1
|
Jia K, Zhang Y, Jiang M, Cui M, Wang J, Zhang J, Wang H, Zhao H, Li M, Zou Q, Zeng H. Dual-antigen fusion protein vaccination induces protective immunity against Candida albicans infection in mice. Hum Vaccin Immunother 2024; 20:2406065. [PMID: 39327639 PMCID: PMC11441037 DOI: 10.1080/21645515.2024.2406065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Candida albicans Is a leading cause of nosocomial bloodstream infections, particularly in immunocompromised patients. Current therapeutic strategies are insufficient, highlighting the need for effective vaccines. This study aimed to evaluate the efficacy of a dual-antigen fusion protein vaccine (AH) targeting the Als3 and Hyr1 proteins of C. albicans, using AlPO4 as an adjuvant. The AH vaccine was constructed by fusing Als317-432 and Hyr125-350 proteins, and its immunogenicity was tested in BALB/c mice and New Zealand white rabbits. Mice received three intramuscular doses of the vaccine combined with AlPO4, followed by a lethal challenge with C. albicans SC5314. Survival rates, antibody responses, cytokine production, fungal burdens, and organ pathology were assessed. The vaccine's efficacy was also validated using rabbit serum. Mice vaccinated with the AH-AlPO4 combination exhibited significantly higher antibody titers, particularly IgG and its subclasses, compared to controls (p < .001). The survival rate of vaccinated mice was 80% post-infection, significantly higher than the control group (p < .01). Vaccinated mice showed reduced fungal loads in the blood, kidneys, spleen, and liver (p < .05). Increased levels of interferon gamma and interleukin (IL)-17A were observed, indicating robust T helper (Th) 1 and Th17 cell responses. Vaccination mitigated organ damage, with kidney and liver pathology scores significantly lower than those of unvaccinated mice (p < .05). Rabbit serum with polyclonal antibodies demonstrated effective antifungal activity, confirming vaccine efficacy across species. The AH-AlPO4 vaccine effectively induced strong immune responses, reduced fungal burden, and protected against organ pathology in C. albicans infections. These findings support further development of dual-antigen vaccine strategies.
Collapse
Affiliation(s)
- Keran Jia
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Mengyu Jiang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Mengge Cui
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Jia Wang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Jiajia Zhang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Hua Wang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Huihai Zhao
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Mengyan Li
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Prado GM, Prado JCS, Aguiar FLLDE, Barbosa FCB, Vale JPCDO, Martins MR, Arantes SM, Sousa NVDE, Lima DM, Marinho ES, Marinho MM, Fontenelle ROS. Antifungal, molecular docking and cytotoxic effect of the essential oil of Cymbopogon citratus (DC) Stapf. and Cymbopogon nardus (L.) Rendle against Candida albicans. AN ACAD BRAS CIENC 2024; 96:e20230309. [PMID: 39166649 DOI: 10.1590/0001-3765202420230309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/27/2023] [Indexed: 08/23/2024] Open
Abstract
Brazil is renowned for its extensive plant biodiversity, with emphasis on Cymbopogon, C. citratus and C. nardus, with broad antimicrobial potential. Candidemias caused by Candida albicans are highly prevalent in immunosuppressed individuals and are associated with infections by biofilms on medical devices. The aim of this study was to evaluate the antimicrobial potential of essential oils C. citratus and C. nardus against C. albicans in planktonic and biofilm forms. Essential oils were obtained by hydrodistillation and chemical composition evaluated by GC-FID and GC-MS. The minimum inhibitory concentration was determined by the broth microdilution method and the synergy effect of essential oils and amphotericin B were evaluated by the checkerboard test. Biofilm activity was determined by the XTT assay. Cytotoxicity assays performed with VERO cells and molecular docking were performed to predict the effect of oil interaction on the SAP-5 enzyme site. The results showed activity of essential oils against planktonic cells and biofilm of C. albicans. Furthermore, the oils had a synergistic effect, and low cytotoxicity. Molecular docking showed interaction between Cadinene, Caryophyllen oxide, Germacrene D with SAP-5. The results indicate that Cymbopogon spp. studied are anti-Candida, with potential for further application in therapy against infections caused by C. albicans.
Collapse
Affiliation(s)
- Guilherme M Prado
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Júlio César S Prado
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Francisca Lidiane L DE Aguiar
- Universidade Estadual Vale do Acaraú, Centro de Ciências Agrárias e Biológicas, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| | - Francisco Cesar B Barbosa
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Jean P C DO Vale
- Universidade Estadual Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| | - Maria Rosário Martins
- Departmento de Ciências Médicas e da Saúde, Universidade de Evora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- HERCULES Laboratory, Instituto de Investigação e Formação Avançada (IIFA), Universidade de Evora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Evora, Portugal
| | - Silva Macedo Arantes
- HERCULES Laboratory, Instituto de Investigação e Formação Avançada (IIFA), Universidade de Evora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Evora, Portugal
| | - Natália V DE Sousa
- Programa em Ciências Médicas, Universidade de Fortaleza, Centro de Ciências da Saúde, Av. da Universidade, 2853, Benfica, 60020-181 Fortaleza, CE, CEP, Brazil
| | - Danielle M Lima
- Programa em Ciências Médicas, Universidade de Fortaleza, Centro de Ciências da Saúde, Av. da Universidade, 2853, Benfica, 60020-181 Fortaleza, CE, CEP, Brazil
| | - Emmanuel S Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará/UECE, Av. Dr. Silas Munguba, 1700, 60714-903 Fortaleza, CE, Brazil
| | - Márcia M Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará/UECE, Av. Dr. Silas Munguba, 1700, 60714-903 Fortaleza, CE, Brazil
| | - Raquel O S Fontenelle
- Universidade Estadual Vale do Acaraú, Centro de Ciências Agrárias e Biológicas, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| |
Collapse
|
4
|
Prusty JS, Kumar A. In silico-driven identification and experimental confirmation of antifungal proteins (AFPs) against Candidaalbicans. Biochimie 2024:S0300-9084(24)00194-9. [PMID: 39134296 DOI: 10.1016/j.biochi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Mycoses infect millions of people annually across the world. The most common mycosis agent, Candida albicans is responsible for a great deal of illness and death. C. albicans infection is becoming more widespread and the current antifungals polyenes, triazoles, and echinocandins are less efficient against it. Investigating antifungal peptides (AFPs) as therapeutic is gaining momentum. Therefore, we used MALDI-TOF/MS analysis to identify AFPs and protein-protein docking to analyze their interactions with the C. albicans target protein. Some microorganisms with strong antifungal action against C. albicans were selected for the isolation of AFPs. Using MALDI-TOF/MS, we identified 3 AFPs Chitin binding protein (ACW83017.1; Bacillus licheniformis), the bifunctional protein GlmU (BBQ13478.1; Stenotrophomonas maltophilia), and zinc metalloproteinase aureolysin (BBA25172.1; Staphylococcus aureus). These AFPs showed robust interactions with C. albicans target protein Sap5. We deciphered some important residues in identified APFs and highlighted interaction with Sap5 through hydrogen bonds, protein-protein interactions, and salt bridges using protein-protein docking and MD simulations. The three discovered AFPs-Sap5 complexes exhibit different levels of stability, as seen by the RMSD analysis and interaction patterns. Among protein-protein interactions, the remarkable stability of the BBQ25172.1-2QZX complex highlights the role of salt bridges and hydrogen bonds. Identified AFPs could be further studied for developing successful antifungal candidates and peptide-based new antifungal therapeutic strategies as fresh insights into addressing antifungal resistance also.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India.
| |
Collapse
|
5
|
Windyaswari AS, Nugraha MFI, Hartati R, Elfahmi. Isolation and antimicrobial activity of secondary metabolites of pothos tener wall. Nat Prod Res 2024:1-9. [PMID: 39102533 DOI: 10.1080/14786419.2024.2384081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
The Pothos genus is extensively utilised in traditional medicine in China and India. An underexplored species of Pothos tener Wall was identified in Sulawesi, Indonesia. Antimicrobial activity was assessed using microdilutions and streak plates against Staphylococcus aureus, Eschericia coli, Aeromonas hydrophila, Aspergillus niger, and Candida albicans. Significant effectiveness was observed in the methanol extract, as indicated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values for three different extracts (methanol, ethyl acetate, and n-hexane) of P. tener. The isolates obtained were structurally analysed using Ultraviolet (UV)-spectroscopy, Fourier-transform Infra Red-Spectroscopy (FT-IR), Mass Spectroscopy (MS), Nuclear Magnetic Resonance (NMR), and antimicrobial testing after undergoing fractionation and subfractionation. The isolate obtained was stigmasterol with moderate antimicrobial activity against A. niger and A. hydrophila, with MIC equivalent to MBC of 500 µg/ml. The first report of stigmasterol from P. tener has potent antimicrobial properties, bolstering empirical data in this field.
