1
|
Kulis K, Tabury K, Benotmane MA, Polanska J. Transcriptomic Profile of Mouse Brain Ageing in Early Developmental Stages. Brain Sci 2024; 14:581. [PMID: 38928581 PMCID: PMC11201909 DOI: 10.3390/brainsci14060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Ageing is a continuous process that can cause neurodevelopmental changes in the body. Several studies have examined its effects, but few have focused on how time affects biological processes in the early stages of brain development. As studying the changes that occur in the early stages of life is important to prevent age-related neurological and psychiatric disorders, we aim to focus on these changes. The transcriptomic markers of ageing that are common to the analysed brain regions of C57Bl/6J mice were identified after conducting two-way ANOVA tests and effect size analysis on the time courses of gene expression profiles in various mouse brain regions. A total of 16,374 genes (59.9%) significantly changed their expression level, among which 7600 (27.8%) demonstrated tissue-dependent differences only, and 1823 (6.7%) displayed time-dependent and tissue-independent responses. Focusing on genes with at least a large effect size gives the list of potential biomarkers 12,332 (45.1%) and 1670 (6.1%) genes, respectively. There were 305 genes that exhibited similar significant time response trends (independently of the brain region). Samples from an 11-day-old mouse embryo validated the identified early-stage brain ageing markers. The overall functional analysis revealed tRNA and rRNA processing in the mitochondrion and contact activation system (CAS), as well as the kallikrein/kinin system (KKS), together with clotting cascade and defective factor F9 activation being affected by ageing. Most ageing-related pathways were significantly enriched, especially those that are strongly connected to development processes and neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Kulis
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Application, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (K.T.); (M.A.B.)
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Nuclear Medical Application, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (K.T.); (M.A.B.)
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
2
|
Bhatta A, Hillen HS. Structural and mechanistic basis of RNA processing by protein-only ribonuclease P enzymes. Trends Biochem Sci 2022; 47:965-977. [PMID: 35725940 DOI: 10.1016/j.tibs.2022.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Ribonuclease P (RNase P) enzymes are responsible for the 5' processing of tRNA precursors. In addition to the well-characterised ribozyme-based RNase P enzymes, an evolutionarily distinct group of protein-only RNase Ps exists. These proteinaceous RNase Ps (PRORPs) can be found in all three domains of life and can be divided into two structurally different types: eukaryotic and prokaryotic. Recent structural studies on members of both families reveal a surprising diversity of molecular architectures, but also highlight conceptual and mechanistic similarities. Here, we provide a comparison between the different types of PRORP enzymes and review how the combination of structural, biochemical, and biophysical studies has led to a molecular picture of protein-mediated tRNA processing.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Goettingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Goettingen, D-37075 Goettingen, Germany.
| |
Collapse
|
3
|
Isokallio MA, Stewart JB. High-Throughput Detection of mtDNA Mutations Leading to tRNA Processing Errors. Methods Mol Biol 2021; 2192:117-132. [PMID: 33230770 DOI: 10.1007/978-1-0716-0834-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Some mutations in the tRNA genes of mitochondrial DNA (mtDNA) have been demonstrated to affect the processing of the mitochondrial transcriptome in human patients with mitochondrial disease. A recent analysis of mtDNA mutations in 527 human tumors revealed that approximately a quarter of the somatic mt-tRNA gene mutations lead to aberrant processing of the mitochondrial transcriptome in these tumors. Here, we describe a method, based on mtDNA mutations induced by the mtDNA mutator mouse, to map the sites that lead to transcript processing abnormalities. Mutations in the mtDNA are identified and quantified by amplicon-based mtDNA sequencing, and compared to the allelic ratios observed in matched RNASeq data. Strong deviation in the variant allele frequencies between the amplicon and RNASeq data suggests that such mutations lead to disruptions in mitochondrial transcript processing.
