1
|
Mo W, Zheng X, Shi Q, Zhao X, Chen X, Yang Z, Zuo Z. Unveiling the crucial roles of abscisic acid in plant physiology: implications for enhancing stress tolerance and productivity. FRONTIERS IN PLANT SCIENCE 2024; 15:1437184. [PMID: 39640997 PMCID: PMC11617201 DOI: 10.3389/fpls.2024.1437184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Abscisic acid (ABA), one of the six major plant hormones, plays an essential and irreplaceable role in numerous physiological and biochemical processes during normal plant growth and in response to abiotic stresses. It is a key factor in balancing endogenous hormones and regulating growth metabolism in plants. The level of ABA is intricately regulated through complex mechanisms involving biosynthesis, catabolism, and transport. The functionality of ABA is mediated through a series of signal transduction pathways, primarily involving core components such as the ABA receptors PYR/PYL/RCAR, PP2C, and SnRK2. Over the past 50 years since its discovery, most of the genes involved in ABA biosynthesis, catabolism, and transport have been characterized, and the network of signaling pathways has gradually become clearer. Extensive research indicates that externally increasing ABA levels and activating the ABA signaling pathway through molecular biology techniques significantly enhance plant tolerance to abiotic stresses and improve plant productivity under adverse environmental conditions. Therefore, elucidating the roles of ABA in various physiological processes of plants and deciphering the signaling regulatory network of ABA can provide a theoretical basis and guidance for addressing key issues such as improving crop quality, yield, and stress resistance.
Collapse
Affiliation(s)
- Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xuelai Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyu Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
2
|
Chen Y, Lin Y, Qiu Y, Li W, Shen Y, Huang L. Identification and functional characterization of the diterpene synthase family in Pogostemon cablin (Blanco) Benth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109190. [PMID: 39426153 DOI: 10.1016/j.plaphy.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Pogostemon cablin (Blanco) Benth (Patchouli) is an aromatic herb extensively used in pharmaceutical and cosmetic industries. Sesquiterpenes are the characteristic constitutes in patchouli which are synthesized in the glandular trichomes on leaves and stems. Gibberellic acid (GA), a tetracyclic diterpenoid, plays a crucial role in the formation of glandular trichome. However, the diterpene biosynthesis remains largely unknown in patchouli. Here we identified a small diterpene synthases (diTPSs) family comprising three class II diTPSs (PatCPS1-3) and three class I diTPSs (PatKSL1 and PatGLS1-2). These diTPSs are functionally characterized using a yeast heterologous expression system. PatCPS1 was identified as an ent-copalyl diphosphate synthase (ent-CPS), in combination with PatKSL1, yield ent-kaurene, the precursor of GA, indicating their involvement in primary metabolism. PatCPS2 converted GGPP into (+)-8, 13-copalyl diphosphate (CPP). No activity was detected for PatCPS3, PatGLS1 and PatGLS2. Three ohnologs of PatCPS1 were further characterized to explore the possible functional differentiation of ent-CPS during the evolution of tetraploid hybrid patchouli genome. GC-MS analysis showed all ohnologs are functional ent-CPSs, demonstrating the functional conservation of PatCPS1 during evolution. Expression profiling by qRT-PCR showed PatCPS1 and PatKSL1 are ubiquitously expressed in all tissues, consistent with their involvement in primary metabolism. Conversely, PatCPS2 and PatCPS3 were predominantly expressed in the above ground parts, indicating a role in specialized metabolism. In summary, these findings clarify the early stages of GA biosynthesis in patchouli and provide gene elements for further metabolic engineering of sesquiterpenes via diterpenoids.
Collapse
Affiliation(s)
- Yiqiong Chen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yumin Lin
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingying Qiu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wanying Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanting Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lili Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Kabiraj A, Halder U, Bandopadhyay R. Isolation and Characterization of Arsenic-Tolerable Bacteria from Groundwater and Their Implementation on Rice Seedling's Shoot and Root Enhancement. Curr Microbiol 2024; 81:425. [PMID: 39448435 DOI: 10.1007/s00284-024-03951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Arsenic exerts detrimental impacts on primary metabolism in plants, leading to reduced crop yield. Some arsenic-resistant plant growth-promoting bacteria (PGPB) help plants by providing some plant hormones to sustain their growth and development under arsenic stress. Here, seven different species of Bacillus were isolated from arsenic-contaminated groundwater of West Bengal, India. Those species were capable of growing in the presence of > 3.12 g/L arsenate (AsV) and > 0.65 g/L arsenite (AsIII) salts and also resist different heavy metals like Cu2+, Fe2+, Co2+, Zn2+, Pb2+, etc. They were susceptible to multiple groups of antibiotics like beta-lactam, aminoglycosides, etc. All species were capable of detoxifying arsenite and influenced rice seedlings' growth in the presence of arsenic salts by their capabilities like nitrogen-fixing ability, phosphate solubilization, indole 3-acetic acid (IAA), gibberellic acid (GA), proline production, etc. Most species helped enhance root and shoot lengths under arsenic stress. These primary findings suggest that those Bacillus spp. could be used as potential bio-fertilizers in arsenic-contaminated agricultural fields.
Collapse
Affiliation(s)
- Ashutosh Kabiraj
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India
| | - Urmi Halder
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
4
|
Qin T, Huang Q, Li J, Ayyaz A, Farooq MA, Chen W, Zhou Y, Wu X, Ali B, Zhou W. Comprehensive characterization of gibberellin oxidase gene family in Brassica napus reveals BnGA2ox15 involved in hormone signaling and response to drought stress. Int J Biol Macromol 2024; 282:136822. [PMID: 39447790 DOI: 10.1016/j.ijbiomac.2024.136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Brassica napus is a well-known allopolyploid oil crop with high commercial potential. Gibberellin oxidase (GAox) is an essential enzyme that activates gibberellins, which regulate plant growth, and development, and have a significant impact on plant responses to abiotic stress. However, the comprehensive understanding of GAox genes and their evolution in Brassica plants remains elusive. Using advanced bioinformatics tools, this study identified 125 candidate GAox genes from the whole genomes of three key Brassica species. This study also investigated sequence characteristics, conserved motifs, exon/intron structures, cis-acting elements, syntenic analysis, duplication events and expression patterns. Subcellular localization analysis showed that the BnGA2ox14 and BnGA2ox15 proteins are located in the nucleus, whereas BnGA2ox26 is specifically localized to the chloroplast. Yeast one-hybrid and dual-luciferase assays demonstrated that MYELOCYTOMATOSIS 4 (BnMYC4) and ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR (BnAIB) bind to the BnGA2ox15 promoter and activate its transcription. Molecular docking analysis further elucidated their interaction structures and identified potential binding sites. Roots transformations show that overexpression of BnGA2ox15 increased sensitivity to PEG-6000 treatment in rapeseed. In brief, this study reveals that BnGA2ox15 is a downstream target in JA and ABA signaling pathways, functioning as a negative regulator in response to drought stress.
Collapse
Affiliation(s)
- Tongjun Qin
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Juanjuan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Weiqi Chen
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Yingying Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Xiaofen Wu
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim yar Khan, 64200, Pakistan
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Khalil A, Bramucci AR, Focardi A, Le Reun N, Willams NLR, Kuzhiumparambil U, Raina JB, Seymour JR. Widespread production of plant growth-promoting hormones among marine bacteria and their impacts on the growth of a marine diatom. MICROBIOME 2024; 12:205. [PMID: 39420440 PMCID: PMC11487934 DOI: 10.1186/s40168-024-01899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Reciprocal exchanges of metabolites between phytoplankton and bacteria influence the fitness of these microorganisms which ultimately shapes the productivity of marine ecosystems. Recent evidence suggests that plant growth-promoting hormones may be key metabolites within mutualistic phytoplankton-bacteria partnerships, but very little is known about the diversity of plant growth-promoting hormones produced by marine bacteria and their specific effects on phytoplankton growth. Here, we aimed to investigate the capacity of marine bacteria to produce 7 plant growth-promoting hormones and the effects of these hormones on Actinocyclus sp. growth. RESULTS We examined the plant growth-promoting hormone synthesis capabilities of 14 bacterial strains that enhance the growth of the common diatom Actinocyclus. Plant growth-promoting hormone biosynthesis was ubiquitous among the bacteria tested. Indeed all 14 strains displayed the genomic potential to synthesise multiple hormones, and mass-spectrometry confirmed that each strain produced at least 6 out of the 7 tested plant growth-promoting hormones. Some of the plant growth-promoting hormones identified here, such as brassinolide and trans-zeatin, have never been reported in marine microorganisms. Importantly, all strains produced the hormone indole-3 acetic acid (IAA) in high concentrations and released it into their surroundings. Furthermore, indole-3 acetic acid extracellular concentrations were positively correlated with the ability of each strain to promote Actinocyclus growth. When inoculated with axenic Actinocyclus cultures, only indole-3 acetic acid and gibberellic acid enhanced the growth of the diatom, with cultures exposed to indole-3 acetic acid exhibiting a two-fold increase in cell numbers. CONCLUSION Our results reveal that marine bacteria produce a much broader range of plant growth-promoting hormones than previously suspected and that some of these compounds enhance the growth of a marine diatom. These findings suggest plant growth-promoting hormones play a large role in microbial communication and broaden our knowledge of their fuctions in the marine environment. Video Abstract.
