and their impact on disease occurrence in the context of epilepsy and circadian disruption. Although clinical studies are influenced by many factors, the results suggest that there are some commonalities in the changes of GM. Finally, we discuss the links among epilepsy, gut microbiome, and circadian rhythms, as well as future research that needs to be conducted.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| |
Collapse
|
18
|
Zubareva OE, Dyomina AV, Kovalenko AA, Roginskaya AI, Melik-Kasumov TB, Korneeva MA, Chuprina AV, Zhabinskaya AA, Kolyhan SA, Zakharova MV, Gryaznova MO, Zaitsev AV. Beneficial Effects of Probiotic Bifidobacterium longum in a Lithium-Pilocarpine Model of Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2023; 24:ijms24098451. [PMID: 37176158 PMCID: PMC10179354 DOI: 10.3390/ijms24098451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Epilepsy is a challenging brain disorder that is often difficult to treat with conventional therapies. The gut microbiota has been shown to play an important role in the development of neuropsychiatric disorders, including epilepsy. In this study, the effects of Bifidobacterium longum, a probiotic, on inflammation, neuronal degeneration, and behavior are evaluated in a lithium-pilocarpine model of temporal lobe epilepsy (TLE) induced in young adult rats. B. longum was administered orally at a dose of 109 CFU/rat for 30 days after pilocarpine injection. The results show that B. longum treatment has beneficial effects on the TLE-induced changes in anxiety levels, neuronal death in the amygdala, and body weight recovery. In addition, B. longum increased the expression of anti-inflammatory and neuroprotective genes, such as Il1rn and Pparg. However, the probiotic had little effect on TLE-induced astrogliosis and microgliosis and did not reduce neuronal death in the hippocampus and temporal cortex. The study suggests that B. longum may have a beneficial effect on TLE and may provide valuable insights into the role of gut bacteria in epileptogenesis. In addition, the results show that B. longum may be a promising drug for the comprehensive treatment of epilepsy.
Collapse
Affiliation(s)
- Olga E Zubareva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Alexandra V Dyomina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Anna A Kovalenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Anna I Roginskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Tigran B Melik-Kasumov
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Marina A Korneeva
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alesya V Chuprina
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alesya A Zhabinskaya
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Stepan A Kolyhan
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Maria V Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Marusya O Gryaznova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
19
|
Liu T, Jia F, Guo Y, Wang Q, Zhang X, Chang F, Xie Y. Altered intestinal microbiota composition with epilepsy and concomitant diarrhea and potential indicator biomarkers in infants. Front Microbiol 2023; 13:1081591. [PMID: 36713168 PMCID: PMC9874329 DOI: 10.3389/fmicb.2022.1081591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction The diversity and dysregulation of intestinal microbiota is related to the pathology of epilepsy. Gut microbiota plays an important role in epilepsy, and regulating intestinal microbiota through exogenous intervention can alleviate symptoms. However, there are no studies about the effects of epilepsy-related diarrhea on gut microbiota. Methods The diversity and dysregulation of intestinal microbiota is related to the pathology of epilepsy. Gut microbiota plays an important role in epilepsy, and regulating intestinal microbiota through exogenous intervention can alleviate symptoms. However, there are no studies about the effects of epilepsy-related diarrhea on gut microbiota. To evaluate changes in gut microbiota structure and composition in patients with epilepsy and associated diarrhea, the structure and composition of the fecal microbiota among patients with epilepsy (EP, 13 cases), epilepsy with diarrhea (ED, 13 cases), and probiotic treatments (PT, 13 cases), and healthy controls (CK, seven cases) were investigated and validated by utilizing high-throughput 16S rRNA sequencing. Results The results showed that the α-diversity indexes indicated that richness and phylogenetic diversity had no significant differences among groups. However, the variation of β-diversity indicated that the structure and composition of intestinal microbiota were significantly different among the CK, EP, ED, and PT groups (permutational multivariate analysis of variance, p-value = 0.001). Normalized stochasticity ratio and β-nearest taxon index indicated that stochastic mechanisms exerted increasing influence on community differences with epilepsy and associated diarrhea. ED microbiome alterations include increased Proteobacteria and decreased Actinobacteria and Firmicutes at the phylum level. Bifidobacterium was the core microbe in CK, EP, and PT, whereas it decreased significantly in ED. In contrast, Escherichia/Shigella was the core microbe in CK and ED, whereas it increased significantly in ED (Tukey's multiple comparisons test, adjusted p-value <0.05). The association network in CK has higher complexity and aggregation than in the other groups. The EP network indicated high connectivity density within each community and high sparsity among communities. The bacterial community network of the ED had a more compact local interconnection, which was in contrast to that of PT. The top 7 microbial amplicon sequence variant-based markers that were selected by machine learning to distinguish the groups of epilepsy, probiotic treatments, and healthy infants had stronger discrimination ability. In addition, ASVs_1 (Escherichia/Shigella) and ASVs_3 (Bifidobacterium) had the most importance in the recognition. Discussion Our research finally showed that infants with epilepsy, epilepsy with diarrhea, and probiotic treatments exhibit substantial alterations of intestinal microbiota structure and composition, and specific intestinal strains are altered according to different clinical phenotypes and can therefore be used as potential biomarkers for disease diagnosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Pediatrics, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Fengan Jia
- Shaanxi Institute of Microbiology, Xi’an, China
| | - Ying Guo
- Department of Pediatrics, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Qi Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoge Zhang
- Department of Pediatrics, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Fan Chang
- Shaanxi Institute of Microbiology, Xi’an, China,*Correspondence: Fan Chang,
| | - Yun Xie
- Department of Clinical Laboratory, Northwest Women’s and Children’s Hospital, Xi’an, China,Yun Xie,
| |
Collapse
|
20
|
