1
|
Han B, Wang W, Wu H, Hu J, Sun L, Zhu Y, Cheng AG, Sun H. Global prevalence of the mitochondrial MT-RNR1 A1555G variant in non-syndromic hearing loss: A systematic review and meta-analysis. Neuroscience 2025; 570:16-26. [PMID: 39970981 DOI: 10.1016/j.neuroscience.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Non-syndromic sensorineural hearing loss (NSHL) significantly affects quality of life and is often associated with the MT-RNR1 A1555G variant. This meta-analysis investigated the global prevalence of the A1555G variant, considering factors such as age of onset and aminoglycoside exposure. A systematic review of 97 studies published between 2000 and the present included 31,013 participants. The overall prevalence of the A1555G variant was 3.37 %, with higher rates in East Asia. Subgroup analysis revealed variant frequencies of 7.24 % in postlingual deafness cases and 1.45 % in prelingual cases. Familial cases and those with aminoglycoside exposure showed significantly higher prevalence rates (9.2 % vs. 1.9 %). These findings underscore the variant's critical role in NSHL etiology and the necessity of incorporating genetic screening into clinical practices, especially for patients with aminoglycoside exposure.
Collapse
Affiliation(s)
- Baoai Han
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenqing Wang
- Wuhan Zhongyuan Electronics Group Co. LTD, Wuhan 430205, China
| | - Han Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juanjuan Hu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liu Sun
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Eighth Hospital, 1288 Jianshe Avenue, Wuhan 430012, P.R. China
| | - Yun Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94304, United States.
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
He Y, Tang Z, Zhu G, Cai L, Chen C, Guan MX. Deafness-associated mitochondrial 12S rRNA mutation reshapes mitochondrial and cellular homeostasis. J Biol Chem 2025; 301:108124. [PMID: 39716492 PMCID: PMC11791119 DOI: 10.1016/j.jbc.2024.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Human mitochondrial 12S ribosomal RNA (rRNA) 1555A>G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the m.1555A>G mutation impaired mitochondrial translation and oxidative phosphorylation (OXPHOS). However, the mechanisms by which mitochondrial dysfunctions induced by m.1555A>G mutation regulate intracellular signaling for mitochondrial and cellular integrity remain poorly understood. Here, we demonstrated that the m.1555A>G mutation downregulated the expression of nucleus-encoded subunits of complexes I and IV but upregulated the expression of assemble factors for OXPHOS complexes, using cybrids derived from one hearing-impaired Chinese subject bearing the m.1555A>G mutation and from one hearing normal control lacking the mutation. These alterations resulted in the aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, IV, and V, rate of oxygen consumption, and diminished ATP production. Furthermore, the mutant cell lines carrying the m.1555A>G mutation exhibited decreased membrane potential and increased the production of reactive oxygen species. The aberrant assembly and biogenesis of OXPHOS impacted mitochondrial quality controls, including the imbalance of mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology and impaired mitophagy. Strikingly, the cells bearing the m.1555A>G mutation revealed the upregulation of both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, Pink, BNIP3 and NIX, respectively. The m.1555A>G mutation-induced deficiencies ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into pathophysiology of mitochondrial deafness arising from reshaping mitochondrial and cellular homeostasis due to 12S rRNA 1555A>G mutation.
Collapse
Affiliation(s)
- Yunfan He
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Zhining Tang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Gao Zhu
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Luhang Cai
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine Between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Lebreton L, Hennart B, Baklouti S, Trimouille A, Boyer JC, Becquemont L, Dhaenens CM, Picard N. [Pharmacogenetics of aminoglycoside ototoxicity: State of knowledge and practices - Recommendations of the Francophone Network of Pharmacogenetics (RNPGx)]. Therapie 2024; 79:709-717. [PMID: 38876950 DOI: 10.1016/j.therap.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
The administration of aminoglycosides can induce nephrotoxicity or ototoxicity, which can be monitored through pharmacological therapeutic drug monitoring. However, there are cases of genetic predisposition to ototoxicity related to the MT-RNR1 gene, which may occur from the first administrations. Pharmacogenetic analysis recommendations have recently been proposed by the Clinical Pharmacogenetics Implementation Consortium (CPIC). The Francophone Pharmacogenetics Network (RNPGx) provides a bibliographic synthesis of this genetic predisposition, as well as professional recommendations. The MT-RNR1 gene codes for mitochondrial 12S rRNA, which constitutes the small subunit of the mitochondrial ribosome. Three variants can be identified: the variants m.1555A>G and m.1494C>T of the MT-RNR1 gene have a 'high' level of evidence regarding the risk of ototoxicity. The variant m.1095T>C has a 'moderate' level of evidence. The search for these variants can be performed in the laboratory if the administration of aminoglycosides can be delayed after obtaining the result. However, if the treatment is urgent, there is currently no rapid test available in France (a 'point-of-care' test is authorized in Great Britain). RNPGx considers: (1) the search for the m.1555A>G, m.1494C>T variants as 'highly recommended' and the m.1095T>C variant as 'moderately recommended' before the administration of an aminoglycoside (if compatible with the medical context). It should be noted that the level of heteroplasmy detected does not modify the recommendation; (2) pharmacogenetic analysis is currently not feasible in situations of short-term aminoglycoside administration, in the absence of an available analytical solution (rapid test to be evaluated in France); (3) the retrospective analysis in case of aminoglycoside-induced ototoxicity is 'recommended'; (4) analysis of relatives is 'recommended'. Through this summary, RNPGx proposes an updated review of the MT-RNR1-aminoglycoside gene-drug pair to serve as a basis for adapting practices regarding pharmacogenetic analysis related to aminoglycoside treatment.
Collapse
Affiliation(s)
- Louis Lebreton
- Département de biochimie, hôpital Pellegrin, centre hospitalier universitaire de Bordeaux, 33000 Bordeaux, France.
| | - Benjamin Hennart
- Unité fonctionnelle de toxicologie, CHU de Lille, 59037 Lille, France
| | - Sarah Baklouti
- Laboratoire de pharmacocinétique et toxicologie, institut fédératif de biologie, CHU de Toulouse, 31300 Toulouse, France; INTHERES, Inrae, ENVT, université de Toulouse, 31300 Toulouse, France
| | - Aurélien Trimouille
- Inserm U1211, Rare Diseases: Genetics and Metabolism (MRGM), Bordeaux University, Bordeaux, France; Reference Centre: Maladies Mitochondriales de l'Enfant à l'Adulte (CARAMMEL), University Hospital of Bordeaux, Bordeaux, France; Pathology Department, University Hospital of Bordeaux, 33000 Bordeaux, France
| | | | - Laurent Becquemont
- Inserm UMR 1018, CESP, MOODS Team, faculté de médecine, université Paris-Saclay, 94275 Le Kremlin-Bicêtre, France; Centre de recherche clinique, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Claire-Marie Dhaenens
- Inserm, U1172 - LilNCog - Lille Neuroscience & Cognition, University of Lille, CHU de Lille, 59000 Lille, France
| | - Nicolas Picard
- Service de pharmacologie, toxicologie et pharmacovigilance, centre de biologie et de recherche en santé (CBRS), CHU de Limoges, 87042 Limoges, France
| |
Collapse
|
4
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
5
|
Almalki F. Review and research gap identification in genetics causes of syndromic and nonsyndromic hearing loss in Saudi Arabia. Ann Hum Genet 2024; 88:364-381. [PMID: 38517009 DOI: 10.1111/ahg.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Congenital hearing loss is one of the most common sensory disabilities worldwide. The genetic causes of hearing loss account for 50% of hearing loss. Genetic causes of hearing loss can be classified as nonsyndromic hearing loss (NSHL) or syndromic hearing loss (SHL). NSHL is defined as a partial or complete hearing loss without additional phenotypes; however, SHL, known as hearing loss, is associated with other phenotypes. Both types follow a simple Mendelian inheritance fashion. Several studies have been conducted to uncover the genetic factors contributing to NSHL and SHL in Saudi patients. However, these studies have encountered certain limitations. This review assesses and discusses the genetic factors underpinning NSHL and SHL globally, with a specific emphasis on the Saudi Arabian context. It also explores the prevalence of the most observed genetic causes of NSHL and SHL in Saudi Arabia. It also sheds light on areas where further research is needed to fully understand the genetic foundations of hearing loss in the Saudi population. This review identifies several gaps in research in NSHL and SHL and provides insights into potential research to be conducted.
Collapse
Affiliation(s)
- Faisal Almalki
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munwarah, Saudi Arabia
| |
Collapse
|
6
|
Woravatin W, Wongkomonched R, Tassaneeyakul W, Stoneking M, Makarawate P, Kutanan W. Complete mitochondrial genomes of patients from Thailand with cardiovascular diseases. PLoS One 2024; 19:e0307036. [PMID: 38990956 PMCID: PMC11239017 DOI: 10.1371/journal.pone.0307036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Several previous studies have reported that both variation and haplogroups of mitochondrial (mt) DNA were associated with various kinds of diseases, including cardiovascular diseases, in different populations, but such studies have not been carried out in Thailand. Here, we sequenced complete mtDNA genomes from 82 patients diagnosed with three types of cardiovascular disease, i.e., Hypertrophic Cardiomyopathy (HCM) (n = 26), Long Q-T Syndrome (LQTS) (n = 7) and Brugada Syndrome (BrS) (n = 49) and compared these with 750 previously published mitogenome sequences from interviewed normal individuals as a control group. Both patient and control groups are from the same geographic region of northeastern Thailand. We found 9, 2, and 5 novel mutations that were not both damaging and deleterious in HCM, LQTS, and BrS patients, respectively. Haplogroup R9c was significantly associated with HCM (P = 0.0032; OR = 62.42; 95%CI = 6.892-903.4) while haplogroup M12b was significantly associated with LQTS (P = 0.0039; OR = 32.93; 95% CI = 5.784-199.6). None of the haplogroups was found to be significantly associated with BrS. A significantly higher density of mtDNA variants in the rRNA genes was found in patients with HCM and BrS (P < 0.001) than in those with LQTS or the control group. Effects of detected SNPs in either protein coding or tRNA genes of all the mitogenome sequences were also predicted. Interestingly, three SNPs in two tRNA genes (MT-TA m.5618T>C and m.5631G>A heteroplasmic variants in two BrS patients and MT-TQ m.4392C>T novel homoplasmic variant in a HCM patient) were predicted to alter tRNA secondary structure, possibly leading to abnormal tRNA function.