Collapse
Affiliation(s)
- Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amaranta Focardi
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nine Le Reun
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | | | | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
6
|
Duan L, Mo Z, Li K, Pi K, Luo J, Que Y, Zhang Q, Zhang J, Wu G, Liu R. Non-additive expression genes play a critical role in leaf vein ratio heterosis in Nicotiana tabacum L. BMC Genomics 2024; 25:924. [PMID: 39363277 PMCID: PMC11451143 DOI: 10.1186/s12864-024-10821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Heterosis, recognized for improving crop performance, especially in the first filial (F1) generation, remains an area of significant study in the tobacco industry. The low utilization of leaf veins in tobacco contributes to economic inefficiency and resource waste. Despite the positive impacts of heterosis on crop genetics, investigations into leaf-vein ratio heterosis in tobacco have been lacking. Understanding the mechanisms underlying negative heterosis in leaf vein ratio at the molecular level is crucial for advancing low vein ratio leaf breeding research. This study involved 12 hybrid combinations and their parental lines to explore heterosis associated with leaf vein ratios. The hybrids displayed diverse patterns of positive or negative leaf vein ratio heterosis across different developmental stages. Notably, the F1 hybrid (G70 × Qinggeng) consistently exhibited substantial negative heterosis, reaching a maximum of -19.79% 80 days after transplanting. A comparative transcriptome analysis revealed that a significant proportion of differentially expressed genes (DEGs), approximately 39.04% and 23.73%, exhibited dominant and over-dominant expression patterns, respectively. These findings highlight the critical role of non-additive gene expression, particularly the dominance pattern, in governing leaf vein ratio heterosis. The non-additive genes, largely associated with various GO terms such as response to abiotic stimuli, galactose metabolic process, plant-type cell wall organization, auxin-activated signaling pathway, hydrolase activity, and UDP-glycosyltransferase activity, were identified. Furthermore, KEGG enrichment analysis unveiled their involvement in phenylpropanoid biosynthesis, galactose metabolism, plant hormone signal transduction, glutathione metabolism, MAPK signaling pathway, starch, and sucrose metabolism. Among the non-additive genes, we identified some genes related to leaf development, leaf size, leaf senescence, and cell wall extensibility that showed significantly lower expression in F1 than in its parents. These results indicate that the non-additive expression of genes plays a key role in the heterosis of the leaf vein ratio in tobacco. This study marks the first exploration into the molecular mechanisms governing leaf vein ratio heterosis at the transcriptome level. These findings significantly contribute to understanding leaf vein ratios in tobacco breeding strategies.
Collapse
Affiliation(s)
- Lili Duan
- College of Tobacco, Guizhou University, Guiyang, 550025, China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Zejun Mo
- College of Tobacco, Guizhou University, Guiyang, 550025, China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Kuiyin Li
- Anshun University, Anshun, 561099, China
| | - Kai Pi
- College of Tobacco, Guizhou University, Guiyang, 550025, China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jiajun Luo
- College of Tobacco, Guizhou University, Guiyang, 550025, China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Yuanhui Que
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Qian Zhang
- College of Tobacco, Guizhou University, Guiyang, 550025, China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jingyao Zhang
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Guizhi Wu
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Renxiang Liu
- College of Tobacco, Guizhou University, Guiyang, 550025, China.
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
He S, Li L, Lv M, Wang R, Wang L, Yu S, Gao Z, Li X. PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture. Curr Microbiol 2024; 81:377. [PMID: 39325205 DOI: 10.1007/s00284-024-03893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Due to the burgeoning global population and the advancement of economies, coupled with human activities leading to the degradation of soil ecosystems and the depletion of non-renewable resources, concerns have arisen regarding food security and human survival. In order to address these adverse impacts, the spotlight has been cast upon plant growth-promoting rhizobacteria (PGPR), driven by a strong environmental consciousness. PGPR possesses the capability to foster plant growth and amplify crop yield through both direct and indirect mechanisms. By expediting plant growth, augmenting nutrient assimilation, heightening crop yield and caliber, and fortifying stress resilience, the application of PGPR can mitigate reliance on chemical fertilizers and pesticides while diminishing ecological perils. This exposition delves into the function of PGPR in modulating plant hormones, fostering nutrient solubilization, and fortifying plant resistance against biotic and abiotic stressors. This review offers valuable insights into the intricate interplay between PGPR and plants, elucidating uncertainties ripe for further investigation. Profound comprehension and judicious utilization of PGPR are indispensable for attaining sustainable agricultural progression, making substantial contributions to resolving the conundrums of global food security and environmental conservation.
Collapse
Affiliation(s)
- Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingli Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rongxin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lujun Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
8
|
Zhiponova M, Yordanova Z, Zaharieva A, Ivanova L, Gašić U, Mišić D, Aničić N, Skorić M, Petrović L, Rusanov K, Rusanova M, Mantovska D, Tsacheva I, Petrova D, Yocheva L, Hinkov A, Mihaylova N, Hristozkova M, Georgieva Z, Karcheva Z, Krumov N, Todorov D, Shishkova K, Vassileva V, Chaneva G, Kapchina-Toteva V. Cytokinins enhance the metabolic activity of in vitro-grown catmint (Nepeta nuda L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108884. [PMID: 38945096 DOI: 10.1016/j.plaphy.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.
Collapse
Affiliation(s)
- Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Anna Zaharieva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Lyubomira Ivanova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Neda Aničić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Luka Petrović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Krasimir Rusanov
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164, Sofia, Bulgaria.
| | - Mila Rusanova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164, Sofia, Bulgaria.
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Lyubomira Yocheva
- Department of Human Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.
| | - Anton Hinkov
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Nikolina Mihaylova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
| | - Marieta Hristozkova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zhaneta Georgieva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zornitsa Karcheva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Nikolay Krumov
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Daniel Todorov
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Veneta Kapchina-Toteva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| |
Collapse
|
9
|
Li B, Zhou X, Yao W, Lin J, Ding X, Chen Q, Huang H, Chen W, Huang X, Pan S, Xiao Y, Liu J, Liu X, Liu J. NADP-malic Enzyme OsNADP-ME2 Modulates Plant Height Involving in Gibberellin Signaling in Rice. RICE (NEW YORK, N.Y.) 2024; 17:52. [PMID: 39152344 PMCID: PMC11329442 DOI: 10.1186/s12284-024-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Plants NADP-malic enzymes (NADP-MEs) act as a class of oxidative decarboxylase to mediate malic acid metabolism in organisms. Despite NADP-MEs have been demonstrated to play pivotal roles in regulating diverse biological processes, the role of NADP-MEs involving in plant growth and development remains rarely known. Here, we characterized the function of rice cytosolic OsNADP-ME2 in regulating plant height. The results showed that RNAi silencing and knock-out of OsNADP-ME2 in rice results in a dwarf plant structure, associating with significant expression inhibition of genes involving in phytohormone Gibberellin (GA) biosynthesis and signaling transduction, but with up-regulation for the expression of GA signaling suppressor SLR1. The accumulation of major bioactive GA1, GA4 and GA7 are evidently altered in RNAi lines, and exogenous GA treatment compromises the dwarf phenotype of OsNADP-ME2 RNAi lines. RNAi silencing of OsNADP-ME2 also causes the reduction of NADP-ME activity associating with decreased production of pyruvate. Thus, our data revealed a novel function of plant NADP-MEs in modulation of rice plant height through regulating bioactive GAs accumulation and GA signaling, and provided a valuable gene resource for rice plant architecture improvement.
Collapse
Affiliation(s)
- Bing Li
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaolong Zhou
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Yao
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jinjun Lin
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaowen Ding
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qianru Chen
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Huang
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wenfeng Chen
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xilai Huang
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Sujun Pan
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yinghui Xiao
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jianfeng Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xionglun Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Jinling Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Ullah I, Anwar Y, Siddiqui MF, Alsulami N, Ullah R. Phytoremediation of Arsenic (As) in rice plants, mediated by Bacillus subtilis strain IU31 through antioxidant responses and phytohormones synthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124207. [PMID: 38795816 DOI: 10.1016/j.envpol.2024.124207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Bacteria-assisted phytoremediation uses bacteria to promote plant health and improve its ability to remediate toxic heavy metals like Arsenic (As). Here, we isolated rhizobacteria and identified them as Bacillus subtilis strain IU31 using 16S rDNA sequencing. IU31 showed phosphate solubilization potential on Pikovskaya agar medium and produced siderophores, which were detected on Chromium Azurol-S (CAS) agar medium. Indole-3-acetic acid (IAA) and gibberellins (GAs), namely GA1, GA3, GA4, GA7, GA9, GA12, GA15, and GA24, were quantified by GC/MS-SIM analysis. The expression levels of genes involved in GA and IAA biosynthesis, such as cyp112, cyp114, trpA, and trpB, were assessed using semi-quantitative RT-PCR. Plant bioassays showed that As at a 15 mg/kg concentration reduced plant growth, chlorophyll content, and biomass. However, IU31 inoculation significantly improved plant growth dynamics, enhancing As accumulation by up to 50% compared with uninoculated plants. IU31 inoculation induced the bioconcentration factor (BCF) and bioaccumulation factor (BAF) of As in plants compared to uninoculated plants, but the translocation factor (TF) of As was unaffected by IU31 inoculation. IU31 inoculation effectively restored glutathione-S-transferase (GST) and catalase (CAT) enzyme activities, as well as glutathione (GSH) and hydrogen peroxide concentrations to nearly normal levels, which were significantly elevated in plants exposed to As stress. These results show that IU31 improves plant health and growth by producing IAA and GAs, which might contribute to the uptake and detoxification of As.
Collapse
Affiliation(s)
- Ihsan Ullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nadiah Alsulami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, College of Arts and Science, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA
| |
Collapse
|
11
|
Altamura MM, Piacentini D, Della Rovere F, Fattorini L, Valletta A, Falasca G. Plastid dynamism integrates development and environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108813. [PMID: 38861821 DOI: 10.1016/j.plaphy.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin). The review is focused on the modulation of plastid capabilities at both transcriptional and post-translational levels at the crossroad between development and stress, with a particular attention to the chloroplast, because the most studied plastid type. The role of plastid-encoded and nuclear-encoded proteins for plastid development and stress responses, and the changes of plastid fate through the activity of stromules and plastoglobules, are discussed. Examples of plastid dynamism in response to soil stress agents (salinity, lead, cadmium, arsenic, and chromium) are described. Albinism and root greening are described based on the modulation activities of auxin and cytokinin. The physiological and functional responses of the sensory epidermal and vascular plastids to abiotic and biotic stresses along with their specific roles in stress sensing are described together with their potential modulation of retrograde signaling pathways. Future research perspectives include an in-depth study of sensory plastids to explore their potential for establishing a transgenerational memory to stress. Suggestions about anterograde and retrograde pathways acting at interspecific level and on the lipids of plastoglobules as a novel class of plastid morphogenic agents are provided.