Zeng Y, Cao S, Yang H. Roles of gut microbiome in epilepsy risk: A Mendelian randomization study. Front Microbiol 2023; 14:1115014. [PMID: 36922970 PMCID: PMC10010438 DOI: 10.3389/fmicb.2023.1115014] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Recent studies have suggested an association between gut microbiomes (GMs) and epilepsy. However, the GM taxa identified in different studies are variable. In addition, observational studies cannot indicate causality. Therefore, our study aimed to explore the causal association of GMs with epilepsy and identify the most influential GM taxa. Methods We conducted a Mendelian randomization (MR) study using summary statistics from genome-wide association studies (GWAS) of 211 GM taxa and epilepsy. The GWAS summary statistics for 211 GM taxa (from phylum to genus level) were generated by the MiBioGen consortium, while the FinnGen consortium provided the GWAS summary statistics for epilepsy. The primary analytical method to assess causality was the inverse-variance weighted (IVW) approach. To complement the IVW method, we also applied four additional MR methods: MR-Egger, weighted median, simple mode, and weighted. In addition, we conducted sensitivity analyses using Cochrane's Q-test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. Results We evaluated the causal effect of 211 GM taxa (from phylum to genus level) on epilepsy, generalized epilepsy, and focal epilepsy. After using the Bonferroni method for multiple testing correction, Class Betaproteobacteria [odds ratio (OR) = 1.357, 95% confidence interval (CI): 1.126-1.635, p = 0.001] and Order Burkholderiales (OR = 1.336, 95% CI: 1.112-1.606, p = 0.002). In addition, 21 nominally significant causal relationships were also identified. Further, the MR-Egger intercept test and MR-PRESSO global test suggested that our MR analysis was unaffected by horizontal pleiotropy (p > 0.05). Finally, the leave-one-out analysis suggested the robustness of the results. Conclusion Through the MR study, we analyzed the causal relationship of 211 GM taxa with epilepsy and determined the specific intestinal flora associated with increased epilepsy risk. Our findings may provide helpful biomarkers for disease progression and potential candidate therapeutic targets for epilepsy. In addition, in-depth analysis of large-scale microbiome GWAS datasets based on metagenomics sequencing is necessary for future studies.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Han S, Zhuang J, Pan Y, Wu W, Ding K. Different Characteristics in Gut Microbiome between Advanced Adenoma Patients and Colorectal Cancer Patients by Metagenomic Analysis. Microbiol Spectr 2022; 10:e0159322. [PMID: 36453905 PMCID: PMC9769752 DOI: 10.1128/spectrum.01593-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
The occurrence and development of colorectal cancer (CRC) and advanced adenoma (AA) are closely related to the gut microbiome, and AA has a high cancerization progression rate to CRC. Current studies have revealed that bacteriological analysis cannot identify CRC from AA. The objective was to explore microbial targets that could identify CRC and AA from a microecological perspective and to figure out the best way to identify CRC based on fecal microbes. The metagenomic sequencing data were used to describe the gut microbiome profile and analyze the differences between microbial abundance and microbial single nucleotide polymorphism (SNP) characteristics in AA and CRC patients. It was found that there were no significant differences in the diversity between the two groups. The abundance of bacteria (e.g., Firmicutes, Clostridia, and Blautia), fungi (Hypocreales), archaea (Methanosarcina, Methanoculleus, and Methanolacinia), and viruses (Alphacoronavirus, Sinsheimervirus, and Gammaretrovirus) differed between AA and CRC patients. Multiple machine-learning algorithms were used to establish prediction models, aiming to identify CRC and AA. The accuracy of the random forest (RF) model based on the gut microbiome was 86.54%. Nevertheless, the accuracy of SNP was 92.31% in identifying CRC from AA. In conclusion, using microbial SNP was the best method to identify CRC, it was superior to using the gut microbiome, and it could provide new targets for CRC screening. IMPORTANCE There are differences in characteristic microorganisms between AA and CRC. However, current studies have indicated that bacteriological analysis cannot identify CC from AA, and thus, we wondered if there were some other targets that could be used to identify CRC from AA in the gut microbiome. The differences of SNPs in the gut microbiota of intraindividuals were significantly smaller than those of interindividuals. In addition, compared with intestinal microbes, SNP was less affected by time with certain stability. It was discovered that microbial SNP was better than the gut microbiome for identifying CRC from AA. Therefore, screening characteristic microbial SNP could provide a new research direction for identifying CRC from AA.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for Cancer, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jing Zhuang
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yuefen Pan
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Wei Wu
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for Cancer, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Xin C, Guan X, Wang L, Liu J. Integrative Multi-Omics Research in Cerebral Palsy: Current Progress and Future Prospects. Neurochem Res 2022; 48:1269-1279. [PMID: 36512293 DOI: 10.1007/s11064-022-03839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Cerebral palsy (CP) describes a heterogeneous group of non-progressive neurodevelopmental disorders affecting movement and posture. The etiology and diagnostic biomarkers of CP are a hot topic in clinical research. Recent advances in omics techniques, including genomics, epigenomics, transcriptomics, metabolomics and proteomics, have offered new insights to further understand the pathophysiology of CP and have allowed for identification of diagnostic biomarkers of CP. In present study, we reviewed the latest multi-omics investigations of CP and provided an in-depth summary of current research progress in CP. This review will offer the basis and recommendations for future fundamental research on the pathogenesis of CP, identification of diagnostic biomarkers, and prevention strategies for CP.
Collapse
Affiliation(s)
- Chengqi Xin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China.
| |
Collapse
|
23
|
Gong X, Liu L, Li X, Xiong J, Xu J, Mao D, Liu L. Neuroprotection of cannabidiol in epileptic rats: Gut microbiome and metabolome sequencing. Front Nutr 2022; 9:1028459. [PMID: 36466385 PMCID: PMC9709218 DOI: 10.3389/fnut.2022.1028459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
AIMS Epilepsy is a neurological disease occurring worldwide. Alterations in the gut microbial composition may be involved in the development of Epilepsy. The study aimed to investigate the effects of cannabidiol (CBD) on gut microbiota and the metabolic profile of epileptic rats. MATERIALS AND METHODS AND RESULTS A temporal lobe epilepsy rat model was established using Li-pilocarpine. CBD increased the incubation period and reduced the epileptic state in rats. Compared to epileptic rats, the M1/M2 ratio of microglia in the CBD group was significantly decreased. The expression of IL-1β, IL-6, and TNF-α in the CBD group decreased, while IL-10, IL-4, and TGF-β1 increased. 16S rDNA sequencing revealed that the ANOSIM index differed significantly between the groups. At the genus level, Helicobacter, Prevotellaceae_UCG-001, and Ruminococcaceae_UCG-005 were significantly reduced in the model group. CBD intervention attenuated the intervention effects of Li-pilocarpine. Roseburia, Eubacterium_xylanophilum_group, and Ruminococcus_2 were strongly positively correlated with proinflammatory cytokine levels. CBD reversed dysregulated metabolites, including glycerophosphocholine and 4-ethylbenzoic acid. CONCLUSION CBD could alleviate the dysbiosis of gut microbiota and metabolic disorders of epileptic rats. CBD attenuated Epilepsy in rats might be related to gut microbial abundance and metabolite levels. SIGNIFICANCE AND IMPACT OF STUDY The study may provide a reliable scientific clue to explore the regulatory pathway of CBD in alleviating Epilepsy.