Collapse
Affiliation(s)
- Ari Sri Windyaswari
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Department of Biology Pharmacy, Faculty of Pharmacy, University of Jenderal Achmad Yani, Cimahi, Indonesia
| | - Media Fitri Isma Nugraha
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong, Indonesia
| | - Rika Hartati
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Elfahmi
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- University Centre of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
6
|
Huang C, Zhu W, Li Q, Lei Y, Chen X, Liu S, Chen D, Zhong L, Gao F, Fu S, He D, Li J, Xu H. Antibody Fc-receptor FcεR1γ stabilizes cell surface receptors in group 3 innate lymphoid cells and promotes anti-infection immunity. Nat Commun 2024; 15:5981. [PMID: 39013884 PMCID: PMC11252441 DOI: 10.1038/s41467-024-50266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3) are crucial for maintaining mucosal homeostasis and regulating inflammatory diseases, but the molecular mechanisms governing their phenotype and function are not fully understood. Here, we show that ILC3s highly express Fcer1g gene, which encodes the antibody Fc-receptor common gamma chain, FcεR1γ. Genetic perturbation of FcεR1γ leads to the absence of critical cell membrane receptors NKp46 and CD16 in ILC3s. Alanine scanning mutagenesis identifies two residues in FcεR1γ that stabilize its binding partners. FcεR1γ expression in ILC3s is essential for effective protective immunity against bacterial and fungal infections. Mechanistically, FcεR1γ influences the transcriptional state and proinflammatory cytokine production of ILC3s, relying on the CD16-FcεR1γ signaling pathway. In summary, our findings highlight the significance of FcεR1γ as an adapter protein that stabilizes cell membrane partners in ILC3s and promotes anti-infection immunity.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Wenting Zhu
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Qing Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuchen Lei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xi Chen
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Shaorui Liu
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Dianyu Chen
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Lijian Zhong
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Feng Gao
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Shujie Fu
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Danyang He
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Heping Xu
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
8
|
Finkina EI, Shevchenko OV, Fateeva SI, Tagaev AA, Ovchinnikova TV. Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1499. [PMID: 38891308 PMCID: PMC11174490 DOI: 10.3390/plants13111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Currently, the spread of fungal infections is becoming an urgent problem. Fungi of the Candida genus are opportunistic microorganisms that cause superficial and life-threatening systemic candidiasis in immunocompromised patients. The list of antifungal drugs for the treatment of candidiasis is very limited, while the prevalence of resistant strains is growing rapidly. Therefore, the search for new antimycotics, including those exhibiting immunomodulatory properties, is of great importance. Plenty of natural compounds with antifungal activities may be extremely useful in solving this problem. This review evaluates the features of natural antimicrobial peptides, namely plant defensins as possible prototypes of new anticandidal agents. Plant defensins are important components of the innate immune system, which provides the first line of defense against pathogens. The introduction presents a brief summary regarding pathogenic Candida species, the pathogenesis of candidiasis, and the mechanisms of antimycotic resistance. Then, the structural features of plant defensins, their anticandidal activities, their mechanisms of action on yeast-like fungi, their ability to prevent adhesion and biofilm formation, and their combined action with conventional antimycotics are described. The possible mechanisms of fungal resistance to plant defensins, their cytotoxic activity, and their effectiveness in in vivo experiments are also discussed. In addition, for the first time for plant defensins, knowledge about their immunomodulatory effects is also presented.
Collapse
Affiliation(s)
- Ekaterina I. Finkina
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia (T.V.O.)
| | | | | | | | | |
Collapse
|
9
|
Hou GW, Huang T. Essential oils as promising treatments for treating Candida albicans infections: research progress, mechanisms, and clinical applications. Front Pharmacol 2024; 15:1400105. [PMID: 38831882 PMCID: PMC11145275 DOI: 10.3389/fphar.2024.1400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024] Open
Abstract
Candida albicans: (C. albicans) is a prevalent opportunistic pathogen that can cause severe mucosal and systemic fungal infections, leading to high morbidity and mortality rates. Traditional chemical drug treatments for C. albicans infection have limitations, including the potential for the development of drug resistance. Essential oils, which are secondary metabolites extracted from plants, have gained significant attention due to their antibacterial activity and intestinal regulatory effects. It makes them an ideal focus for eco-friendly antifungal research. This review was aimed to comprehensively evaluate the research progress, mechanisms, and clinical application prospects of essential oils in treating C. albicans infections through their antibacterial and intestinal regulatory effects. We delve into how essential oils exert antibacterial effects against C. albicans infections through these effects and provide a comprehensive analysis of related experimental studies and clinical trials. Additionally, we offer insights into the future application prospects of essential oils in antifungal therapy, aiming to provide new ideas and methods for the development of safer and more effective antifungal drugs. Through a systematic literature review and data analysis, we hope to provide insights supporting the application of essential oils in antifungal therapy while also contributing to the research and development of natural medicines. In the face of increasingly severe fungal infections, essential oils might emerge as a potent method in our arsenal, aiding in the effective protection of human and animal health.
Collapse
Affiliation(s)
| | - Ting Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
10
|
Xiang L, Pan W, Chen H, Du W, Xie S, Liang X, Yang F, Niu R, Huang C, Luo M, Xu Y, Geng L, Gong S, Xu W, Zhao J. Sorbitol Destroyed Intestinal Microfold Cells (M Cells) Development through Inhibition of PDE4-Mediated RANKL Expression. Mediators Inflamm 2024; 2024:7524314. [PMID: 38725539 PMCID: PMC11081746 DOI: 10.1155/2024/7524314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Objective Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorganisms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the mechanism through which sorbitol-modulated M-cell differentiation. Results Herein, in comparison to the mannitol group (control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand (RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion These findings suggested that sorbitol suppressed intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4 was sufficient to induce M-cell development.
Collapse
Affiliation(s)
- Li Xiang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenxu Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenjun Du
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shuping Xie
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Liang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fangying Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rongwei Niu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Canxin Huang
- The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Minan Luo
- The School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yuxin Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wanfu Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Yang Z, Zhang S, Ji N, Li J, Chen Q. The evil companion of OSCC: Candida albicans. Oral Dis 2024; 30:1873-1886. [PMID: 37530513 DOI: 10.1111/odi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Microbial dysbiosis and microbiome-induced inflammation may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). Candida albicans (C. albicans) is the most prevalent opportunistic pathogenic fungus in the oral cavity, and Candida infection is considered as one of its high-risk factors. Although oral microbiota-host interactions are closely associated with the development of OSCC, the interrelationship between fungi and OSCC is poorly understood compared to that between bacteria and viruses. RESULTS We accumulated knowledge of the evidence, pathogenic factors, and possible multiple mechanisms by which C. albicans promotes malignant transformation of OSCC, focusing on the induction of epithelial damage, production of carcinogens, and regulation of the tumor microenvironment. In addition, we highlight the latest treatment strategies for Candida infection. CONCLUSION This review provides a new perspective on the interrelationship between C. albicans and OSCC and contributes to the establishment of a systematic and reliable clinical treatment system for OSCC patients with C. albicans infection.
Collapse
Affiliation(s)
- Zhixin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
12
|
Sun A, Chai N, Zhu X, Li Y, Wang R, Zhang Y, Mao Z. Optimization and antifungal activity of quinoline derivatives linked to chalcone moiety combined with FLC against Candida albicans. Eur J Med Chem 2023; 260:115782. [PMID: 37672929 DOI: 10.1016/j.ejmech.2023.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
In present work, a series of quinoline derivatives linked to chalcone moiety have been prepared, and their in vitro and in vivo antifungal activities against C. albicans have been evaluated. The results indicated that quinoline combined with fluconazole (FLC) showed good inhibitory activity against C. albicans. Especially, compound PK-10 combined with FLC displayed the best antifungal activity against 14 FLC-resistant C. albicans strains with almost no cytotoxicity. Preliminary mechanistic studies proved that PK-10 combined with FLC could inhibit the hyphae formation of C. albicans, induce the accumulation of reactive oxygen species (ROS), the damage of mitochondrial membrane potential and the decrease of intracellular ATP content, which led to mitochondrial dysfunction. In vivo studies found obvious effects of the co-treatment regimen had obvious effects based on histological analysis, body weight curves, and coefficients of major organs. Therefore, the optimization of quinolone-chalcone derivatives combined with FLC could exert the potent antifungal activity in vitro and in vivo obviously, suggesting them as new agents to treat drug-resistant C. albicans infection.
Collapse
Affiliation(s)
- Aimei Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Nannan Chai
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xianhu Zhu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Yanping Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Yi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| |
Collapse
|
13
|
Ayed A, Essid R, Mankai H, Echmar A, Fares N, Hammami M, Sewald N, Limam F, Tabbene O. Synergistic antifungal activity and potential mechanism of action of a glycolipid-like compound produced by Streptomyces blastmyceticus S108 against Candida clinical isolates. J Appl Microbiol 2023; 134:lxad246. [PMID: 37884451 DOI: 10.1093/jambio/lxad246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
AIM The present study aimed to investigate a novel antifungal compound produced by Streptomyces blastmyceticus S108 strain. Its effectiveness against clinical isolates of Candida species and its synergistic effect with conventional antifungal drugs were assessed, and its molecular mechanism of action was further studied against Candida albicans. METHODS AND RESULTS A newly isolated strain from Tunisian soil, S. blastmyceticus S108, showed significant antifungal activity against Candida species by well diffusion method. The butanolic extract of S108 strain supernatant exhibited the best anti-Candida activity with a minimal inhibitory concentration (MIC) value of 250 μg ml-1, determined by the microdilution method. The bio-guided purification steps of the butanolic extract were performed by chromatographic techniques. Among the fractions obtained, F13 demonstrated the highest level of activity, displaying a MIC of 31.25 μg ml-1. Gas chromatography-mass spectrometry and electrospray ionization mass spectrometry analyses of this fraction (F13) revealed the glycolipidic nature of the active molecule with a molecular weight of 685.6 m/z. This antifungal metabolite remained stable to physicochemical changes and did not show hemolytic activity even at 4MIC corresponding to 125 µg ml-1 toward human erythrocytes. Besides, the glycolipid compound was combined with 5-flucytosine and showed a high synergistic effect with a fractional inhibitory concentration index value 0.14 against C. albicans ATCC 10231. This combination resulted in a decrease of MIC values of 5-flucytosine and the glycolipid-like compound by 8- and 64-fold, respectively. The examination of gene expression in treated C. albicans cells by quantitative polymerase chain reaction (qPCR) revealed that the active compound tested alone or in combination with 5-flucytosine blocks the ergosterol biosynthesis pathway by downregulating the expression of ERG1, ERG3, ERG5, ERG11, and ERG25 genes. CONCLUSION AND IMPACT OF THE STUDY The new glycolipid-like compound, produced by Streptomyces S108 isolate, could be a promising drug for medical use against pathogenic Candida isolates.