Collapse
|
4
|
Mohanty BK, Agrawal A, Kushner SR. Generation of pre-tRNAs from polycistronic operons is the essential function of RNase P in Escherichia coli. Nucleic Acids Res 2020; 48:2564-2578. [PMID: 31993626 PMCID: PMC7049720 DOI: 10.1093/nar/gkz1188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 11/14/2022] Open
Abstract
Ribonuclease P (RNase P) is essential for the 5′-end maturation of tRNAs in all kingdoms of life. In Escherichia coli, temperature sensitive mutations in either its protein (rnpA49) and or RNA (rnpB709) subunits lead to inviability at nonpermissive temperatures. Using the rnpA49 temperature sensitive allele, which encodes a partially defective RNase P at the permissive temperature, we show here for the first time that the processing of RNase P-dependent polycistronic tRNA operons to release pre-tRNAs is the essential function of the enzyme, since the majority of 5′-immature tRNAs can be aminoacylated unless their 5′-extensions ≥8 nt. Surprisingly, the failure of 5′-end maturation elicits increased polyadenylation of some pre-tRNAs by poly(A) polymerase I (PAP I), which exacerbates inviability. The absence of PAP I led to improved aminoacylation of 5′-immature tRNAs. Our data suggest a more dynamic role for PAP I in maintaining functional tRNA levels in the cell.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ankit Agrawal
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- To whom correspondence should be addressed. Tel: +706 542 1440; Fax: +706 542 1439;
| |
Collapse
|
5
|
Ferreira N, Rackham O, Filipovska A. Regulation of a minimal transcriptome by repeat domain proteins. Semin Cell Dev Biol 2018; 76:132-141. [DOI: 10.1016/j.semcdb.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
6
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
7
|
Brillante N, Gößringer M, Lindenhofer D, Toth U, Rossmanith W, Hartmann RK. Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P. Nucleic Acids Res 2016; 44:2323-36. [PMID: 26896801 PMCID: PMC4797305 DOI: 10.1093/nar/gkw080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/01/2016] [Indexed: 01/22/2023] Open
Abstract
RNase P is the enzyme that removes 5′ extensions from tRNA precursors. With its diversity of enzyme forms—either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins—the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site selection by the nuclear single-subunit proteinaceous RNase P PRORP3 from Arabidopsis thaliana. Compared to bacterial RNase P, the best-characterized RNA-based enzyme form, PRORP3 requires a larger part of intact tRNA structure, but little to no determinants at the cleavage site or interactions with the 5′ or 3′ extensions of the tRNA. The cleavage site depends on the combined dimensions of acceptor stem and T domain, but also requires the leader to be single-stranded. Overall, the single-subunit PRORP appears mechanistically more similar to the complex nuclear ribonucleoprotein enzymes than to the simpler bacterial RNase P. Mechanistic similarity or dissimilarity among different forms of RNase P thus apparently do not necessarily reflect molecular composition or evolutionary relationship.
