1
|
Carter EL, Waterfield NR, Constantinidou C, Alam MT. A temperature-induced metabolic shift in the emerging human pathogen Photorhabdus asymbiotica. mSystems 2024:e0097023. [PMID: 39445821 DOI: 10.1128/msystems.00970-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 10/25/2024] Open
Abstract
Photorhabdus is a bacterial genus containing both insect and emerging human pathogens. Most insect-restricted species display temperature restriction, unable to grow above 34°C, while Photorhabdus asymbiotica can grow at 37°C to infect mammalian hosts and cause Photorhabdosis. Metabolic adaptations have been proposed to facilitate the survival of this pathogen at higher temperatures, yet the biological mechanisms underlying these are poorly understood. We have reconstructed an extensively manually curated genome-scale metabolic model of P. asymbiotica (iEC1073, BioModels ID MODEL2309110001), validated through in silico gene knockout and nutrient utilization experiments with an excellent agreement between experimental data and model predictions. Integration of iEC1073 with transcriptomics data obtained for P. asymbiotica at temperatures of 28°C and 37°C allowed the development of temperature-specific reconstructions representing metabolic adaptations the pathogen undergoes when shifting to a higher temperature in a mammalian compared to insect host. Analysis of these temperature-specific reconstructions reveals that nucleotide metabolism is enriched with predicted upregulated and downregulated reactions. iEC1073 could be used as a powerful tool to study the metabolism of P. asymbiotica, in different genetic or environmental conditions. IMPORTANCE Photorhabdus bacterial species contain both human and insect pathogens, and most of these species cannot grow in higher temperatures. However, Photorhabdus asymbiotica, which infects both humans and insects, can grow in higher temperatures and undergoes metabolic adaptations at a temperature of 37°C compared to that of insect body temperature. Therefore, it is important to examine how this bacterial species can metabolically adapt to survive in higher temperatures. In this work, using a mathematical model, we have examined the metabolic shift that takes place when the bacteria switch from growth conditions in 28°C to 37°C. We show that P. asymbiotica potentially experiences predicted temperature-induced metabolic adaptations at 37°C predominantly clustered within the nucleotide metabolism pathway.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Nicholas R Waterfield
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Chrystala Constantinidou
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Bioinformatics Research Technology Platform, University of Warwick, Warwick, United Kingdom
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
2
|
Meng Y, Zhang Q, Xu M, Ding K, Yu Z, Li J. Pyroptosis regulation by Salmonella effectors. Front Immunol 2024; 15:1464858. [PMID: 39507539 PMCID: PMC11538000 DOI: 10.3389/fimmu.2024.1464858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The genus Salmonella contains the most common foodborne pathogens frequently isolated from food-producing animals and is responsible for zoonotic infections in humans and animals. Salmonella infection in humans and animals can cause intestinal damage, resulting in intestinal inflammation and disruption of intestinal homeostasis more severe cases can lead to bacteremia. Pyroptosis, a proinflammatory form of programmed cell death, is involved in many disease processes. Inflammasomes, pyroptosis, along with their respective signaling cascades, are instrumental in the preservation of intestinal homeostasis. In recent years, with the in-depth study of pyroptosis, our comprehension of the virulence factors and effector proteins in Salmonella has reached an extensive level, a deficit persists in our knowledge regarding the intrinsic pathogenic mechanisms about pyroptosis, necessitating a continued pursuit of understanding and investigation. In this review, we discuss the occurrence of pyroptosis induced by Salmonella effectors to provide new ideas for elucidating the regulatory mechanisms through which Salmonella virulence factors and effector proteins trigger pyroptosis could pave the way for novel concepts and strategies in the clinical prevention of Salmonella infections and the treatment of associated diseases.
Collapse
Affiliation(s)
- Yuan Meng
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qianjin Zhang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mengen Xu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
3
|
Shen D, Yu Q, Xing X, Ding H, Long Y, Hui C. Distribution and survival of pathogens from different waste components and bioaerosol traceability analysis in household garbage room. ENVIRONMENTAL RESEARCH 2024; 252:119016. [PMID: 38677405 DOI: 10.1016/j.envres.2024.119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Household garbage rooms release abundant bioaerosols and are an important source of pathogens; however, information on the distribution and survival patterns of pathogens in different waste components is limited. In this study, a culture method and 16S rRNA high-throughput sequencing were used to determine bacterial communities, culturable pathogens, and human bacterial pathogens (HBPs). The results showed that abundant culturable bacteria were detected in all waste types, and a large number of S. aureus was detected on the surface of recyclable wastes, whereas S. aureus, total coliforms, Salmonella, Enterococcus, and hemolytic bacteria were detected in food waste and other waste. The activities of these detected pathogenic bacteria decreased after 24 h of storage but re-activated within one week. Factors affecting the emergence of pathogens varied with different waste components. Sequencing results showed that Pseudomonas, Acinetobacter, and Burkholderia were abundant in the waste samples, whereas Achromobacter, Exiguobacteriums, Bordetella, and Corynebacterium were the primary pathogens in the bioaerosol and wall attachment. The results of traceability analysis showed that bioaerosol microbes were mainly derived from raw kitchen waste (5.98%) and plastic and paper contaminated with food waste (19.93%) in garbage rooms. In addition, bioaerosols were the main source of microflora in the wall attachment, which possessed high HBP diversity and required more attention. These findings will help in understanding the microbial hazards in different waste components and provide guidance for the control and risk reduction of bioaerosols during waste management and recycling.
Collapse
Affiliation(s)
- Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Qiang Yu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiaojing Xing
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Hening Ding
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Cai Hui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Zhang Z, Li B, Huang H, Fang Y, Yang W. A Food Poisoning Caused by Salmonella Enterica ( S. Enteritidis) ST11 Carrying Multi-Antimicrobial Resistance Genes in 2019, China. Infect Drug Resist 2024; 17:1751-1762. [PMID: 38736437 PMCID: PMC11086652 DOI: 10.2147/idr.s452295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose This study was to identify and analyze the pathogen responsible for food poisoning in a tourist group traveling from Macao to Zhuhai. Patients and Methods Samples were obtained from 27 patients of 96 cases, as well as samples of contaminated food in Macau. The collected samples were subjected to serological identification, drug sensitivity analysis, drug resistance gene identification, virulence factor analysis, and tracing. Results Twenty-six isolates and the salad isolate were S. enteritidis ST11. Isolates from patients were exhibited significant resistance to Penicillin AMP (Ampicillin) and quinolones NAL (Nalidixic acid). Among these isolates, 21 strains were resistant to two or more antibiotics, indicating the multi-drug resistance (MDR). Genomic characteristics and phylogenetic analysis were performed on 9 of the isolates using whole genome sequencing (WGS). The analysis revealed that the resistance to AMP and NAL was primarily caused by a gryA mutation D87Y (9/9, 100%), and the presence of beta-lactam resistance genes blaOXA-1 (1/9, 11.11%), blaTEM-141 (1/9, 11.11%), and blaTEM-1B (8/9, 88.89%). It was also found a strains isolated from patients had two resistance genes to quinolones or beta-lactam drugs (1/8, 12.5%), respectively. The strains were found to possess 165 virulence genes, one adherence class virulence factor, one invasion class virulence factor and various pathogenicity islands, including SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-9, SPI-10, SPI-13, SPI-14, SPI-15, SGI 1, CS54_island, and C63PI-1. Additionally, the virulence plasmids were detected, including IncFIB(s)-IncFII(s)-IncX1 (55.56%), IncFIB(s)-IncFII(s) (33.33%), and IncFIB(s)-IncFII(s)-IncHI2-IncHI2A (11.11%). PFGE (Pulsed Field Gel Electrophoresis) and phylogenetic tree analysis revealed a high degree of similarity between Salmonella isolates from patients and food samples from Macao. Conclusion This study identified Salmonella enterica ST11 as the cause of the food poisoning outbreak. The findings highlight the importance of phenotypic characterization and next-generation sequencing (NGS) tools in epidemiological studies and emphasize the potential risk of a new emerging multi-antibiotic ST11 clone for S. enteritidis.