Collapse
Affiliation(s)
- A Ayed
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - R Essid
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - H Mankai
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - A Echmar
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - N Fares
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - M Hammami
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2050, Tunisia
| | - N Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - F Limam
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - O Tabbene
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
14
|
Miao Y, Ding T, Liu Y, Zhou X, Du J. The Yeast and Hypha Phases of Candida krusei Induce the Apoptosis of Bovine Mammary Epithelial Cells via Distinct Signaling Pathways. Animals (Basel) 2023; 13:3222. [PMID: 37893947 PMCID: PMC10603689 DOI: 10.3390/ani13203222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Infection with Candida spp. is a significant cause of bovine mastitis globally. We previously found that C. krusei was the main pathogen causing mycotic mastitis in dairy cows in Yinchuan, Ningxia, China. However, whether the infection of this pathogen could induce apoptosis in BMECs remained unclear. In this report, we explored the apoptosis and underlying mechanism of BMECs induced by C. krusei yeast and hypha phases using a pathogen/host cell co-culture model. Our results revealed that both the yeast and hypha phases of C. krusei could induce BMEC apoptosis; however, the yeast phase induced more cell apoptosis than the hypha phase, as assessed via electronic microscopy and flow cytometry assays. This finding was further corroborated via the measurement of the mitochondrial membrane potential (MMP) and the TUNEL test. Infection by both the yeast and hypha phases of C. krusei greatly induced the expression of proteins associated with cell death pathways and important components of toll-like receptor (TLR) signaling, including TLR2 and TLR4 receptors, as determined via a Western blotting assay. BMECs mainly underwent apoptosis after infection by the C. krusei yeast phase through a mitochondrial pathway. Meanwhile, BMEC apoptosis induced by the C. krusei hypha phase was regulated by a death ligand/receptor pathway. In addition, C. krusei-induced BMEC apoptosis was regulated by both the TLR2/ERK and JNK/ERK signaling pathways. These data suggest that the yeast phase and hypha phase of C. krusei induce BMEC apoptosis through distinct cell signaling pathways. This study represents a unique perspective on the molecular processes underlying BMEC apoptosis in response to C. krusei infection.
Collapse
Affiliation(s)
- Yuhang Miao
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Tao Ding
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Xuezhang Zhou
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Jun Du
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
15
|
Chen K, Geng H, Liu J, Ye C. Alteration in gut mycobiota of patients with polycystic ovary syndrome. Microbiol Spectr 2023; 11:e0236023. [PMID: 37702484 PMCID: PMC10580825 DOI: 10.1128/spectrum.02360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a serious disease characterized by high androgen, insulin resistance (IR), hyperglycemia, and obesity, leading to infertility. The gut mycobiota has been reported to evolve in metabolic diseases including obesity, hyperglycemia, and fatty liver. However, little is known about the gut mycobiota and PCOS. In the current study, we recruited 17 PCOS patients and 17 age-matched healthy controls for community structure and functional analysis of the gut mycobiota. The results showed that PCOS patients have reduced diversity and richness of the gut microbiota compared with healthy controls. β-Diversity analysis showed that the community structure of the gut microbiota of patients with PCOS was significantly different from healthy controls. At the phylum level, PCOS patients have reduced Basidiomycota and increased Ascomycota compared with healthy controls. At the family level, the higher relative abundance of Saccharomycetaceae and lower Trichosporonaceae and Ascomycota_unclassified were detected in PCOS patients than in healthy controls. At the genus level, different microbial compositions were also observed between PCOS patients and healthy controls. In addition, PICRUSt2 showed that patients with PCOS have different microbial functions in the gut compared with healthy controls. LEfSe indicated that Saccharomyces and Lentinula were enriched in the fecal samples of PCOS patients, while Aspergillus was depleted compared with healthy controls. Our finding indicates that PCOS patients have different community structures and functions of the gut mycobiota, which provides new insight into PCOS pathogenesis and intervention. IMPORTANCE It was found that intestinal fungi as well as serum metabolites in PCOS patients were significantly different from those in healthy subjects. However, no studies have been done to show exactly which fungus interacts with which bacteria in humans or which fungus acts alone. As fungal research progresses, it will be possible to fill this gap.
Collapse
Affiliation(s)
- Ke Chen
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Ye
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Tomkinson S, Triscott C, Schenk E, Foey A. The Potential of Probiotics as Ingestible Adjuvants and Immune Modulators for Antiviral Immunity and Management of SARS-CoV-2 Infection and COVID-19. Pathogens 2023; 12:928. [PMID: 37513775 PMCID: PMC10384479 DOI: 10.3390/pathogens12070928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotic bacteria are able to modulate general antiviral responsiveness, including barrier functionality and innate and adaptive immune responses. The COVID-19 pandemic, resulting from SARS-CoV-2 infection, has created a need to control and treat this viral infection and its ensuing immunopathology with a variety of approaches; one such approach may involve the administration of probiotic bacteria. As with most viral infections, its pathological responses are not fully driven by the virus, but are significantly contributed to by the host's immune response to viral infection. The potential adoption of probiotics in the treatment of COVID-19 will have to appreciate the fine line between inducing antiviral immunity without over-provoking immune inflammatory responses resulting in host-derived immunopathological tissue damage. Additionally, the effect exerted on the immune system by SARS-CoV-2 evasion strategies will also have to be considered when developing a robust response to this virus. This review will introduce the immunopathology of COVID-19 and the immunomodulatory effects of probiotic strains, and through their effects on a range of respiratory pathogens (IAV, SARS-CoV, RSV), as well as SARS-CoV-2, will culminate in a focus on how these bacteria can potentially manipulate both infectivity and immune responsiveness via barrier functionality and both innate and adaptive immunity. In conclusion, the harnessing of induction and augmentation of antiviral immunity via probiotics may not only act as an ingestible adjuvant, boosting immune responsiveness to SARS-CoV-2 infection at the level of barrier integrity and innate and adaptive immunity, but also act prophylactically to prevent infection and enhance protection afforded by current vaccine regimens.
Collapse
Affiliation(s)
- Sophie Tomkinson
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Cloe Triscott
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Emily Schenk
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Peninsula Medical School, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Foey
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
17
|
Li Y, Chen C, Cong L, Mao S, Shan M, Han Z, Mao J, Xie Z, Zhu Z. Inhibitory Effects of a Maleimide Compound on the Virulence Factors of Candida albicans. Virulence 2023:2230009. [PMID: 37367101 DOI: 10.1080/21505594.2023.2230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Candidiasis caused by Candida albicans infection has long been a serious human health problem. The pathogenicity of C. albicans is mainly due to its virulence factors, which are the novel targets of antifungal drugs for low risk of resistance development. In this study, we identified a maleimide compound [1-(4-methoxyphenyl)-1hydro-pyrrole-2,5-dione, MPD] that exerts effective anti-virulence activity. It could inhibit the process of adhesion, filamentation, and biofilm formation in C. albicans. In addition, it exhibited low cytotoxicity, hemolytic activity and drug resistance development. Moreover, in Galleria mellonella-C. albicans (in vivo) infection model, the survival time of infected larvae was significantly prolonged under the treatment of MPD. Further, mechanism research revealed that MPD increased farnesol secretion by upregulating the expression of Dpp3. The increased farnesol inhibited the activity of Cdc35, which then decreased the intracellular cAMP content resulting in the inhibition of virulence factors via the Ras1-cAMP-Efg1 pathway. In all, this study evaluated the inhibitory effect of MPD on various virulence factors of C. albicans and identified the underlying mechanisms. This suggests a potential application of MPD to overcome fungal infections in clinic.
Collapse
Affiliation(s)
- Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Mingzhu Shan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Clinical laboratory, The Central Hospital of Xuzhou City, Xuzhou, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Jiayi Mao
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Bogdanov IV, Fateeva SI, Voropaev AD, Ovchinnikova TV, Finkina EI. Immunomodulatory Effects of the Pea Defensin Psd1 in the Caco-2/Immune Cells Co-Culture upon Candida albicans Infection. Int J Mol Sci 2023; 24:7712. [PMID: 37175419 PMCID: PMC10178127 DOI: 10.3390/ijms24097712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Candidiasis is one of the most common fungal diseases that can pose a threat to life in immunodeficient individuals, particularly in its disseminated form. Not only fungal invasion but also fatal infection-related inflammation are common causes of systemic candidiasis. In this study, we investigated in vitro immunomodulatory properties of the antifungal pea defensin Psd1 upon Candida albicans infection. Using the real-time PCR, we showed that Psd1 inhibited the antimicrobial peptide HBD-2 and pro-inflammatory cytokines IL-1 and IL-8 downregulation at mRNA level in epithelium cells caused by C. albicans infection. By using the Caco-2/immune cells co-culture upon C. albicans infection and the multiplex xMAP assay, we demonstrated that this pathogenic fungus induced a pronounced host defense response; however, the cytokine responses were different in the presence of dendritic cells or monocytes. We revealed that Psd1 at a low concentration (2 µM) had a pronounced immunomodulatory effect on the Caco-2/immune cells co-culture upon fungal infection. Thus, we hypothesized that the pea defensin Psd1 might be an effective agent in the treatment of candidiasis not only due to its antifungal activity, but also owing to its ability to modulate a protective immune response upon infection.