Collapse
Affiliation(s)
- Xiaoxiang Gong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingfang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Ouyang Y, Chen Y, Wang G, Song Y, Zhao H, Xiao B, Yang Z, Long L. Genetically proxied gut microbiota, gut metabolites with risk of epilepsy and the subtypes: A bi-directional Mendelian randomization study. Front Mol Neurosci 2022; 15:994270. [PMID: 36407759 PMCID: PMC9669914 DOI: 10.3389/fnmol.2022.994270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background An increasing number of observational studies have revealed an association among the gut microbiota, gut metabolites, and epilepsy. However, this association is easily influenced by confounders such as diet, and the causality of this association remains obscure. Methods Aiming to explore the causal relationship and ascertain specific gut microbe taxa for epilepsy, we conducted a bi-directional Mendelian randomization (MR) study based on the genome-wide association study (GWAS) data of epilepsy from the International League Against Epilepsy, with the gut microbiota GWAS results from MiBioGen, and summary-level GWAS data of gut microbiota-dependent metabolites trimethylamine N-oxide and its predecessors. Results Nine phyla, 15 classes, 19 orders, 30 families, and 96 genera were analyzed. A suggestive association of host-genetic-driven increase in family Veillonellaceae with a higher risk of childhood absence epilepsy (odds ratio [OR]: 1.033, confidential interval [CI]: 1.015–1.051, PIVW = 0.0003), class Melainabacteria with a lower risk of generalized epilepsy with tonic-clonic seizures (OR = 0.986, CI = 0.979–0.994, PIVW = 0.0002), class Betaproteobacteria (OR = 0.958, CI = 0.937–0.979, PIVW = 0.0001), and order Burkholderiales (OR = 0.960, CI = 0.937–0.984, PIVW = 0.0010) with a lower risk of juvenile myoclonic epilepsy were identified after multiple-testing correction. Our sensitivity analysis revealed no evidence of pleiotropy, reverse causality, weak instrument bias, or heterogeneity. Conclusion This is the first MR analysis to explore the potential causal relationship among the gut microbiota, metabolites, and epilepsy. Four gut microbiota features (two class levels, one order level, and one family level) were identified as potential interventional targets for patients with childhood absence epilepsy, generalized epilepsy with tonic-clonic seizures, and juvenile myoclonic epilepsy. Previous associations in numerous observational studies may had been interfered by confounders. More rigorous studies were needed to ascertain the relationship among the gut microbiota, metabolites, and epilepsy.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Yu Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Yanmin Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Haiting Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Zhuanyi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Zhuanyi Yang,
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- *Correspondence: Lili Long,
| |
Collapse
|
25
|
Zhou C, Gong S, Xiang S, Liang L, Hu X, Huang R, Liao Z, Ma Y, Xiao Z, Qiu J. Changes and significance of gut microbiota in children with focal epilepsy before and after treatment. Front Cell Infect Microbiol 2022; 12:965471. [PMID: 36405958 PMCID: PMC9671114 DOI: 10.3389/fcimb.2022.965471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To better understand the alterations in gut microbiota and metabolic pathways in children with focal epilepsy, and to further investigate the changes in the related gut microbiota and metabolic pathways in these children before and after treatment. Methods Ten patients with newly diagnosed focal epilepsy in Hunan Children’s Hospital from April, 2020 to October, 2020 were recruited into the case group. The case group was further divided into a pre-treatment subgroup and a post-treatment subgroup. Additionally, 14 healthy children of the same age were recruited into a control group. The microbial communities were analyzed using 16s rDNA sequencing data. Metastas and LEfSe were used to identify different bacteria between and within groups. The Kyoto Encyclopedia of Genes and Genomes database was used to KEGG enrichment analysis. Results There were significant differences in α diversity among the pre-treatment, post-treatment, and control groups. Besides, the differences in gut microbiota composition in 3 groups were identified by principal co-ordinates analysis (PCoA), which showed a similar composition of the pre-treatment and post-treatment subgroups. At the phyla level, the relative abundance of Actinobacteria in the pre-treatment subgroup was significantly higher than that in the control group, which decreased significantly after 3 months of treatment and showed no significant difference between the control group. In terms of the genus level, Escherichia/Shigella, Streptococcus, Collinsella, and Megamonas were enriched in the pre-treatment subgroup, while Faecalibacterium and Anaerostipes were enriched in the control group. The relative abundance of Escherichia/Shigella, Streptococcus, Collinsella, and Megamonas was reduced significantly after a three-month treatment. Despite some genera remaining significantly different between the post-treatment subgroup and control group, the number of significantly different genera decreased from 9 to 4 through treatment. Notably, we found that the carbohydrate metabolism, especially succinate, was related to focal epilepsy. Conclusion Children with focal epilepsy compared with healthy controls were associated with the statistically significant differences in the gut microbiota and carbohydrate metabolism. The differences were reduced and the carbohydrate metabolism improved after effective treatment. Our research may provide new directions for understanding the role of gut microbiota in the pathogenesis of focal epilepsy and better alternative treatments.
Collapse
Affiliation(s)
- Changci Zhou
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuaizheng Gong
- Department of Hematology and Oncology, Hunan Children’s Hospital, Changsha, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
| | - Lijuan Liang
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| | - Xia Hu
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| | - Ruiwen Huang
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Zhenyu Liao
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Ye Ma
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Zhenghui Xiao
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
- *Correspondence: Zhenghui Xiao, ; Jun Qiu,
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- *Correspondence: Zhenghui Xiao, ; Jun Qiu,
| |
Collapse
|
26
|
Al-Beltagi M, Saeed NK. Epilepsy and the gut: Perpetrator or victim? World J Gastrointest Pathophysiol 2022; 13:143-156. [PMID: 36187601 PMCID: PMC9516455 DOI: 10.4291/wjgp.v13.i5.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023] Open
Abstract
The brain and the gut are linked together with a complex, bi-path link known as the gut-brain axis through the central and enteric nervous systems. So, the brain directly affects and controls the gut through various neurocrine and endocrine processes, and the gut impacts the brain via different mechanisms. Epilepsy is a central nervous system (CNS) disorder with abnormal brain activity, causing repeated seizures due to a transient excessive or synchronous alteration in the brain’s electrical activity. Due to the strong relationship between the enteric and the CNS, gastrointestinal dysfunction may increase the risk of epilepsy. Meanwhile, about 2.5% of patients with epilepsy were misdiagnosed as having gastrointestinal disorders, especially in children below the age of one year. Gut dysbiosis also has a significant role in epileptogenesis. Epilepsy, in turn, affects the gastrointestinal tract in different forms, such as abdominal aura, epilepsy with abdominal pain, and the adverse effects of medications on the gut and the gut microbiota. Epilepsy with abdominal pain, a type of temporal lobe epilepsy, is an uncommon cause of abdominal pain. Epilepsy also can present with postictal states with gastrointestinal manifestations such as postictal hypersalivation, hyperphagia, or compulsive water drinking. At the same time, antiseizure medications have many gastrointestinal side effects. On the other hand, some antiseizure medications may improve some gastrointestinal diseases. Many gut manipulations were used successfully to manage epilepsy. Prebiotics, probiotics, synbiotics, postbiotics, a ketogenic diet, fecal microbiota transplantation, and vagus nerve stimulation were used successfully to treat some patients with epilepsy. Other manipulations, such as omental transposition, still need more studies. This narrative review will discuss the different ways the gut and epilepsy affect each other.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medica City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 26612, Bahrain
- Department of Microbiology, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
27
|
Ketogenic Diet: A Dietary Intervention via Gut Microbiome Modulation for the Treatment of Neurological and Nutritional Disorders (a Narrative Review). Nutrients 2022; 14:nu14173566. [PMID: 36079829 PMCID: PMC9460077 DOI: 10.3390/nu14173566] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The ketogenic diet (KD) has been important in treating epilepsy since the 1920s. The benefits of KD further expanded to other neurological diseases, including Alzheimer’s diseases, autism spectrum disorder, and nutritional disorder (obesity). Although the therapeutic efficacy of KD has been generally accepted, there is limited knowledge about its underlying mechanism of action, particularly its effect on our gut microbiome. Gut dysbiosis has been proposed to be involved in those diseases, and KD can promote gut microbiota remodeling that may assist in recovery. This review explores the therapeutic applications of KD, the roles of the gut microbiome in neurological diseases and obesity, as well as the effect of KD on the gut microbiome. The present information suggests that KD has significant roles in altering the gut microbiome to improve disease symptoms, mainly by incrementing Bacteroidetes to Firmicutes (B/F) ratio and reducing Proteobacteria in certain cases. However, current gaps call for continued research to understand better the gut microbiota profile altered by KD.