Collapse
Affiliation(s)
- Zhiyi Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Faculty of Health Sciences, University of Macau, Macao, People’s Republic of China
| | - Baisheng Li
- Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People’s Republic of China
| | - Huitao Huang
- Institute of Microbiology, Zhuhai Center for Disease Control and Prevention, Zhuhai, People’s Republic of China
| | - Yanmei Fang
- Institute of Microbiology, Zhuhai Center for Disease Control and Prevention, Zhuhai, People’s Republic of China
| | - Wenqiang Yang
- Institute of Microbiology, Zhuhai Center for Disease Control and Prevention, Zhuhai, People’s Republic of China
| |
Collapse
|
5
|
Prayoga W. Concurrent emergencies: overlapping Salmonella and COVID-19 concerns in public health strategies and preparedness. Front Public Health 2024; 12:1331052. [PMID: 38741915 PMCID: PMC11089248 DOI: 10.3389/fpubh.2024.1331052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Windra Prayoga
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| |
Collapse
|
6
|
Garrido-Palazuelos LI, Aguirre-Sánchez JR, Castro-Del Campo N, López-Cuevas O, González-Torres B, Chaidez C, Medrano-Félix JA. Genomic characteristics of Salmonella Montevideo and Pomona: impact of isolation source on antibiotic resistance, virulence and metabolic capacity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-16. [PMID: 38576268 DOI: 10.1080/09603123.2024.2336597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Salmonella enterica is known for its disease-causing serotypes, including Montevideo and Pomona. These serotypes have been found in various environments, including river water, sediments, food, and animals. However, the global spread of these serotypes has increased, leading to many reported infections and outbreaks. The goal of this study was the genomic analysis of 48 strains of S. Montevideo and S. Pomona isolated from different sources, including clinical. Results showed that environmental strains carried more antibiotic resistance genes than the clinical strains, such as genes for resistance to aminoglycosides, chloramphenicol, and sulfonamides. Additionally, the type 4 secretion system, was only found in environmental strains. .Also many phosphotransferase transport systems were identified and the presence of genes for the alternative pathway Entner-Doudoroff. The origin of isolation may have a significant impact on the ability of Salmonella isolates to adapt and survive in different environments, leading to genomic flexibility and a selection advantage.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Osvaldo López-Cuevas
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Berenice González-Torres
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Cristóbal Chaidez
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - José Andrés Medrano-Félix
- Investigadoras e investigadores por México Centro de Investigación En Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, México
| |
Collapse
|
7
|
Karodia AB, Shaik T, Qekwana DN. Occurrence of Salmonella spp. in animal patients and the hospital environment at a veterinary academic hospital in South Africa. Vet World 2024; 17:922-932. [PMID: 38798288 PMCID: PMC11111710 DOI: 10.14202/vetworld.2024.922-932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aims Nosocomial infections caused by Salmonella spp. are common in veterinary facilities. The early identification of high-risk patients and sources of infection is important for mitigating the spread of infections to animal patients and humans. This study investigated the occurrence of Salmonella spp. among patients at a veterinary academic hospital in South Africa. In addition, this study describes the environmental factors that contribute to the spread of Salmonella spp. in the veterinary facility. Materials and Methods This study used a dataset of Salmonella-positive animals and environmental samples submitted to the bacteriology laboratory between 2012 and 2019. The occurrence of Salmonella isolates at the veterinary hospital was described based on source, month, season, year, and location. Proportions and 95% confidence intervals were calculated for each variable. Results A total of 715 Salmonella isolates were recorded, of which 67.6% (483/715) came from animals and the remainder (32.4%, 232/715) came from environmental samples. The highest proportion (29.2%) of Salmonella isolates was recorded in 2016 and most isolates were reported in November (17.4%). The winter season had the lowest (14.6%) proportion of isolates reported compared to spring (31.3%), summer (27.8%), and autumn (26.4%). Salmonella Typhimurium (20.0%) was the most frequently reported serotype among the samples tested, followed by Salmonella Anatum (11.2%). Among the positive animal cases, most (86.3%) came from equine clinics. Most reported isolates differed based on animal species with S. Typhimurium being common in equines and S. Anatum in bovines. Conclusion In this study, S. Typhimurium emerged as the predominant strain in animal and environmental samples. Equines were the most affected animals; however, Salmonella serotypes were also detected in the production animals. Environmental contamination was also a major source of Salmonella species in this study. To reduce the risk of transmission, strict infection prevention and control measures (biosecurity) must be implemented.
Collapse
Affiliation(s)
- Ayesha Bibi Karodia
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tahiyya Shaik
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Daniel Nenene Qekwana
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
8
|
Lee C, Lee S, Yoo W. Metabolic Interaction Between Host and the Gut Microbiota During High-Fat Diet-Induced Colorectal Cancer. J Microbiol 2024; 62:153-165. [PMID: 38625645 DOI: 10.1007/s12275-024-00123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 04/17/2024]
Abstract
Colorectal cancer (CRC) is the second-highest cause of cancer-associated mortality among both men and women worldwide. One of the risk factors for CRC is obesity, which is correlated with a high-fat diet prevalent in Western dietary habits. The association between an obesogenic high-fat diet and CRC has been established for several decades; however, the mechanisms by which a high-fat diet increases the risk of CRC remain unclear. Recent studies indicate that gut microbiota strongly influence the pathogenesis of both high-fat diet-induced obesity and CRC. The gut microbiota is composed of hundreds of bacterial species, some of which are implicated in CRC. In particular, the expansion of facultative anaerobic Enterobacteriaceae, which is considered a microbial signature of intestinal microbiota functional imbalance (dysbiosis), is associated with both high-fat diet-induced obesity and CRC. Here, we review the interaction between the gut microbiome and its metabolic byproducts in the context of colorectal cancer (CRC) during high-fat diet-induced obesity. In addition, we will cover how a high-fat diet can drive the expansion of genotoxin-producing Escherichia coli by altering intestinal epithelial cell metabolism during gut inflammation conditions.