Collapse
Affiliation(s)
- Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Serafima I. Fateeva
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander D. Voropaev
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov St. 10, 125212 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
19
|
Yu S, Ren Y, Wen X, Ye Y, Cheng L, Yu J, Zheng S. Splenectomy for treating hepatosplenic candidiasis: Two cases and literature review suggesting its feasibility. Heliyon 2023; 9:e15114. [PMID: 37089309 PMCID: PMC10113846 DOI: 10.1016/j.heliyon.2023.e15114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Background Hepatosplenic candidiasis is a rare but severe complication in immunocompromised patients undergoing chemotherapy. Antifungal agents are widely accepted as the first choices for therapy. However, resistance to or side-effect of antifungal agents may comxpromise its efficiency. Splenectomy has also been rarely performed as treatment for this disease. Methods We present two cases of splenectomy for treating hepatosplenic candidiasis after failure of the initial drug therapy. Literatures on splenectomy as treatment for hepatosplenic candidiasis were searched in Pubmed and summarized. Results Two leukemia patients developed hepatosplenic candidiasis after received chemotherapy for their primary diseases. Various antifungal agents including amphotericin B were all demonstrated failure to cure fever and the Candida abscesses due to resistance or intractable side-effect. Laparoscopic splenectomy were finally performed and resolved the candidiasis successfully. A total of 12 splenectomy cases for treating hepatosplenic candidiasis had been previously reported in literature. All the cases showed either resistance or unimproved to initial antifungal therapies. Splenectomy provided salvage therapeutic value in all cases. Conclusion Splenectomy has therapeutic effect and may change the traditional concept in most surgeons. The present study may expand an alternative strategy in clinical practice guideline for the management of hepatosplenic candidiasis.
Collapse
|
20
|
Wu Z, Tian E, Chen Y, Dong Z, Peng Q. Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases. Microbiol Res 2023; 268:127291. [PMID: 36542917 DOI: 10.1016/j.micres.2022.127291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
A new field of microbial research is the relationship between microorganisms and multicellular hosts. It is known that gut microbes can cause various endocrine system diseases, such as diabetes and thyroid disease. Changes in the composition or structure and the metabolites of gut microbes may cause gastrointestinal disorders, including ulcers or intestinal perforation and other inflammatory and autoimmune diseases. In recent years, reports on the interactions between intestinal microorganisms and endocrine system diseases have been increasingly documented. In the meantime, the treatment based on gut microbiome has also been paid much attention. For example, fecal microbiota transplantation is found to have a therapeutic effect on many diseases. As such, understanding the gut microbiota-endocrine system interactions is of great significance for the theranostic of endocrine system diseases. Herein, we summarize the relations of gut microbiome with endocrine system diseases, and discuss the potentials of regulating gut microbiome in treating those diseases. In addition, the concerns and possible solutions regarding the gut microbiome-based therapy are discussed.
Collapse
Affiliation(s)
- Zhuoxuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Erkang Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuyang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Zaongo SD, Ouyang J, Isnard S, Zhou X, Harypursat V, Cui H, Routy JP, Chen Y. Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes 2023; 15:2167171. [PMID: 36722096 PMCID: PMC9897780 DOI: 10.1080/19490976.2023.2167171] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous fungal commensal component of the human microbiota, and under certain circumstances, such as during an immunocompromised state, it may initiate different types of infection. Moreover, C. albicans continuously and reciprocally interacts with the host immune system as well as with other elements of the gut microbiota, thus contributing significantly to both gut homeostasis and host immunity. People living with HIV (PLWH), including those receiving antiretroviral therapy, are characterized by a depletion of CD4 + T-cells and dysbiosis in their gut. C. albicans colonization is frequent in PLWH, causing both a high prevalence and high morbidity. Gut barrier damage and elevated levels of microbial translocation are also fairly common in this population. Herein, we take a closer look at the reciprocity among C. albicans, gut microbiota, HIV, and the host immune system, thus throwing some light on this complex interplay.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Yaokai Chen Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
22
|
Xiang Y, Emu Q, Wang L, Wei Y, Xing L, Zhang L, Wang H. Analysis of spleen of mice (Mus musculus) infected with Aspergillus nidulans identifies immune-related genes. Microb Pathog 2022; 170:105705. [DOI: 10.1016/j.micpath.2022.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
23
|
Qian Z, Mengxun Z, Yingchao W, Tingting Z, Roujuan W, Shuhong W, Yi D, Ruirui Y, Peng Y, Yifan S, Yunshi Z, Xun S, Yaping G, Zhendan H, Tie C, Chenyang L. Natural Compound 2-Chloro-1,3-dimethoxy-5-methylbenzene, Isolated from Hericium Erinaceus, Inhibits Fungal Growth by Disrupting Membranes and Triggering Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6444-6454. [PMID: 35580153 DOI: 10.1021/acs.jafc.2c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, 2-chloro-1,3-dimethoxy-5-methylbenzene (CDM), a natural product with anti-Candida albicans activity, was discovered from the Hericium erinaceus mycelium. The minimum inhibitory concentration of CDM was 62.5 μg/mL. Moreover, structural analogues of CDM obtained from chemical synthesis were applied to explore the structure-activity relationship (SAR) of CDM against C. albicans. It was found that methoxy groups, halogen atoms (except fluorine atoms), and methoxy-meta-position methyl groups in the structure of CDM were the key active groups. Furthermore, we investigated the anti-C. albicans mechanism of CDM. Experiments suggested that CDM destroyed the cell membrane of C. albicans, including the cytoplasmic membrane and mitochondrial membrane, and caused the accumulation of reactive oxygen species and mitochondrial dysfunction, which ultimately led to apoptosis of C. albicans. In addition, CDM had no toxicity on human normal gastric mucosal epithelial cells exposed to a concentration of 125 μg/mL. Experiments showed that CDM reduced the damage of C. albicans to the visceral tissue of infected mice and improved the survival rate of mice. Our research provides a scientific basis for the discovery of effective and safe anti-C. albicans drugs from H. erinaceus.
Collapse
Affiliation(s)
- Zhang Qian
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Zhang Mengxun
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Wang Yingchao
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Zhen Tingting
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Wang Roujuan
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Wang Shuhong
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Du Yi
- University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Yu Ruirui
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Yi Peng
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Song Yifan
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Zhi Yunshi
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Song Xun
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Guo Yaping
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - He Zhendan
- Guangdong Province Department of Pharmacology, School of Medicine, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Chen Tie
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Li Chenyang
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| |
Collapse
|
24
|
Tay DD, Siew SW, Shamzir Kamal S, Razali MN, Ahmad HF. ITS1 amplicon sequencing of feline gut mycobiome of Malaysian local breeds using Nanopore Flongle. Arch Microbiol 2022; 204:314. [PMID: 35545729 DOI: 10.1007/s00203-022-02929-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
The gut mycobiome exhibits major influence on the gastrointestinal health and disease but received less attention due to low abundance. This study characterizes the fungal community and compares the microbial diversity between indoor and outdoor cats. Genomic DNA was extracted and sequenced by targeting the Internal Transcribed Spacer 1 (ITS1) region using Flongle flow cell on MinION™ sequencing platform. Results show the phylum Ascomycota and genus Peniophorella were numerous in indoor cats, whereas the Basidiomycota and Pichia were abundant in outdoor cats. Peniophorella formed the core mycobiome in both feline populations. Furthermore, alpha (p value = 0.0207) and beta diversities (p value = 0.009) results showed significant differences between the two groups. Overall, indoor cats have greater amounts of Peniophorella, whereas outdoor cats have higher Trichosporon and unclassified Sordariaceae. The study also suggests that keeping a cat indoors or left as a stray will affect their respective gut mycobiome.