Collapse
Affiliation(s)
- Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| | | | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
7
|
Gaafar D, Baxter N, Cranswick N, Christodoulou J, Gwee A. Pharmacogenetics of aminoglycoside-related ototoxicity: a systematic review. J Antimicrob Chemother 2024; 79:1508-1528. [PMID: 38629462 DOI: 10.1093/jac/dkae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/06/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Aminoglycosides (AGs) are important antibiotics in the treatment of Gram-negative sepsis. However, they are associated with the risk of irreversible sensorineural hearing loss (SNHL). Several genetic variants have been implicated in the development of ototoxicity. OBJECTIVES To evaluate the pharmacogenetic determinants of AG-related ototoxicity. METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and was registered on Prospero (CRD42022337769). In Dec 2022, PubMed, Cochrane Library, Embase and MEDLINE were searched. Included studies were those reporting original data on the effect of the AG-exposed patient's genome on the development of ototoxicity. RESULTS Of 10 202 studies, 31 met the inclusion criteria. Twenty-nine studies focused on the mitochondrial genome, while two studied the nuclear genome. One study of neonates found that 30% of those with the m.1555A > G variant failed hearing screening after AG exposure (level 2 evidence). Seventeen additional studies found the m.1555A > G variant was associated with high penetrance (up to 100%) of SNHL after AG exposure (level 3-4 evidence). Nine studies of m.1494C > T found the penetrance of AG-related SNHL to be up to 40%; however, this variant was also identified in those with SNHL without AG exposure (level 3-4 evidence). The variants m.1005T > C and m.1095T > C may be associated with AG-related SNHL; however, further studies are needed. CONCLUSIONS This review found that the m.1555A > G and m.1494C > T variants in the MT-RNR1 gene have the strongest evidence in the development of AG-related SNHL, although study quality was limited (level 2-4). These variants were associated with high penetrance of a SNHL phenotype following AG exposure.
Collapse
Affiliation(s)
- D Gaafar
- Infectious Diseases and Clinical Pharmacology Units, Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| | - N Baxter
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - N Cranswick
- Infectious Diseases and Clinical Pharmacology Units, Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| | - J Christodoulou
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| | - A Gwee
- Infectious Diseases and Clinical Pharmacology Units, Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
8
|
Zhou S, Chen M, Pei J, Zhang C, Ren X, Li J, Sa Y, Zhu B, Li Y. Distribution of mitochondrial MT-RNR1, MT-TL1, MT-TS1, MT-TK and MT-TE genes variants associated with hearing loss in Southwestern China. Int J Pediatr Otorhinolaryngol 2024; 181:111979. [PMID: 38739980 DOI: 10.1016/j.ijporl.2024.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Maternally inherited hearing loss has been associated with mitochondrial genes, including MT-RNR1, MT-TL1, MT-TS1, MT-TK and MT-TE. Among these genes, MT-RNR1 is known to be a hotspot for pathogenic variants related to aminoglycoside ototoxicity and nonsyndromic hearing loss. However, the frequency and spectrum of variants in these genes, particularly in multi-ethnic hearing loss patients from Southwestern China, are still not fully understood. METHODS In this study, we enrolled 460 hearing loss patients from various ethnic backgrounds (Han, Yi, Dai, Hani, etc.) in Southwestern China. Next-generation sequencing was used to analyze the mitochondrial MT-RNR1, MT-TL1, MT-TS1, MT-TK and MT-TE genes. Subsequently, bioinformatical methods were employed to evaluate the identified variants. RESULTS Among the patients with hearing loss, we identified 70 variants in MT-RNR1 (78.6 %, 55/70), MT-TL1 (4.3 %, 3/70), MT-TS1 (4.3 %, 3/70), MT-TK (7.1 %, 5/70) and MT-TE (5.7 %, 4/70) genes. We found that 15 variants were associated with hearing loss, including m.1555 A > G and m.1095 T > C. Additionally, we discovered three reported mitochondrial variants (m.676 G > A, m.7465 insC, and m.7474 A > G) newly correlated with hearing loss. Notably, certain pathogenic variants, such as m.1555 A > G, displayed non-consistent distributions among the multi-ethnic patients with hearing loss. Furthermore, the number of variants associated with hearing loss was higher in the Sinitic group (n = 181) and Tibeto-Burman group (n = 215) compared to the Kra-Dai group (n = 38) and Hmong-Mien group (n = 26). CONCLUSIONS This present study revealed the distribution of mitochondrial variants linked to hearing loss across various ethnic groups in Southwestern China. These data suggest a potential correlation between the distribution of mitochondrial variants associated with hearing loss and ethnic genetic backgrounds.
Collapse
Affiliation(s)
- Shiyu Zhou
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Menglan Chen
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiahong Pei
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Zhang
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaofei Ren
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jingyu Li
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaliang Sa
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Baosheng Zhu
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China; National Health Commission Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming, Yunnan, China.
| | - Yunlong Li
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China; National Health Commission Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming, Yunnan, China.
| |
Collapse
|
9
|
Chen X, Meng F, Chen C, Li S, Chou Z, Xu B, Mo JQ, Guo Y, Guan MX. Deafness-associated tRNA Phe mutation impaired mitochondrial and cellular integrity. J Biol Chem 2024; 300:107235. [PMID: 38552739 PMCID: PMC11046301 DOI: 10.1016/j.jbc.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.
Collapse
Affiliation(s)
- Xiaowan Chen
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Li
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhiqiang Chou
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, USA
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Lab of Genetics and Genomics, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Bulduk BK, Tortajada J, Valiente-Pallejà A, Callado LF, Torrell H, Vilella E, Meana JJ, Muntané G, Martorell L. High number of mitochondrial DNA alterations in postmortem brain tissue of patients with schizophrenia compared to healthy controls. Psychiatry Res 2024; 337:115928. [PMID: 38759415 DOI: 10.1016/j.psychres.2024.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Previous studies have shown mitochondrial dysfunction in schizophrenia (SZ) patients, which may be caused by mitochondrial DNA (mtDNA) alterations. However, there are few studies in SZ that have analyzed mtDNA in brain samples by next-generation sequencing (NGS). To address this gap, we used mtDNA-targeted NGS and qPCR to characterize mtDNA alterations in brain samples from patients with SZ (n = 40) and healthy controls (HC) (n = 40). 35 % of SZ patients showed mtDNA alterations, a significantly higher prevalence compared to 10 % of HC. Specifically, SZ patients had a significantly higher frequency of deletions (35 vs. 5 in HC), with a mean number of deletions of 3.8 in SZ vs. 1.0 in HC. Likely pathogenic missense variants were also significantly more frequent in patients with SZ than in HC (10 vs. three HC), encompassing 14 variants in patients and three in HC. The pathogenic tRNA variant m.3243A>G was identified in one SZ patient with a high heteroplasmy level of 32.2 %. While no significant differences in mtDNA copy number (mtDNA-CN) were observed between SZ and HC, antipsychotic users had significantly higher mtDNA-CN than non-users. These findings suggest a potential role for mtDNA alterations in the pathophysiology of SZ that require further validation and functional studies.
Collapse
Affiliation(s)
- Bengisu K Bulduk
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain
| | - Juan Tortajada
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain
| | - Alba Valiente-Pallejà
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Luís F Callado
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, and BioBizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Helena Torrell
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Catalonia, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - J Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, and BioBizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain.