Collapse
|
28
|
Oliveira MET, Paulino GVB, Dos Santos Júnior ED, da Silva Oliveira FA, Melo VMM, Ursulino JS, de Aquino TM, Shetty AK, Landell MF, Gitaí DLG. Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2022; 59:6429-6446. [PMID: 35962889 DOI: 10.1007/s12035-022-02984-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the β-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.
Collapse
Affiliation(s)
- Maria Eduarda T Oliveira
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Gustavo V B Paulino
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Erivaldo D Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Francisca A da Silva Oliveira
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Vânia M M Melo
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Jeferson S Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Thiago M de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Melissa Fontes Landell
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| |
Collapse
|
29
|
Watanangura A, Meller S, Suchodolski JS, Pilla R, Khattab MR, Loderstedt S, Becker LF, Bathen-Nöthen A, Mazzuoli-Weber G, Volk HA. The effect of phenobarbital treatment on behavioral comorbidities and on the composition and function of the fecal microbiome in dogs with idiopathic epilepsy. Front Vet Sci 2022; 9:933905. [PMID: 35990279 PMCID: PMC9386120 DOI: 10.3389/fvets.2022.933905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Phenobarbital (PB) is one of the most important antiseizure drugs (ASDs) to treat canine idiopathic epilepsy (IE). The effect of PB on the taxonomic changes in gastrointestinal microbiota (GIM) and their functions is less known, which may explain parts of its pharmacokinetic and pharmacodynamic properties, especially its antiseizure effect and drug responsiveness or drug resistance as well as its effect on behavioral comorbidities. Fecal samples of 12 dogs with IE were collected prior to the initiation of PB treatment and 90 days after oral PB treatment. The fecal samples were analyzed using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based dysbiosis index (DI), and quantification of short-chain fatty acids (SCFAs). Behavioral comorbidities were evaluated using standardized online questionnaires, namely, a canine behavioral assessment and research questionnaire (cBARQ), canine cognitive dysfunction rating scale (CCDR), and an attention deficit hyperactivity disorder (ADHD) questionnaire. The results revealed no significant changes in alpha and beta diversity or in the DI, whereas only the abundance of Clostridiales was significantly decreased after PB treatment. Fecal SCFA measurement showed a significant increase in total fecal SCFA concentration and the concentrations of propionate and butyrate, while acetate concentrations revealed an upward trend after 90 days of treatment. In addition, the PB-Responder (PB-R) group had significantly higher butyrate levels compared to the PB-Non-Responder (PB-NR) group. Metagenomics of functional pathway genes demonstrated a significant increase in genes in trehalose biosynthesis, ribosomal synthesis, and gluconeogenesis, but a decrease in V-ATPase-related oxidative phosphorylation. For behavioral assessment, cBARQ analysis showed improvement in stranger-directed fear, non-social fear, and trainability, while there were no differences in ADHD-like behavior and canine cognitive dysfunction (CCD) scores after 90 days of PB treatment. While only very minor shifts in bacterial taxonomy were detected, the higher SCFA concentrations after PB treatment could be one of the key differences between PB-R and PB-NR. These results suggest functional changes in GIM in canine IE treatment.