Collapse
Affiliation(s)
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | | | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | | |
Collapse
|
12
|
Vignati E, Caccamo M, Dunwell JM, Simkin AJ. Morphological Changes to Fruit Development Induced by GA 3 Application in Sweet Cherry ( Prunus avium L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2052. [PMID: 39124170 PMCID: PMC11314404 DOI: 10.3390/plants13152052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Cherry (Prunus avium) fruits are important sources of vitamins, minerals, and nutrients in the human diet; however, they contain a large stone, making them inconvenient to eat 'on the move' and process. The exogenous application of gibberellic acid (GA3) can induce parthenocarpy in a variety of fruits during development. Here, we showed that the application of GA3 to sweet cherry unpollinated pistils acted as a trigger for fruit set and permitted the normal formation of fruit up to a period of twenty-eight days, indicating that gibberellins are involved in the activation of the cell cycle in the ovary wall cells, leading to fruit initiation. However, after this period, fruit development ceased and developing fruit began to be excised from the branch by 35 days post treatment. This work also showed that additional signals are required for the continued development of fully mature parthenocarpic fruit in sweet cherry.
Collapse
Affiliation(s)
- Edoardo Vignati
- Genetics, Genomics and Breeding, NIAB East Malling, New Road, Kent ME19 6BJ, UK;
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Mario Caccamo
- Crop Bioinformatics, NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Andrew J. Simkin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
13
|
Mishra S, Zhang X, Yang X. Plant communication with rhizosphere microbes can be revealed by understanding microbial functional gene composition. Microbiol Res 2024; 284:127726. [PMID: 38643524 DOI: 10.1016/j.micres.2024.127726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Understanding rhizosphere microbial ecology is necessary to reveal the interplay between plants and associated microbial communities. The significance of rhizosphere-microbial interactions in plant growth promotion, mediated by several key processes such as auxin synthesis, enhanced nutrient uptake, stress alleviation, disease resistance, etc., is unquestionable and well reported in numerous literature. Moreover, rhizosphere research has witnessed tremendous progress due to the integration of the metagenomics approach and further shift in our viewpoint from taxonomic to functional diversity over the past decades. The microbial functional genes corresponding to the beneficial functions provide a solid foundation for the successful establishment of positive plant-microbe interactions. The microbial functional gene composition in the rhizosphere can be regulated by several factors, e.g., the nutritional requirements of plants, soil chemistry, soil nutrient status, pathogen attack, abiotic stresses, etc. Knowing the pattern of functional gene composition in the rhizosphere can shed light on the dynamics of rhizosphere microbial ecology and the strength of cooperation between plants and associated microbes. This knowledge is crucial to realizing how microbial functions respond to unprecedented challenges which are obvious in the Anthropocene. Unraveling how microbes-mediated beneficial functions will change under the influence of several challenges, requires knowledge of the pattern and composition of functional genes corresponding to beneficial functions such as biogeochemical functions (nutrient cycle), plant growth promotion, stress mitigation, etc. Here, we focus on the molecular traits of plant growth-promoting functions delivered by a set of microbial functional genes that can be useful to the emerging field of rhizosphere functional ecology.
Collapse
Affiliation(s)
- Sandhya Mishra
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Xianxian Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| |
Collapse
|
14
|
Xiao F, Zhao Y, Wang X, Jian X, Zhou H. Analysis of differential mRNA and miRNA expression induced by heterogeneous grafting in Gleditsia sinensis. Int J Biol Macromol 2024; 270:132235. [PMID: 38734341 DOI: 10.1016/j.ijbiomac.2024.132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Gleditsia sinensis Lam. is a multifaceted plant with medicinal, edible, chemical, timber, and ornamental applications. However, the effect of rootstocks on scions after grafting is still unclear. This study examined the mRNA and miRNA transcriptome among homografts, heterografts, and seedlings. GO enrichment analysis between seedlings and homograft/heterograft combinations revealed that biosynthesis, degradation, and transport were enriched. The KEGG enrichment results showed that plant hormone signal transduction and the plant MAPK signaling pathway were enriched in both seedlings and heterograft combinations. Through weighted correlation network analysis (WGCNA), the hub genes related to the content of plant hormones were obtained. Taking G. sinensis as the scion, there were 4594, 2887, 3429, and 5959 mRNAs that were specifically expressed in the grafted plants of G. sinensis/G. fera, G. sinensis/G. delavayi, G. sinensis/G. microphylla, and G. sinensis/G. japonica, respectively. The specifically expressed mRNA genes may participate in such processes and pathways as the rhythmic process, circadian rhythm, gibberellic-acid-mediated signaling pathway, and peptide-based amino acid modification. Additionally, 3, 16, 2, and 15 specifically expressed miRNAs were identified. This study examines the impact of grafting on gene expression in Gleditsia plants and establishes a foundation for the development of new resources and rootstock breeding.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xueyan Jian
- College of Continuing Education, Yanbian University, Yanji 133002, Jilin, China
| | - Heying Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
15
|
Wang C, Hua Y, Liang T, Guo Y, Wang L, Zheng X, Liu P, Zheng Q, Kang Z, Xu Y, Cao P, Chen Q. Integrated analyses of ionomics, phytohormone profiles, transcriptomics, and metabolomics reveal a pivotal role of carbon-nano sol in promoting the growth of tobacco plants. BMC PLANT BIOLOGY 2024; 24:473. [PMID: 38811869 PMCID: PMC11137978 DOI: 10.1186/s12870-024-05195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Carbon nano sol (CNS) can markedly affect the plant growth and development. However, few systematic analyses have been conducted on the underlying regulatory mechanisms in plants, including tobacco (Nicotiana tabacum L.). RESULTS Integrated analyses of phenome, ionome, transcriptome, and metabolome were performed in this study to elucidate the physiological and molecular mechanisms underlying the CNS-promoting growth of tobacco plants. We found that 0.3% CNS, facilitating the shoot and root growth of tobacco plants, significantly increased shoot potassium concentrations. Antioxidant, metabolite, and phytohormone profiles showed that 0.3% CNS obviously reduced reactive oxygen species production and increased antioxidant enzyme activity and auxin accumulation. Comparative transcriptomics revealed that the GO and KEGG terms involving responses to oxidative stress, DNA binding, and photosynthesis were highly enriched in response to exogenous CNS application. Differential expression profiling showed that NtNPF7.3/NtNRT1.5, potentially involved in potassium/auxin transport, was significantly upregulated under the 0.3% CNS treatment. High-resolution metabolic fingerprints showed that 141 and 163 metabolites, some of which were proposed as growth regulators, were differentially accumulated in the roots and shoots under the 0.3% CNS treatment, respectively. CONCLUSIONS Taken together, this study revealed the physiological and molecular mechanism underlying CNS-mediated growth promotion in tobacco plants, and these findings provide potential support for improving plant growth through the use of CNS.
Collapse
Affiliation(s)
- Chen Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yadi Guo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Lin Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xueao Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Zhengzhong Kang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Yalong Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy (BLSA), Beijing, 102209, China.
| |
Collapse
|
16
|
Yang Q, Tian J, Chen S, Yang Z, Wang Z, Xu HM, Dong LB. Discovery of sesquiterpenoids from an actinomycete Crossiella cryophila through genome mining and heterologous expression. Bioorg Chem 2024; 146:107308. [PMID: 38531151 DOI: 10.1016/j.bioorg.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Genome mining of the Actinomycete Crossiella cryophila facilitated the discovery of a minimal terpenoid biosynthetic gene cluster of cry consisting of a class I terpene cyclase CryA and a CYP450 monooxygenase CryB. Heterologous expression of cry allowed the isolation and characterization of two new sesquiterpenoids, ent-viridiflorol (1) and cryophilain (2). Notably, cryophilain (2) possesses a 5/7/3-fused tricyclic skeleton bearing a distinctive bridgehead hydroxy group. The combined in vivo and in vitro experiments revealed that CryA, the first ent-viridiflorol terpene cyclase, catalyzes farnesyl diphosphate to form the 5/7/3 sesquiterpene core scaffold and P450 CryB serves as a tailoring enzyme responsible for installing a hydroxy group at the bridgehead carbon.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jupeng Tian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shungen Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziyi Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zengyuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
17
|
Dixon RA, Dickinson AJ. A century of studying plant secondary metabolism-From "what?" to "where, how, and why?". PLANT PHYSIOLOGY 2024; 195:48-66. [PMID: 38163637 PMCID: PMC11060662 DOI: 10.1093/plphys/kiad596] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2024]
Abstract
Over the past century, early advances in understanding the identity of the chemicals that collectively form a living plant have led scientists to deeper investigations exploring where these molecules localize, how they are made, and why they are synthesized in the first place. Many small molecules are specific to the plant kingdom and have been termed plant secondary metabolites, despite the fact that they can play primary and essential roles in plant structure, development, and response to the environment. The past 100 yr have witnessed elucidation of the structure, function, localization, and biosynthesis of selected plant secondary metabolites. Nevertheless, many mysteries remain about the vast diversity of chemicals produced by plants and their roles in plant biology. From early work characterizing unpurified plant extracts, to modern integration of 'omics technology to discover genes in metabolite biosynthesis and perception, research in plant (bio)chemistry has produced knowledge with substantial benefits for society, including human medicine and agricultural biotechnology. Here, we review the history of this work and offer suggestions for future areas of exploration. We also highlight some of the recently developed technologies that are leading to ongoing research advances.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Alexandra Jazz Dickinson
- Department of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
19
|
Sardoei AS, Tahmasebi M, Bovand F, Ghorbanpour M. Exogenously applied gibberellic acid and benzylamine modulate growth and chemical constituents of dwarf schefflera: a stepwise regression analysis. Sci Rep 2024; 14:7896. [PMID: 38570571 PMCID: PMC10991322 DOI: 10.1038/s41598-024-57985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Ornamental foliage plants that have a dense appearance are highly valued. One way to achieve this is by using plant growth regulators as a tool for plant growth management. In a greenhouse with a mist irrigation system, a study was conducted on dwarf schefflera, an ornamental foliage plant, which was exposed to foliar application of gibberellic acid and benzyladenine hormones. The hormones were sprayed on dwarf schefflera leaves at 0, 100, and 200 mg/l concentrations, at 15-day intervals in three stages. The experiment was conducted as a factorial based on a completely randomized design, with four replicates. The combination of gibberellic acid and benzyladenine at 200 mg/l concentration had a significant effect on leaf number, leaf area, and plant height. The treatment also resulted in the highest content of photosynthetic pigments. Furthermore, the highest soluble carbohydrate to reducing sugars ratio was observed in treatments of 100 and 200 mg/l benzyladenine, and 200 mg/l gibberellic acid + benzyladenine. Stepwise regression analysis showed that root volume was the first variable to enter the model, explaining 44% of variations. The next variable was root fresh weight, and the two-variable model explained 63% of variations in leaf number. The greatest positive effect on leaf number was related to root fresh weight (0.43), which had a positive correlation with leaf number (0.47). The results showed that 200 mg/l concentration of gibberellic acid and benzyladenine significantly improved morphological growth, chlorophyll and carotenoid synthesis, and reducing sugar and soluble carbohydrate contents in dwarf schefflera.