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Principi N, Petropulacos K, Esposito S. Genetic Variations and Antibiotic-Related Adverse Events. Pharmaceuticals (Basel) 2024; 17:331. [PMID: 38543117 PMCID: PMC10974439 DOI: 10.3390/ph17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Antibiotic-related adverse events are common in both adults and children, and knowledge of the factors that favor the development of antibiotic-related adverse events is essential to limit their occurrence and severity. Genetics can condition the development of antibiotic-related adverse events, and the screening of patients with supposed or demonstrated specific genetic mutations may reduce drug-related adverse events. This narrative review discusses which genetic variations may influence the risk of antibiotic-related adverse events and which conclusions can be applied to clinical practice. An analysis of the literature showed that defined associations between genetic variations and specific adverse events are very few and that, at the moment, none of them have led to the implementation of a systematic screening process for patients that must be treated with a given antibiotic in order to select those at risk of specific adverse events. On the other hand, in most of the cases, more than one variation is implicated in the determination of adverse events, and this can be a limitation in planning a systematic screening. Moreover, presently, the methods used to establish whether a patient carries a "dangerous" genetic mutation require too much time and waiting for the result of the test can be deleterious for those patients urgently requiring therapy. Further studies are needed to definitively confirm which genetic variations are responsible for an increased risk of a well-defined adverse event.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
12
|
Feng J, Zeng Z, Luo S, Liu X, Luo Q, Yang K, Zhang G, Liu J. Carrier frequencies, trends, and geographical distribution of hearing loss variants in China: The pooled analysis of 2,161,984 newborns. Heliyon 2024; 10:e24850. [PMID: 38322914 PMCID: PMC10845244 DOI: 10.1016/j.heliyon.2024.e24850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
The aim of this study is to comprehensively investigate the prevalence and distribution patterns of three common genetic variants associated with hearing loss (HL) in Chinese neonatal population. Methods: Prior to June 30, 2023, an extensive search and screening process was conducted across multiple literature databases. R software was utilized for conducting meta-analyses, cartography, and correlation analyses. Results: Firstly, our study identified a total of 99 studies meeting the inclusion criteria. Notably, provinces such as Qinghai, Tibet, Jilin, and Heilongjiang lack large-scale genetic screening data for neonatal deafness. Secondly, in Chinese newborns, the carrier frequencies of GJB2 variants (c.235delC, c.299_300delAT) were 1.63 % (95 %CI 1.52 %-1.76 %) and 0.33 % (95 %CI 0.30 %-0.37 %); While SLC26A4 variants (c.919-2A > G, c.2168A > G) exhibited carrier rates of 0.95 % (95 %CI 0.86 %-1.04 %) and 0.17 % (95 %CI 0.15 %-0.19 %); Additionally, Mt 12S rRNA m.1555 A > G variant was found at a rate of 0.24 % (95 % CI 0.22 %-0.26 %). Thirdly, the mutation rate of GJB2 c.235delC was higher in the east of the Heihe-Tengchong line, whereas the mutation rate of Mt 12S rRNA m.1555 A > G variant exhibited the opposite pattern. Forthly, no significant correlation exhibited the opposite pattern of GJB2 variants, but there was a notable correlation among SLC26A4 variants. Lastly, strong regional distribution correlations were evident between mutation sites from different genes, particularly between SLC26A4 (c.919-2A > G and c.2168A > G) and GJB c.299_300delAT. Conclusions: The most prevalent deafness genes among Chinese neonates were GJB2 c.235delC variant, followed by SLC26A4 c.919-2A > G variant. These gene mutation rates exhibit significant regional distribution characteristics. Consequently, it is imperative to enhance genetic screening efforts to reduce the incidence of deafness in high-risk areas.
Collapse
Affiliation(s)
- Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Sijian Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Kui Yang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Guanbin Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350122, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206 ,China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| |
Collapse
|
13
|
Huang X, Hu B, Ye L, Li T, He L, Tan W, Yang G, Liu JP, Guo C. Pharmacogenomics and adverse effects of anti-infective drugs in children. Clin Exp Pharmacol Physiol 2024; 51:3-9. [PMID: 37840030 DOI: 10.1111/1440-1681.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Children, as a special group, have their own peculiarities in terms of individualized medication use compared to adults. Adverse drug reactions have been an important issue that needs to be addressed in the hope of safe medication use in children, and the occurrence of adverse drug reactions is partly due to genetic factors. Anti-infective drugs are widely used in children, and they have always been an important cause of the occurrence of adverse reactions in children. Pharmacogenomic technologies are becoming increasingly sophisticated, and there are now many guidelines describing the pharmacogenomics of anti-infective drugs. However, data from paediatric-based studies are scarce. This review provides a systematic review of the pharmacogenomics of anti-infective drugs recommended for gene-guided use in CPIC guidelines by exploring the relationship between pharmacogenetic frequencies and the incidence of adverse reactions, which will help inform future studies of individualized medication use in children.
Collapse
Affiliation(s)
- Xin Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Biwen Hu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Ye
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Tong Li
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tan
- Department of Neonatology, Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Zhejiang, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Victoria, Australia
| | - Chengxian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Rivetti S, Romano A, Mastrangelo S, Attinà G, Maurizi P, Ruggiero A. Aminoglycosides-Related Ototoxicity: Mechanisms, Risk Factors, and Prevention in Pediatric Patients. Pharmaceuticals (Basel) 2023; 16:1353. [PMID: 37895824 PMCID: PMC10610175 DOI: 10.3390/ph16101353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics largely used in children, but they have potential toxic side effects, including ototoxicity. Ototoxicity from aminoglycosides is permanent and is a consequence of its action on the inner ear cells via multiple mechanisms. Both uncontrollable risk factors and controllable risk factors are involved in the pathogenesis of aminoglycoside-related ototoxicity and, because of the irreversibility of ototoxicity, an important undertaking for preventing ototoxicity includes antibiotic stewardship to limit the use of aminoglycosides. Aminoglycosides are fundamental in the treatment of numerous infectious conditions at neonatal and pediatric age. In childhood, normal auditory function ensures adequate neurocognitive and social development. Hearing damage from aminoglycosides can therefore strongly affect the normal growth of the child. This review describes the molecular mechanisms of aminoglycoside-related ototoxicity and analyzes the risk factors and the potential otoprotective strategies in pediatric patients.
Collapse
Affiliation(s)
- Serena Rivetti
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
15
|
Vila-Sanjurjo A, Mallo N, Elson JL, Smith PM, Blakely EL, Taylor RW. Structural analysis of mitochondrial rRNA gene variants identified in patients with deafness. Front Physiol 2023; 14:1163496. [PMID: 37362424 PMCID: PMC10285412 DOI: 10.3389/fphys.2023.1163496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
The last few years have witnessed dramatic advances in our understanding of the structure and function of the mammalian mito-ribosome. At the same time, the first attempts to elucidate the effects of mito-ribosomal fidelity (decoding accuracy) in disease have been made. Hence, the time is right to push an important frontier in our understanding of mitochondrial genetics, that is, the elucidation of the phenotypic effects of mtDNA variants affecting the functioning of the mito-ribosome. Here, we have assessed the structural and functional role of 93 mitochondrial (mt-) rRNA variants thought to be associated with deafness, including those located at non-conserved positions. Our analysis has used the structural description of the human mito-ribosome of the highest quality currently available, together with a new understanding of the phenotypic manifestation of mito-ribosomal-associated variants. Basically, any base change capable of inducing a fidelity phenotype may be considered non-silent. Under this light, out of 92 previously reported mt-rRNA variants thought to be associated with deafness, we found that 49 were potentially non-silent. We also dismissed a large number of reportedly pathogenic mtDNA variants, 41, as polymorphisms. These results drastically update our view on the implication of the primary sequence of mt-rRNA in the etiology of deafness and mitochondrial disease in general. Our data sheds much-needed light on the question of how mt-rRNA variants located at non-conserved positions may lead to mitochondrial disease and, most notably, provide evidence of the effect of haplotype context in the manifestation of some mt-rRNA variants.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE. Departamento de Bioloxía e Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE. Departamento de Bioloxía e Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Joanna L. Elson
- The Bioscience Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M. Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, United Kingdom
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Liu Y, Zhao S, Chen X, Bian Y, Cao Y, Xu P, Zhang C, Zhang J, Zhao S, Zhao H. Variations in mitochondrial DNA coding and D-loop region are associated with early embryonic development defects in infertile women. Hum Genet 2023; 142:193-200. [PMID: 36352239 DOI: 10.1007/s00439-022-02505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Mitochondrial DNA (mtDNA) plays a critical role in oocyte maturation, fertilization, and early embryonic development. Defects in mtDNA may determine the alteration of the mitochondrial function, affecting cellular oxidative phosphorylation and ATP supply, leading to impaired oocyte maturation, abnormal fertilization, and low embryonic developmental potential, ultimately leading to female infertility. This case-control study was established to investigate the correlation between mtDNA variations and early embryonic development defects. Peripheral blood was collected for next-generation sequencing from women who suffered the repeated failures of in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) cycles due to early embryonic development defects as well as in-house healthy controls, and the sequencing results were statistically analyzed for all subjects. This study found that infertile women with early embryonic development defects carried more mtDNA variants, especially in the D-loop region, ATP6 gene, and CYTB gene. By univariate logistic regression analysis, 16 mtDNA variants were associated with an increased risk of early embryonic development defects (OR > 1, p < 0.05). Furthermore, we identified 16 potentially pathogenic mtDNA variants only in infertile cases. The data proved that mtDNA variations were associated with early embryonic development defects in infertile Chinese women.
Collapse
Affiliation(s)
- Yuqing Liu
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Zhao
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaolei Chen
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Peiwen Xu
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Changming Zhang
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Jiangtao Zhang
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China. .,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
17
|
Han H, Hu S, Hu Y, Liu D, Zhou J, Liu X, Ma X, Dong Y. Mitophagy in ototoxicity. Front Cell Neurosci 2023; 17:1140916. [PMID: 36909283 PMCID: PMC9995710 DOI: 10.3389/fncel.2023.1140916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Mitochondrial dysfunction is associated with ototoxicity, which is caused by external factors. Mitophagy plays a key role in maintaining mitochondrial homeostasis and function and is regulated by a series of key mitophagy regulatory proteins and signaling pathways. The results of ototoxicity models indicate the importance of this process in the etiology of ototoxicity. A number of recent investigations of the control of cell fate by mitophagy have enhanced our understanding of the mechanisms by which mitophagy regulates ototoxicity and other hearing-related diseases, providing opportunities for targeting mitochondria to treat ototoxicity.