Collapse
Affiliation(s)
- Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Mohammad R. Khattab
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Shenja Loderstedt
- Department for Small Animal, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lisa F. Becker
- Department for Small Animal, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | | | - Gemma Mazzuoli-Weber
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- *Correspondence: Holger A. Volk
| |
Collapse
|
30
|
Zhu Y, Tang Y, He H, Hu P, Sun W, Jin M, Wang L, Xu X. Gut Microbiota Correlates With Clinical Responsiveness to Erythropoietin in Hemodialysis Patients With Anemia. Front Cell Infect Microbiol 2022; 12:919352. [PMID: 35937691 PMCID: PMC9355670 DOI: 10.3389/fcimb.2022.919352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The main treatment for renal anemia in end-stage renal disease (ESRD) patients on hemodialysis is erythropoiesis (EPO). EPO hyporesponsiveness (EH) in dialysis patients is a common clinical problem, which is poorly understood. Recent searches reported that gut microbiota was closely related to the occurrence and development of ESRD. This study aims to explore the changes in gut microbiota between ESRD patients with different responsiveness to EPO treatment. We compared the gut microbiota from 44 poor-response (PR) and 48 good-response (GR) hemodialysis patients treated with EPO using 16S rDNA sequencing analysis. The results showed that PR patients displayed a characteristic composition of the gut microbiome that clearly differed from that of GR patients. Nine genera (Neisseria, Streptococcus, Porphyromonas, Fusobacterium, Prevotella_7, Rothia, Leptotrichia, Prevotella, Actinomyces) we identified by Lasso regression and ROC curves could excellently predict EH. In contrast, five genera (Faecalibacterium, Citrobacter, Bifidobacterium, Escherichia–Shigella, Bacteroides) identified by the same means presented a protective effect against EH. Analyzing the correlation between these biomarkers and clinical indicators, we found that gut microbiota may affect response to EPO through nutritional status and parathyroid function. These findings suggest that gut microbiota is altered in hemodialysis patients with EH, giving new clues to the pathogenesis of renal anemia.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ping Hu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiqian Sun
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Meiping Jin
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Lishun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Xudong Xu, ; Lishun Wang,
| | - Xudong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Xudong Xu, ; Lishun Wang,
| |
Collapse
|
31
|
Li Z, Zhou J, Liang H, Ye L, Lan L, Lu F, Wang Q, Lei T, Yang X, Cui P, Huang J. Differences in Alpha Diversity of Gut Microbiota in Neurological Diseases. Front Neurosci 2022; 16:879318. [PMID: 35837118 PMCID: PMC9274120 DOI: 10.3389/fnins.2022.879318] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neurological diseases are difficult to diagnose in time, and there is currently a lack of effective predictive methods. Previous studies have indicated that a variety of neurological diseases cause changes in the gut microbiota. Alpha diversity is a major indicator to describe the diversity of the gut microbiota. At present, the relationship between neurological diseases and the alpha diversity of the gut microbiota remains unclear. Methods We performed a systematic literature search of Pubmed and Bioproject databases up to January 2021. Six indices were used to measure alpha diversity, including community richness (observed species, Chao1 and ACE), community diversity (Shannon, Simpson), and phylogenetic diversity (PD). Random-effects meta-analyses on the standardized mean difference (SMD) were carried out on the alpha diversity indices. Subgroup analyses were performed to explore the sources of interstudy heterogeneity. Meta-analysis was performed on articles by matching the age, sex, and body mass index (BMI) of the disease group with the control group. Meanwhile, subgroup analysis was performed to control the variability of the sequencing region, platform, geographical region, instrument, and diseases. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was calculated to assess the prediction effectiveness of the microbial alpha diversity indices. Results We conducted a meta-analysis of 24 published studies on 16S rRNA gene amplified sequencing of the gut microbiota and neurological diseases from the Pubmed and Bioproject database (patients, n = 1,469; controls, n = 1,289). The pooled estimate demonstrated that there was no significant difference in the alpha diversity between patients and controls (P < 0.05). Alpha diversity decreased only in Parkinson's disease patients, while it increased in anorexia nervosa patients compared to controls. After adjusting for age, sex, BMI, and geographical region, none of the alpha diversity was associated with neurological diseases. In terms of Illumina HiSeq 2000 and the V3-V5 sequencing region, the results showed that alpha diversity increased significantly in comparison with the controls, while decreased in Illumina HiSeq 2500. ROC curves suggested that alpha diversity could be used as a biomarker to predict the AD (Simpson, AUC= 0.769, P = 0.0001), MS (observed species, AUC= 0.737, P = 0.001), schizophrenia (Chao1, AUC = 0.739, P = 0.002). Conclusions Our review summarized the relationship between alpha diversity of the gut microbiota and neurological diseases. The alpha diversity of gut microbiota could be a promising predictor for AD, schizophrenia, and MS, but not for all neurological diseases.
Collapse
Affiliation(s)
- Zhuoxin Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Liuyan Lan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Fang Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Qing Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Ting Lei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiping Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
- Ping Cui
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
- *Correspondence: Jiegang Huang
| |
Collapse
|
32
|
Özcan E, Lum GR, Hsiao EY. Interactions between the gut microbiome and ketogenic diet in refractory epilepsy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:217-249. [PMID: 36427956 DOI: 10.1016/bs.irn.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epilepsy is one of the most common neurological diseases globally, afflicting approximately 50 million people worldwide. While many antiepileptic drugs exist, an estimated one-third of individuals do not respond to available medications. The high fat, low carbohydrate ketogenic diet (KD) has been used to treat refractory epilepsy in cases when existing antiepileptic drugs fail. However, there are many variations of the KD, each of which varies greatly in its efficacy and side effects. Increasing evidence suggests that interactions between the KD and gut microbiome may modulate the effects of the diet on host physiology. Herein, we review existing evidence of microbiome differences in epileptic individuals compared to healthy controls. We highlight in particular both clinical and animal studies revealing effects of the KD on the composition and function of the microbiome, as well as proof-of-concept animal studies that implicate the microbiome in the antiseizure effects of the KD. We further synthesize findings suggesting that variations in clinical KD formulations may differentially influence host physiology and discuss the gut microbial interactions with specific dietary factors that may play a role. Overall, understanding interactions between the gut microbiota and specific nutritional components of clinical KDs could reveal foundational mechanisms that underlie the effectiveness, variability, and side effects of different KDs, with the potential to lead to precision nutritional and microbiome-based approaches to treat refractory epilepsy.
Collapse
Affiliation(s)
- Ezgi Özcan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
33
|
Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y, Toema O. Gut microbiota in various childhood disorders: Implication and indications. World J Gastroenterol 2022; 28:1875-1901. [PMID: 35664966 PMCID: PMC9150060 DOI: 10.3748/wjg.v28.i18.1875] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has a significant role in gut development, maturation, and immune system differentiation. It exerts considerable effects on the child's physical and mental development. The gut microbiota composition and structure depend on many host and microbial factors. The host factors include age, genetic pool, general health, dietary factors, medication use, the intestine's pH, peristalsis, and transit time, mucus secretions, mucous immunoglobulin, and tissue oxidation-reduction potentials. The microbial factors include nutrient availability, bacterial cooperation or antagonism, and bacterial adhesion. Each part of the gut has its microbiota due to its specific characteristics. The gut microbiota interacts with different body parts, affecting the pathogenesis of many local and systemic diseases. Dysbiosis is a common finding in many childhood disorders such as autism, failure to thrive, nutritional disorders, coeliac disease, Necrotizing Enterocolitis, helicobacter pylori infection, functional gastrointestinal disorders of childhood, inflammatory bowel diseases, and many other gastrointestinal disorders. Dysbiosis is also observed in allergic conditions like atopic dermatitis, allergic rhinitis, and asthma. Dysbiosis can also impact the development and the progression of immune disorders and cardiac disorders, including heart failure. Probiotic supplements could provide some help in managing these disorders. However, we are still in need of more studies. In this narrative review, we will shed some light on the role of microbiota in the development and management of common childhood disorders.