Collapse
Affiliation(s)
- Ali Salehi Sardoei
- Crop and Horticultural Science Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran.
| | - Mojtaba Tahmasebi
- Department of Landscape Architecture, University of Florida, Gainesville, FL, USA
| | - Fatemeh Bovand
- Department of Agronomy and Plant Breeding, Islamic Azad University, Arak, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
20
|
Zhang S, Hou J, Zhang X, Cai T, Chen W, Zhang Q. Potential mechanism of biochar enhanced degradation of oxytetracycline by Pseudomonas aeruginosa OTC-T. CHEMOSPHERE 2024; 351:141288. [PMID: 38272135 DOI: 10.1016/j.chemosphere.2024.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Extensive use of oxytetracycline (OTC) and the generation of its corresponding resistance genes have resulted in serious environmental problems. Physical-biological combined remediation is an attractive method for OTC degradation because of its high remediation efficiency, stability, and environmental friendliness. In this study, an effective OTC-degrading strain identified as Pseudomonas aeruginosa OTC-T, was isolated from chicken manure. In the degradation experiment, the degradation rates of OTC in the degradation systems with and without the biochar addition were 92.71-100 % and 69.11-99.59 %, respectively. Biochar improved the tolerance of the strain to extreme environments, and the OTC degradation rate increased by 20.25 %, 18.61 %, and 13.13 % under extreme pH, temperature, and substrate concentration conditions, respectively. Additionally, the degradation kinetics showed that biochar increased the reaction rate constant in the degradation system and shortened the degradation period. In the biological toxicity assessment, biochar increased the proportion of live cells by 17.63 % and decreased the proportion of apoptotic cells by 58.87 %. Metabolomics revealed that biochar had a significant effect on the metabolism of the strains and promoted cell growth and reproduction, effectively reducing oxidative stress induced by OTC. This study elucidates how biochar affects OTC biodegradation and provides insights into the future application of biochar-assisted microbial technology in environmental remediation.
Collapse
Affiliation(s)
- Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
21
|
Wang Q, Gao H, Liu K, Wang H, Zhang F, Wei L, Lu K, Li M, Shi Y, Zhao J, Zhou W, Peng B, Yuan H. CRISPR/Cas9-mediated enhancement of semi-dwarf glutinous traits in elite Xiangdaowan rice ( Oryza sativa L.): targeting SD1 and Wx genes for yield and quality improvement. FRONTIERS IN PLANT SCIENCE 2024; 15:1333191. [PMID: 38434426 PMCID: PMC10904601 DOI: 10.3389/fpls.2024.1333191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
In rice cultivation, the traits of semi-dwarfism and glutinous texture are pivotal for optimizing yield potential and grain quality, respectively. Xiangdaowan (XDW) rice, renowned for its exceptional aromatic properties, has faced challenges due to its tall stature and high amylose content, resulting in poor lodging resistance and suboptimal culinary attributes. To address these issues, we employed CRISPR/Cas9 technology to precisely edit the SD1 and Wx genes in XDW rice, leading to the development of stable genetically homozygous lines with desired semi-dwarf and glutinous characteristics. The sd1-wx mutant lines exhibited reduced gibberellin content, plant height, and amylose content, while maintaining hardly changed germination rate and other key agronomic traits. Importantly, our study demonstrated that exogenous GA3 application effectively promoted growth by compensating for the deficiency of endogenous gibberellin. Based on this, a semi-dwarf glutinous elite rice (Oryza sativa L.) Lines was developed without too much effect on most agronomic traits. Furthermore, a comparative transcriptome analysis unveiled that differentially expressed genes (DEGs) were primarily associated with the anchored component of the membrane, hydrogen peroxide catabolic process, peroxidase activity, terpene synthase activity, and apoplast. Additionally, terpene synthase genes involved in catalyzing the biosynthesis of diterpenoids to gibberellins were enriched and significantly down-regulated. This comprehensive study provides an efficient method for simultaneously enhancing rice plant height and quality, paving the way for the development of lodging-resistant and high-quality rice varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hongyu Yuan
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
22
|
Tong N, Zhang C, Xu X, Zhang Z, Li J, Liu Z, Chen Y, Zhang Z, Huang Y, Lin Y, Lai Z. Genome-Wide Identification and Expression Analysis of DWARF53 Gene in Response to GA and SL Related to Plant Height in Banana. PLANTS (BASEL, SWITZERLAND) 2024; 13:458. [PMID: 38337990 PMCID: PMC10857657 DOI: 10.3390/plants13030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Dwarfing is one of the common phenotypic variations in asexually reproduced progeny of banana, and dwarfed banana is not only windproof and anti-fallout but also effective in increasing acreage yield. As a key gene in the strigolactone signalling pathway, DWARF53 (D53) plays an important role in the regulation of the height of plants. In order to gain insight into the function of the banana D53 gene, this study conducted genome-wide identification of banana D53 gene based on the M. acuminata, M. balbisiana and M. itinerans genome database. Analysis of MaD53 gene expression under high temperature, low temperature and osmotic stress based on transcriptome data and RT-qPCR was used to analyse MaD53 gene expression in different tissues as well as in different concentrations of GA and SL treatments. In this study, we identified three MaD53, three MbD53 and two MiD53 genes in banana. Phylogenetic tree analysis showed that D53 Musa are equally related to D53 Asparagales and Poales. Both high and low-temperature stresses substantially reduced the expression of the MaD53 gene, but osmotic stress treatments had less effect on the expression of the MaD53 gene. GR24 treatment did not significantly promote the height of the banana, but the expression of the MaD53 gene was significantly reduced in roots and leaves. GA treatment at 100 mg/L significantly promoted the expression of the MaD53 gene in roots, but the expression of this gene was significantly reduced in leaves. In this study, we concluded that MaD53 responds to GA and SL treatments, but "Yinniaijiao" dwarf banana may not be sensitive to GA and SL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (N.T.); (C.Z.); (X.X.); (Z.Z.); (J.L.); (Z.L.); (Y.C.); (Z.Z.); (Y.H.); (Y.L.)