Collapse
Affiliation(s)
- Hezhou Han
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sainan Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongliang Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junbo Zhou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Xiaofang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Huang Q, Liu Y, Lei W, Liang J, Wang Y, Zheng M, Huang X, Liu Y, Huang K, Huang M. Detecting mitochondrial mutations associated with aminoglycoside ototoxicity by noninvasive prenatal testing. J Clin Lab Anal 2022; 37:e24827. [PMID: 36579624 PMCID: PMC9833975 DOI: 10.1002/jcla.24827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Numerous diseases and disorders are associated with mitochondrial DNA (mtDNA) mutations, among which m.1555A > G and m.1494C > T mutations in the 12 S ribosomal RNA gene contribute to aminoglycoside-induced and nonsyndromic hearing loss worldwide. METHODS A total of 76,842 qualified non-invasive prenatal (NIPT) samples were subjected to mtDNA mutation and haplogroup analysis. RESULTS We detected 181 m.1555A > G and m.1494C > T mutations, 151 of which were subsequently sequenced for full-length mitochondrial genome verification. The positive predictive values for the m.1555A > G and m.1494C > T mutations were 90.78% and 90.00%, respectively, a performance comparable to that attained with newborn hearing screening. Furthermore, mitochondrial haplogroup analysis revealed that the 12 S rRNA 1555A > G mutation was enriched in sub-haplotype D5[p = 0, OR = 4.6706(2.81-7.78)]. CONCLUSIONS Our findings indicate that the non-invasive prenatal testing of cell-free DNA obtained from maternal plasma can successfully detect m.1555A > G and m.1494C > T mutations.
Collapse
Affiliation(s)
- Quanfei Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yanhui Liu
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Wei Lei
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Jiajie Liang
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Yang Wang
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Minhua Zheng
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Xiaoyan Huang
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Yuanru Liu
- CapitalBio Technology Co., Ltd.BeijingChina,Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Kaisheng Huang
- CapitalBio Technology Co., Ltd.BeijingChina,Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Gu P, Wang G, Gao X, Kang D, Dai P, Huang S. Clinical and molecular findings in a Chinese family with a de novo mitochondrial A1555G mutation. BMC Med Genomics 2022; 15:121. [PMID: 35614445 PMCID: PMC9131558 DOI: 10.1186/s12920-022-01276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrial 12S rRNA A1555G mutation is the most prevalent deafness-causing mitochondrial DNA (mtDNA) mutation and is inherited maternally. Studies have suggested that A1555G mutations have multiple origins, although there is no direct evidence of this. Here, we identified a family with a de novo A1555G mutation. Method Based on detailed mtDNA analyses of the family members using next-generation sequencing with 1% sensitivity to mutated mtDNA, the level of heteroplasmy in terms of the A1555G mutation in blood DNA samples was quantified. Results An individual harbored a heterogeneous A1555G mutation, at 28.68% heteroplasmy. The individual’s son was also a heterogeneous carrier, with 7.25% heteroplasmy. The individual’s brother and mother did not carry the A1555G mutation, and both had less than 1% mitochondrial 12S rRNA A1555G heteroplasmy. Conclusion The A1555G mutation arose de novo in this family. This is the first report of a family with a de novo A1555G mutation, providing direct evidence of its multipoint origin. This is important for both diagnostic investigations and genetic counselling.
Collapse
Affiliation(s)
- Ping Gu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Do.28 Fuxing Road, Beijing, 100853, People's Republic of China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People's Republic of China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People's Republic of China.,Department of Otolaryngology, Shenzhen Children's Hospital, Shenzhen, 518038, People's Republic of China
| | - Guojian Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Do.28 Fuxing Road, Beijing, 100853, People's Republic of China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People's Republic of China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People's Republic of China
| | - Xue Gao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Do.28 Fuxing Road, Beijing, 100853, People's Republic of China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People's Republic of China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People's Republic of China
| | - Dongyang Kang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Do.28 Fuxing Road, Beijing, 100853, People's Republic of China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People's Republic of China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People's Republic of China
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Do.28 Fuxing Road, Beijing, 100853, People's Republic of China. .,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People's Republic of China. .,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People's Republic of China.
| | - Shasha Huang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Do.28 Fuxing Road, Beijing, 100853, People's Republic of China. .,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People's Republic of China. .,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People's Republic of China.
| |
Collapse
|
20
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:3068-3082. [DOI: 10.1093/hmg/ddac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
|
21
|
Fu X, Wan P, Li P, Wang J, Guo S, Zhang Y, An Y, Ye C, Liu Z, Gao J, Yang J, Fan J, Chai R. Mechanism and Prevention of Ototoxicity Induced by Aminoglycosides. Front Cell Neurosci 2021; 15:692762. [PMID: 34211374 PMCID: PMC8239227 DOI: 10.3389/fncel.2021.692762] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 02/02/2023] Open
Abstract
Aminoglycosides, a class of clinically important drugs, are widely used worldwide against gram-negative bacterial infections. However, there is growing evidence that aminoglycosides can cause hearing loss or balance problems. In this article, we mainly introduce the main mechanism of ototoxicity induced by aminoglycosides. Genetic analysis showed that the susceptibility of aminoglycosides was attributable to mutations in mtDNA, especially A1555G and C1494T mutations in 12S rRNA. In addition, the overexpression of NMDA receptors and the formation of free radicals also play an important role. Understanding the mechanism of ototoxicity induced by aminoglycosides is helpful to develop new therapeutic methods to protect hearing. In this article, the prevention methods of ototoxicity induced by aminoglycosides were introduced from the upstream and downstream aspects.
Collapse
Affiliation(s)
- Xiaolong Fu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Peifeng Wan
- School of Life Science, Shandong University, Qingdao, China
| | - Peipei Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinpeng Wang
- The Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, China
| | - Chao Ye
- School of Life Science, Shandong University, Qingdao, China
| | - Ziyi Liu
- School of Life Science, Shandong University, Qingdao, China
| | - Jiangang Gao
- School of Life Science, Shandong University, Qingdao, China
| | - Jianming Yang
- Second Hospital of Anhui Medical University, Hefei, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Human Mitoribosome Biogenesis and Its Emerging Links to Disease. Int J Mol Sci 2021; 22:ijms22083827. [PMID: 33917098 PMCID: PMC8067846 DOI: 10.3390/ijms22083827] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize a small subset of proteins, which are essential components of the oxidative phosphorylation machinery. Therefore, their function is of fundamental importance to cellular metabolism. The assembly of mitoribosomes is a complex process that progresses through numerous maturation and protein-binding events coordinated by the actions of several assembly factors. Dysregulation of mitoribosome production is increasingly recognized as a contributor to metabolic and neurodegenerative diseases. In recent years, mutations in multiple components of the mitoribosome assembly machinery have been associated with a range of human pathologies, highlighting their importance to cell function and health. Here, we provide a review of our current understanding of mitoribosome biogenesis, highlighting the key factors involved in this process and the growing number of mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors that lead to human disease.
Collapse
|
23
|
田 雨, 陈 正. [Progress in genetic susceptibility to aminoglycoside-induced deafness]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:375-379. [PMID: 33794642 PMCID: PMC10128447 DOI: 10.13201/j.issn.2096-7993.2021.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 06/12/2023]
Abstract
Aminoglycoside antibiotics can cause irreversible hearing loss, but they are still widely used because of their low production cost and broad-spectrum effect on most infections. Although it has been studied for decades, the mechanism of aminoglycoside-induced deafness has not been fully elucidated. Since patients'individual susceptibility to aminoglycoside-ototoxicity varies considerably, it is necessary to identify high-risk patients. This review summarizes the genetic mutations linked to aminoglycoside-induced deafness, in order to provide reference for further prevention and treatment of aminoglycoside-induced deafness.
Collapse
Affiliation(s)
- 雨鑫 田
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海交通大学耳鼻咽喉科研究所 上海市睡眠呼吸障碍疾病重点实验室(上海,200233)
| | - 正侬 陈
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海交通大学耳鼻咽喉科研究所 上海市睡眠呼吸障碍疾病重点实验室(上海,200233)
| |
Collapse
|
24
|
Li Y, Su J, Zhang J, Pei J, Li D, Zhang Y, Li J, Chen M, Zhu B. Targeted next-generation sequencing of deaf patients from Southwestern China. Mol Genet Genomic Med 2021; 9:e1660. [PMID: 33724713 PMCID: PMC8123756 DOI: 10.1002/mgg3.1660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Targeted next-generation sequencing is an efficient tool to identify pathogenic mutations of hereditary deafness. The molecular pathology of deaf patients in southwestern China is not fully understood. METHODS In this study, targeted next-generation sequencing of 127 deafness genes was performed on 84 deaf patients. They were not caused by common mutations of GJB2 gene, including c.35delG, c.109 G>A, c.167delT, c.176_191del16, c.235delC and c.299_300delAT. RESULTS In the cohorts of 84 deaf patients, we did not find any candidate pathogenic variants in 14 deaf patients (16.7%, 14/84). In other 70 deaf patients (83.3%, 70/84), candidate pathogenic variants were identified in 34 genes. Of these 70 deaf patients, the percentage of "Solved" and "Unsolved" patients was 51.43% (36/70) and 48.57% (34/70), respectively. The most common causative genes were SLC26A4 (12.9%, 9/70), MT-RNR1 (11.4%, 8/70), and MYO7A (2.9%, 2/70) in deaf patients. In "Unsolved" patients, possible pathogenic variants were most found in SLC26A4 (8.9%, 3/34), MYO7A (5.9%, 2/34), OTOF (5.9%, 2/34), and PDZD7 (5.9%, 2/34) genes. Interesting, several novel recessive pathogenic variants were identified, like SLC26A4 c.290T>G, SLC26A4 c.599A>G, PDZD7c.490 C>T, etc. CONCLUSION: In addition to common deafness genes, like GJB2, SLC26A4, and MT-RNR1 genes, other deafness genes (MYO7A, OTOF, PDZD7, etc.) were identified in deaf patients from southwestern China. Therefore, the spectrum of deafness genes in this area should be further studied.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Su
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jingman Zhang
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiahong Pei
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Dongmei Li
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yinhong Zhang
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jingyu Li
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Menglang Chen
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Baosheng Zhu
- Department of Medical Genetics, First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
25
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Yang H, Luo H, Zhang G, Zhang J, Peng Z, Xiang J. A multiplex PCR amplicon sequencing assay to screen genetic hearing loss variants in newborns. BMC Med Genomics 2021; 14:61. [PMID: 33639928 PMCID: PMC7913202 DOI: 10.1186/s12920-021-00906-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Congenital hearing loss is one of the most common birth defects. Early identification and management play a crucial role in improving patients' communication and language acquisition. Previous studies demonstrated that genetic screening complements newborn hearing screening in clinical settings. METHODS We developed a multiplex PCR amplicon sequencing assay to sequence the full coding region of the GJB2 gene, the most pathogenic variants of the SLC26A4 gene, and hotspot variants in the MT-RNR1 gene. The sensitivity, specificity, and reliability were validated via samples with known genotypes. Finally, a pilot study was performed on 300 anonymous dried blood samples. RESULTS Of 103 samples with known genotypes, the multiplex PCR amplicon sequencing assay accurately identified all the variants, demonstrating a 100% sensitivity and specificity. The consistency is high in the analysis of the test-retest reliability and internal consistency reliability. In the pilot study, 12.3% (37/300) of the newborns were found to carry at least one pathogenic variant, including 24, 10, and 3 from the GJB2, SLC26A4, and MT-RNR1 gene, respectively. With an allele frequency of 2.2%, the NM_004004.6(GJB2):c.109G>A was the most prevalent variant in the study population. CONCLUSION The multiplex PCR amplicon sequencing assay is an accurate and reliable test to detect hearing loss variants in the GJB2, SLC26A4, and MT-RNR1 genes. It can be used to screen genetic hearing loss in newborns.