Collapse
Affiliation(s)
- Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Dominik Lindenhofer
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| |
Collapse
|
8
|
Stewart JB, Alaei-Mahabadi B, Sabarinathan R, Samuelsson T, Gorodkin J, Gustafsson CM, Larsson E. Simultaneous DNA and RNA Mapping of Somatic Mitochondrial Mutations across Diverse Human Cancers. PLoS Genet 2015; 11:e1005333. [PMID: 26125550 PMCID: PMC4488357 DOI: 10.1371/journal.pgen.1005333] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/03/2015] [Indexed: 12/30/2022] Open
Abstract
Somatic mutations in the nuclear genome are required for tumor formation, but the functional consequences of somatic mitochondrial DNA (mtDNA) mutations are less understood. Here we identify somatic mtDNA mutations across 527 tumors and 14 cancer types, using an approach that takes advantage of evidence from both genomic and transcriptomic sequencing. We find that there is selective pressure against deleterious coding mutations, supporting that functional mitochondria are required in tumor cells, and also observe a strong mutational strand bias, compatible with endogenous replication-coupled errors as the major source of mutations. Interestingly, while allelic ratios in general were consistent in RNA compared to DNA, some mutations in tRNAs displayed strong allelic imbalances caused by accumulation of unprocessed tRNA precursors. The effect was explained by altered secondary structure, demonstrating that correct tRNA folding is a major determinant for processing of polycistronic mitochondrial transcripts. Additionally, the data suggest that tRNA clusters are preferably processed in the 3′ to 5′ direction. Our study gives insights into mtDNA function in cancer and answers questions regarding mitochondrial tRNA biogenesis that are difficult to address in controlled experimental systems. According to the so-called “tRNA punctuation model”, tRNA processing is key to generating all mature mitochondrial mRNAs. However, the process is difficult to study in vivo, since standard tools for genetic manipulation are not applicable to mitochondria. Here, we circumvent this problem by using a large compendium of naturally occurring genetic perturbations, derived from human tumor sequencing data. We identify somatic mitochondrial mutations across hundreds of human tumors using an approach that simultaneously takes advantage of both genomic and transcriptomic sequencing. This enables us to compare the allele frequency in DNA and RNA for each mutation. Our data reveals that some mutations in mitochondrial tRNAs are associated with strong accumulation of immature tRNA precursors, indicative of impaired tRNA mutaration. We find that intact tRNA secondary structure is a major requirement for correct maturation, and that mutations affecting tRNA folding can impair maturation of not only the affected tRNA, but also neighboring gene transcripts. Mutations in mitochondrial tRNAs underlie a range of disease conditions, and our findings may help to explain why mutations in the same tRNA can present different phenotypes. Our results additionally support that there is selective pressure against mutations affecting oxidative phosphorylation, showing that functional mitochondria are required in many tumor cells.
Collapse
Affiliation(s)
| | - Babak Alaei-Mahabadi
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Radhakrishnan Sabarinathan
- Center for non-coding RNA in Technology and Health, IKVH, University of Copenhagen, Frederiksberg, Denmark
| | - Tore Samuelsson
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, IKVH, University of Copenhagen, Frederiksberg, Denmark
| | - Claes M. Gustafsson
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
9
|
Li F, Liu X, Zhou W, Yang X, Shen Y. Auto-inhibitory Mechanism of the Human Mitochondrial RNase P Protein Complex. Sci Rep 2015; 5:9878. [PMID: 25928769 PMCID: PMC4415599 DOI: 10.1038/srep09878] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
It is known that tRNAs play an essential role in genetic information transfer from DNA to protein. The maturation of tRNA precursors is performed by the endoribonuclease RNase P, which classically consists of a main RNA segment and accessory proteins. However, the newly identified human mitochondrial RNase P-like protein (MRPP123) complex is unique in that it is composed of three proteins without RNA. Here, we determined the crystal structure of MRPP123 complex subunit 3 (MRPP3), which is thought to carry out the catalytic reaction. A detailed structural analysis in combination with biochemical assays suggests that MRPP3 is in an auto-inhibitory conformation in which metal ions that are essential for catalysis are excluded from the active site. Our results indicate that further regulation is necessary to rearrange the conformation of the active site of MRPP3 and trigger it, thus providing important information to understand the activation of MRPP123.