| |
Collapse
|
23
|
Shi TQ, Shen YH, Li YW, Huang ZY, Nie ZK, Ye C, Wang YT, Guo Q. Improving the productivity of gibberellic acid by combining small-molecule compounds-based targeting technology and transcriptomics analysis in Fusarium fujikuroi. BIORESOURCE TECHNOLOGY 2024; 394:130299. [PMID: 38185446 DOI: 10.1016/j.biortech.2024.130299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Gibberellic acid (GA3), produced industrially by Fusarium fujikuroi, stands as a crucial plant growth regulator extensively employed in the agriculture filed while limited understanding of the global metabolic network hinders researchers from conducting rapid targeted modifications. In this study, a small-molecule compounds-based targeting technology was developed to increase GA3 production. Firstly, various small molecules were used to target key nodes of different pathways and the result displayed that supplement of terbinafine improved significantly GA3 accumulation, which reached to 1.08 g/L. Subsequently, lipid and squalene biosynthesis pathway were identified as the key pathways influencing GA3 biosynthesis by transcriptomic analysis. Thus, the strategies including in vivo metabolic engineering modification and in vitro supplementation of lipid substrates were adopted, both contributed to an enhanced GA3 yield. Finally, the engineered strain demonstrated the ability to achieve a GA3 yield of 3.24 g/L in 5 L bioreactor when utilizing WCO as carbon source and feed.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nancang 330031, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Yi-Hang Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Zi-Yi Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Zhi-Kui Nie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| |
Collapse
|
24
|
Feitosa-Junior OR, Lubbe A, Kosina SM, Martins-Junior J, Barbosa D, Baccari C, Zaini PA, Bowen BP, Northen TR, Lindow SE, da Silva AM. The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024; 14:82. [PMID: 38392974 PMCID: PMC10890622 DOI: 10.3390/metabo14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Lubbe
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joaquim Martins-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Benjamin P Bowen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
25
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
26
|
Yang L, Luo S, Jiao J, Yan W, Zeng B, He H, He G. Integrated Transcriptomic and Metabolomic Analysis Reveals the Mechanism of Gibberellic acid Regulates the Growth and Flavonoid Synthesis in Phellodendron chinense Schneid Seedlings. Int J Mol Sci 2023; 24:16045. [PMID: 38003235 PMCID: PMC10671667 DOI: 10.3390/ijms242216045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The phytohormone gibberellic acids (GAs) play a crucial role in the processes of growth, organ development, and secondary metabolism. However, the mechanism of exogenous GA3 regulating the growth and flavonoid synthesis in Phellodendron chinense Schneid (P. chinense Schneid) seedlings remains unclear. In this study, the physicochemical properties, gene expression level, and secondary metabolite of P. chinense Schneid seedlings under GA3 treatment were investigated. The results showed that GA3 significantly improved the plant height, ground diameter, fresh weight, chlorophyll content, soluble substance content, superoxide dismutase, and peroxidase activities. This was accompanied by elevated relative expression levels of Pc(S)-GA2ox, Pc(S)-DELLA, Pc(S)-SAUR50, Pc(S)-PsaD, Pc(S)-Psb 27, Pc(S)-PGK, Pc(S)-CER3, and Pc(S)-FBA unigenes. Conversely, a notable reduction was observed in the carotenoid content, catalase activity and the relative expression abundances of Pc(S)-KAO, Pc(S)-GID1/2, and Pc(S)-GH 3.6 unigenes in leaves of P. chinense Schneid seedlings (p < 0.05). Furthermore, GA3 evidently decreased the contents of pinocembrin, pinobanksin, isosakuranetin, naringin, naringenin, (-)-epicatechin, tricetin, luteolin, and vitexin belonged to flavonoid in stem bark of P. chinense Schneid seedlings (p < 0.05). These results indicated that exogenous GA3 promoted growth through improving chlorophyll content and gene expression in photosynthesis and phytohormone signal pathway and inhibited flavonoid synthesis in P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Lv Yang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Shengwei Luo
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Jing Jiao
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Baiquan Zeng
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Gongxiu He
- College of Forestry, Central South University of Forestry & Technology, Changsha 410004, China
| |
Collapse
|
27
|
Zhou M, Li Y, Cheng Z, Zheng X, Cai C, Wang H, Lu K, Zhu C, Ding Y. Important Factors Controlling Gibberellin Homeostasis in Plant Height Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15895-15907. [PMID: 37862148 DOI: 10.1021/acs.jafc.3c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Plant height is an important agronomic trait that is closely associated with crop yield and quality. Gibberellins (GAs), a class of highly efficient plant growth regulators, play key roles in regulating plant height. Increasing reports indicate that transcriptional regulation is a major point of regulation of the GA pathways. Although substantial knowledge has been gained regarding GA biosynthetic and signaling pathways, important factors contributing to the regulatory mechanisms homeostatically controlling GA levels remain to be elucidated. Here, we provide an overview of current knowledge regarding the regulatory network involving transcription factors, noncoding RNAs, and histone modifications involved in GA pathways. We also discuss the mechanisms of interaction between GAs and other hormones in plant height development. Finally, future directions for applying knowledge of the GA hormone in crop breeding are described.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yakun Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhuowei Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Zheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chong Cai
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huizhen Wang
- Huangshan Institute of Product Quality Inspection, Huangshan 242700, China
| | - Kaixing Lu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315000, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
28
|
Sun J, Zhang X, Fu C, Ahmad N, Zhao C, Hou L, Naeem M, Pan J, Wang X, Zhao S. Genome-wide identification and expression analysis of GA20ox and GA3ox genes during pod development in peanut. PeerJ 2023; 11:e16279. [PMID: 37908413 PMCID: PMC10615029 DOI: 10.7717/peerj.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Background Gibberellins (GAs) play important roles in regulating peanut growth and development. GA20ox and GA3ox are key enzymes involved in GA biosynthesis. These enzymes encoded by a multigene family belong to the 2OG-Fe (II) oxygenase superfamily. To date, no genome-wide comparative analysis of peanut AhGA20ox and AhGA3ox-encoding genes has been performed, and the roles of these genes in peanut pod development are not clear. Methods A whole-genome analysis of AhGA20ox and AhGA3ox gene families in peanut was carried out using bioinformatic tools. The expression of these genes at different stage of pod development was analyzed using qRT-PCR. Results In this study, a total of 15 AhGA20ox and five AhGA3ox genes were identified in peanut genome, which were distributed on 14 chromosomes. Phylogenetic analysis divided the GA20oxs and GA3oxs into three groups, but AhGA20oxs and AhGA3oxs in two groups. The conserved pattern of gene structure, cis-elements, and protein motifs further confirmed their evolutionary relationship in peanut. AhGA20ox and AhGA3ox genes were differential expressed at different stages of pod development. The strong expression of AhGA20ox1/AhGA20ox4, AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 in S1-stage indicated that these genes could have a key role in controlling peg elongation. Furthermore, AhGA20ox and AhGA3ox also showed diverse expression patterns in different peanut tissues including leaves, main stems, flowers and inflorescences. Noticeably, AhGA20ox9/AhGA20ox11 and AhGA3o4/AhGA3ox5 were highly expressed in the main stem, whereas the AhGA3ox1 and AhGA20ox10 were strongly expressed in the inflorescence. The expression levels of AhGA20ox2/AhGA20ox3, AhGA20ox5/AhGA20ox6, AhGA20ox7/AhGA20ox8, AhGA20ox13/AhGA20ox14 and AhGA3ox2/AhGA3ox3 were high in the flowers, suggesting their involvement in flower development. These results provide a basis for deciphering the roles of AhGA20ox and AhGA3ox in peanut growth and development, especially in pod development.
Collapse
Affiliation(s)
- Jie Sun
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoqian Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chun Fu
- Weifang Academy of Agricultural Sciences, Weifang, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Lei Hou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
29
|
Zaharieva A, Rusanov K, Rusanova M, Paunov M, Yordanova Z, Mantovska D, Tsacheva I, Petrova D, Mishev K, Dobrev PI, Lacek J, Filepová R, Zehirov G, Vassileva V, Mišić D, Motyka V, Chaneva G, Zhiponova M. Uncovering the Interrelation between Metabolite Profiles and Bioactivity of In Vitro- and Wild-Grown Catmint ( Nepeta nuda L.). Metabolites 2023; 13:1099. [PMID: 37887424 PMCID: PMC10609352 DOI: 10.3390/metabo13101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-β,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.
Collapse
Affiliation(s)
- Anna Zaharieva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Krasimir Rusanov
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Mila Rusanova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Grigor Zehirov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| |
Collapse
|
30
|
Shi J, Zhang F, Wang Y, Zhang S, Wang F, Ma Y. The cytochrome P450 gene, MdCYP716B1, is involved in regulating plant growth and anthracnose resistance in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111832. [PMID: 37586420 DOI: 10.1016/j.plantsci.2023.111832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Apple is one of the main cultivated fruit trees worldwide. Both biotic and abiotic stresses, especially fungal diseases, have serious effects on the growth and fruit quality of apples. Cytochrome P450, the largest protein family in plants, is critical for plant growth and stress responses. However, the function of apple P450 remains poorly understood. In our previous study, 'Hanfu' autotetraploid showed dwarfism and fungal resistance phenotypes compared to 'Hanfu' diploid. Digital gene expression sequencing analysis revealed that the transcript level of MdCYP716B1 was significantly downregulated in the autotetraploid apple cultivar 'Hanfu'. In this study, we identified and cloned the MdCYP716B1 gene from 'Hanfu' apples. The MdCYP716B1 protein fused to a green fluorescent protein was localized in the cytoplasm. We constructed the plant overexpression vector and RNAi vector of MdCYP716B1, and the apple 'GL-3' was transformed by Agrobacterium-mediated transformation to obtain transgenic plants. Overexpressing and RNAi silencing transgenic plants exhibited an increase and decrease in plant height to 'GL-3', respectively. RNAi silencing transgenic plants displayed increased resistance to Colletotrichum gloeosporioides, whereas overexpression transgenic plants were more sensitive to C. gloeosporioides. According to transcriptome analysis, the transcript levels of gibberellin biosynthesis genes were upregulated in MdCYP716B1-overexpression plants. In contrast with 'GL-3', GA3 accumulation was rose in MdCYP716B1-OE lines and impaired in MdCYP716B1-RNAi lines. Collectively, our data indicate that MdCYP716B1 regulates plant growth and resistance to fungal stress.