Collapse
Affiliation(s)
- Darren Dean Tay
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia
| | - Shing Wei Siew
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia
| | - Shamrulazhar Shamzir Kamal
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia
| | - Mohd Najib Razali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia.,MNR Multitech Sdn. Bhd, UMP Holdings Complex, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia. .,Centre for Research in Advanced Tropical Bioscience (Biotropic Centre), Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia.
| |
Collapse
|
25
|
Xu S, Zhang G, Wang M, Lin T, Liu W, Wang Y. Phage nanoparticle as a carrier for controlling fungal infection. Appl Microbiol Biotechnol 2022; 106:3397-3403. [PMID: 35501488 DOI: 10.1007/s00253-022-11932-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
A mass of nanocarriers have been exploited and utilized for prevention of fungi, including organic nanomaterials, inorganic nanoparticles, polypeptides, and viruses. Due to biological safety and flexible genetic engineering property, bacteriophages, as bionanoparticles, are widely used in the diagnosis and treatment of microorganisms, which can be easily loaded with proteins and drugs. In particular, random DNAs can be inserted into the genome of phage by phage display technology, and it is possible to obtain the peptide/antibody targeting fungi from phage library. Meanwhile, phages displaying specific peptides are able to conjugate with other nanoparticles, which have both characteristics of peptides and nanomaterials, and have been used for precise detection of fungi. Additionally, phage nanomaterials as carriers can reduce the toxicity of drugs, increase the time of drug circulation, stimulate the immune response, and have an anti-fungal effect by itself. In this review, we summarize the recent applications of bacteriophages on the study of fungi. The improvement of our understanding of bacteriophage will supply new tools for controlling fungal infections. These phage libraries were used to pan the specific peptides for diagnosis, prevention, and treatment of fungi. KEY POINTS: • System fungal infection has no significant clinical symptoms; it is important to develop vaccine, diagnosis, and therapeutic agents to reduce mortality; phage is an ideal carrier for vaccine and drug to stimulate immune response and improve the efficiency of drug, and also can improve the sensitivity of detection • This review summarized recent studies on phage-based fungal vaccine and threw light on the developing therapeutic phage in the treatment of fungal infection.
Collapse
Affiliation(s)
- Songbai Xu
- Department Neurosurg, First Hospital Jilin University, Changchun, People's Republic of China
| | - Guangxin Zhang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wei Liu
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yicun Wang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
26
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
27
|
Happel AU, Gasper M, Balle C, Konstantinus I, Gamieldien H, Dabee S, Gill K, Bekker LG, Passmore JAS, Jaspan HB. Persistent, Asymptomatic Colonization with Candida is Associated with Elevated Frequencies of Highly Activated Cervical Th17-Like Cells and Related Cytokines in the Reproductive Tract of South African Adolescents. Microbiol Spectr 2022; 10:e0162621. [PMID: 35348351 PMCID: PMC9045181 DOI: 10.1128/spectrum.01626-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Cervicovaginal inflammation, nonoptimal microbiota, T-cell activation, and hormonal contraceptives may increase HIV risk, yet associations between these factors and subclinical Candida colonization or hyphae are unknown. We collected cervicovaginal samples from 94 South African adolescents, aged 15 to 19 years, who were randomized to injectable norethisterone enanthate (Net-En), an etonorgesterol/ethinyl estradiol vaginal ring (NuvaRing), or oral contraceptives in the UChoose trial (NCT02404038) at baseline and 16 weeks post-randomization. We assessed cervicovaginal samples for subclinical Candida colonization (by quantitative PCR [qPCR]), hyphae (by Gram stain), microbiota composition (by 16S rRNA gene sequencing), cytokine concentrations (by Luminex), and cervical T-cell phenotypes and activation (by multiparameter flow cytometry). While hormonal contraceptive type did not influence incidence of Candida colonization or hyphae, hyphae presence was associated with significantly elevated concentrations of IL-22, IL-17A and IL-17F, all produced by Th17 cells, but not of other cytokines, such as IL-1β or IL-6, after adjustment for confounders. Subclinical Candida colonization was associated with reduced frequencies of Th17-like cells and elevated frequencies of CCR6-CCR10 T cells. Women with Candida hyphae were less likely to have bacterial vaginosis (BV). Persistent, subclinical colonization with Candida over 16 weeks was associated with significant increases in Th17-related cytokine concentrations and highly activated Th17-like and CCR6-CCR10 T-cell frequencies. These data suggest that vaginal Candida colonization and hyphae increase Th17-related cytokines, but not overall female genital tract inflammation in Sub-Saharan African adolescents. Persistent Candida colonization, even when asymptomatic, may increase Th17 cell frequencies and related cytokines and thereby could subsequently increase HIV risk, although the causal relationship requires confirmation. IMPORTANCE Sub-Saharan African female adolescents are globally at the highest risk of HIV acquisition, and genital inflammation, microbial dysbiosis, and cervical HIV target cell activation are thought to contribute to this risk. Previously, the relationship between these mucosal factors and subclinical vaginal Candida colonization or hyphae has not been described, and the role of HIV-susceptible Th17 cells in mediating anti-Candida immunity in the human female genital tract has not been clearly established. We show that presence of yeast hyphae was associated with increases in Th17 cell-related cytokines and the absence of microbial dysbiosis, and that persistent Candida colonization resulted in significant increases in Th17-related cytokines and highly activated Th17-like cell frequencies. Our results suggest that Th17 cells are important for anti-Candida immunity in the human female genital tract and that prolonged vaginal Candida colonization may contribute to increased HIV risk in Sub-Saharan African adolescents by increasing HIV target cell frequencies and activation.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Melanie Gasper
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Christina Balle
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Iyaloo Konstantinus
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Namibia Institute of Pathology, Windhoek, Namibia
| | - Hoyam Gamieldien
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Smritee Dabee
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Katherine Gill
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S. Passmore
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- DST-NRF CAPRISA Centre of Excellence in HIV Prevention, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Heather B. Jaspan
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics and Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Jiang Y, Su L, Liao Y, Shen Y, Gao H, Zhang Y, Wang R, Mao Z. Synthesis and antifungal evaluation of phenol-derived bis(indolyl)methanes combined with FLC against Candida albicans. Bioorg Med Chem Lett 2022; 58:128525. [PMID: 34998904 DOI: 10.1016/j.bmcl.2022.128525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/25/2022]
Abstract
With the widespread use of azole antifungals in the clinic, the drug resistance has been emerging continuously. In this work, we focus on boron trifluoride etherate catalyzed condensation of indole and salicylaldehydes to form bis(indolyl)methanes (BIMs) in high yields, and in vitro antifungal activity against Candida albicans were evaluated. The results showed that most phenol-derived BIMs combined with fluconazole (FLC) exhibited good antifungal activity against sensitive and drug-resistant C. albicans. Further mechanism study demonstrated that BI-10 combined with FLC could inhibit hyphal growth, result in ROS accumulation, and decrease mitochondrial membrane potential (MMP) as well as altering membrane permeability.
Collapse
Affiliation(s)
- Yuan Jiang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Liuqing Su
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yichuan Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yunhong Shen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Hui Gao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
29
|
Li Y, Yang S, Huang X, Yang N, Wang C, Zhao J, Jing Z, Willems L, Liu G. MyD88 Mediates Colitis- and RANKL-Induced Microfold Cell Differentiation. Vet Sci 2021; 9:vetsci9010006. [PMID: 35051090 PMCID: PMC8779303 DOI: 10.3390/vetsci9010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Intestinal microfold (M) cells are critical for sampling antigens in the gut and initiating the intestinal mucosal immune response. In this study, we found that the oral administration of dextran sulfate sodium (DSS) and Salmonella infection induced colitis. In the process, the expression levels of M cell differentiation-related genes were synchronized with the kinetics of pro-inflammatory cytokines. Compared to wild-type (WT) mice, MyD88-/- mice exhibited significantly lower expression levels of M cell differentiation-related genes. However, DSS induced colitis in MyD88-/- mice but failed to promote the transcription of M cell differentiation related genes. Furthermore, the receptor activator of the Nuclear Factor-κB ligand (RANKL) upregulated the transcription of M cell differentiation related genes in murine intestinal organoids prepared from both WT and MyD88-/- mice. Meanwhile, fewer changes in M cell differentiation related genes were found in MyD88-/- mice as compared to WT mice. Hence, we concluded that myeloid differentiation factor 88 (MyD88) is an essential molecule for colitis- and RANKL-related differentiation of M cells.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China; (Y.L.); (S.Y.); (X.H.); (N.Y.); (C.W.); (J.Z.); (Z.J.)
- Molecular and Cellular Epigenetics (GIGA), University of Liege, 4000 Liege, Belgium;
| | - Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China; (Y.L.); (S.Y.); (X.H.); (N.Y.); (C.W.); (J.Z.); (Z.J.)
- Cell Biology and Immunology Group, Wageningen University and Research, P.O. Box 9101, 6700 HB Wageningen, The Netherlands
| | - Xin Huang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China; (Y.L.); (S.Y.); (X.H.); (N.Y.); (C.W.); (J.Z.); (Z.J.)
| | - Ning Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China; (Y.L.); (S.Y.); (X.H.); (N.Y.); (C.W.); (J.Z.); (Z.J.)
- Molecular and Cellular Epigenetics (GIGA), University of Liege, 4000 Liege, Belgium;
| | - Caiying Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China; (Y.L.); (S.Y.); (X.H.); (N.Y.); (C.W.); (J.Z.); (Z.J.)
- Cell Biology and Immunology Group, Wageningen University and Research, P.O. Box 9101, 6700 HB Wageningen, The Netherlands
| | - Jing Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China; (Y.L.); (S.Y.); (X.H.); (N.Y.); (C.W.); (J.Z.); (Z.J.)
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China; (Y.L.); (S.Y.); (X.H.); (N.Y.); (C.W.); (J.Z.); (Z.J.)
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA), University of Liege, 4000 Liege, Belgium;
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China; (Y.L.); (S.Y.); (X.H.); (N.Y.); (C.W.); (J.Z.); (Z.J.)