Collapse
Affiliation(s)
- Chaeeun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seungrin Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Woongjae Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
9
|
Zhang W, Lyu L, Xu Z, Ni J, Wang D, Lu J, Yao YF. Integrative DNA methylome and transcriptome analysis reveals DNA adenine methylation is involved in Salmonella enterica Typhimurium response to oxidative stress. Microbiol Spectr 2023; 11:e0247923. [PMID: 37882553 PMCID: PMC10715015 DOI: 10.1128/spectrum.02479-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) comes across a wide variety of stresses from entry to dissemination, such as reactive oxygen species. To adapt itself to oxidative stress, Salmonella must adopt various and complex strategies. In this study, we revealed that DNA adenine methyltransferase was essential for S. Typhimurium to survive in hydrogen peroxide. We then screened out oxidative stress-responsive genes that were potentially regulated by DNA methylation in S. Typhimurium. Our results show that the DNA methylome is highly stable throughout the genome, and the coupled change of m6A GATC with gene expression is identified in only a few positions, which suggests the complexity of the DNA methylation and gene expression regulation networks. The results may shed light on our understanding of m6A-mediated gene expression regulation in bacteria.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lyu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihiong Xu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
10
|
Adamson JP, Sawyer C, Hobson G, Clark E, Fina L, Orife O, Smith R, Williams C, Hughes H, Jones A, Swaysland S, Somoye O, Phillips R, Iqbal J, Mohammed I, Karani G, Thomas DR. An outbreak of Salmonella Typhimurium associated with the consumption of raw liver at an Eid al-Adha celebration in Wales (UK), July 2021. Epidemiol Infect 2023; 152:e6. [PMID: 38031438 PMCID: PMC10789983 DOI: 10.1017/s0950268823001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
In July 2021, Public Health Wales received two notifications of salmonella gastroenteritis. Both cases has attended the same barbecue to celebrate Eid al-Adha, two days earlier. Additional cases attending the same barbecue were found and an outbreak investigation was initiated. The barbecue was attended by a North African community's social network. On same day, smaller lunches were held in three homes in the social network. Many people attended both a lunch and the barbecue. Cases were defined as someone with an epidemiological link to the barbecue and/or lunches with diarrhoea and/or vomiting with date of onset following these events. We undertook a cohort study of 36 people attending the barbecue and/or lunch, and a nested case-control study using Firth logistic regression. A communication campaign, sensitive towards different cultural practices, was developed in collaboration with the affected community. Consumption of a traditional raw liver dish, 'marrara', at the barbecue was the likely vehicle for infection (Firth logistic regression, aOR: 49.99, 95%CI 1.71-1461.54, p = 0.02). Meat and offal came from two local butchers (same supplier) and samples yielded identical whole genome sequences as cases. Future outbreak investigations should be relevant to the community affected by considering dishes beyond those found in routine questionnaires.
Collapse
Affiliation(s)
- James P. Adamson
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
- UK Field Epidemiology Training Programme, UK Health Security Agency, London, UK
| | - Clare Sawyer
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
- UK Field Epidemiology Training Programme, UK Health Security Agency, London, UK
| | - Gemma Hobson
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Emily Clark
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Laia Fina
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Oghogho Orife
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Robert Smith
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Chris Williams
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | | | - Allyson Jones
- Communicable Disease, Health and Safety Team for Shared Regulatory Services for Bridgend, Cardiff & Vale of Glamorgan Councils, Cardiff, UK
| | - Sarah Swaysland
- Communicable Disease, Health and Safety Team for Shared Regulatory Services for Bridgend, Cardiff & Vale of Glamorgan Councils, Cardiff, UK
| | - Oluwaseun Somoye
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Ryan Phillips
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Junaid Iqbal
- Lead for Service User Experience, Public Health Wales, Cardiff, UK
| | - Israa Mohammed
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - George Karani
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Daniel Rhys Thomas
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
11
|
Akritidou T, Akkermans S, Smet C, Gaspari S, Sharma C, Matthews E, Van Impe JFM. Gut microbiota of the small intestine as an antimicrobial barrier against foodborne pathogens: Impact of diet on the survival of S. Typhimurium and L. monocytogenes during in vitro digestion. Food Res Int 2023; 173:113292. [PMID: 37803689 DOI: 10.1016/j.foodres.2023.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
The human gastrointestinal tract employs an assortment of chemical, enzymatic and immune barriers to impede pathogen colonization. An essential component of these barriers is the gut microbiota, which infers protection against ingested pathogens through its colonization resistance mechanisms. Specifically, the gut microbiota of the distal small intestine (ileum) renders a crucial line of defense, given that this location is regarded as an important interaction site. This study aimed to evaluate the impact of the ileal microbiota on the survival of the foodborne pathogens Salmonella enterica serotype Typhimurium and Listeria monocytogenes, utilizing an in vitro digestion model system. Moreover, the effect of diet on the gut microbiota colonization resistance mechanisms was assessed, by comparing a healthy (high fiber/low sugar) and a western diet (low fiber/high sugar). For S. Typhimurium, the results revealed that the digestion of a healthy diet led to a similar inactivation compared to the western diet, with the values of total log reduction being 0.83 and 0.82 log(CFU), respectively; yet the lack of readily accessible nutrients in the healthy diet combined with the acidic shock during gastric digestion caused the induction of stress tolerance to the pathogen. This resulted in increased pathogen survival in the presence of gut microbiota, with S. Typhimurium proliferating during the ileal phase with a maximum specific growth rate of 0.16 1/h. On the contrary, for L. monocytogenes, the healthy diet was associated with a greater inactivation than the western diet (total log reduction values: 3.08 and 1.30 log(CFU), respectively), which appeared strongly influenced by the encounter of the pathogen with the gut microbiota. Regarding the latter, the species Escherichia coli and Bacteroides thetaiotaomicron appeared to be the most prevalent in most cases. Finally, it was also demonstrated that the ileal microbiota colonization resistance mechanisms largely relied on competitive responses. The obtained knowledge of this research can contribute to the development and/or complementation of defensive strategies against pathogen infection, while also underlining the value of in vitro approaches.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Sotiria Gaspari
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Chahat Sharma
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Eimear Matthews
- Faculty of Biomolecular Science, Technological University Dublin, Ireland
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
12
|
Oludairo OO, Kwaga JKP, Kabir J, Abdu PA, Gitanjali A, Perrets A, Cibin V, Lettini AA, Aiyedun JO. Ecology and epidemiology of Salmonella spp. isolated from the environment and the roles played by wild animals in their maintenance. INTERNATIONAL JOURNAL OF ONE HEALTH 2023. [DOI: 10.14202/ijoh.2023.1-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Salmonella is a ubiquitous organism of public health importance that causes diarrhea and other systemic disease syndromes. The ecology and epidemiology of the organism in addition to the roles played by wild animals are important in understanding its disease. Relevant published peer-reviewed literature was obtained after imputing the study's keywords into the Google search engine. The publications were thereafter saved for the study. The study revealed the ecology of Salmonella is directly related to its epidemiology. These were found to be either positively or negatively influenced by the living and non-living parts of the environment. Free-ranging and captive wild animals can serve as asymptomatic carriers of Salmonella, therefore, help to maintain the cycle of the disease since wildlife serves as reservoir hosts to over 70% of emerging zoonotic diseases. Cockroaches transmit Salmonella through their feces, and body parts and when ingested by birds and animals. The statistically significant over 83% of Salmonella isolation in lizards suggests the reptile could be a source of Salmonella distribution. Snakes, foxes, badgers, rodents, and raccoons have been reported to have Salmonella as a natural component of their gut with the ability to shed the organism often. The high occurrence (>45%) of diverse Salmonella serovars coupled with the fact that some of these animals were handled, kept as pets and consumed by man portends these animals as potential sources of transmission of the organism and the disease. The etiology and epidemiology of Salmonella are overtly affected by several environmental factors which also determine their survival and maintenance. The roles played by wild animals in the relationship, transmission, growth or interaction within and between Salmonella spp., the occurrence, prevalence, and distribution of the organism help maintain the organism in the environment. An understanding of the roles played by the different parts of the environment and wild animals in the ecology and epidemiology of Salmonella can help make informed decisions on the prevention and control of the diseases it causes. This review aimed to investigate the relationship between ecology, epidemiology, and environment, including the roles played by wild animals in the maintenance of the organism and its disease.