Collapse
Affiliation(s)
- Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yangshu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shuyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
31
|
Khan AL. The phytomicrobiome: solving plant stress tolerance under climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1219366. [PMID: 37746004 PMCID: PMC10513501 DOI: 10.3389/fpls.2023.1219366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
With extraordinary global climate changes, increased episodes of extreme conditions result in continuous but complex interaction of environmental variables with plant life. Exploring natural phytomicrobiome species can provide a crucial resource of beneficial microbes that can improve plant growth and productivity through nutrient uptake, secondary metabolite production, and resistance against pathogenicity and abiotic stresses. The phytomicrobiome composition, diversity, and function strongly depend on the plant's genotype and climatic conditions. Currently, most studies have focused on elucidating microbial community abundance and diversity in the phytomicrobiome, covering bacterial communities. However, least is known about understanding the holistic phytomicrobiome composition and how they interact and function in stress conditions. This review identifies several gaps and essential questions that could enhance understanding of the complex interaction of microbiome, plant, and climate change. Utilizing eco-friendly approaches of naturally occurring synthetic microbial communities that enhance plant stress tolerance and leave fewer carbon-foot prints has been emphasized. However, understanding the mechanisms involved in stress signaling and responses by phytomicrobiome species under spatial and temporal climate changes is extremely important. Furthermore, the bacterial and fungal biome have been studied extensively, but the holistic interactome with archaea, viruses, oomycetes, protozoa, algae, and nematodes has seldom been studied. The inter-kingdom diversity, function, and potential role in improving environmental stress responses of plants are considerably important. In addition, much remains to be understood across organismal and ecosystem-level responses under dynamic and complex climate change conditions.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Houston, TX, United States
| |
Collapse
|
32
|
Franco-Losilla M, Nordzieke S, Feldmann I, Limón MC, Avalos J. HmbC, a Protein of the HMG Family, Participates in the Regulation of Carotenoid Biosynthesis in Fusarium fujikuroi. Genes (Basel) 2023; 14:1661. [PMID: 37628712 PMCID: PMC10454146 DOI: 10.3390/genes14081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
In the fungus Fusarium fujikuroi, carotenoid production is up-regulated by light and down-regulated by the CarS RING finger protein, which modulates the mRNA levels of carotenoid pathway genes (car genes). To identify new potential regulators of car genes, we used a biotin-mediated pull-down procedure to detect proteins capable of binding to their promoters. We focused our attention on one of the proteins found in the screening, belonging to the High-Mobility Group (HMG) family that was named HmbC. The deletion of the hmbC gene resulted in increased carotenoid production due to higher mRNA levels of car biosynthetic genes. In addition, the deletion resulted in reduced carS mRNA levels, which could also explain the partial deregulation of the carotenoid pathway. The mutants exhibited other phenotypic traits, such as alterations in development under certain stress conditions, or reduced sensitivity to cell wall degrading enzymes, revealed by less efficient protoplast formation, indicating that HmbC is also involved in other cellular processes. In conclusion, we identified a protein of the HMG family that participates in the regulation of carotenoid biosynthesis. This is probably achieved through an epigenetic mechanism related to chromatin structure, as is frequent in this class of proteins.
Collapse
Affiliation(s)
- Marta Franco-Losilla
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (M.F.-L.); (J.A.)
| | - Steffen Nordzieke
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (M.F.-L.); (J.A.)
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44227 Dortmund, Germany;
| | - M. Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (M.F.-L.); (J.A.)
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (M.F.-L.); (J.A.)
| |
Collapse
|
33
|
Kumar A, Rithesh L, Kumar V, Raghuvanshi N, Chaudhary K, Abhineet, Pandey AK. Stenotrophomonas in diversified cropping systems: friend or foe? Front Microbiol 2023; 14:1214680. [PMID: 37601357 PMCID: PMC10437078 DOI: 10.3389/fmicb.2023.1214680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
In the current scenario, the use of synthetic fertilizers is at its peak, which is an expensive affair, possesses harmful effects to the environment, negatively affecting soil fertility and beneficial soil microfauna as well as human health. Because of this, the demand for natural, chemical-free, and organic foods is increasing day by day. Therefore, in the present circumstances use of biofertilizers for plant growth-promotion and microbe-based biopesticides against biotic stresses are alternative options to reduce the risk of both synthetic fertilizers and pesticides. The plant growth promoting rhizobacteria (PGPR) and microbial biocontrol agents are ecologically safe and effective. Owning their beneficial properties on plant systems without harming the ecosystem, they are catching the widespread interest of researchers, agriculturists, and industrialists. In this context, the genus Stenotrophomonas is an emerging potential source of both biofertilizer and biopesticide. This genus is particularly known for producing osmoprotective substances which play a key role in cellular functions, i.e., DNA replication, DNA-protein interactions, and cellular metabolism to regulate the osmotic balance, and also acts as effective stabilizers of enzymes. Moreover, few species of this genus are disease causing agents in humans that is why; it has become an emerging field of research in the present scenario. In the past, many studies were conducted on exploring the different applications of Stenotrophomonas in various fields, however, further researches are required to explore the various functions of Stenotrophomonas in plant growth promotion and management of pests and diseases under diverse growth conditions and to demonstrate its interaction with plant and soil systems. The present review discusses various plant growth and biocontrol attributes of the genus Stenotrophomonas in various food crops along with knowledge gaps. Additionally, the potential risks and challenges associated with the use of Stenotrophomonas in agriculture systems have also been discussed along with a call for further research in this area.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
- Department of Agriculture, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Lellapalli Rithesh
- Department of Plant Pathology, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - Vikash Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Nikhil Raghuvanshi
- Department of Agronomy, Institute of Agriculture and Natural Science, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Kautilya Chaudhary
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Abhineet
- Department of Agriculture, Integral Institute of Agricultural Sciences & Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Abhay K. Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R&D Center, Nagrakata, West Bengal, India
| |
Collapse
|
34
|
Bajguz A, Piotrowska-Niczyporuk A. Biosynthetic Pathways of Hormones in Plants. Metabolites 2023; 13:884. [PMID: 37623827 PMCID: PMC10456939 DOI: 10.3390/metabo13080884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Phytohormones exhibit a wide range of chemical structures, though they primarily originate from three key metabolic precursors: amino acids, isoprenoids, and lipids. Specific amino acids, such as tryptophan, methionine, phenylalanine, and arginine, contribute to the production of various phytohormones, including auxins, melatonin, ethylene, salicylic acid, and polyamines. Isoprenoids are the foundation of five phytohormone categories: cytokinins, brassinosteroids, gibberellins, abscisic acid, and strigolactones. Furthermore, lipids, i.e., α-linolenic acid, function as a precursor for jasmonic acid. The biosynthesis routes of these different plant hormones are intricately complex. Understanding of these processes can greatly enhance our knowledge of how these hormones regulate plant growth, development, and physiology. This review focuses on detailing the biosynthetic pathways of phytohormones.
Collapse
Affiliation(s)
- Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | | |
Collapse
|
35
|
Zhu W, Qi J, Chen J, Ma S, Liu K, Su H, Chai M, Huang Y, Xi X, Cao Z, Qin Y, Cai H. Identification of GA2ox Family Genes and Expression Analysis under Gibberellin Treatment in Pineapple ( Ananas comosus (L.) Merr.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2673. [PMID: 37514287 PMCID: PMC10383957 DOI: 10.3390/plants12142673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Gibberellin (GAs) plays an important regulatory role in the development and growth of pineapple (Ananas comosus (L.) Merr.). Bioinformatics was used to confirm the differential expression of GA2 gibberellin oxidase gene AcGA2oxs in the pineapple genome, which laid the foundation for exploring its role in pineapple. In this study, 42 GA2ox genes (AcGA2oxs) were identified in the pineapple genome, named from AcGA2ox1 to AcGA2ox42, and divided into four groups according to phylogenetic analysis. We also analyzed the gene structure, conserved motifs and chromosome localization of AcGA2oxs. AcGA2oxs within the same group had similar gene structure and motifs composition. Collinear analysis and cis-element analysis provided the basis for understanding the evolution and function of GA2ox genes in pineapple. In addition, we selected different tissue parts to analyze the expression profile of AcGA2oxs, and the results show that 41 genes were expressed, except for AcGA2ox18. AcGA2ox18 may not be expressed in these sites or may be pseudogenes. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the GA2ox gene family under different concentrations of GA3 treatment, and it was found that AcGA2ox gene expression was upregulated in different degrees under GA3 treatment. These results provide useful information for further study on the evolution and function of the GA2ox family in pineapple.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingang Qi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingdong Chen
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Suzhuo Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaichuang Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Su
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengnan Chai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinpeng Xi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuangyuan Cao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyang Cai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
36
|
Rutkowska N, Drożdżyński P, Ryngajłło M, Marchut-Mikołajczyk O. Plants as the Extended Phenotype of Endophytes-The Actual Source of Bioactive Compounds. Int J Mol Sci 2023; 24:10096. [PMID: 37373241 PMCID: PMC10298476 DOI: 10.3390/ijms241210096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
For thousands of years, plants have been used for their medicinal properties. The industrial production of plant-beneficial compounds is facing many drawbacks, such as seasonal dependence and troublesome extraction and purification processes, which have led to many species being on the edge of extinction. As the demand for compounds applicable to, e.g., cancer treatment, is still growing, there is a need to develop sustainable production processes. The industrial potential of the endophytic microorganisms residing within plant tissues is undeniable, as they are often able to produce, in vitro, similar to or even the same compounds as their hosts. The peculiar conditions of the endophytic lifestyle raise questions about the molecular background of the biosynthesis of these bioactive compounds in planta, and the actual producer, whether it is the plant itself or its residents. Extending this knowledge is crucial to overcoming the current limitations in the implementation of endophytes for larger-scale production. In this review, we focus on the possible routes of the synthesis of host-specific compounds in planta by their endophytes.
Collapse
Affiliation(s)
- Natalia Rutkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (P.D.); (M.R.); (O.M.-M.)
| | | | | | | |
Collapse
|
37
|
Abdelsattar AM, Elsayed A, El-Esawi MA, Heikal YM. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107673. [PMID: 37030249 DOI: 10.1016/j.plaphy.2023.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Stevia rebaudiana is an important medicinal plant which represents the most important sugar substitute in many countries. Poor seed germination of this plant is a critical problem that affects the final yield and the availability of the products in the market. Continuous cropping without supplying soil nutrients is also a serious issue as it results in declining soil fertility. This review highlights the important use of beneficial bacteria for the enhancement of Stevia rebaudiana growth and its dynamic interactions in the phyllosphere, rhizosphere, and endosphere. Fertilizers can increase crop yield and preserve and improve soil fertility. There is a rising concern that prolonged usage of chemical fertilizers may have negative impacts on the ecosystem of the soil. On the other hand, soil health and fertility are improved by plant growth-promoting bacteria which could eventually increase plant growth and productivity. Accordingly, a biocompatible strategy involving beneficial microorganisms inoculation is applied to boost plant growth and reduce the negative effects of chemical fertilizers. Plants benefit extensively from endophytic bacteria, which promote growth and induce resistance to pathogens and stresses. Additionally, several plant growth-promoting bacteria are able to produce amino acids, polyamines, and hormones that can be used as alternatives to chemicals. Therefore, understanding the dynamic interactions between bacteria and Stevia can help make the favorable bacterial bio-formulations, use them more effectively, and apply them to Stevia to improve yield and quality.