- Correspondence: ; Tel.: +86-(931)834-2682; Fax: +86-(931)834-0977
| |
Collapse
|
30
|
Pradhan D, Biswasroy P, Kar B, Bhuyan SK, Ghosh G, Rath G. Clinical Interventions and Budding Applications of Probiotics in the Treatment and Prevention of Viral Infections. Arch Med Res 2021; 53:122-130. [PMID: 34690010 DOI: 10.1016/j.arcmed.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/06/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Over the period, viral infections remain the utmost challenge in front of the scientific community. Continuous shifting and drafting of viral antigenic peptides are the main drivers in the development of antiviral drug resistance. The resurgence of disease, difficulties facing the development of an effective vaccine and undesirable immunological outcomes, foster to develop an alternative therapeutic approach to combat viral infections. Biomimetic nature of viral particles competent to invade the host cell by downregulating the expression of immune responsive cells. To revive from such complications, strengthening the innate immunity places first and foremost defense mechanisms to restrict viral infiltration. Variegated probiotic strains show antiviral activity by stimulating the macrophage and dendritic cell to secret the inflammation response mediated chemokines and cytokines, production of antimicrobial peptides, and biosurfactants, modulate the antiviral gens expression, alter the proportional functionality of CD4+CD25+Foxp3+ regulatory cells (Tregs), etc. With the appreciation for the antiviral activity and health benefits, however, the selectivity of specific probiotic strain from the diversified microbiome, the interactive molecular mechanism of probiotics, viability and sustainability of a specific number of a probiotic strain at the end of the shelf life, stability, selection of the formulation materials, identification and validation of the key process parameters have the major challenges for the development of an effective probiotic therapy against viral infections.
Collapse
Affiliation(s)
- Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Prativa Biswasroy
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Sanat Kumar Bhuyan
- Institute of Dental Sciences, Siksha "O" Anusandhan University, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India.
| |
Collapse
|
31
|
Aitzhanova A, Oleinikova Y, Mounier J, Hymery N, Leyva Salas M, Amangeldi A, Saubenova M, Alimzhanova M, Ashimuly K, Sadanov A. Dairy associations for the targeted control of opportunistic Candida. World J Microbiol Biotechnol 2021; 37:143. [PMID: 34328568 DOI: 10.1007/s11274-021-03096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023]
Abstract
Antifungal and antibacterial activities of twenty-six combinations of lactic acid bacteria, propionibacteria, acetic acid bacteria and dairy yeasts inoculated in whey and milk were investigated. Associations including acetic acid bacteria were shown to suppress growth of the opportunistic yeast Candida albicans in well-diffusion assays. The protective effect of milk fermented with the two most promising consortia was confirmed in Caco-2 cell culture infected with C. albicans. Indeed, these fermented milks, after heat-treatment or not, suppressed lactate dehydrogenase release after 48 h while significant increase in LDH release was observed in the positive control (C. albicans alone) and with fermented milk obtained using commercial yogurt starter cultures. The analysis of volatile compounds in the cell-free supernatant using solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) showed accumulation of significant amount of acetic acid by the consortium composed of Lactobacillus delbrueckii 5, Lactobacillus gallinarum 1, Lentilactobacillus parabuchneri 3, Lacticaseibacillus paracasei 33-4, Acetobacter syzygii 2 and Kluyveromyces marxianus 19, which corresponded to the zone of partial inhibition of C. albicans growth during well-diffusion assays. Interestingly, another part of anti-Candida activity, yielding small and transparent inhibition zones, was linked with the consortium cell fraction. This study showed a correlation between anti-Candida activity and the presence of acetic acid bacteria in dairy associations as well as a significant effect of two dairy associations against C. albicans in a Caco-2 cell model. These two associations may be promising consortia for developing functional dairy products with antagonistic action against candidiasis agents.
Collapse
Affiliation(s)
- Aida Aitzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Yelena Oleinikova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Marcia Leyva Salas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Alma Amangeldi
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Margarita Saubenova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Mereke Alimzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Kazhybek Ashimuly
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Amankeldy Sadanov
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| |
Collapse
|
32
|
Ruckle DE, Rajfer R, Johnson JP. Diffuse Recalcitrant Osteomyelitis and Joint Septicemia Because of Bowel Perforation Secondary to Gunshot Injury: A Case Report. JBJS Case Connect 2021; 11:01709767-202106000-00096. [PMID: 34101666 DOI: 10.2106/jbjs.cc.20.00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CASE A previously healthy 22-year-old man was brought into the emergency department after sustaining a low-velocity, civilian gunshot wound to the abdomen that perforated the bowel. Over the next 300 days, he would be admitted and discharged multiple times, requiring a total of 48 debridements, 23 different antimicrobials in 81 unique combinations, and had 18 different microbes cultured from various sites in bone, joint, and blood. Multiorganism bacteremia and fungemia culminated in above-knee amputation because of progression of infection, all in a nonimmunocompromised host. CONCLUSION Despite following clinical guidelines, patients can still fail evidence-based treatment algorithms. A humbling reminder is that medicine is never one-size-fits-all.
Collapse
Affiliation(s)
- David E Ruckle
- Department of Orthopaedic Surgery, Loma Linda University Health, Loma Linda, California
| | | | | |
Collapse
|
33
|
Invasive Candida Infections in Neonates after Major Surgery: Current Evidence and New Directions. Pathogens 2021; 10:pathogens10030319. [PMID: 33803104 PMCID: PMC7999498 DOI: 10.3390/pathogens10030319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Infections represent a serious health problem in neonates. Invasive Candida infections (ICIs) are still a leading cause of mortality and morbidity in neonatal intensive care units (NICUs). Infants hospitalized in NICUs are at high risk of ICIs, because of several risk factors: broad spectrum antibiotic treatments, central catheters and other invasive devices, fungal colonization, and impaired immune responses. In this review we summarize 19 published studies which provide the prevalence of previous surgery in neonates with invasive Candida infections. We also provide an overview of risk factors for ICIs after major surgery, fungal colonization, and innate defense mechanisms against fungi, as well as the roles of different Candida spp., the epidemiology and costs of ICIs, diagnosis of ICIs, and antifungal prophylaxis and treatment.
Collapse
|
34
|
Fiuza BSD, Fonseca HF, Meirelles PM, Marques CR, da Silva TM, Figueiredo CA. Understanding Asthma and Allergies by the Lens of Biodiversity and Epigenetic Changes. Front Immunol 2021; 12:623737. [PMID: 33732246 PMCID: PMC7957070 DOI: 10.3389/fimmu.2021.623737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exposure to different organisms (bacteria, mold, virus, protozoan, helminths, among others) can induce epigenetic changes affecting the modulation of immune responses and consequently increasing the susceptibility to inflammatory diseases. Epigenomic regulatory features are highly affected during embryonic development and are responsible for the expression or repression of different genes associated with cell development and targeting/conducting immune responses. The well-known, "window of opportunity" that includes maternal and post-natal environmental exposures, which include maternal infections, microbiota, diet, drugs, and pollutant exposures are of fundamental importance to immune modulation and these events are almost always accompanied by epigenetic changes. Recently, it has been shown that these alterations could be involved in both risk and protection of allergic diseases through mechanisms, such as DNA methylation and histone modifications, which can enhance Th2 responses and maintain memory Th2 cells or decrease Treg cells differentiation. In addition, epigenetic changes may differ according to the microbial agent involved and may even influence different asthma or allergy phenotypes. In this review, we discuss how exposure to different organisms, including bacteria, viruses, and helminths can lead to epigenetic modulations and how this correlates with allergic diseases considering different genetic backgrounds of several ancestral populations.
Collapse
Affiliation(s)
| | | | - Pedro Milet Meirelles
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Salvador, Brazil
| | - Cintia Rodrigues Marques
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | |
Collapse
|
35
|
Shao BZ, Yao Y, Zhai JS, Zhu JH, Li JP, Wu K. The Role of Autophagy in Inflammatory Bowel Disease. Front Physiol 2021; 12:621132. [PMID: 33633585 PMCID: PMC7902040 DOI: 10.3389/fphys.2021.621132] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). The abnormality of inflammatory and immune responses in the intestine contributes to the pathogenesis and progression of IBD. Autophagy is a vital catabolic process in cells. Recent studies report that autophagy is highly involved in various kinds of diseases, especially inflammation-related diseases, such as IBD. In this review, the biological characteristics of autophagy and its role in IBD will be described and discussed based on recent literature. In addition, several therapies for IBD through modulating the inflammasome and intestinal microbiota taking advantage of autophagy regulation will be introduced. We aim to bring new insight in the exploration of mechanisms for IBD and development of novel therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Bo-Zong Shao
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yi Yao
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Jun-Shan Zhai
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Jian-Hua Zhu
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Jin-Ping Li
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Kai Wu
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
36
|
Wang J, Zhang X, Gao L, Wang L, Song F, Zhang L, Wan Y. The synergistic antifungal activity of resveratrol with azoles against Candida albicans. Lett Appl Microbiol 2021; 72:688-697. [PMID: 33550599 DOI: 10.1111/lam.13458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/10/2023]
Abstract
Candida albicans is one of the most common clinical pathogenic microorganisms and it is becoming a serious health threat, particularly to immunocompromised populations. Drug resistance of Candida species has also frequently emerged, and combination therapy for fungal infections has attracted considerable attention. In this study, we established the Qinling Mountains myxobacterial secondary metabolites library and a synergic assay in combination with ketoconazole against C. albicans was introduced for metabolites screening. Two active compounds with synergic anticandidal activities were obtained, which were identified as trans-resveratrol and cis-resveratrol. According to our study, resveratrol can reduce the dosage to 1/64 of ketoconazole as well as itraconazole. Furthermore, synergistic anticandidal activity of resveratrol combined with azoles was verified against a panel of clinical C. albicans isolates, and the combination strategy enhanced the azoles susceptibility of three fluconazole-resistant isolates. These findings suggest that resveratrol enhances the efficacy of azoles and provides a promising application in therapy of C. albicans infection.