Collapse
Affiliation(s)
- Oladapo Oyedeji Oludairo
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| | - Jacob K. P. Kwaga
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Junaid Kabir
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Paul A. Abdu
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Arya Gitanjali
- OIE Salmonella Reference Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Ann Perrets
- OIE Salmonella Reference Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Veronica Cibin
- Salmonella Reference Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie Viale dell'Università, Legnaro (PD), Italy
| | - Antonia Anna Lettini
- Salmonella Reference Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie Viale dell'Università, Legnaro (PD), Italy
| | - Julius O. Aiyedun
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
13
|
Zhang Y, Liao X, Feng J, Liu D, Chen S, Ding T. Induction of viable but nonculturable Salmonella spp. in liquid eggs by mild heat and subsequent resuscitation. Food Microbiol 2023; 109:104127. [DOI: 10.1016/j.fm.2022.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
14
|
Biological control of pathogens in artisanal cheeses. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Lysine-Derived Maillard Reaction Products Inhibit the Growth of Salmonella enterica Serotype Typhimurium. Pathogens 2023; 12:pathogens12020215. [PMID: 36839487 PMCID: PMC9963399 DOI: 10.3390/pathogens12020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
An emerging consumer trend to purchase minimally heated and ready-to-eat food products may result in processing methods that do not effectively reduce pathogenic populations. Crude Maillard reaction products (MRPs) are naturally generated compounds that have been shown to display antimicrobial effects against pathogens. Crude MRPs were generated from reducing sugars (fructose (Fru), glucose (Glc), ribose (Rib) or xylose (Xyl)) with lysine and the melanoidin equivalence was measured using an absorbance of 420 nm (Ab420). The relative antimicrobial activity of each MRP was measured by examining both the length of lag phase and maximum growth rate. MRPs were found to significantly shorten the lag phase and decrease the maximum growth rate of S. Typhimurium (p < 0.05). Glucose-lysine MRP (GL MRP) was determined to have the highest relative melanoidin (1.690 ± 0.048 at Ab420) and its efficacy against S. Typhimurium populations was measured at 37 °C and at pH 7.0 and estimated on xylose lysine deoxycholate (XLD) agar. GL MRP significantly reduced S. Typhimurium populations by >1 log CFU/mL at 8 and 24 h after inoculation (p < 0.05). GL MRPs also further decreased S. Typhimurium populations significantly under thermal stress condition (55 °C) compared to optimal (37 °C) by ~1 log CFU/mL (p < 0.05). Overall, GL MRP demonstrated effective antimicrobial activity against S. Typhimurium at 37 °C and 55 °C.
Collapse
|
16
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022; 14:2146979. [PMID: 36456534 PMCID: PMC9728131 DOI: 10.1080/19490976.2022.2146979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China,Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China,KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China,CONTACT Bingqing Li Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021Shandong, China
| |
Collapse
|
17
|
Curcumin Stimulates the Overexpression of Virulence Factors in Salmonella enterica Serovar Typhimurium: In Vitro and Animal Model Studies. Antibiotics (Basel) 2022; 11:antibiotics11091230. [PMID: 36140009 PMCID: PMC9494991 DOI: 10.3390/antibiotics11091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Salmonella spp. is one of the most common food poisoning pathogens and the main cause of diarrheal diseases in humans in developing countries. The increased Salmonella resistance to antimicrobials has led to the search for new alternatives, including natural compounds such as curcumin, which has already demonstrated a bactericidal effect; however, in Gram-negatives, there is much controversy about this effect, as it is highly variable. In this study, we aimed to verify the antibacterial activity of curcumin against the Salmonella enterica serovar Typhimurium growth rate, virulence, and pathogenicity. The strain was exposed to 110, 220 or 330 µg/mL curcumin, and by complementary methods (spectrophotometric, pour plate and MTT assays), we determined its antibacterial activity. To elucidate whether curcumin regulates the expression of virulence genes, Salmonella invA, fliC and siiE genes were investigated by quantitative real-time reverse transcription (qRT-PCR). Furthermore, to explore the effect of curcumin on the pathogenesis process in vivo, a Caenorhabditis elegans infection model was employed. No antibacterial activity was observed, even at higher concentrations of curcumin. All concentrations of curcumin caused overgrowth (35−69%) and increased the pathogenicity of the bacterial strain through the overexpression of virulence factors. The latter coincided with a significant reduction in both the lifespan and survival time of C. elegans when fed with curcumin-treated bacteria. Our data provide relevant information that may support the selective antibacterial effects of curcumin to reconsider the indiscriminate use of this phytochemical, especially in outbreaks of pathogenic Gram-negative bacteria.
Collapse
|
18
|
Wilson A, Fegan N, Turner MS. Co-culture with Acinetobacter johnsonii enhances benzalkonium chloride resistance in Salmonella enterica via triggering lipid A modifications. Int J Food Microbiol 2022; 381:109905. [DOI: 10.1016/j.ijfoodmicro.2022.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
|
19
|
Sithole TR, Ma YX, Qin Z, Wang XD, Liu HM. Peanut Butter Food Safety Concerns-Prevalence, Mitigation and Control of Salmonella spp., and Aflatoxins in Peanut Butter. Foods 2022; 11:1874. [PMID: 35804689 PMCID: PMC9265579 DOI: 10.3390/foods11131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Peanut butter has a very large and continuously increasing global market. The food safety risks associated with its consumption are also likely to have impacts on a correspondingly large global population. In terms of prevalence and potential magnitude of impact, contamination by Salmonella spp., and aflatoxins, are the major food safety risks associated with peanut butter consumption. The inherent nature of the Salmonella spp., coupled with the unique chemical composition and structure of peanut butter, present serious technical challenges when inactivating Salmonella spp. in contaminated peanut butter. Thermal treatment, microwave, radiofrequency, irradiation, and high-pressure processing all are of limited efficacy in inactivating Salmonella spp. in contaminated peanut butter. The removal of aflatoxins in contaminated peanut butter is equally problematic and for all practical purposes almost impossible at the moment. Adopting good manufacturing hygiene practices from farm to table and avoiding the processing of contaminated peanuts are probably some of the few practically viable strategies for minimising these peanut butter food safety risks. The purpose of this review is to highlight the nature of food safety risks associated with peanut butter and to discuss the effectiveness of the initiatives that are aimed at minimising these risks.