Collapse
Affiliation(s)
- Fengzhi Li
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaofen Liu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Weihong Zhou
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuequan Shen
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China [3] Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
10
|
Deutschmann AJ, Amberger A, Zavadil C, Steinbeisser H, Mayr JA, Feichtinger RG, Oerum S, Yue WW, Zschocke J. Mutation or knock-down of 17β-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Hum Mol Genet 2014; 23:3618-28. [PMID: 24549042 DOI: 10.1093/hmg/ddu072] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 10 (HSD10) is multifunctional protein coded by the X-chromosomal HSD17B10 gene. Mutations in this gene cause HSD10 disease characterized by progressive neurological abnormalities and cardiomyopathy. Disease progression and severity of symptoms is unrelated to the protein's dehydrogenase activity. Recently, it was shown that HSD10 is an essential component of mitochondrial Ribonuclease P (RNase P), an enzyme required for mitochondrial tRNA processing, but little is known about the role of HSD10 in RNase P function. RNase P consists of three different proteins MRPP1, MRPP2 (HSD10) and MRPP3, each of which is essential for RNase P function. Here, we show that HSD10 protein levels are significantly reduced in fibroblasts from patients carrying the HSD17B10 mutation p.R130C. A reduction in HSD10 levels was accompanied by a reduction in MRPP1 protein but not MRPP3 protein. In HSD10 knock-down cells, MRPP1 protein content was also reduced, indicating that HSD10 is important for the maintenance of normal MRPP1 protein levels. Ectopic expression of HSD10 partially restored RNA processing in HSD10 knock-down cells and fibroblasts, and also expression of MRPP1 protein was restored to values comparable to controls. In both, patient fibroblasts and HSD10 knock-down cells, there was evidence of impaired processing of precursor tRNA transcripts of the mitochondrial heavy strand but not the light strand compared with controls. Our findings indicate that HSD10 is important for the maintenance of the MRPP1-HSD10 subcomplex of RNase P and that loss of HSD10 causes impaired mitochondrial precursor transcript processing which may explain mitochondrial dysfunction observed in HSD10 disease.
Collapse
Affiliation(s)
- Andrea J Deutschmann
- Division of Human Genetics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Albert Amberger
- Division of Human Genetics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Claudia Zavadil
- Division of Human Genetics, Innsbruck Medical University, Innsbruck 6020, Austria
| | | | - Johannes A Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg 5020, Austria
| | - René G Feichtinger
- Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg 5020, Austria
| | - Stephanie Oerum
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Johannes Zschocke
- Division of Human Genetics, Innsbruck Medical University, Innsbruck 6020, Austria
| |
Collapse
|
11
|
Rackham O, Mercer TR, Filipovska A. The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:675-95. [DOI: 10.1002/wrna.1128] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Alzheimer's disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 2012; 46:151-60. [PMID: 22678467 PMCID: PMC3443477 DOI: 10.1007/s12035-012-8281-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 11/02/2022]
Abstract
Hormonal deficit in post-menopausal women has been proposed to be one risk factor in Alzheimer's disease (AD) since two thirds of AD patients are women. However, large treatment trials showed negative effects of long-term treatment with oestrogens in older women. Thus, oestrogen treatment after menopause is still under debate, and several hypotheses trying to explain the failure in outcome are under discussion. Concurrently, it was shown that amyloid-beta (Aβ) peptide, the main constituent of senile plaques, as well as abnormally hyperphosphorylated tau protein, the main component of neurofibrillary tangles, can modulate the level of neurosteroids which notably represent neuroactive steroids synthetized within the nervous system, independently of peripheral endocrine glands. In this review, we summarize the role of neurosteroids especially that of oestrogen in AD and discuss their potentially neuroprotective effects with specific regard to the role of oestrogens on the maintenance and function of mitochondria, important organelles which are highly vulnerable to Aβ- and tau-induced toxicity. We also discuss the role of Aβ-binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme able to bind Aβ peptide thereby modifying mitochondrial function as well as oestradiol levels suggesting possible modes of interaction between the three, and the potential therapeutic implication of inhibiting Aβ-ABAD interaction.