Collapse
Affiliation(s)
- J Wang
- Microbiology Insititute of Shaanxi, Xi'an, China.,Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi'an, China
| | - X Zhang
- Microbiology Insititute of Shaanxi, Xi'an, China.,Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi'an, China
| | - L Gao
- Microbiology Insititute of Shaanxi, Xi'an, China.,Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi'an, China
| | - L Wang
- Microbiology Insititute of Shaanxi, Xi'an, China.,Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi'an, China
| | - F Song
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - L Zhang
- Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Y Wan
- Microbiology Insititute of Shaanxi, Xi'an, China.,Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi'an, China
| |
Collapse
|
37
|
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J Fungi (Basel) 2021; 7:79. [PMID: 33499276 PMCID: PMC7912069 DOI: 10.3390/jof7020079] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals' skin. In 50% of the population, C. albicans is part of the normal flora of the microbiota. The various clinical manifestations of Candida species range from localized, superficial mucocutaneous disorders to invasive diseases that involve multiple organ systems and are life-threatening. From systemic and local to hereditary and environmental, diverse factors lead to disturbances in Candida's normal homeostasis, resulting in a transition from normal flora to pathogenic and opportunistic infections. The transition in the pathophysiology of the onset and progression of infection is also influenced by Candida's virulence traits that lead to the development of candidiasis. Oral candidiasis has a wide range of clinical manifestations, divided into primary and secondary candidiasis. The main supply of C. albicans in the body is located in the gastrointestinal tract, and the development of infections occurs due to dysbiosis of the residential microbiota, immune dysfunction, and damage to the muco-intestinal barrier. The presence of C. albicans in the blood is associated with candidemia-invasive Candida infections. The commensal relationship exists as long as there is a balance between the host immune system and the virulence factors of C. albicans. This paper presents the virulence traits of Candida albicans and clinical manifestations of specific candidiasis.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Sanja Bekić
- Family Medicine Practice, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivan Kotris
- Department of Internal Medicine, General County Hospital Vukovar, HR-3200 Vukovar, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
38
|
Li J, Zhao X. Effects of quorum sensing on the biofilm formation and viable but non-culturable state. Food Res Int 2020; 137:109742. [DOI: 10.1016/j.foodres.2020.109742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
39
|
Candida albicans Virulence Factors and Pathogenicity for Endodontic Infections. Microorganisms 2020; 8:microorganisms8091300. [PMID: 32858856 PMCID: PMC7563224 DOI: 10.3390/microorganisms8091300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Candida albicans (C. albicans) is the fungus most frequently isolated from endodontic root canal infections. Although recognized by dental pulp and periradicular tissue cells that elicit immune responses, it eludes host defenses and elicits cell death. Then, C. albicans binds tooth dentin, forms biofilms, and invades dentinal tubules to resist intracanal disinfectants and endodontic treatments. Insensitive to most common medicaments, it survives sequestered within biofilms and intratubular dentin. Thus, C. albicans has been associated with cases of persistent or refractory root canal infections. Its treatment strategies may require alternative intracanal irrigants, intracanal medicaments such as chlorhexidine gel or human beta defensin-3 (HBD3), Ca-Si-based obturating materials, and microsurgical procedures.
Collapse
|
40
|
Aaron L, Torsten M. Candida albicans in celiac disease: A wolf in sheep's clothing. Autoimmun Rev 2020; 19:102621. [PMID: 32693029 DOI: 10.1016/j.autrev.2020.102621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a commensal fungus with a potential pathogenicity and celiac disease is an autoimmune condition. Both share multiple pathophysiological junctions, including serological markers against cell-wall proteins of Candida, anti-gliadin antibodies are positive in both entities, gluten and a candidal virulence factor share sequence similarity and the autoantigen of celiac disease, the tissue transglutaminase, is pivotal in Candida albicans commensalism and hostile behavior and its covalently cross linked products are stable and resistant to breakdown in the two entities. Those autoimmune/infectious cross roads are the basis for the hypothesis that Candida albicans is an additional environmental factor for celiac disease autoimmunogenesis.
Collapse
|
41
|
Jakubczyk A, Karaś M, Rybczyńska-Tkaczyk K, Zielińska E, Zieliński D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods 2020; 9:E846. [PMID: 32610520 PMCID: PMC7404774 DOI: 10.3390/foods9070846] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, bioactive peptides are natural compounds of food or part of protein that are inactive in the precursor molecule. However, they may be active after hydrolysis and can be transported to the active site. Biologically active peptides can also be synthesized chemically and characterized. Peptides have many properties, including antihypertensive, antioxidant, antimicrobial, anticoagulant, and chelating effects. They are also responsible for the taste of food or for the inhibition of enzymes involved in the development of diseases. The scientific literature has described many peptides with bioactive properties obtained from different sources. Information about the structure, origin, and properties of peptides can also be found in many databases. This review will describe peptides inhibiting the development of current diseases, peptides with antimicrobial properties, and new alternative sources of peptides based on the current knowledge and documentation of their bioactivity. All these issues are part of modern research on peptides and their use in current health or technological problems in food production.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland;
| | - Ewelina Zielińska
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Damian Zieliński
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
42
|
do Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Júnior PH, Cabral WF, da Glória da Silva M, Eaton P, de Souza de Almeida Leite JR, Nicola AM, Albuquerque P, Silva-Pereira I. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci Rep 2020; 10:10327. [PMID: 32587287 PMCID: PMC7316759 DOI: 10.1038/s41598-020-67041-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a major cause of human infections, ranging from relatively simple to treat skin and mucosal diseases to systemic life-threatening invasive candidiasis. Fungal infections treatment faces three major challenges: the limited number of therapeutic options, the toxicity of the available drugs, and the rise of antifungal resistance. In this study, we demonstrate the antifungal activity and mechanism of action of peptides ToAP2 and NDBP-5.7 against planktonic cells and biofilms of C. albicans. Both peptides were active against C. albicans cells; however, ToAP2 was more active and produced more pronounced effects on fungal cells. Both peptides affected C. albicans membrane permeability and produced changes in fungal cell morphology, such as deformations in the cell wall and disruption of ultracellular organization. Both peptides showed synergism with amphotericin B, while ToAP2 also presents a synergic effect with fluconazole. Besides, ToAP2 (6.25 µM.) was able to inhibit filamentation after 24 h of treatment and was active against both the early phase and mature biofilms of C. albicans. Finally, ToAP2 was protective in a Galleria mellonella model of infection. Altogether these results point to the therapeutic potential of ToAP2 and other antimicrobial peptides in the development of new therapies for C. albicans infections.
Collapse
Affiliation(s)
- Jhones do Nascimento Dias
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Calliandra de Souza Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | - Jessica Maria Teles Souza
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Wanessa Felix Cabral
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Maria da Glória da Silva
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | | | | | | | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
43
|
In vitro Antioxidant, Anti-inflammatory, Anti-metabolic Syndrome, Antimicrobial, and Anticancer Effect of Phenolic Acids Isolated from Fresh Lovage Leaves [ Levisticum officinale Koch] Elicited with Jasmonic Acid and Yeast Extract. Antioxidants (Basel) 2020; 9:antiox9060554. [PMID: 32630448 PMCID: PMC7346211 DOI: 10.3390/antiox9060554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Lovage seedlings were elicited with jasmonic acid (JA) and yeast extract (YE) to induce the synthesis of biologically active compounds. A simulated digestion process was carried out to determine the potential bioavailability of phenolic acids. Buffer extracts were prepared for comparison. The ability to neutralize ABTS radicals was higher in all samples after the in vitro digestion, compared to that in the buffer extracts. However, the elicitation resulted in a significant increase only in the value of the reduction power of the potentially bioavailable fraction of phenolic acids. The effect of the elicitation on the activity of the potentially bioavailable fraction of phenolic acids towards the enzymes involved in the pathogenesis of the metabolic syndrome, i.e., ACE, lipase, amylase, and glucosidase, was analyzed as well. The in vitro digestion caused a significant increase in the ability to inhibit the activity of these enzymes; moreover, the inhibitory activity against alpha-amylase was revealed only after the digestion process. The potential anti-inflammatory effect of the analyzed extracts was defined as the ability to inhibit key pro-inflammatory enzymes, i.e., lipoxygenase and cyclooxygenase 2. The buffer extracts from the YE-elicited lovage inhibited the LOX and COX-2 activity more effectively than the extracts from the control plants. A significant increase in the anti-inflammatory and antimicrobial properties was noted after the simulated digestion.