Collapse
Affiliation(s)
| | | | | | - Xue-De Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.R.S.); (Y.-X.M.); (Z.Q.); (H.-M.L.)
| | | |
Collapse
|
20
|
Identification of Two Sel1-like Proteins in SPI-19 of Salmonella enterica Serovar Pullorum That Can Mediate Bacterial Infection Through T3SS. Microbiol Res 2022; 262:127085. [DOI: 10.1016/j.micres.2022.127085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023]
|
21
|
Liu Z, Yu Y, Fotina T, Petrov R, Klishchova Z, Fotin A, Ma J. Multiplex PCR assay based on the citE2 gene and intergenic sequence for the rapid detection of Salmonella Pullorum in chickens. Poult Sci 2022; 101:101981. [PMID: 35797781 PMCID: PMC9264022 DOI: 10.1016/j.psj.2022.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/31/2021] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
Salmonella is one of the most common Gram-negative pathogens and seriously threatens chicken farms and food safety. This study aimed to establish a multiplex polymerase chain reaction (PCR) approach for the identification of different Salmonella enterica subsp. enterica. The citE2 gene and interval sequence of SPS4_00301–SPS4_00311 existed in all S. enterica subsp. enterica serovars by genomic comparison. By contrast, a 76 bp deletion in citE2 was found only in Salmonella Pullorum. Two pairs of special primers designed from citE2 and interval sequence were used to establish the multiplex PCR system. The optimized multiplex PCR system could distinguish Salmonella Pullorum and non-Salmonella Pullorum. The sensitivity of the optimized multiplex PCR system could be as low as 6.25 pg/μL and 104 colony-forming units (CFU)/mL for genomic DNA and Salmonella Pullorum cells, respectively. The developed multiplex PCR assay distinguished Salmonella Pullorum from 33 different Salmonella enterica subsp. enterica serotypes and 13 non-target species. The detection of egg samples artificially contaminated with Salmonella Pullorum, Salmonella Enteritidis, and naturally contaminated 69 anal swab samples showed that results were consistent with the culture method. These features indicated that the developed multiplex PCR system had high sensitivity and specificity and could be used for the accurate detection of Salmonella Pullorum in clinical samples.
Collapse
|
22
|
Wang Y, Ge H, Wei X, Zhao X. Research progress on antibiotic resistance of Salmonella. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Antibiotic abuse results in various antibiotic resistance among a number of foodborne bacteria, posing a severe threat to food safety. Antibiotic resistance genes are commonly detected in foodborne pathogens, which has sparked much interest in finding solutions to these issues. Various strategies against these drug-resistant pathogens have been studied, including new antibiotics and phages. Recently, a powerful tool has been introduced in the fight against drug-resistant pathogens, namely, clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system aggregated by a prokaryotic defense mechanism. This review summarized the mechanism of antibiotic resistance in Salmonella and resistance to common antibiotics, analysed the relationship between Salmonella CRISPR-Cas and antibiotic resistance, discussed the changes in antibiotic resistance on the structure and function of CRISPR-Cas, and finally predicted the mechanism of CRISPR-Cas intervention in Salmonella antibiotic resistance. In the future, CRISPR-Cas is expected to become an important tool to reduce the threat of antibiotic-resistant pathogens in food safety.
Collapse
Affiliation(s)
- Yizhe Wang
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hengwei Ge
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xinyue Wei
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
23
|
Morasi RM, Rall VLM, Dantas STA, Alonso VPP, Silva NCC. Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance. J Food Sci 2022; 87:2310-2323. [PMID: 35478321 DOI: 10.1111/1750-3841.16152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/17/2023]
Abstract
The occurrence of disease outbreaks involving low-water-activity (aw ) foods has gained increased prominence due in part to the fact that reducing free water in these foods is normally a measure that controls the growth and multiplication of pathogenic microorganisms. Salmonella, one of the main bacteria involved in these outbreaks, represents a major public health problem worldwide and in Brazil, which highlights the importance of good manufacturing and handling practices for food quality. The virulence of this pathogen, associated with its high ability to persist in the environment, makes Salmonella one of the main challenges for the food industry. The objectives of this article are to present the general characteristics, virulence, thermoresistance, control, and relevance of Salmonella in foodborne diseases, and describe the so-called low-water-activity foods and the salmonellosis outbreaks involving them.
Collapse
Affiliation(s)
- Rafaela Martins Morasi
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Stéfani Thais Alves Dantas
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vanessa Pereira Perez Alonso
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022. [PMID: 36456534 DOI: 10.1080/194909762125747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China
- KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
25
|
Qin X, Liu Y, Shi X. Resistance-Nodulation-Cell Division (RND) Transporter AcrD Confers Resistance to Egg White in Salmonella enterica Serovar Enteritidis. Foods 2021; 11:foods11010090. [PMID: 35010216 PMCID: PMC8750817 DOI: 10.3390/foods11010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
The excellent survival ability of Salmonella enterica serovar Enteritidis (S. Enteritidis) in egg white leads to outbreaks of salmonellosis frequently associated with eggs and egg products. Our previous proteomic study showed that the expression of multidrug efflux RND transporter AcrD in S. Enteritidis was significantly up-regulated (4.06-fold) in response to an egg white environment. In this study, the potential role of AcrD in the resistance of S. Enteritidis to egg white was explored by gene deletion, survival ability test, morphological observation, Caco-2 cell adhesion and invasion. It was found that deletion of acrD had no apparent effect on the growth of S. Enteritidis in Luria-Bertani (LB) broth but resulted in a significant (p < 0.05) decrease in resistance of S. Enteritidis to egg white and a small number of cell lysis. Compared to the wild type, a 2-log population reduction was noticed in the ΔacrD mutant with different initial concentrations after incubation with egg white for 3 days. Furthermore, no significant difference (p > 0.05) in the adhesion and invasion was found between the wild type and ΔacrD mutant in LB broth and egg white, but the invasion ability of the ΔacrD mutant in egg white was significantly (p < 0.05) lower than that in LB broth. This indicates that acrD is involved in virulence in Salmonella. Taken together, these results reveal the importance of AcrD on the resistance of S. Enteritidis to egg white.