Collapse
|
13
|
Lim YA, Grimm A, Giese M, Mensah-Nyagan AG, Villafranca JE, Ittner LM, Eckert A, Götz J. Inhibition of the mitochondrial enzyme ABAD restores the amyloid-β-mediated deregulation of estradiol. PLoS One 2011; 6:e28887. [PMID: 22174920 PMCID: PMC3236223 DOI: 10.1371/journal.pone.0028887] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/16/2011] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a conformational disease that is characterized by amyloid-β (Aβ) deposition in the brain. Aβ exerts its toxicity in part by receptor-mediated interactions that cause down-stream protein misfolding and aggregation, as well as mitochondrial dysfunction. Recent reports indicate that Aβ may also interact directly with intracellular proteins such as the mitochondrial enzyme ABAD (Aβ binding alcohol dehydrogenase) in executing its toxic effects. Mitochondrial dysfunction occurs early in AD, and Aβ's toxicity is in part mediated by inhibition of ABAD as shown previously with an ABAD decoy peptide. Here, we employed AG18051, a novel small ABAD-specific compound inhibitor, to investigate the role of ABAD in Aβ toxicity. Using SH-SY5Y neuroblastoma cells, we found that AG18051 partially blocked the Aβ-ABAD interaction in a pull-down assay while it also prevented the Aβ42-induced down-regulation of ABAD activity, as measured by levels of estradiol, a known hormone and product of ABAD activity. Furthermore, AG18051 is protective against Aβ42 toxicity, as measured by LDH release and MTT absorbance. Specifically, AG18051 reduced Aβ42-induced impairment of mitochondrial respiration and oxidative stress as shown by reduced ROS (reactive oxygen species) levels. Guided by our previous finding of shared aspects of the toxicity of Aβ and human amylin (HA), with the latter forming aggregates in Type 2 diabetes mellitus (T2DM) pancreas, we determined whether AG18051 would also confer protection from HA toxicity. We found that the inhibitor conferred only partial protection from HA toxicity indicating distinct pathomechanisms of the two amyloidogenic agents. Taken together, our results present the inhibition of ABAD by compounds such as AG18051 as a promising therapeutic strategy for the prevention and treatment of AD, and suggest levels of estradiol as a suitable read-out.
Collapse
Affiliation(s)
- Yun-An Lim
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Amandine Grimm
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Maria Giese
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Ayikoe Guy Mensah-Nyagan
- Equipe Steroïdes, Neuromodulateurs et Neuropathologies, Université de Strasbourg, Strasbourg, France
| | | | - Lars M. Ittner
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Anne Eckert
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
- * E-mail: (JG); (AE)
| | - Jürgen Götz
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail: (JG); (AE)
| |
Collapse
|
14
|
Rossmanith W. Of P and Z: mitochondrial tRNA processing enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1017-26. [PMID: 22137969 PMCID: PMC3790967 DOI: 10.1016/j.bbagrm.2011.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/11/2011] [Accepted: 11/15/2011] [Indexed: 12/18/2022]
Abstract
Mitochondrial tRNAs are generally synthesized as part of polycistronic transcripts. Release of tRNAs from these precursors is thus not only required to produce functional adaptors for translation, but also responsible for the maturation of other mitochondrial RNA species. Cleavage of mitochondrial tRNAs appears to be exclusively accomplished by endonucleases. 5'-end maturation in the mitochondria of different Eukarya is achieved by various kinds of RNase P, representing the full range of diversity found in this enzyme family. While ribonucleoprotein enzymes with RNA components of bacterial-like appearance are found in a few unrelated protists, algae, and fungi, highly degenerate RNAs of dramatic size variability are found in the mitochondria of many fungi. The majority of mitochondrial RNase P enzymes, however, appear to be pure protein enzymes. Human mitochondrial RNase P, the first to be identified and possibly the prototype of all animal mitochondrial RNases P, is composed of three proteins. Homologs of its nuclease subunit MRPP3/PRORP, are also found in plants, algae and several protists, where they are apparently responsible for RNase P activity in mitochondria (and beyond) without the help of extra subunits. The diversity of RNase P enzymes is contrasted by the uniformity of mitochondrial RNases Z, which are responsible for 3'-end processing. Only the long form of RNase Z, which is restricted to eukarya, is found in mitochondria, even when an additional short form is present in the same organism. Mitochondrial tRNA processing thus appears dominated by new, eukaryal inventions rather than bacterial heritage. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Austria.