Collapse
Affiliation(s)
- Haiyan Yang
- BGI College, Zhengzhou University, Zhengzhou, 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- BGI Education Center, University of Chinese Academy of Sciences, BGI Park, No.21 Hongan 3rd Street, Yantian District, Shenzhen, 518083, China
| | - Hongyu Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Guiwei Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Junqing Zhang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiale Xiang
- BGI Education Center, University of Chinese Academy of Sciences, BGI Park, No.21 Hongan 3rd Street, Yantian District, Shenzhen, 518083, China.
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
27
|
Vila-Sanjurjo A, Smith PM, Elson JL. Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit. Methods Mol Biol 2021; 2277:203-245. [PMID: 34080154 DOI: 10.1007/978-1-0716-1270-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we summarize our latest efforts to elucidate the role of mtDNA variants affecting the mitochondrial translation machinery, namely variants mapping to the mt-rRNA and mt-tRNA genes. Evidence is accumulating to suggest that the cellular response to interference with mitochondrial translation is different from that occurring as a result of mutations in genes encoding OXPHOS proteins. As a result, it appears safe to state that a complete view of mitochondrial disease will not be obtained until we understand the effect of mt-rRNA and mt-tRNA variants on mitochondrial protein synthesis. Despite the identification of a large number of potentially pathogenic variants in the mitochondrially encoded rRNA (mt-rRNA) genes, we lack direct methods to firmly establish their pathogenicity. In the absence of such methods, we have devised an indirect approach named heterologous inferential analysis (HIA ) that can be used to make predictions concerning the disruptive potential of a large subset of mt-rRNA variants. We have used HIA to explore the mutational landscape of 12S and 16S mt-rRNA genes. Our HIA studies include a thorough classification of all rare variants reported in the literature as well as others obtained from studies performed in collaboration with physicians. HIA has also been used with non-mammalian mt-rRNA genes to elucidate how mitotypes influence the interaction of the individual and the environment. Regarding mt-tRNA variations, rapidly growing evidence shows that the spectrum of mutations causing mitochondrial disease might differ between the different mitochondrial haplogroups seen in human populations.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións en Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain.
| | - Paul M Smith
- Department of Paediatrics, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Joanna L Elson
- Biosciences Institute Newcastle, Newcastle University, Newcastle upon Tyne, UK.
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
28
|
Liu C, Lou X, Lyu J, Wang J, Xu Y. Prenatal Diagnosis and Preimplantation Genetic Diagnosis. CLINICAL MOLECULAR DIAGNOSTICS 2021:769-800. [DOI: 10.1007/978-981-16-1037-0_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2020; 595:1025-1061. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria control life and death in eukaryotic cells. Harboring a unique circular genome, a by-product of an ancient endosymbiotic event, mitochondria maintains a specialized and evolutionary divergent protein synthesis machinery, the mitoribosome. Mitoribosome biogenesis depends on elements encoded in both the mitochondrial genome (the RNA components) and the nuclear genome (all ribosomal proteins and assembly factors). Recent cryo-EM structures of mammalian mitoribosomes have illuminated their composition and provided hints regarding their assembly and elusive mitochondrial translation mechanisms. A growing body of literature involves the mitoribosome in inherited primary mitochondrial disorders. Mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors impede mitoribosome biogenesis, causing protein synthesis defects that lead to respiratory chain failure and mitochondrial disorders such as encephalo- and cardiomyopathy, deafness, neuropathy, and developmental delays. In this article, we review the current fundamental understanding of mitoribosome assembly and function, and the clinical landscape of mitochondrial disorders driven by mutations in mitoribosome components and assembly factors, to portray how basic and clinical studies combined help us better understand both mitochondrial biology and medicine.
Collapse
Affiliation(s)
- Alberto Ferrari
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| | - Samuel Del'Olio
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
30
|
Cui L, Zheng J, Zhao Q, Chen JR, Liu H, Peng G, Wu Y, Chen C, He Q, Shi H, Yin S, Friedman RA, Chen Y, Guan MX. Mutations of MAP1B encoding a microtubule-associated phosphoprotein cause sensorineural hearing loss. JCI Insight 2020; 5:136046. [PMID: 33268592 PMCID: PMC7714412 DOI: 10.1172/jci.insight.136046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology underlying spiral ganglion cell defect–induced deafness remains elusive. Using the whole exome sequencing approach, in combination with functional assays and a mouse disease model, we identified the potentially novel deafness-causative MAP1B gene encoding a highly conserved microtubule-associated protein. Three novel heterozygous MAP1B mutations (c.4198A>G, p.1400S>G; c.2768T>C, p.923I>T; c.5512T>C, p.1838F>L) were cosegregated with autosomal dominant inheritance of nonsyndromic sensorineural hearing loss in 3 unrelated Chinese families. Here, we show that MAP1B is highly expressed in the spiral ganglion neurons in the mouse cochlea. Using otic sensory neuron–like cells, generated by pluripotent stem cells from patients carrying the MAP1B mutation and control subject, we demonstrated that the p.1400S>G mutation caused the reduced levels and deficient phosphorylation of MAP1B, which are involved in the microtubule stability and dynamics. Strikingly, otic sensory neuron–like cells exhibited disturbed dynamics of microtubules, axonal elongation, and defects in electrophysiological properties. Dysfunctions of these derived otic sensory neuron–like cells were rescued by genetically correcting MAP1B mutation using CRISPR/Cas9 technology. Involvement of MAP1B in hearing was confirmed by audiometric evaluation of Map1b heterozygous KO mice. These mutant mice displayed late-onset progressive sensorineural hearing loss that was more pronounced in the high frequencies. The spiral ganglion neurons isolated from Map1b mutant mice exhibited the deficient phosphorylation and disturbed dynamics of microtubules. Map1b deficiency yielded defects in the morphology and electrophysiology of spiral ganglion neurons, but it did not affect the morphologies of cochlea in mice. Therefore, our data demonstrate that dysfunctions of spiral ganglion neurons induced by MAP1B deficiency caused hearing loss. Dysfunctions of spiral ganglion neurons caused by Map1b deficiency leads to sensorineural hearing loss.
Collapse
Affiliation(s)
- Limei Cui
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Qiong Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Rong Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Guanghua Peng
- Deaprtment of Otorhinolaryngology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yue Wu
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Chao Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Haosong Shi
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rick A Friedman
- Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Mitochondrial dysfunction underlying sporadic inclusion body myositis is ameliorated by the mitochondrial homing drug MA-5. PLoS One 2020; 15:e0231064. [PMID: 33264289 PMCID: PMC7710105 DOI: 10.1371/journal.pone.0231064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/25/2020] [Indexed: 11/19/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most common idiopathic inflammatory myopathy, and several reports have suggested that mitochondrial abnormalities are involved in its etiology. We recruited 9 sIBM patients and found significant histological changes and an elevation of growth differential factor 15 (GDF15), a marker of mitochondrial disease, strongly suggesting the involvement of mitochondrial dysfunction. Bioenergetic analysis of sIBM patient myoblasts revealed impaired mitochondrial function. Decreased ATP production, reduced mitochondrial size and reduced mitochondrial dynamics were also observed in sIBM myoblasts. Cell vulnerability to oxidative stress also suggested the existence of mitochondrial dysfunction. Mitochonic acid-5 (MA-5) increased the cellular ATP level, reduced mitochondrial ROS, and provided protection against sIBM myoblast death. MA-5 also improved the survival of sIBM skin fibroblasts as well as mitochondrial morphology and dynamics in these cells. The reduction in the gene expression levels of Opa1 and Drp1 was also reversed by MA-5, suggesting the modification of the fusion/fission process. These data suggest that MA-5 may provide an alternative therapeutic strategy for treating not only mitochondrial diseases but also sIBM.