Collapse
Affiliation(s)
- Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA;
| | - Xianming Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
26
|
Giacomodonato MN, Sarnacki SH, Aya Castañeda MDR, Garófalo AN, Betancourt DM, Cerquetti MC, Noto Llana M. Salmonella enterica serovar Enteritidis biofilm lifestyle induces lower pathogenicity and reduces inflammatory response in a murine model compared to planktonic bacteria. Rev Argent Microbiol 2021; 54:166-174. [PMID: 34961640 DOI: 10.1016/j.ram.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022] Open
Abstract
Salmonellaenterica serovar Enteritidis (S. Enteritidis) is the most frequent serovar involved in human salmonellosis. It has been demonstrated that about 80% of infections are related to biofilm formation. There is scant information about the pathogenicity of S. Enteritidis and its relationship to biofilm production. In this regard, this study aimed to investigate the differential host response induced by S. Enteritidis biofilm and planktonic lifestyle. To this purpose, biofilm and planktonic bacteria were inoculated to BALB/c mice and epithelial cell culture. Survival studies revealed that biofilm is less virulent than planktonic cells. Reduced signs of intestinal inflammation and lower bacterial translocation were observed in animals inoculated with Salmonella biofilm compared to the planktonic group. Results showed that Salmonella biofilm was impaired for invasion of non-phagocytic cells and induces a lower inflammatory response in vivo and in vitro compared to that of planktonic bacteria. Taken together, the outcome of Salmonella-host interaction varies depending on the bacterial lifestyle.
Collapse
Affiliation(s)
- Mónica N Giacomodonato
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sebastián H Sarnacki
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Del Rosario Aya Castañeda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ailín N Garófalo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diana M Betancourt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María C Cerquetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariángeles Noto Llana
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Microbial contaminants in powdered infant formula: what is the impact of spray-drying on microbial inactivation? Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Dróżdż M, Małaszczuk M, Paluch E, Pawlak A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect Ecol Epidemiol 2021; 11:1975530. [PMID: 34531964 PMCID: PMC8439213 DOI: 10.1080/20008686.2021.1975530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Salmonellosis is a global health problem, affecting approximately 1.3 billion people annually. Most of these cases are related to food contamination. However, although the majority of Salmonella serovars are pathogenic to humans, animals can be asymptomatic carriers of these bacteria. Nowadays, a wide range of animals is present in human households as pets, including reptiles, amphibians, dogs, cats, ornamental birds, and rodents. Pets contaminate the environment of their owners by shedding the bacteria intermittently in their feaces. In consequence, theyare thought to cause salmonellosis through pet-to-human transmission. Each Salmonella serovar has a different zoonotic potential, which is strongly regulated by stress factors such as transportation, crowding, food deprivation, or temperature. In this review, we summarize the latest reports concerning Salmonella-prevalence and distribution in pets as well as the risk factors and means of prevention of human salmonellosis caused by contact with their pets. Our literature analysis (based on PubMed and Google Scholar databases) is limited to the distribution of Salmonella serovars found in commonly owned pet species. We collected the recent results of studies concerning testing for Salmonella spp. in biological samples, indicating their prevalence in pets, with regard to clinical cases of human salmonellosis.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Rna Biochemistry, Berlin, Germany
| | | | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | |
Collapse
|
29
|
Fan X, Jin Y, Chen G, Ma X, Zhang L. Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion 2021; 102:508-515. [PMID: 32932258 DOI: 10.1159/000508328] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/29/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The gut microbiota is a diverse community of microbes that maintain the stability of the intestinal environment. Dysbiosis of the gut microbiota has been linked to gastrointestinal diseases, such as colorectal cancer (CRC) - a leading cause of death for cancer patients. SUMMARY Candidate pathogens have been identified using bacterial culture and high-throughput sequencing techniques. Currently, there is evidence to show that specific intestinal microbes drive CRC development and progression, yet their pathogenic mechanisms are still unclear. Key Messages: In this review, we describe the known healthy gut microbiota and its changes in CRC. We especially focus on exploring the pathogenic mechanisms of gut microbiota dysbiosis in CRC. This is crucial for explaining how gut microbiota dysbiosis drives the process of colorectal carcinogenesis and tumor progression. Evaluation of changes in the gut microbiota during CRC development and progression offers a new strategy for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China.,Department of Neurology, Taizhou Second People's Hospital, Taizhou, China
| | - Yuelei Jin
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Xueqiang Ma
- Department of Gastrointestinal Surgery, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, China
| | - Lixia Zhang
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, China,
| |
Collapse
|
30
|
Badie F, Saffari M, Moniri R, Alani B, Atoof F, Khorshidi A, Shayestehpour M. The combined effect of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella enterica ser. Enteritidis and Typhimurium. Arch Microbiol 2021; 203:4475-4484. [PMID: 34137898 DOI: 10.1007/s00203-021-02435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Salmonella enterica is a major food borne pathogen that creates biofilm. Salmonella biofilm formation under different environmental conditions is a public health problem. The present study was aimed to evaluate the combined effects of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella Enteritidis and Salmonella Typhimurium. In this study, the effect of temperature (2, 8, 22.5, 37, 43 °C) and pH (2.4, 3, 4.5, 6, 6.6) on the expression of biofilm production genes (adr A, bap A), virulence genes (hil A, inv A) and the stress gene (RpoS) of S. Enteritidis and S. Typhimurium was evaluated. The response surface methodology (RSM) approach was used to evaluate the combined effect of the above factors. The highest expression of adr A, bap A, hil A, and RpoS gene for S. Typhimurium was at 22 °C-pH 4.5 (6.39-fold increase), 37 °C-pH 6 (3.92-fold increase), 37 °C-pH 6 (183-fold increase), and 37 °C-pH 3 (43.8-fold increase), respectively. The inv A gene of S. Typhimurium was decreased in all conditions. The adr A, bap A, hil A, inv A, and RpoS gene of S. Enteritidis had the highest expression level at 8 °C-pH 3 (4.09-fold increase), 22 °C-pH 6 (2.71-fold increase), 8 °C pH 3 (190-fold increase), 22 °C-pH 4.5 (9.21-fold increase), and 8 °C-pH 3 (16.6-fold), respectively. Response surface methodology (RSM) indicated that the temperature and pH had no significant effect on the expression level of adr A, bap A, hil A, Inv A, and RpoS gene in S. Enteritidis and S. Typhimurium. The expression of biofilm production genes (adr A, bap A), virulence genes (hil A, inv A) and the stress gene (RpoS) of S. Enteritidis and S. Typhimurium is not directly and exclusively associated with temperature and pH conditions.