| |
Collapse
|
15
|
Rackham O, Filipovska A. The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1008-16. [PMID: 22051507 DOI: 10.1016/j.bbagrm.2011.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 12/26/2022]
Abstract
Pentatricopeptide repeat (PPR) domain proteins are a large family of RNA-binding proteins that are involved in the maturation and translation of organelle transcripts in eukaryotes. They were first identified in plant organelles and their important role in mammalian mitochondrial gene regulation is now emerging. Mammalian PPR proteins, like their plant counterparts, have diverse roles in mitochondrial transcription, RNA metabolism and translation and consequently are important for mitochondrial function and cell health. Here we discuss the current knowledge about the seven mammalian PPR proteins identified to date and their roles in the regulation of mitochondrial gene expression. Furthermore we discuss the mitochondrial RNA targets of the mammalian PPR proteins and methods to investigate the RNA targets of these mitochondrial RNA-binding proteins. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Oliver Rackham
- Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA 6000, Australia
| | | |
Collapse
|
16
|
Hurto RL. Unexpected functions of tRNA and tRNA processing enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:137-55. [PMID: 21915787 DOI: 10.1007/978-1-4614-0332-6_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
tRNA and tRNA processing enzymes impact more than protein production. Studies have uncovered roles for tRNA in the regulation of transcription, translation and protein turnover. Induced by stress or as a programmed part of development, nonrandom tRNA fragments can guide mRNA cleavage, inhibit translation and promote morphological changes. Similarly, tRNA processing enzymes, such as RNaseP and tRNA aminoacyl-synthetases participate in tasks affecting more than tRNA function (i.e., mRNA function and cellular signaling). Unraveling the complexities of their functions will increase our understanding of how mutations associated with disease impact these functions and the downstream consequences. This chapter focuses on how tRNA and tRNA processing enzymes influence cellular function and RNA-infrastructure via pathways beyond the decoding activities that tRNA are known for.
Collapse
Affiliation(s)
- Rebecca L Hurto
- Department of Molecular Genetics, The Ohio State University, Columbus, USA.
| |
Collapse
|
17
|
Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:360-79. [PMID: 20544879 PMCID: PMC2886302 DOI: 10.1002/em.20571] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging.
Collapse
Affiliation(s)
- Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New haven, CT 06520-8005
- corresponding author: Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023 phone: (203) 785-2475 FAX: (203) 785-2628
| |
Collapse
|
18
|
Gobert A, Gutmann B, Taschner A, Gössringer M, Holzmann J, Hartmann RK, Rossmanith W, Giegé P. A single Arabidopsis organellar protein has RNase P activity. Nat Struct Mol Biol 2010; 17:740-4. [PMID: 20473316 DOI: 10.1038/nsmb.1812] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 03/19/2010] [Indexed: 12/18/2022]
Abstract
The ubiquitous endonuclease RNase P is responsible for the 5' maturation of tRNA precursors. Until the discovery of human mitochondrial RNase P, these enzymes had typically been found to be ribonucleoproteins, the catalytic activity of which is associated with the RNA component. Here we show that, in Arabidopsis thaliana mitochondria and plastids, a single protein called 'proteinaceous RNase P' (PRORP1) can perform the endonucleolytic maturation of tRNA precursors that defines RNase P activity. In addition, PRORP1 is able to cleave tRNA-like structures involved in the maturation of plant mitochondrial mRNAs. Finally, we show that Arabidopsis PRORP1 can replace the bacterial ribonucleoprotein RNase P in Escherichia coli cells. PRORP2 and PRORP3, two paralogs of PRORP1, are both localized in the nucleus.
Collapse
Affiliation(s)
- Anthony Gobert
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The "RNA World" hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA-protein complex plays diverse roles in processing RNA, but its best-understood reaction is pre-tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| |
Collapse
|