Collapse
|
32
|
Mohamed WKE, Arnoux M, Cardoso THS, Almutery A, Tlili A. Mitochondrial mutations in non-syndromic hearing loss at UAE. Int J Pediatr Otorhinolaryngol 2020; 138:110286. [PMID: 32871514 DOI: 10.1016/j.ijporl.2020.110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Hearing loss (HL) is a common sensory disorder over the world, and it has been estimated that genetic etiology is involved in more than 50% of the cases in developed countries. Both nuclear and mitochondrial genes were reported as responsible for hereditary HL. Mitochondrial mutations leading to HL have so far been reported in the MT-RNR1 gene, mitochondrially encoded 12S rRNA. METHODS To study the molecular contribution of mitochondrial 12S rRNA gene mutations in UAE-HL, a cohort of 74 unrelated UAE patients with no gap junction protein beta 2 (GJB2) mutations were selected for mitochondrial 12S rRNA gene mutational screening using Sanger sequencing and whole-exome sequencing. Detected DNA variants were analyzed by bioinformatics tools to predict their pathogenic effects. RESULTS Our analysis revealed the presence of two known deafness mutations; m.669T > C and m.827A > G in two different deaf individuals. Furthermore, whole-exome sequencing was done for these two patients and showed the absence of any nuclear mutations. Our study supports the pathogenic effect of the m.669T > C and m.827A > G mutations and showed that mitochondrial mutations have a contribution of 2.7% in our cohort. CONCLUSIONS This is the first report of mtDNA mutations in the UAE which revealed that both variants m.669T > C and m.827A > G should be included in the molecular diagnosis of patients with maternally inherited HL in UAE.
Collapse
Affiliation(s)
- Walaa Kamal Eldin Mohamed
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Departament de Genètica I de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Thyago H S Cardoso
- Departamento de Bioquímica, Universidade Federal De Sao Paulo, Sao Paulo, Brazil
| | - Abdullah Almutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics & Stem Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics & Stem Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
33
|
Pérez-Amado CJ, Tovar H, Gómez-Romero L, Beltrán-Anaya FO, Bautista-Piña V, Dominguez-Reyes C, Villegas-Carlos F, Tenorio-Torres A, Alfaro-Ruíz LA, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors. Front Oncol 2020; 10:572954. [PMID: 33194675 PMCID: PMC7653098 DOI: 10.3389/fonc.2020.572954] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Studies have suggested a potential role of somatic mitochondrial mutations in cancer development. To analyze the landscape of somatic mitochondrial mutation in breast cancer and to determine whether mitochondrial DNA (mtDNA) mutational burden is correlated with overall survival (OS), we sequenced whole mtDNA from 92 matched-paired primary breast tumors and peripheral blood. A total of 324 germline variants and 173 somatic mutations were found in the tumors. The most common germline allele was 663G (12S), showing lower heteroplasmy levels in peripheral blood lymphocytes than in their matched tumors, even reaching homoplasmic status in several cases. The heteroplasmy load was higher in tumors than in their paired normal tissues. Somatic mtDNA mutations were found in 73.9% of breast tumors; 59% of these mutations were located in the coding region (66.7% non-synonymous and 33.3% synonymous). Although the CO1 gene presented the highest number of mutations, tRNA genes (T,C, and W), rRNA 12S, and CO1 and ATP6 exhibited the highest mutation rates. No specific mtDNA mutational profile was associated with molecular subtypes of breast cancer, and we found no correlation between mtDNA mutational burden and OS. Future investigations will provide insight into the molecular mechanisms through which mtDNA mutations and heteroplasmy shifting contribute to breast cancer development.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Tovar
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Laura Gómez-Romero
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | | | | | | | | | - Luis Alberto Alfaro-Ruíz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
34
|
Maeda Y, Sasaki A, Kasai S, Goto S, Nishio SY, Sawada K, Tokuda I, Itoh K, Usami SI, Matsubara A. Prevalence of the mitochondrial 1555 A>G and 1494 C>T mutations in a community-dwelling population in Japan. Hum Genome Var 2020; 7:27. [PMID: 33014404 PMCID: PMC7501278 DOI: 10.1038/s41439-020-00115-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/04/2023] Open
Abstract
Single nucleotide polymorphisms in mitochondrial DNA, such as mitochondrial 1555 A>G (m.1555 A>G) and mitochondrial 1494 C>T (m.1494 C>T), are known to be causative mutations of nonsyndromic hearing loss following exposure to aminoglycoside antibiotics. The prevalence of the m.1555 A>G and m.1494 C>T mutations has not been reported for the general population in Japan. The purpose of this study was to investigate the prevalence of m.1555 A>G and m.1494 C>T mutations in a community-dwelling population in Japan in order to prevent aminoglycoside-induced hearing loss. We recruited participants older than 20 years of age to the Iwaki Health Promotion Project in 2014, 2015, and 2016, resulting in the recruitment of 1,683 participants. For each participant, we performed a hearing test and a genetic test for the m.1555 A>G and m.1494 C>T mutations using the TaqMan genotyping method. The m.1555 A>G mutation was detected in only 1 of the 1,683 participants (0.06%). This carrier of the m.1555 A>G mutation was a 69-year-old male with bilateral, symmetric, and high-frequency hearing loss. We provided genetic counseling and distributed a drug card advising him to avoid the administration of aminoglycoside antibiotics. In contrast, the m.1494 C>T mutation was not detected in this study population.
Collapse
Affiliation(s)
- Yasunori Maeda
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akira Sasaki
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinichi Goto
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kaori Sawada
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Itoyo Tokuda
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
35
|
Screening for deafness-associated mitochondrial 12S rRNA mutations by using a multiplex allele-specific PCR method. Biosci Rep 2020; 40:224124. [PMID: 32400865 PMCID: PMC7263198 DOI: 10.1042/bsr20200778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial 12S rRNA A1555G and C1494T mutations are the major contributors to hearing loss. As patients with these mutations are sensitive to aminoglycosides, mutational screening for 12S rRNA is therefore recommended before the use of aminoglycosides. Most recently, we developed a novel multiplex allele-specific PCR (MAS-PCR) that can be used for detecting A1555G and C1494T mutations. In the present study, we employed this MAS-PCR to screen the 12S rRNA mutations in 500 deaf patients and 300 controls from 5 community hospitals. After PCR and electrophoresis, two patients with A1555G and one patient with C1494T were identified, this was consistent with Sanger sequence results. We further traced the origin of three Chinese pedigrees. Clinical evaluation revealed variable phenotypes of hearing loss including severity, age at onset and audiometric configuration in these patients. Sequence analysis of the mitochondrial genomes from matrilineal relatives suggested the presence of three evolutionarily conserved mutations: tRNACys T5802C, tRNALys A8343G and tRNAThr G15930A, which may result the failure in tRNAs metabolism and lead to mitochondrial dysfunction that was responsible for deafness. However, the lack of any functional variants in GJB2, GJB3, GJB6 and TRMU suggested that nuclear genes may not play active roles in deafness expression. Hence, aminoglycosides and mitochondrial genetic background may contribute to the clinical expression of A1555G/C1494T-induced deafness. Our data indicated that the MAS-PCR was a fast, convenience method for screening the 12S rRNA mutations, which was useful for early detection and prevention of mitochondrial deafness.
Collapse
|
36
|
Zheng J, Bai X, Xiao Y, Ji Y, Meng F, Aishanjiang M, Gao Y, Wang H, Fu Y, Guan MX. Mitochondrial tRNA mutations in 887 Chinese subjects with hearing loss. Mitochondrion 2020; 52:163-172. [PMID: 32169613 DOI: 10.1016/j.mito.2020.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
Abstract
Mutations in the mitochondrial tRNAs have been reported to be the important cause of hearing loss. However, only a few cases have been identified thus far and the prevalence of mitochondrial tRNA mutations in hearing-impaired patients remain unclear. Here we performed the mutational analysis of 22 mitochondrial tRNA genes in a large cohort of 887 Han Chinese subjects with hearing loss by Sanger sequencing. The systemic evaluation of putative pathogenic variants was further carried out by frequency in controls (<1%), phylogenetic analysis, structural analysisandfunctionalprediction. As a result, a total of 147 variants on 22 tRNA genes were identified. Among these, 39 tRNA mutations (10 pathogenic and 29 likely pathogenic) which absent or present <1% in 773 Chinese controls, localized at highly conserved nucleotides, or changed the modified nucleotides, could have potential structural alterations and functional significance, thereby considered to be deafness-associated mutations. Furthermore, 44 subjects carried one of these 39 pathogenic/likely pathogenic tRNA mutations with a total prevalence of 4.96%. However, the phenotypic variability and incomplete penetrance of hearing loss in pedigrees carrying these tRNA mutations indicate the involvement of modifier factors, such as nuclear encoded genes associated with mitochondrion biogenesis, mitochondrial haplotypes, epigenetic and environmental factors. Thus, our data provide the evidence that mitochondrial tRNA mutations are the important causes of hearing loss among Chinese population. These findings further increase our knowledge on the clinical relevance of tRNA mutations in the mitochondrial genome, and should be helpful to elucidate the pathogenesis of maternal hearing loss.