Collapse
Affiliation(s)
- Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt; Photobiology Research Group, Sorbonne Université CNRS, 75005, Paris, France
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
38
|
Ritonga FN, Zhou D, Zhang Y, Song R, Li C, Li J, Gao J. The Roles of Gibberellins in Regulating Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:1243. [PMID: 36986931 PMCID: PMC10051486 DOI: 10.3390/plants12061243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and development are correlated with many aspects, including phytohormones, which have specific functions. However, the mechanism underlying the process has not been well elucidated. Gibberellins (GAs) play fundamental roles in almost every aspect of plant growth and development, including cell elongation, leaf expansion, leaf senescence, seed germination, and leafy head formation. The central genes involved in GA biosynthesis include GA20 oxidase genes (GA20oxs), GA3oxs, and GA2oxs, which correlate with bioactive GAs. The GA content and GA biosynthesis genes are affected by light, carbon availability, stresses, phytohormone crosstalk, and transcription factors (TFs) as well. However, GA is the main hormone associated with BR, ABA, SA, JA, cytokinin, and auxin, regulating a wide range of growth and developmental processes. DELLA proteins act as plant growth suppressors by inhibiting the elongation and proliferation of cells. GAs induce DELLA repressor protein degradation during the GA biosynthesis process to control several critical developmental processes by interacting with F-box, PIFS, ROS, SCLl3, and other proteins. Bioactive GA levels are inversely related to DELLA proteins, and a lack of DELLA function consequently activates GA responses. In this review, we summarized the diverse roles of GAs in plant development stages, with a focus on GA biosynthesis and signal transduction, to develop new insight and an understanding of the mechanisms underlying plant development.
Collapse
Affiliation(s)
- Faujiah Nurhasanah Ritonga
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- Graduate School, Padjadjaran University, Bandung 40132, West Java, Indonesia
| | - Dandan Zhou
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250100, China
| | - Yihui Zhang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Runxian Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Cheng Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jingjuan Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jianwei Gao
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| |
Collapse
|
39
|
Bulgari D, Alias C, Peron G, Ribaudo G, Gianoncelli A, Savino S, Boureghda H, Bouznad Z, Monti E, Gobbi E. Solid-State Fermentation of Trichoderma spp.: A New Way to Valorize the Agricultural Digestate and Produce Value-Added Bioproducts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3994-4004. [PMID: 36735958 PMCID: PMC9999421 DOI: 10.1021/acs.jafc.2c07388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, the agricultural digestate from anaerobic biogas production mixed with food wastes was used as a substrate to grow Trichoderma reesei RUT-C30 and Trichoderma atroviride Ta13 in solid-state fermentation (SSF) and produce high-value bioproducts, such as bioactive molecules to be used as ingredients for biostimulants. The Trichoderma spp. reached their maximum growth after 6 and 3 SSF days, respectively. Both Trichoderma species were able to produce cellulase, esterase, and citric and malic acids, while T. atroviride also produced gibberellins and oxylipins as shown by ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) profiling. Experimental evaluation of germination parameters highlighted a significant promotion of tomato seed germination and root elongation induced by T. atroviride crude extracts from SSF. This study suggests an innovative sustainable use of the whole digestate mixed with agro-food waste as a valuable substrate in fungal biorefineries. Here, it has been applied to produce plant growth-promoting fungi and bioactive molecules for sustainable agriculture.
Collapse
Affiliation(s)
- Daniela Bulgari
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Carlotta Alias
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
- B+LabNet-Environmental
Sustainability Lab, University of Brescia, Via Branze 45, 25123Brescia, Italy
| | - Gregorio Peron
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Giovanni Ribaudo
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Alessandra Gianoncelli
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Salvatore Savino
- Unit
of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123Brescia, Italy
| | - Houda Boureghda
- Department
of Botany, Laboratory of Phytopathology and Molecular Biology, Ecole Nationale Supérieure Agronomique (ENSA), El Harrach, Algiers16200, Algeria
| | - Zouaoui Bouznad
- Department
of Botany, Laboratory of Phytopathology and Molecular Biology, Ecole Nationale Supérieure Agronomique (ENSA), El Harrach, Algiers16200, Algeria
| | - Eugenio Monti
- Unit
of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123Brescia, Italy
| | - Emanuela Gobbi
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| |
Collapse
|
40
|
Marček T, Hamow KÁ, Janda T, Darko E. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:1235. [PMID: 36986924 PMCID: PMC10054893 DOI: 10.3390/plants12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
High voltage electrical discharge (HVED) is an eco-friendly low-cost method based on the creation of plasma-activated water (PAW) through the release of electrical discharge in water which results in the formation of reactive particles. Recent studies have reported that such novel plasma technologies promote germination and growth but their hormonal and metabolic background is still not known. In the present work, the HVED-induced hormonal and metabolic changes were studied during the germination of wheat seedlings. Hormonal changes including abscisic acid (ABA), gibberellic acids (GAs), indol acetic acid (IAA) and jasmonic acid (JA) and the polyphenol responses were detected in the early (2nd day) and late (5th day) germination phases of wheat as well as their redistribution in shoot and root. HVED treatment significantly stimulated germination and growth both in the shoot and root. The root early response to HVED involved the upregulation of ABA and increased phaseic and ferulic acid content, while the active form of gibberellic acid (GA1) was downregulated. In the later phase (5th day of germination), HVED had a stimulatory effect on the production of benzoic and salicylic acid. The shoot showed a different response: HVED induced the synthesis of JA_Le_Ile, an active form of JA, and provoked the biosynthesis of cinnamic, p-coumaric and caffeic acid in both phases of germination. Surprisingly, in 2-day-old shoots, HVED decreased the GA20 levels, being intermediate in the synthesis of bioactive gibberellins. These HVED-provoked metabolic changes indicated a stress-related response that could contribute to germination in wheat.
Collapse
Affiliation(s)
- Tihana Marček
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Kamirán Áron Hamow
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| | - Eva Darko
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| |
Collapse
|
41
|
Liu Y, Chen X, Zhang C. Sustainable biosynthesis of valuable diterpenes in microbes. ENGINEERING MICROBIOLOGY 2023; 3:100058. [PMID: 39628524 PMCID: PMC11611012 DOI: 10.1016/j.engmic.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/06/2024]
Abstract
Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides, and Fusarium fujikuroi. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (>4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.
Collapse
Affiliation(s)
- Yanbin Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| |
Collapse
|
42
|
Boonyaves K, Ang MCY, Park M, Cui J, Khong DT, Singh GP, Koman VB, Gong X, Porter TK, Choi SW, Chung K, Chua NH, Urano D, Strano MS. Near-Infrared Fluorescent Carbon Nanotube Sensors for the Plant Hormone Family Gibberellins. NANO LETTERS 2023; 23:916-924. [PMID: 36651830 DOI: 10.1021/acs.nanolett.2c04128] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gibberellins (GAs) are a class of phytohormones, important for plant growth, and very difficult to distinguish because of their similarity in chemical structures. Herein, we develop the first nanosensors for GAs by designing and engineering polymer-wrapped single-walled carbon nanotubes (SWNTs) with unique corona phases that selectively bind to bioactive GAs, GA3 and GA4, triggering near-infrared (NIR) fluorescence intensity changes. Using a new coupled Raman/NIR fluorimeter that enables self-referencing of nanosensor NIR fluorescence with its Raman G-band, we demonstrated detection of cellular GA in Arabidopsis, lettuce, and basil roots. The nanosensors reported increased endogenous GA levels in transgenic Arabidopsis mutants that overexpress GA and in emerging lateral roots. Our approach allows rapid spatiotemporal detection of GA across species. The reversible sensor captured the decreasing GA levels in salt-treated lettuce roots, which correlated remarkably with fresh weight changes. This work demonstrates the potential for nanosensors to solve longstanding problems in plant biotechnology.
Collapse
Affiliation(s)
- Kulaporn Boonyaves
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thomas Koizumi Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Seo Woo Choi
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kwanghun Chung
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Daisuke Urano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Orozco-Mosqueda MDC, Santoyo G, Glick BR. Recent Advances in the Bacterial Phytohormone Modulation of Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:606. [PMID: 36771689 PMCID: PMC9921776 DOI: 10.3390/plants12030606] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Phytohormones are regulators of plant growth and development, which under different types of stress can play a fundamental role in a plant's adaptation and survival. Some of these phytohormones such as cytokinin, gibberellin, salicylic acid, auxin, and ethylene are also produced by plant growth-promoting bacteria (PGPB). In addition, numerous volatile organic compounds are released by PGPB and, like bacterial phytohormones, modulate plant physiology and genetics. In the present work we review the basic functions of these bacterial phytohormones during their interaction with different plant species. Moreover, we discuss the most recent advances of the beneficial effects on plant growth of the phytohormones produced by PGPB. Finally, we review some aspects of the cross-link between phytohormone production and other plant growth promotion (PGP) mechanisms. This work highlights the most recent advances in the essential functions performed by bacterial phytohormones and their potential application in agricultural production.
Collapse
Affiliation(s)
- Ma. del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/I.T. Celaya, Celaya 38110, Guanajuato, Mexico
| | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
44
|
Seeds of Stevia rebaudiana Bertoni as a Source of Plant Growth-Promoting Endophytic Bacteria with the Potential to Synthesize Rebaudioside A. Int J Mol Sci 2023; 24:ijms24032174. [PMID: 36768498 PMCID: PMC9917351 DOI: 10.3390/ijms24032174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
In this study, a new strain of Pantoea vagans, SRS89, was isolated from surface-sterilized stevia seeds. The isolate was evaluated using morphological, molecular, and biochemical methods. The bacterium was 1.5 μm long, yellowish in color, and classified as Gram-negative. Whole genome sequencing of our strain revealed the presence of a 4,610,019 bp chromosome, and genome annotation resulted in the detection of 4283 genes encoding 4204 putative coding sequences. Phylogenic analysis classified the genome of our strain close to the MP7 and LMG 24199 strains of P. vagans. Functional analysis showed that the highest number of genes within the analyzed bacterium genome were involved in transcription, amino acid transport and metabolism, and carbohydrate transport and metabolism. We also identified genes for enzymes involved in the biosynthesis of carotenoids and terpenoids. Furthermore, we showed the presence of growth regulators, with the highest amount noted for gibberellic acid A3, indole-3-acetic acid, and benzoic acid. However, the most promising property of this strain is its ability to synthesize rebaudioside A; the estimated amount quantified using reversed-phase (RP)-HPLC was 4.39 mg/g of the dry weight of the bacteria culture. The isolated endophytic bacterium may be an interesting new approach to the production of this valuable metabolite.