Collapse
Affiliation(s)
- Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Manama 12, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| | - Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Yasser El-Sawaf
- Department of Tropical Medicine, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Gastroenterology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Bahrain
| | - Osama Toema
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
34
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
35
|
Guo C, Huo YJ, Li Y, Han Y, Zhou D. Gut-brain axis: Focus on gut metabolites short-chain fatty acids. World J Clin Cases 2022; 10:1754-1763. [PMID: 35317140 PMCID: PMC8891794 DOI: 10.12998/wjcc.v10.i6.1754] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/27/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence supports that the gut microbiome, reconsidered as a new organ in the human body, can not only affect the local gut, but also communicate with the brain via multiple pathways related to neuroendocrine, immune, and neural pathways, thereby proposing the new concept of the microbiome-gut-brain (MGB) axis. Recently, the role of short-chain fatty acids (SCFAs), which are the main anaerobic fermented metabolites of the gut microbiota in the MGB axis, has garnered significant attention. SCFAs are involved in a broad range of central neurological diseases, including neurodegenerative diseases, cerebral vascular diseases, epilepsy, neuroimmune inflammatory diseases, and mood disorders. However, the underlying mechanism of SCFA-related distant organ crosstalk is yet to be elucidated. Herein, we summarize current knowledge regarding interactions between SCFAs and the MGB axis, as well as their protective effects against central neurological diseases.
Collapse
Affiliation(s)
- Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ya-Jing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Disease, Shanghai 200032, China
| |
Collapse
|
36
|
Dong L, Zheng Q, Cheng Y, Zhou M, Wang M, Xu J, Xu Z, Wu G, Yu Y, Ye L, Feng Z. Gut Microbial Characteristics of Adult Patients With Epilepsy. Front Neurosci 2022; 16:803538. [PMID: 35250450 PMCID: PMC8888681 DOI: 10.3389/fnins.2022.803538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
ObjectiveTo characterize the intestinal flora of patients with epilepsy and its correlation with epilepsy.MethodsPatients with ages > 18 years were consecutively enrolled from the outpatient department, Affiliated Hospital of Guizhou Medical University from January 2018 to December 2019. A total of 71 subjects were recruited, including epilepsy patients (n = 41) as an observation group and patient family members (n = 30) as a control group. Fresh stool specimens of all the subjects were collected. The 16S ribosomal RNA sequencing was analyzed to determine changes in intestinal flora composition and its correlation with epilepsy. Subgroup analysis was then conducted. All patients with epilepsy were divided into an urban group (n = 21) and a rural group (n = 20) according to the region, and bioinformatics analyses were repeated between subgroups.ResultsLEfSe analysis showed that Fusobacterium, Megasphaera, Alloprevotella, and Sutterella had relatively increased abundance in the epilepsy group at the genus level. Correlation analysis suggested that Fusobacterium sp. (r = 0.584, P < 0.01), Fusobacterium mortiferum (r = 0.560, P < 0.01), Ruminococcus gnavus (r = 0.541, P < 0.01), and Bacteroides fragilis (r = 0.506, P < 0.01) were significantly positively correlated with the occurrence of epilepsy (r ≥ 0.5, P < 0.05). PICRUSt function prediction analysis showed that there were significant differences in 16 pathways between the groups at level 3. Comparing the rural group with the urban group, Proteobacteria increased at the phylum level and Escherichia coli, Fusobacterium varium, Prevotella stercorea, and Prevotellaceae bacterium DJF VR15 increased at the species level in the rural group.ConclusionThere were significant differences in the composition and functional pathways of gut flora between epilepsy patients and patient family members. The Fusobacterium may become a potential biomarker for the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Lian Dong
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Nagano, Japan
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guofeng Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunli Yu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Ye
- The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Lan Ye,
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Zhanhui Feng,
| |
Collapse
|
37
|
MEJÍA-GRANADOS DM, VILLASANA-SALAZAR B, COAN AC, RIZZI L, BALTHAZAR MLF, GODOI ABD, CANTO AMD, ROSA DCD, SILVA LS, TACLA RDR, DAMASCENO A, DONATTI A, AVELAR WM, SOUSA A, LOPES-CENDES I. Gut microbiome in neuropsychiatric disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:192-207. [DOI: 10.1590/0004-282x-anp-2021-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT Background: Neuropsychiatric disorders are a significant cause of death and disability worldwide. The mechanisms underlying these disorders include a constellation of structural, infectious, immunological, metabolic, and genetic etiologies. Advances in next-generation sequencing techniques have demonstrated that the composition of the enteric microbiome is dynamic and plays a pivotal role in host homeostasis and several diseases. The enteric microbiome acts as a key mediator in neuronal signaling via metabolic, neuroimmune, and neuroendocrine pathways. Objective: In this review, we aim to present and discuss the most current knowledge regarding the putative influence of the gut microbiome in neuropsychiatric disorders. Methods: We examined some of the preclinical and clinical evidence and therapeutic strategies associated with the manipulation of the gut microbiome. Results: targeted taxa were described and grouped from major studies to each disease. Conclusions: Understanding the complexity of these ecological interactions and their association with susceptibility and progression of acute and chronic disorders could lead to novel diagnostic biomarkers based on molecular targets. Moreover, research on the microbiome can also improve some emerging treatment choices, such as fecal transplantation, personalized probiotics, and dietary interventions, which could be used to reduce the impact of specific neuropsychiatric disorders. We expect that this knowledge will help physicians caring for patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ana Carolina COAN
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | - Liara RIZZI
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | | | | | - Amanda Morato do CANTO
- Universidade de Campinas, Brazil; Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil
| | - Douglas Cescon da ROSA
- Universidade de Campinas, Brazil; Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil
| | - Lucas Scárdua SILVA
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | | | - Alfredo DAMASCENO
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | - Amanda DONATTI
- Universidade de Campinas, Brazil; Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil
| | - Wagner Mauad AVELAR
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | - Alessandro SOUSA
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | - Iscia LOPES-CENDES
- Universidade de Campinas, Brazil; Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil
| |
Collapse
|
38
|
Ilhan ZE, Brochard V, Lapaque N, Auvin S, Lepage P. Exposure to anti-seizure medications impact growth of gut bacterial species and subsequent host response. Neurobiol Dis 2022; 167:105664. [DOI: 10.1016/j.nbd.2022.105664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
|
39
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Gut microbiome effects on neuronal excitability & activity: Implications for epilepsy. Neurobiol Dis 2022; 165:105629. [PMID: 35033659 DOI: 10.1016/j.nbd.2022.105629] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
It is now well established that the bacterial population of the gastrointestinal system, known as the gut microbiome, is capable of influencing the brain and its dependent functions. Links have been demonstrated between the microbiome and a variety of normal and pathological neural functions, including epilepsy. Many of these microbiome-brain links involve the direct or indirect modulation of the excitability and activity of individual neurons by the gut microbiome. Such links may be particularly significant when it comes to microbiome modulation of epilepsy, often considered a disorder of neuronal excitability. In this review we consider the current evidence of a relationship between the gut microbiome and the excitability or activity of neurons in the context of epilepsy. The review focuses particularly on evidence of direct, causal microbiome effects on neuronal excitability or activity, but also considers demonstrations of microbiome to host interactions that are likely to have an indirect influence. While we identify a few common themes, it is apparent that deriving general mechanistic principles of microbiome influence on these parameters in epilepsy will require considerable further study to tease out the many interacting factors, systems, and conditions.