Collapse
Affiliation(s)
- Jing Zheng
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Bai
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Yun Xiao
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Maerhaba Aishanjiang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yinglong Gao
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haibo Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China.
| | - Yong Fu
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Department of Otorhinolaryngology Head and Neck Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
37
|
Favrelière S, Delaunay P, Lebreton JP, Rouby F, Atzenhoffer M, Lafay-Chebassier C, Pérault-Pochat MC. Drug-induced hearing loss: a case/non-case study in the French pharmacovigilance database. Fundam Clin Pharmacol 2020; 34:397-407. [PMID: 31912913 DOI: 10.1111/fcp.12533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 11/29/2022]
Abstract
Hearing loss is defined as a decrease in the ability to perceive sounds which can occur suddenly or gradually and affects one ear or both. It is related to various etiologies, in particular drugs. The identification of all drugs that could be associated with hearing loss is essential for the patients' life quality. The objective of our study was to identify signals of hearing loss involving drugs approved in the last 20 years. The occurrence in association with drugs known for their ototoxicity was also analyzed. We used a case/non-case method in the French Pharmacovigilance Database (FPVD). The cases were reports of hearing loss in the FPVD between January 2007 and August 2017. Non-cases were all reports over the same period. We calculated the reporting odds ratio (ROR) with 95% confidence intervals. Among the 555 reports of hearing loss, significant RORs were found for 68 drugs. The main therapeutic classes implicated were antineoplastic agents (n = 240), systemic anti-infective agents (n = 182), immunosuppressants (n = 42) loop diuretics (n = 26), and salicylate analgesics (n = 26). We found signals of hearing loss with azacitidine, vaccines and nevirapine, immunosuppressants such as leflunomide, and biotherapies such as panitumumab and vandetanib. Prescribers should be informed about the potential associations with all these drugs. The role of the pathology itself and the known ototoxic drugs that can be associated do not allow to conclude definitively. Audiograms for the early detection of hearing loss induced by drugs known to be ototoxic are rarely carried out. Preventive treatments exist and must be considered.
Collapse
Affiliation(s)
- Sylvie Favrelière
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Poitiers, 2 rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France
| | - Paul Delaunay
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Poitiers, 2 rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France
| | - Jean-Pascal Lebreton
- Department of Otorhinolaryngology - Head & Neck Surgery, University Hospital of Poitiers, 2, rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France
| | - Franck Rouby
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Marseille, 270 Boulevard Sainte Marguerite, 13009, Marseille, France
| | - Martine Atzenhoffer
- Department of Clinical Pharmacology and Pharmacovigilance, Hospices civils de Lyon, 69424, Lyon, France
| | - Claire Lafay-Chebassier
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Poitiers, 2 rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France.,INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques - LNEC, Université de Poitiers, Batiment B36, 1 rue Georges Bonnet, BP633, 86022, Poitiers Cedex, France
| | - Marie Christine Pérault-Pochat
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Poitiers, 2 rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France.,INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques - LNEC, Université de Poitiers, Batiment B36, 1 rue Georges Bonnet, BP633, 86022, Poitiers Cedex, France
| |
Collapse
|
38
|
Gong S, Wang X, Meng F, Cui L, Yi Q, Zhao Q, Cang X, Cai Z, Mo JQ, Liang Y, Guan MX. Overexpression of mitochondrial histidyl-tRNA synthetase restores mitochondrial dysfunction caused by a deafness-associated tRNAHis mutation. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49906-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Gong S, Wang X, Meng F, Cui L, Yi Q, Zhao Q, Cang X, Cai Z, Mo JQ, Liang Y, Guan MX. Overexpression of mitochondrial histidyl-tRNA synthetase restores mitochondrial dysfunction caused by a deafness-associated tRNA His mutation. J Biol Chem 2019; 295:940-954. [PMID: 31819004 DOI: 10.1074/jbc.ra119.010998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Indexed: 01/19/2023] Open
Abstract
The deafness-associated m.12201T>C mutation affects the A5-U68 base-pairing within the acceptor stem of mitochondrial tRNAHis The primary defect in this mutation is an alteration in tRNAHis aminoacylation. Here, we further investigate the molecular mechanism of the deafness-associated tRNAHis 12201T>C mutation and test whether the overexpression of the human mitochondrial histidyl-tRNA synthetase gene (HARS2) in cytoplasmic hybrid (cybrid) cells carrying the m.12201T>C mutation reverses mitochondrial dysfunctions. Using molecular dynamics simulations, we demonstrate that the m.12201T>C mutation perturbs the tRNAHis structure and function, supported by decreased melting temperature, conformational changes, and instability of mutated tRNA. We show that the m.12201T>C mutation-induced alteration of aminoacylation tRNAHis causes mitochondrial translational defects and respiratory deficiency. We found that the transfer of HARS2 into the cybrids carrying the m.12201T>C mutation raises the levels of aminoacylated tRNAHis from 56.3 to 75.0% but does not change the aminoacylation of other tRNAs. Strikingly, HARS2 overexpression increased the steady-state levels of tRNAHis and of noncognate tRNAs, including tRNAAla, tRNAGln, tRNAGlu, tRNALeu(UUR), tRNALys, and tRNAMet, in cells bearing the m.12201T>C mutation. This improved tRNA metabolism elevated the efficiency of mitochondrial translation, activities of oxidative phosphorylation complexes, and respiration capacity. Furthermore, HARS2 overexpression markedly increased mitochondrial ATP levels and membrane potential and reduced production of reactive oxygen species in cells carrying the m.12201T>C mutation. These results indicate that HARS2 overexpression corrects the mitochondrial dysfunction caused by the tRNAHis mutation. These findings provide critical insights into the pathophysiology of mitochondrial disease and represent a step toward improved therapeutic interventions for mitochondrial disorders.
Collapse
Affiliation(s)
- Shasha Gong
- Taizhou University Hospital, Taizhou University, Taizhou, Zhejiang 318000, China.,Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoqiong Wang
- Department of Otolaryngology, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, China.,Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Limei Cui
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiong Zhao
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiyi Cai
- Department of Otolaryngology, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California 92123
| | - Yong Liang
- Taizhou University Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China .,Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
40
|
Liu C, Wang A, Huang Y, Zhang Y, Ding H, Wu J, Du L, Yang J, Mai F, Zeng Y, Liu L, Zhao X, Zhang C, Yin A. Development of a community-based hearing loss prevention and control service model in Guangdong, China. BMC Public Health 2019; 19:1601. [PMID: 31783833 PMCID: PMC6884879 DOI: 10.1186/s12889-019-7910-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022] Open
Abstract
Background Hearing loss is a prevalent sensorineural disorder and a major public health issue in China. It is suggested that half of all cases of hearing loss can be prevented through public health measures. However, national strategies for hearing healthcare are not implemented well in Guangdong and some other regions in China. Methods To develop a community-based service model for the prevention and control of hearing loss in Guangdong, we integrated the model with multiple maternal and child healthcare models, and set up a series of clinical programs along with an optimum timeline for the preventive measures and intervention treatments to take place. A total of 36,090 families were enrolled in the study, including 358 high-risk families and 35,732 general-risk families. Results The study lasted for 6.5 years, and 30,769 children were born during that period. A total of 42 children were born with congenital deafness; 17 of them were born into families with advanced genetic risks for hearing loss, 9 were born with specific medical conditions, and 16 were born into general-risk families. About one third of them were diagnosed prenatally, others were diagnosed within 3 months of age, and 72% of them received interventions initiated before 6 months of age. 13 children presented with delayed hearing loss; 9 of them were diagnosed with delayed hereditary sensorineural deafness in neonatal period, and 4 were diagnosed within 3 months after onset. Timely interventions were provided to them, with appropriate referrals and follow-ups. Beside these, 80 families were identified with genetic susceptibility to aminoglycoside ototoxicity. Detailed medication guides were provided to prevent aminoglycoside-induced hearing loss. Moreover, through health education and risk reduction strategies, the prevalence of TORCH syndrome decreased from 10.7 to 5.2 per 10,000. Additionaly, the awareness rates of health knowledge about hearing healthcare significantly increased in the cohort. Conclusions Adapting national strategies for local or district projects could be an important step in implementing hearing loss prevention measures, and developing community-based service models could be of importance in carrying them out.