Collapse
|
44
|
Quiroga ED, Cordero P, Mora SJ, Alvarez MG, Durantini EN. Mechanistic aspects in the photodynamic inactivation of Candida albicans sensitized by a dimethylaminopropoxy porphyrin and its equivalent with cationic intrinsic charges. Photodiagnosis Photodyn Ther 2020; 31:101877. [PMID: 32534247 DOI: 10.1016/j.pdpdt.2020.101877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023]
Abstract
Photocytotoxic effect induced by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and 5,10,15,20-tetrakis[4-(3-N,N,N-trimethylaminepropoxy)phenyl]porphyrin (TAPP+4) was examined in Candida albicans to obtain information on the mechanism of photodynamic action and cell damage. For this purpose, the photokilling of the yeast was investigated under anoxic conditions and cell suspensions in D2O. Moreover, photoinactivation of C. albicans was evaluated in presence of reactive oxygen species scavengers, such as sodium azide and d-mannitol. The results indicated that singlet molecular oxygen was the main reactive species involved in cell damage. On the other hand, the binding and distribution of these porphyrins in the cells was observed by fluorescence microscopy. Morphological damage was studied by transmission electron microscopy (TEM), indicating modifications in the cell envelopment. Furthermore, deformed cells were observed after photoinactivation of C. albicans by toluidine blue staining. In addition, modifications in the cell envelope due to the photodynamic activity was found by scanning electron microscopy (SEM). Similar photodamage was observed with both porphyrin, which mainly produced alterations in the cell barriers that lead to the photoinactivation of C. albicans.
Collapse
Affiliation(s)
- Ezequiel D Quiroga
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Paula Cordero
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - S Jimena Mora
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - M Gabriela Alvarez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
45
|
Antioxidant, Anti-Inflammatory, and Microbial-Modulating Activities of Essential Oils: Implications in Colonic Pathophysiology. Int J Mol Sci 2020; 21:ijms21114152. [PMID: 32532055 PMCID: PMC7313461 DOI: 10.3390/ijms21114152] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Essential oils (EOs) are a complex mixture of hydrophobic and volatile compounds synthesized from aromatic plants, most of them commonly used in the human diet. In recent years, many studies have analyzed their antimicrobial, antioxidant, anti-inflammatory, immunomodulatory and anticancer properties in vitro and on experimentally induced animal models of colitis and colorectal cancer. However, there are still few clinical studies aimed to understand their role in the modulation of the intestinal pathophysiology. Many EOs and some of their molecules have demonstrated their efficacy in inhibiting bacterial, fungi and virus replication and in modulating the inflammatory and oxidative processes that take place in experimental colitis. In addition to this, their antitumor activity against colorectal cancer models makes them extremely interesting compounds for the modulation of the pathophysiology of the large bowel. The characterization of these EOs is made difficult by their complexity and by the different compositions present in the same oil having different geographical origins. This review tries to shift the focus from the EOs to their individual compounds, to expand their possible applications in modulating colon pathophysiology.
Collapse
|
46
|
Złotek U, Jakubczyk A, Rybczyńska-Tkaczyk K, Ćwiek P, Baraniak B, Lewicki S. Characteristics of New Peptides GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ, YGNPVGGVGH, and GNPVGGVGHGTTGT as Inhibitors of Enzymes Involved in Metabolic Syndrome and Antimicrobial Potential. Molecules 2020; 25:E2492. [PMID: 32471271 PMCID: PMC7321301 DOI: 10.3390/molecules25112492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to determine the cytotoxic properties, influence on enzyme activity involved in metabolic syndrome, and antimicrobial activity of synthetic peptides with GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ, YGNPVGGVGH, and GNPVGGVGHGTTGT sequences. Peptides have no cytotoxic effect on cells. The highest inhibitory effect on angiotensin converting enzyme I was noted for peptide GT-14 (IC50 = 525.63 µg/mL). None of the tested peptides had an influence on α-glucosidase. The highest α-amylase and lipase inhibitory activity was noted for GG-12 (IC50 = 56.72 and 60.62 µg/mL, respectively). The highest lipoxidase inhibitory activity was determined for peptide ER-13 (IC50 = 84.35 µg/mL). Peptide RQ-9 was characterized by the highest COX inhibitory activity (0.31 and 4.77 µg/mL for COX-1 and COX-2, respectively). Only peptide RQ-9 inhibited S. enteritidis ATCC 4931 growth (42%-48%) in all tested concentrations (15.62-250 mg/mL).
Collapse
Affiliation(s)
- Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (U.Z.); (P.Ć.); (B.B.)
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (U.Z.); (P.Ć.); (B.B.)
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, St. Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Paula Ćwiek
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (U.Z.); (P.Ć.); (B.B.)
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (U.Z.); (P.Ć.); (B.B.)
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland;
| |
Collapse
|
47
|
Li M, Li C, Wu X, Chen T, Ren L, Xu B, Cao J. Microbiota-driven interleukin-17 production provides immune protection against invasive candidiasis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:268. [PMID: 32460890 PMCID: PMC7251893 DOI: 10.1186/s13054-020-02977-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Background The intestinal microbiota plays a crucial role in human health, which could affect host immunity and the susceptibility to infectious diseases. However, the role of intestinal microbiota in the immunopathology of invasive candidiasis remains unknown. Methods In this work, an antibiotic cocktail was used to eliminate the intestinal microbiota of conventional-housed (CNV) C57/BL6 mice, and then both antibiotic-treated (ABX) mice and CNV mice were intravenously infected with Candida albicans to investigate their differential responses to infection. Furthermore, fecal microbiota transplantation (FMT) was applied to ABX mice in order to assess its effects on host immunity against invasive candidiasis after restoring the intestinal microbiota, and 16S ribosomal RNA gene sequencing was conducted on fecal samples from both uninfected ABX and CNV group of mice to analyze their microbiomes. Results We found that ABX mice displayed significantly increased weight loss, mortality, and organ damage during invasive candidiasis when compared with CNV mice, which could be alleviated by FMT. In addition, the level of IL-17A in ABX mice was significantly lower than that in the CNV group during invasive candidiasis. Treatment with recombinant IL-17A could improve the survival of ABX mice during invasive candidiasis. Besides, the microbial diversity of ABX mice was significantly reduced, and the intestinal microbiota structure of ABX mice was significantly deviated from the CNV mice. Conclusions Our data revealed that intestinal microbiota plays a protective role in invasive candidiasis by enhancing IL-17A production in our model system.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Congya Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), No.1 Shuanghu Branch Road, Yubei District, Chongqing, 401120, China
| | - Xianan Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Tangtian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Ren
- Medical Examination Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Ju Cao
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
48
|
Design, synthesis and evaluation of hydrazine and acyl hydrazone derivatives of 5-pyrrolidin-2-one as antifungal agents. Bioorg Med Chem Lett 2020; 30:127220. [PMID: 32386979 DOI: 10.1016/j.bmcl.2020.127220] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 02/02/2023]
Abstract
Twenty-eight 5-pyrrolidine-2-ones decorated by hydrazine or acyl hydrazones groups have been designed, synthesized and evaluated as antifungal agents on a panel of twelve fungal strains and three non albicans candida yeasts species which have demonstrated reduced susceptibility to commonly used antifungal drugs. Half of the target compounds exhibited good to high antifungal activities on at least one strain with MIC50 lower than the control antifungal agent - hymexazol or ketoconazole. 5-Arylhydrazino-pyrrolidin-2-ones were found active and the -NH-NH- linker proved to be essential to maintain the antifungal potential. Compound 2a is a broad-spectrum antifungal, active on 60% of the tested strains. Replacing the hydrazine linker by an acylhydrazone one narrowed the spectrum of activity but pyroglutamylaryl hydrazones, mainly aromatic ones, exhibited good activity, adequate "fungicide-like" properties and were devoted of cytotoxicity.
Collapse
|
49
|
Abstract
Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis. Over the last decade, candidiasis has remained a major problematic disease worldwide. In spite of the existence of many antifungal drugs, the treatment of such diseases has still remained unsuccessful due to drug inefficacy. Therefore, there is a need to discover antifungals with different modes of action, such as antipathogenic drugs against Candida albicans. Here, we describe how various types of virulence factors such as proteinase, phospholipase, hemolysin, adhesion, morphogenesis and biofilm formation, could be targeted to develop novel therapeutics. We can inhibit production of these virulence factors by controlling their molecular/metabolic regulation.
Collapse
|
50
|
Abstract
BACKGROUND The phenotypic switching of Candida spp. plays an important role in the development of vulvovaginal candidiasis (VVC). Farnesol, as a quorum-sensing molecule in Candida albicans, has the ability to prevent yeast-to-hyphal conversion in vitro. However, the mechanism underlying this ability is unclear. This study aimed to investigate changes in protein levels to better understand how farnesol impacts processes contributing to VVC. METHODS The isobaric tag for relative and absolute quantitation technique was used to detect protein expression in C. albicans strain SC5314 (ATCC MYA-2876) with or without farnesol exposure. Proteins with a threshold fold change greater than 1.5 were screened and considered differentially expressed proteins. All the altered proteins were analyzed using Gene Ontology annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, and metabolic pathway annotation. RESULTS Between the farnesol-exposed group and the farnesol-unexposd group, we detected 297 altered proteins among all 2047 tested proteins based on a threshold fold change of more than 1.5 (P < 0.05). Eighty-seven of the 297 altered proteins exhibited metabolic enzyme activity and participated in 85 metabolic pathways according to KEGG pathway analysis. Most of these metabolic pathways were associated with central carbon metabolism processes. In the sterol synthesis pathway, which involves the synthesis of farnesol, ERG25 (methylsterol monooxygenase) and ERG4 (delta 24(24(1))-sterol reductase) were both down-regulated in the farnesol-exposed group. All six altered proteases associated with the oxidative phosphorylation process were down-regulated in the farnesol-exposed group relative to the farnesol-unexposed group. CONCLUSIONS The mechanisms underlying farnesol-induced phenotype switching involves the adjustment of metabolic activities and epigenetic modification. Exogenous farnesol had an evident, but non-deterministic effect on the synthesis of ergosterol. The potential drug activity of farnesol warrants further investigation.
Collapse
|