Collapse
|
45
|
Zhou Y, Pang Z, Jia H, Yuan Z, Ming R. Responses of roots and rhizosphere of female papaya to the exogenous application of GA 3. BMC PLANT BIOLOGY 2023; 23:35. [PMID: 36642722 PMCID: PMC9841646 DOI: 10.1186/s12870-022-04025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Exogenous GAs have an indeterminate effect on root development. Our current study used female papaya to reveal how the roots and rhizosphere respond to the exogenous application of GA3 by investigating the transcriptome profile in roots, metabolic profile and microbial community in both roots and rhizosphere of GA3-treated and control female papaya. The results demonstrated that exogenous GA3 treatment enhanced female papaya lateral root development, which gave plants physical advantages of water and nutrient uptake. In addition, it was likely that GA3 spraying in papaya shoot apices increased the level of auxin, which was transported to roots by CpPIN1, where auxin upregulated CpLBD16 and repressed CpBP to promote the lateral root initiation and development. In papaya roots, corresponding transporters (CpTMT3, CpNRT1:2, CpPHT1;4, CpINT2, CpCOPT2, CpABCB11, CpNIP4;1) were upregulated and excretion transporters were downregulated such as CpNAXT1 for water and nutrients uptake with exogenous GA3 application. Moreover, in GA3-treated papaya roots, CpALS3 and CpMYB62 were downregulated, indicating a stronger abiotic resistance to aluminum toxic and phosphate starvation. On the other hand, BRs and JAs, which involve in defense responses, were enriched in the roots and rhizosphere of GA3-treated papayas. The upregulation of the two hormones might result in the reduction of pathogens in roots and rhizosphere such as Colletotrichum and Verticillium. GA3-treated female papaya increased the abundance of beneficial bacteria species including Mycobacterium, Mitsuaria, and Actinophytocola, but decreased that of the genera Candidatus and Bryobacter for that it required less nitrate. Overall, the roots and rhizosphere of female papaya positively respond to exogenous application of GA3 to promote development and stress tolerance. Treatment of female papaya with GA3 might result in the promotion of lateral root formation and development by upregulating CpLBD16 and downregulating CpBP. GA3-treated papaya roots exhibited feedback control of brassinolide and jasmonate signaling in root development and defense. These findings revealed complex response to a growth hormone treatment in papaya roots and rhizosphere and will lead to investigations on the impact of other plant hormones on belowground development in papaya.
Collapse
Affiliation(s)
- Yongmei Zhou
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haifeng Jia
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
46
|
Zamanzadeh-Nasrabadi SM, Mohammadiapanah F, Hosseini-Mazinani M, Sarikhan S. Salinity stress endurance of the plants with the aid of bacterial genes. Front Genet 2023; 14:1049608. [PMID: 37139239 PMCID: PMC10149814 DOI: 10.3389/fgene.2023.1049608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
The application of plant growth-promoting bacteria (PGPB) is vital for sustainable agriculture with continuous world population growth and an increase in soil salinity. Salinity is one of the severe abiotic stresses which lessens the productivity of agricultural lands. Plant growth-promoting bacteria are key players in solving this problem and can mitigate salinity stress. The highest of reported halotolerant Plant growth-promoting bacteria belonged to Firmicutes (approximately 50%), Proteobacteria (40%), and Actinobacteria (10%), respectively. The most dominant genera of halotolerant plant growth-promoting bacteria are Bacillus and Pseudomonas. Currently, the identification of new plant growth-promoting bacteria with special beneficial properties is increasingly needed. Moreover, for the effective use of plant growth-promoting bacteria in agriculture, the unknown molecular aspects of their function and interaction with plants must be defined. Omics and meta-omics studies can unreveal these unknown genes and pathways. However, more accurate omics studies need a detailed understanding of so far known molecular mechanisms of plant stress protection by plant growth-promoting bacteria. In this review, the molecular basis of salinity stress mitigation by plant growth-promoting bacteria is presented, the identified genes in the genomes of 20 halotolerant plant growth-promoting bacteria are assessed, and the prevalence of their involved genes is highlighted. The genes related to the synthesis of indole acetic acid (IAA) (70%), siderophores (60%), osmoprotectants (80%), chaperons (40%), 1-aminocyclopropane-1-carboxylate (ACC) deaminase (50%), and antioxidants (50%), phosphate solubilization (60%), and ion homeostasis (80%) were the most common detected genes in the genomes of evaluated halotolerant plant growth-promoting and salinity stress-alleviating bacteria. The most prevalent genes can be applied as candidates for designing molecular markers for screening of new halotolerant plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Seyyedeh Maryam Zamanzadeh-Nasrabadi
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadiapanah
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
- *Correspondence: Fatemeh Mohammadiapanah,
| | | | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|
47
|
Wang Y, Luo X, Chen L, Mustapha AT, Yu X, Zhou C, Okonkwo CE. Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:615-642. [PMID: 36524621 DOI: 10.1111/1541-4337.13084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
For health and safety concerns, traditional high-calorie sweeteners and artificial sweeteners are gradually replaced in food industries by natural and low-calorie sweeteners. As a natural and high-quality sugar substitute, steviol glycosides (SvGls) are continually scrutinized regarding their safety and application. Recently, the cultivation of organic stevia has been increasing in many parts of Europe and Asia, and it is obvious that there is a vast market for sugar substitutes in the future. Rebaudioside A, the main component of SvGls, is gradually accepted by consumers due to its safe, zero calories, clear, and sweet taste with no significant undesirable characteristics. Hence, it can be used in various foods or dietary supplements as a sweetener. In addition, rebaudioside A has been demonstrated to have many physiological functions, such as antihypertension, anti-diabetes, and anticaries. But so far, there are few comprehensive reviews of rebaudioside A. In this review article, we discuss the physicochemical properties, metabolic process, safety, regulatory, health benefits, and biosynthetic pathway of rebaudioside A and summarize the modification methods and state-of-the-art production and purification techniques of rebaudioside A. Furthermore, the current problems hindering the future production and application of rebaudioside A are analyzed, and suggestions are provided.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | | | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.,Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
48
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
|
49
|
Li YW, Yang CL, Peng H, Nie ZK, Shi TQ, Huang H. RETRACTED ARTICLE: Mutagenesis combined with fermentation optimization to enhance gibberellic acid GA3 yield in Fusarium fujikuroi. BIORESOUR BIOPROCESS 2022; 9:106. [PMID: 38647889 PMCID: PMC10991607 DOI: 10.1186/s40643-022-00595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Gibberellic acid (GA3) is a plant growth hormone that plays an important role in the production of crops, fruits, and vegetables with a wide market share. Due to intrinsic advantages, liquid fermentation of Fusarium fujikuroi has become the sole method for industrial GA3 production, but the broader application of GA3 is hindered by low titer. In this study, we combined atmospheric and room-temperature plasma (ARTP) with ketoconazole-based screening to obtain the mutant strain 3-6-1 with high yield of GA3. Subsequently, the medium composition and fermentation parameters were systematically optimized to increase the titer of GA3, resulting in a 2.5-fold increase compared with the titer obtained under the initial conditions. Finally, considering that the strain is prone to substrate inhibition and glucose repression, a new strategy of fed-batch fermentation was adopted to increase the titer of GA3 to 575.13 mg/L, which was 13.86% higher than the control. The strategy of random mutagenesis combined with selection and fermentation optimization developed in this study provides a basis for subsequent research on the industrial production of GA3.
Collapse
Affiliation(s)
- Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Cai-Ling Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Hui Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Zhi-Kui Nie
- Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|
50
|
Mukherjee A, Gaurav AK, Singh S, Yadav S, Bhowmick S, Abeysinghe S, Verma JP. The bioactive potential of phytohormones: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00748. [PMID: 35719852 PMCID: PMC9204661 DOI: 10.1016/j.btre.2022.e00748] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Phytohormones act as bioactive compound for plant, humans and microbes. Cytokinin, GA and auxin reduce reactive oxygen to prevent cancer & tumour disease. Phytohormones used in pharmaceuticals products and cosmetics for human. Microbes can be a potential source for plant hormones production. Phytohormones play a key role in signalling for plant-animal–microbe interactions.
Plant hormones play an important role in growth, defence and plants productivity and there are several studies on their effects on plants. However, their role in humans and animals is limitedly studied. Recent studies suggest that plant hormone also works in mammalian systems, and have the potential to reduce human diseases such as cancer, diabetes, and also improve cell growth. Plant hormones such as indole-3-acetic acid (IAA) works as an antitumor, anti-cancer agent, gibberellins help in apoptosis, abscisic acid (ABA) as antidepressant compounds and regulation of glucose homeostasis whereas cytokinin works as an anti-ageing compound. The main aim of this review is to explore and correlate the relation of plant hormones and their important roles in animals, microbes and plants, and their interrelationships, emphasizing mainly human health. The most important and well-known plant hormones e.g., IAA, gibberellins, ABA, cytokinin and ethylene have been selected in this review to explore their effects on humans and animals.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anand Kumar Gaurav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shweta Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shiuly Bhowmick
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saman Abeysinghe
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|