Collapse
|
41
|
de Lima AMDL, de Lima Rosa G, Müller Guzzo EF, Padilha RB, Costa da Silva R, Silveira AK, de Lima Morales D, Conci de Araujo M, Fonseca Moreira JC, Barth AL, Coitinho AS, Van Der Sand ST. Gut microbiota modulation by prednisolone in a rat kindling model of pentylenetetrazol (PTZ)-induced seizure. Microb Pathog 2021; 163:105376. [PMID: 34974121 DOI: 10.1016/j.micpath.2021.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
The gut microbiota is a complex community composed by several microorganisms that interact in the maintenance of homeostasis and contribute to physiological processes, including brain function. The relationship of the taxonomic composition of the gut microbiota with neurological diseases such as autism, Parkinson's, Alzheimer's, anxiety, and depression is widely recognized. The immune system is an important intermediary between the gut microbiota and the central nervous system, being one of the communication routes of the gut-brain axis. Although the complexity of the relationship between inflammation and epilepsy has not yet been elucidated, inflammatory processes are similar in many ways to the consequences of dysbiosis and contribute to disease progression. This study aimed to analyze the taxonomic composition of the gut microbiota of rats treated with prednisolone in a kindling model of epilepsy. Male Wistar rats (90 days, n = 24) divided into four experimental groups: sodium chloride solution 0.9 g%, diazepam 2 mg/kg, prednisolone 1 mg/kg, and prednisolone 5 mg/kg administered intraperitoneally (i.p.) for 14 days. The kindling model was induced by pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. The taxonomic profile was established by applying metagenomic DNA sequencing. There was no change in alpha diversity, and the composition of the gut microbiota between prednisolone and diazepam was similar. The significant increase in Verrucomicrobia, Saccharibacteria, and Actinobacteria may be related to the protective activity against seizures and inflammatory processes that cause some cases of epilepsy. Further studies are needed to investigate the functional influence that these species have on epilepsy and the inflammatory processes that trigger it.
Collapse
Affiliation(s)
- Amanda Muliterno Domingues Lourenço de Lima
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Edson Fernando Müller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Rodrigo Costa da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Alexandre Kleber Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos 2.600 - Annex, Porto Alegre, RS, Brazil
| | - Daiana de Lima Morales
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2.350, Porto Alegre, RS, Brazil
| | - Milena Conci de Araujo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos 2.600 - Annex, Porto Alegre, RS, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2.350, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil.
| | - Sueli Teresinha Van Der Sand
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Ceccarani C, Viganò I, Ottaviano E, Redaelli MG, Severgnini M, Vignoli A, Borghi E. Is Gut Microbiota a Key Player in Epilepsy Onset? A Longitudinal Study in Drug-Naive Children. Front Cell Infect Microbiol 2021; 11:749509. [PMID: 34926315 PMCID: PMC8677705 DOI: 10.3389/fcimb.2021.749509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microbiota alterations have been recently investigated in individuals with epilepsy and in other neurological diseases as environmental factors that play a role, by acting through the gut-brain axis, in the pathological process. Most studies focus on the contribution of bacterial communities in refractory epilepsy and suggest a beneficial role of ketogenic diet in modulating the gut microbiota and seizure occurrence. However, they do not evaluate whether epilepsy itself alters the gut microbiota in these patients or if the gut microbial communities could contribute as a seizure trigger. In this pilot study, we performed 16S rRNA sequencing and investigated the gut microbial communities of eight children at their seizure onset and after anti-seizure was started (one year follow-up) and we compared microbial data with seven healthy children, age- and sex-matched. In drug-naive subjects, we observed a microbial signature that shared several features with those reported in refractory epilepsy, such as an increased abundance in Akkermansia spp. and Proteobacteria and a decreased relative abundance in Faecalibacterium spp.We suggest that a bacterial-mediated proinflammatory milieu could contribute to seizure occurrence in children with new onset of epilepsy, as already reported for individuals with drug-resistant epilepsy, and that it could vary during treatment in those who are drug-responsive.
Collapse
Affiliation(s)
- Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Ilaria Viganò
- Epilepsy Centre, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo Carlo, University of Milan, Milan, Italy
| | | | - Maria Gaia Redaelli
- Epilepsy Centre, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo Carlo, University of Milan, Milan, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, University of Milan, Milan, Italy.,Child Neurology and Psychiatry Unit, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano (ASST GOM) Niguarda, Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
43
|
DePaula-Silva AB, Bell LA, Wallis GJ, Wilcox KS. Inflammation Unleashed in Viral-Induced Epileptogenesis. Epilepsy Curr 2021; 21:433-440. [PMID: 34924851 PMCID: PMC8652320 DOI: 10.1177/15357597211040939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral infection of the central nervous system increasingly places people at risk of developing life-threatening and treatment-resistant acute and chronic seizures (epilepsy). The emergence of new human viruses due to ongoing social, political, and ecological changes places people at risk more than ever before. The development of new preventative or curative strategies is critical to address this burden. However, our understanding of the complex relationship between viruses and the brain has been hindered by the lack of animal models that survive the initial infection and are amenable for long-term mechanistic, behavioral, and pharmacological studies in the process of viral-induced epileptogenesis. In this review, we focus on the Theiler’s murine encephalomyelitis virus (TMEV) mouse model of viral infection–induced epilepsy. The TMEV model has a number of important advantages to address the quintessential processes underlying the development of epilepsy following a viral infection, as well as fuel new therapeutic development. In this review, we highlight the contributions of the TMEV model to our current understanding of the relationship between viral infection, inflammation, and seizures.
Collapse
Affiliation(s)
| | - Laura A. Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Glenna J. Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Karen S. Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Karen S. Wilcox, PhD, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
44
|
Gong X, Liu Y, Liu X, Li AQ, Guo KD, Zhou D, Hong Z. Analysis of gut microbiota in patients with epilepsy treated with valproate: Results from a three months observational prospective cohort study. Microb Pathog 2021; 162:105340. [PMID: 34883229 DOI: 10.1016/j.micpath.2021.105340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Growing evidence implicates the potential effect of microbiota on the pathogenesis and course of epilepsy. However, the effects of valproate (VPA), a broad spectrum anti-epileptic drugs, on gut microbiota have not been investigated in humans. This study aimed to analyze fecal microbiota in patients with epilepsy treated with valproate. METHODS A total of 10 participants, who were newly diagnosed of cryptogenic epilepsy with treatment naïve and received 1000 mg daily doses of VPA, were recruited in our prospective study. Microbiota compositions were evaluated at baseline and after three months of VPA treatment using 16S rDNA sequencing. RESULTS VPA treatment was associated with clinical improvements in all patients, but not changes in gut microbiota richness and complexity (Shannon: p = 0.82). Microbiome composition structure differences also revealed no statistical difference in dissimilarity (Adonis: p = 0.90). No statistical difference taxa were found between two groups. However, the ratio of phyla Firmicutes to Bacteriodetes (ANOVA: p = 0.037) markedly raised after three months of VPA-treatment. A correlation matrix based on the spearman correlation distance confirmed associations between specific fecal taxa and VPA-related clinical metabolic parameters, including drug concentration in the blood, total cholesterol, triglyceride, lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase and weight gain. (p < 0.05) CONCLUSIONS: Among those patients treated with VPA, characterization of the gut microbiota altered, and gut microbiota associated with weight gain and clinical biochemical indexes, suggesting that microbiome composition data might involve in the mechanisms of VPA induced metabolic disorder.