Collapse
Affiliation(s)
- Fereshteh Badie
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Science Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Atoof
- Department of Biostatistics and Epidemiology, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Khorshidi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Shayestehpour
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran. .,Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
31
|
Sarjit A, Ravensdale JT, Coorey R, Fegan N, Dykes GA. Survival of Salmonella on Red Meat in Response to Dry Heat. J Food Prot 2021; 84:372-380. [PMID: 33057711 DOI: 10.4315/jfp-20-274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Red meat is associated with Salmonella outbreaks, resulting in negative impacts for the processing industry. Little work has been reported on the use of dry heat as opposed to moist heat against Salmonella on red meat. We determined the effect of drying at 25°C and dry heat at 70°C with ∼10% relative humidity for 1 h against 11 Salmonella strains of multiple serovars on beef, lamb, and goat and rubber as an inert surface. Each strain at ∼108 CFU/mL was inoculated (100 μL) onto ±1 g (1 cm2) of each surface and allowed to attach for 15 min in a microcentrifuge tube. Samples were then exposed to 70 and 25°C with ∼10% relative humidity in a heating block. Surviving Salmonella numbers on surfaces were enumerated on a thin agar layer medium. If numbers were below the limit of detection (2.01 log CFU/cm2), Salmonella cells were enriched before plating to determine the presence of viable cells. Water loss (percent) from meat after at 25 and 70°C was determined. Whole genomes of Salmonella were interrogated to identify the presence-absence of stress response genes (n = 30) related to dry heat that may contribute to the survival of Salmonella. The survival of Salmonella at 25°C was significantly higher across all surfaces (∼6.09 to 7.91 log CFU/cm2) than at 70°C (∼3.66 to 6.33 log CFU/cm2). On rubber, numbers of Salmonella were less than the limit of detection at 70°C. Water loss at 70°C (∼17.72 to 19.89%) was significantly higher than at 25°C (∼2.98 to 4.11%). Salmonella cells were not detected on rubber, whereas survival occurred on all red meat at 70°C, suggesting its protective effect against the effect of heat. All Salmonella strains carried 30 stress response genes that likely contributed to survival. A multi-antibiotic-resistant Salmonella Typhimurium 2470 exhibited an increase in heat resistance at 70°C on beef and lamb compared with other strains. Our work shows that dry heat at 70°C for 1 h against Salmonella on red meat is not a practical approach for effectively reducing or eliminating them from red meat. HIGHLIGHTS
Collapse
Affiliation(s)
- Amreeta Sarjit
- School of Public Health.,ORCID: https://orcid.org/0000-0001-7469-7363 [A.S.].,CSIRO Agriculture and Food, Brisbane, Queensland, Australia
| | | | - Ranil Coorey
- School of Molecular and Life Sciences (ORCID: https://orcid.org/0000-0002-5261-1300 [R.C.])
| | - Narelle Fegan
- CSIRO Agriculture and Food, Brisbane, Queensland, Australia.,(ORCID: https://orcid.org/0000-0002-1729-9630 [N.F.])
| | - Gary A Dykes
- Graduate Research School (ORCID: https://orcid.org/0000-0001-5014-9282 [G.A.D.]), Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
32
|
Salmonella enterica Serovars Dublin and Enteritidis Comparative Proteomics Reveals Differential Expression of Proteins Involved in Stress Resistance, Virulence, and Anaerobic Metabolism. Infect Immun 2021; 89:IAI.00606-20. [PMID: 33361201 DOI: 10.1128/iai.00606-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
The Enteritidis and Dublin serovars of Salmonella enterica are phylogenetically closely related yet differ significantly in host range and virulence. S Enteritidis is a broad-host-range serovar that commonly causes self-limited gastroenteritis in humans, whereas S Dublin is a cattle-adapted serovar that can infect humans, often resulting in invasive extraintestinal disease. The mechanism underlying the higher invasiveness of S Dublin remains undetermined. In this work, we quantitatively compared the proteomes of clinical isolates of each serovar grown under gut-mimicking conditions. Compared to S Enteritidis, the S Dublin proteome was enriched in proteins linked to response to several stress conditions, such as those encountered during host infection, as well as to virulence. The S Enteritidis proteome contained several proteins related to central anaerobic metabolism pathways that were undetected in S Dublin. In contrast to what has been observed in other extraintestinal serovars, most of the coding genes for these pathways are not degraded in S Dublin. Thus, we provide evidence that S Dublin metabolic functions may be much more affected than previously reported based on genomic studies. Single and double null mutants in stress response proteins Dps, YciF, and YgaU demonstrate their relevance to S Dublin invasiveness in a murine model of invasive salmonellosis. All in all, this work provides a basis for understanding interserovar differences in invasiveness and niche adaptation, underscoring the relevance of using proteomic approaches to complement genomic studies.
Collapse
|
33
|
Boubendir S, Arsenault J, Quessy S, Thibodeau A, Fravalo P, ThÉriault WP, Fournaise S, Gaucher ML. Salmonella Contamination of Broiler Chicken Carcasses at Critical Steps of the Slaughter Process and in the Environment of Two Slaughter Plants: Prevalence, Genetic Profiles, and Association with the Final Carcass Status. J Food Prot 2021; 84:321-332. [PMID: 33513257 DOI: 10.4315/jfp-20-250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Salmonella is a foodborne pathogen commonly associated with poultry products. The aims of this work were to (i) estimate the impact of critical steps of the slaughter process on Salmonella detection from broiler chicken carcasses in two commercial poultry slaughter plants in Quebec, Canada; (ii) investigate the presence of Salmonella in the slaughter plant environment; (iii) describe, using a high-resolution melting (HRM) approach, the HRM Salmonella profiles and serotypes present on carcasses and in the slaughter plant environment; and (iv) evaluate whether the HRM flock status after chilling could be predicted by the flock status at previous steps of the slaughter process, the status of previous flocks, or the status of the processing environment, for the same HRM profile. Eight visits were conducted in each slaughter plant over a 6-month period. In total, 379 carcass rinsates from 79 flocks were collected at five critical steps of the slaughter process. Environmental samples were also collected from seven critical sites in each slaughter plant. The bleeding step was the most contaminated, with >92% positive carcasses. A decrease of the contamination along the slaughtering process was noted, with carcasses sampled after dry-air chilling showing ≤2.5% Salmonella prevalence. The most frequently isolated serotypes were Salmonella Heidelberg, Kentucky, and Schwarzengrund. The detection of the Salmonella Heidelberg 1-1-1 HRM profile on carcasses after chilling was significantly associated with its detection at previous steps of the slaughter process and in previously slaughtered flocks from other farms during a same sampling day. Results highlight the importance of the chilling step in the control of Salmonella on broiler chicken carcasses and the need to further describe and compare the competitive advantage of Salmonella serotypes to survive processing. The current study also illustrates the usefulness of HRM typing in investigating Salmonella contamination along the slaughter process. HIGHLIGHTS
Collapse
Affiliation(s)
- Selmane Boubendir
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Julie Arsenault
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec, Canada J2S 2M2.,ORCID: https://orcid.org/0000-0001-8382-7326 [J.A.]
| | - Sylvain Quessy
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2.,Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec, Canada J2S 2M2
| | - Philippe Fravalo
- Pole Agroalimentaire du Cnam, Conservatoire National des Arts et Métiers, 22440 Ploufragan, France
| | - William P ThÉriault
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Sylvain Fournaise
- Olymel S.E.C./L.P., 2200 Avenue Léon-Pratte, St-Hyacinthe, Québec, Canada J2S 4B6
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2.,Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec, Canada J2S 2M2.,https://orcid.org/0000-0003-4848-0202 [M.L.G.]