Collapse
Affiliation(s)
- Xue Gong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, China.
| | - Yue Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, China.
| | - Xu Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, China.
| | - Ai Qing Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, China.
| | - Kun Dian Guo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, China.
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China.
| |
Collapse
|
45
|
Miljanovic N, Potschka H. The impact of Scn1a deficiency and ketogenic diet on the intestinal microbiome: A study in a genetic Dravet mouse model. Epilepsy Res 2021; 178:106826. [PMID: 34839144 DOI: 10.1016/j.eplepsyres.2021.106826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The gut-brain axis has been discussed as a possible factor contributing to ictogenesis and epilepsy. While recent preclinical studies have proposed a link between the antiseizure effect of a ketogenic diet (KD) and alterations to the gut microbiota, there is a knowledge gap about microbial composition as a result of Scn1a genetic deficiency and how this is affected by KD in Dravet syndrome. METHODS A large-scale microbiome analysis using 16S rRNA gene sequencing was performed in fecal samples collected from wildtype and Dravet mice fed either control diet (CD) or KD. Microbial alterations associated with the Dravet phenotype or triggered by KD exposure were identified. RESULTS The comprehensive microbial analysis revealed pronounced alterations in gut microbiota between wildtype and Dravet mice. The regulation of Chao index indicated a reduced species richness in Dravet mice when compared to wildtype controls. The ratio between Firmicutes and Bacteroidetes phyla was increased in mice with the Dravet genotype, therefore implying a microbial dysbiosis in these animals. Following the switch to CD or KD, several bacteria phyla and genera were regulated in Dravet mice. Interestingly, an increased abundance of the Clostridium genus and a decreased abundance of the Romboutsia genus showed a significant correlation with the severity of the phenotype in Dravet mice. KD increased the abundance of Firmicutes and reduced the abundance of Bacteroidetes phyla in Dravet mice. The degree of these microbial alterations correlated with the reduction in the frequency and duration of motor seizures in these animals. CONCLUSION In conclusion, the comprehensive microbial analysis demonstrated pronounced alterations in the gut microbiota with evidence of a gut dysbiosis as a consequence of the Scn1a genetic deficiency. Exposure to KD affected the gut microbiome in Dravet mice. Interestingly, abundance of selected genera correlated with the seizure phenotype of Dravet mice. Future studies investigating the functional relevance of disease-associated and KD-triggered changes would be essential to confirm the relevance of these findings.
Collapse
Affiliation(s)
- Nina Miljanovic
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
46
|
Anderson CL, Carney PR. Cannabidiol - A new fixture in childhood neurology. Curr Opin Pharmacol 2021; 61:142-146. [PMID: 34808574 DOI: 10.1016/j.coph.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
This invited opinion article reviews current uses and controversies in vernacular and pharmacological cannabidiol use in pediatric neurologic disorders. Since the recent emergence of cannabidiol availability to the general public and recent Food and Drug Administration approval, it is important to highlight and expand understanding about CBD mechanism of action, long-term use, safety, and indications in children with neurological disorders.
Collapse
Affiliation(s)
| | - Paul R Carney
- Department of Child Health, University of Missouri, Columbia, MO 65201, USA; Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO 65201, USA.
| |
Collapse
|
47
|
Ding M, Lang Y, Shu H, Shao J, Cui L. Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Front Immunol 2021; 12:742449. [PMID: 34707612 PMCID: PMC8542678 DOI: 10.3389/fimmu.2021.742449] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and brain, and regulates intestinal homeostasis and the central nervous system via neural networks and neuroendocrine, immune, and inflammatory pathways. The development of sequencing technology has evidenced the key regulatory role of the gut microbiota in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be controlled with drugs. Interestingly, patients with inflammatory bowel disease are more susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut-brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship between the gut microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota. A better understanding of the role of the microbiota in the gut-brain axis, especially the intestinal one, would help investigate the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.
Collapse
Affiliation(s)
| | | | | | | | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Microbiota-gut-brain axis: A novel potential target of ketogenic diet for epilepsy. Curr Opin Pharmacol 2021; 61:36-41. [PMID: 34607252 DOI: 10.1016/j.coph.2021.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Ketogenic diet (KD) has been used to the control of seizure for 100 years because it was developed for the treatment of epilepsy in 1921. Based on current research on the microbiota-gut-brain axis to explore the new communication tool between gut bacteria and the brain and the progress of microbiota-gut-brain axis and KD for the treatment of epilepsy, the role of neurotransmitters adenosine and γ-aminobutyric acid in the epileptic brain, we propose that the balance between beneficial and harmful bacteria in the gut microbiota would be a promising target in the future to underlying the working mechanism of KD for epilepsy.
Collapse
|
49
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 274] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
50
|
Chen H, Ma Y, Liu Z, Li J, Li X, Yang F, Qiu M. Circulating microbiome DNA: An emerging paradigm for cancer liquid biopsy. Cancer Lett 2021; 521:82-87. [PMID: 34461180 DOI: 10.1016/j.canlet.2021.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Dysbiosis of the human microbiome has long been reported to be closely associated with various cancers. Accumulating studies have shown that microbial dysbiosis can accelerate tumorigenesis through tumor-promoting inflammation, DNA damage, and inducing immune evasion. Differential composition of microbiome could be novel biomarkers for cancer detection or biomarkers of successful immunotherapy. More importantly, emerging evidence demonstrates that alterations of circulating microbiome DNA (cmDNA) could serve as promising noninvasive biomarkers for cancer detection. It has been reported that distinct circulating bacterial DNA could distinguish prostate cancer, lung cancer, and melanoma patients from healthy populations. Therefore, in this review, we summarized current literature on microbial biomarkers for cancer detection and unraveled the potential of cmDNA as a promising cancer detection tool.
Collapse
Affiliation(s)
- Haiming Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yi Ma
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Jiawei Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|