| |
Collapse
|
34
|
Luiz de Freitas L, Pereira da Silva F, Fernandes KM, Carneiro DG, Licursi de Oliveira L, Martins GF, Dantas Vanetti MC. The virulence of Salmonella Enteritidis in Galleria mellonella is improved by N-dodecanoyl-homoserine lactone. Microb Pathog 2021; 152:104730. [PMID: 33444697 DOI: 10.1016/j.micpath.2021.104730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
Salmonella is a food and waterborne pathogen responsible for outbreaks worldwide, and it can survive during passage through the stomach and inside host phagocytic cells. Virulence genes are required for infection and survival in macrophages, and some are under the regulation of the quorum sensing (QS) system. This study investigated the influence of the autoinducer 1 (AI-1), N-dodecanoyl-homoserine lactone (C12-HSL), on the virulence of Salmonella PT4 using Galleria mellonella as an infection model. Salmonella PT4 was grown in the presence and absence of C12-HSL under anaerobic conditions for 7 h, and the expression of rpoS, arcA, arcB, and invA genes was evaluated. After the inoculation of G. mellonella with the median lethal dose (LD50) of Salmonella PT4, the survival of bacteria inside the larvae and their health status (health index scoring) were monitored, as well as the pigment, nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT) production. Also, the hemocyte viability, the induction of caspase-3, and microtubule-associated light chain 3 (LC3) protein in hemocytes were evaluated. Salmonella PT4 growing in the presence of C12-HSL showed increased rpoS, arcA, arcB, and invA expression and promoted higher larvae mortality and worse state of health after 24 h of infection. The C12-HSL also increased the persistence of Salmonella PT4 in the hemolymph and in the hemocytes. The highest pigmentation, NO production, and antioxidant enzymes were verified in the larva hemolymph infected with Salmonella PT4 grown with C12-HSL. Hemocytes from larvae infected with Salmonella PT4 grown with C12-HSL showed lower viability and higher production of caspase-3 and LC3. Taken together, these findings suggest that C12-HSL could be involved in the virulence of Salmonella PT4.
Collapse
Affiliation(s)
- Leonardo Luiz de Freitas
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Deisy Guimarães Carneiro
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
35
|
Effect of low power lasers on prokaryotic and eukaryotic cells under different stress condition: a review of the literature. Lasers Med Sci 2021; 36:1139-1150. [PMID: 33387079 DOI: 10.1007/s10103-020-03196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Radiations emitted by low power radiation sources have been applied for therapeutic proposals due to their capacity of inactivating bacteria and cancer cells in photodynamic therapy and stimulating tissue cells in photobiomodulation. Exposure to these radiations could increase cell proliferation in bacterial cultures under stressful conditions. Cells in infected or not infected tissue injuries are also under stressful conditions and photobiomodulation-induced regenerative effect on tissue injuries could be related to effects on stressed cells. The understanding of the effects on cells under stressful conditions could render therapies based on photobiomodulation more efficient as well as expand them. Thus, the objective of this review was to update the studies reporting photobiomodulation on prokaryotic and eukaryotic cells under stress conditions. Exposure to radiations emitted by low power radiation sources could induce adaptive responses enabling cells to survive in stressful conditions, such as those experienced by bacteria in their host and by eukaryotic cells in injured tissues. Adaptive responses could be the basis for clinical photobiomodulation applications, either considering their contraindication for treatment of infected injuries or indication for treatment of injuries, inflammatory process resolution, or tissue regeneration.
Collapse
|
36
|
Pradhan D, Pradhan J, Mishra A, Karmakar K, Dhiman R, Chakravortty D, Negi VD. Immune modulations and survival strategies of evolved hypervirulent Salmonella Typhimurium strains. Biochim Biophys Acta Gen Subj 2020; 1864:129627. [PMID: 32360143 DOI: 10.1016/j.bbagen.2020.129627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Evolving multidrug-resistance and hypervirulence in Salmonella is due to multiple host-pathogen, and non-host environmental interactions. Previously we had studied Salmonella adaptation upon repeated exposure in different in-vitro and in-vivo environmental conditions. This study deals with the mechanistic basis of hypervirulence of the passaged hypervirulent Salmonella strains reported previously. METHODS Real-time PCR, flow cytometry, western blotting, and confocal microscopy were employed to check the alteration of signaling pathways by the hypervirulent strains. The hypervirulence was also looked in-vivo in the Balb/c murine model system. RESULTS The hypervirulent strains altered cytokine production towards anti-inflammatory response via NF-κB and Akt-NLRC4 signaling in RAW-264.7 and U-937 cells. They also impaired lysosome number, as well as co-localization with the lysosome as compared to unpassaged WT-STM. In Balb/c mice also they caused decreased antimicrobial peptides, reduced nitric oxide level, altered cytokine production, and reduced CD4+ T cell population leading to increased organ burden. CONCLUSIONS Hypervirulent Salmonella strains infection resulted in an anti-inflammatory environment by upregulating IL-10 and down-regulating IL-1β expression. They also evaded lysosomal degradation for their survival. With inhibition of NF-κB and Akt signaling, cytokine expression, lysosome number, as well as the bacterial burden was reverted, indicating the infection mediated immune modulation by the hypervirulent Salmonella strains through these pathways. GENERAL SIGNIFICANCE Understanding the mechanism of adaptation can provide better disease prognosis by either targeting the bacterial gene or by strengthening the host immune system that might ultimately help in controlling salmonellosis.
Collapse
Affiliation(s)
- Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India; Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, west Bengal 736165, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
37
|
Wang H, Huang M, Zeng X, Peng B, Xu X, Zhou G. Resistance Profiles of Salmonella Isolates Exposed to Stresses and the Expression of Small Non-coding RNAs. Front Microbiol 2020; 11:130. [PMID: 32180763 PMCID: PMC7059537 DOI: 10.3389/fmicb.2020.00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/21/2020] [Indexed: 01/21/2023] Open
Abstract
Salmonella can resist various stresses and survive during food processing, storage, and distribution, resulting in potential health risks to consumers. Therefore, evaluation of bacterial survival profiles under various environmental stresses is necessary. In this study, the resistance profiles of five Salmonella isolates [serotypes with Agona, Infantis, Typhimurium, Enteritidis, and a standard strain (ATCC 13076, Enteritidis serotype)] to acidic, hyperosmotic, and oxidative stresses were examined, and the relative expressions of non-coding small RNAs were also evaluated, including CyaR, MicC, MicA, InvR, RybB, and DsrA, induced by specific stresses. The results indicated that although all tested strains displayed a certain resistance to stresses, there was great diversity in stress resistance among the strains. According to the reduction numbers of cells exposed to stress for 3 h, S. Enteritidis showed the highest resistance to acidic and hyperosmotic stresses, whereas ATCC 13076 showed the greatest resistance to oxidative stress, with less than 0.1 Log CFU/ml of cell reduction. Greater resistance of cells to acidic, hyperosmotic, and oxidative stresses was observed within 1 h, after 2 h, and from 1 to 2 h, respectively. The relative expression of sRNAs depended on the isolate for each stress; acidic exposure for the tested isolates induced high expression levels of DsrA, MicC, InvR, RybB, MicA, and CyaR. The sRNA RybB, associated with sigma E and outer membrane protein in bacteria, showed a fold change of greater than 7 in S. Enteritidis exposed to the tested stresses. CyaR and InvR involved in general stress responses and stress adaptation were also induced to show high expression levels of Salmonella exposed to hyperosmotic stress. Overall, these findings demonstrated that the behaviors of Salmonella under specific stresses varied according to strain and were likely not related to other profiles. The finding also provided insights into the survival of Salmonella subjected to short-term stresses and for controlling Salmonella in the food industry.
Collapse
Affiliation(s)
- Huhu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Mingyuan Huang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xianming Zeng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Bing Peng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
- College of Animal Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|