Collapse
Affiliation(s)
- Chang Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Anshi Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Yanlin Huang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Yan Zhang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Hongke Ding
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Jing Wu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Li Du
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Jie Yang
- Department of Neonatolog, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Fei Mai
- Department of ENT, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Yukun Zeng
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Ling Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Xin Zhao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Changbin Zhang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China. .,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
| |
Collapse
|
41
|
Zhang M, Han Y, Zhang F, Bai X, Wang H. Mutation spectrum and hotspots of the common deafness genes in 314 patients with nonsyndromic hearing loss in Heze area, China. Acta Otolaryngol 2019; 139:612-617. [PMID: 31107121 DOI: 10.1080/00016489.2019.1609699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Although, half of the childhood deafness is genetically related, the molecular etiology of hearing impairment has not been demonstrated explicitly. In addition, the mutation spectrums of deafness genes vary among different areas and ethnics. Objectives: To know more about the mutation spectrums of deafness genes in China, we tested the mutations of three common deafness genes (GJB2, SLC26A4, and mtDNA12SrRNA) in a particular deafness population from Heze area. Materials and methods: SNPscan technology was utilized to perform mutation screening for these three common deafness genes in 314 nonsyndromic deaf patients from Heze area. Results: 38.21% (120/314) of these 314 patients with nonsyndromic hearing loss from Heze area were related to the genetic defects in these three deafness genes, including 20.06% (63/314) for GJB2, 15.29% (48/314) for SLC26A4, and 2.87% (9/314) for mtDNA12SrRNA. Furthermore, the mutation hotspots in three deaf genes were GJB2 235delC, SLC26A4 c.919-2A > G, and mtDNA12SrRNA 1555A > G, respectively, distinct from hotspots reported in other regions worldwide. Conclusion: Our results disclosed a special and unique mutation spectrum of these three common deaf genes in Heze deaf population.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, P.R. China
- Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, P.R. China
- Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
| | - Fengguo Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, P.R. China
- Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
| | - Xiaohui Bai
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, P.R. China
- Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, P.R. China
- Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
| |
Collapse
|
42
|
Nguyen T, Jeyakumar A. Genetic susceptibility to aminoglycoside ototoxicity. Int J Pediatr Otorhinolaryngol 2019; 120:15-19. [PMID: 30743189 DOI: 10.1016/j.ijporl.2019.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/27/2018] [Accepted: 02/01/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Aminoglycosides are a well-known clinically relevant antibiotic family used to treat bacterial infections in humans and animals and can produce toxic side effects. Aminoglycoside-induced hearing loss (HL) has been shown to have a genetic susceptibility. Mitochondrial DNA mutations have been implicated in inherited and acquired hearing impairment. OBJECTIVE Literature review of genetic mutations associated with aminoglycoside-induced ototoxicity. METHODS PubMed was accessed from 1993 to 2017 using the search terms "aminoglycoside, genetic, ototoxicity, hearing loss". Exclusion criteria consisted of a literature in a language other than English, uncompleted or ongoing studies, literature with non-hearing related diseases, literature on ototoxicity due to cisplatin/carboplatin based chemotherapy, literature on ototoxicity from loop diuretics, animal studies, literature studying oto-protective agents, and literature without documented aminoglycoside exposure. RESULTS 108 articles were originally identified, and 25 articles were included in our review. Mitochondrial 12S rRNA mutations were identified in all 25 studies in a total of 220 patients. Eight studies identified A1555G mutation as primary genetic factor underlying HL in cases of aminoglycoside-induced ototoxicity. The next most common mutation identified was C1494T. DISCUSSION Mitochondrial 12s rRNA mutation A1555G was present in American, Chinese, Arab-Israeli, Spanish and Mongolian ethnicities. All mutations leading to aminoglycoside ototoxicity were mitochondrial mutations. CONCLUSIONS Consideration of preexisting genetic defects may be valuable in treatments involving aminoglycosides. In particular populations such as those of Chinese origin, clinicians should continue to consider the increased susceptibility to aminoglycosides.
Collapse
Affiliation(s)
- Tien Nguyen
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Anita Jeyakumar
- Division of Otolaryngology, Department of Surgery, Akron Childrens Hospital, Akron, OH, 44308, USA.
| |
Collapse
|
43
|
Khatami S, Rokni-Zadeh H, Mohsen-Pour N, Biglari A, Changi-Ashtiani M, Shahrooei M, Shahani T. Whole exome sequencing identifies both nuclear and mitochondrial variations in an Iranian family with non-syndromic hearing loss. Mitochondrion 2019; 46:321-325. [DOI: 10.1016/j.mito.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 05/12/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
|
44
|
A rapid improved multiplex ligation detection reaction method for the identification of gene mutations in hereditary hearing loss. PLoS One 2019; 14:e0215212. [PMID: 30973918 PMCID: PMC6459514 DOI: 10.1371/journal.pone.0215212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/28/2019] [Indexed: 12/27/2022] Open
Abstract
Hearing loss (HL) is a common sensory disorder. More than half of HL cases can be attributed to genetic causes. There is no effective therapy for genetic HL at present, early diagnosis to reduce the incidence of genetic HL is important for clinical intervention in genetic HL. Previous studies have identified 111 nonsyndromic hearing loss genes. The most frequently mutated genes identified in NSHL patients in China include GJB2, SLC26A4, and the mitochondrial gene MT-RNR1. It is important to develop HL gene panels in Chinese population, which allow for etiologic diagnosis of both SHL and NSHL. In this study, a total of 220 unrelated Han Chinese patients with bilateral progressive SNHL and 50 unrelated healthy controls were performed Single nucleotide polymorphism (SNP) genotyping using an improved multiplex ligation detection reaction (iMLDR) technique, is to simultaneously detect a total of 32 mutations in ten HL genes, covering all currently characterized mutations involved in the etiology of nonsyndromic or syndromic hearing loss in the Chinese population. The 49 positive samples with known mutations were successfully detected using the iMLDR Technique. For 171 SNHL patients, gene variants were found in 57 cases (33.33%), among which, 30 patients carried mutations in GJB2, 14 patients carried mutations in SLC26A4, seven patients carried mutations in GJB3, and six patients carried mutations in MT-RNR1. The molecular etiology of deafness was confirmed in 12.9% (22/171) of patients carried homozygous variants. These results were verified by Sanger sequencing, indicating that the sensitivity and specificity of the iMLDR technique was 100%. We believe that the implementation of this population-specific technology at an efficient clinical level would have great value in HL diagnosis and treatment.
Collapse
|
45
|
Ming L, Wang Y, Lu W, Sun T. A Mutational Analysis of GJB2, SLC26A4, MT-RNA1, and GJB3 in Children with Nonsyndromic Hearing Loss in the Henan Province of China. Genet Test Mol Biomarkers 2018; 23:51-56. [PMID: 30589569 DOI: 10.1089/gtmb.2018.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hearing impairment is one of the most common neurosensory disorders afflicting humans. Approximately half of all cases have a genetic etiology. The distribution and frequency of genetic mutations that cause deafness differ significantly by ethnic group and geographic region. METHODS 130 sporadic nonsyndromic hearing loss (NSHL) children from the Henan province were subjected to microarray-based mutation detection. Nine pathogenic mutations were detected in four of the most common deafness-related genes (GJB2, GJB3, SLC26A4, and MT-RNA1). RESULTS Fifty percent of the analyzed patients (65/130) were shown to have genetic defects known to be related to deafness. Slightly >30% (41/130) had biallelic pathogenic mutations. One patient had pathogenic mutations in their mitochondrial genes (MT-RNA1); no mutations were detected in the GJB3 gene. Twenty-three (17.69%) patients were carriers of a single mutation in a recessive gene; these findings alone, however, cannot be interpreted as a cause of hearing loss. Utilizing this molecular strategy, we were able to arrive at a conclusive diagnosis for 42 of the NSHL children. CONCLUSION Genetic factors play a major role in sporadic NSHL patients from the Henan province, but it is clear that our screen needs to be expanded to include additional genes and alleles. Screening of potential pathogenic genes is important for patient risk assessment.
Collapse
Affiliation(s)
- Liang Ming
- 1 Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Yangxia Wang
- 1 Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Wei Lu
- 2 Department of Otology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Ting Sun
- 1 Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| |
Collapse
|
46
|
Igumnova V, Veidemane L, Vīksna A, Capligina V, Zole E, Ranka R. The prevalence of mitochondrial mutations associated with aminoglycoside-induced deafness in ethnic Latvian population: the appraisal of the evidence. J Hum Genet 2018; 64:199-206. [PMID: 30523288 DOI: 10.1038/s10038-018-0544-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 11/09/2022]
Abstract
Aminoglycosides are potent antibiotics which are used to treat severe gram-negative infections, neonatal sepsis, and multidrug-resistant tuberculosis. Ototoxicity is a well-known side effect of aminoglycosides, and a rapid, profound, and irreversible hearing loss can occur in predisposed individuals. MT-RNR1 gene encoding the mitochondrial ribosomal 12S subunit is a hot spot for aminoglycoside-induced hearing loss mutations, however, a variability in the nature and frequency of genetic changes in different populations exists. The objective of this study was to analyze MT-RNR1 gene mutations in a Baltic-speaking Latvian population, and to estimate the prevalence of such genetic changes in the population-specific mitochondrial haplogroups. In the cohort of 191 ethnic non-related Latvians, the presence of two deafness-associated mutations, m.1555A>G and m.827A>G, three potentially pathogenic variations, m.961insC(n), m.961T>G and m.951G>A, and one unknown substitution, m961T>A was detected, and the aggregate frequency of all variants was 7.3%. All genetic changes were detected in samples belonged to the haplogroups H, U, T, and J. The presence of several aminoglycoside ototoxicity-related MT-RNR1 gene mutations in Baltic-speaking Latvian population indicates the necessity to include ototoxicity-related mutation analysis in the future studies in order to determine the feasibility of DNA screening for patients before administration of aminoglycoside therapy.
Collapse
Affiliation(s)
- Viktorija Igumnova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia.,Department of Pharmaceutical Chemistry, Rīga Stradinš University, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Lauma Veidemane
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia
| | - Anda Vīksna
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Stopiņi region, Upeslejas, LV-2118, Latvia
| | - Valentina Capligina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia
| | - Egija Zole
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia. .,Department of Pharmaceutical Chemistry, Rīga Stradinš University, Dzirciema Str. 16, Riga, LV-1007, Latvia.
| |
Collapse
|
47
|
Xue L, Chen Y, Tang X, Yao J, Huang H, Wang M, Ye S, Wang M, Guan MX. A deafness-associated mitochondrial DNA mutation altered the tRNA Ser(UCN) metabolism and mitochondrial function. Mitochondrion 2018; 46:370-379. [PMID: 30336267 DOI: 10.1016/j.mito.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/09/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) have been associated with deafness and their pathophysiology remains poorly understood. In this study, we investigated the pathogenic mechanism of deafness-associated 7505A > G variant in the mitochondrial tRNASer(UCN). The m.7505A > G variant affected the highly conserved adenine at position 11 (A11), disrupted the highly conserved A11-U24 base-pairing of DHU stem of tRNASer(UCN) and introduced a tertiary base pairing (G11-C56) with the C56 in the TΨC loop. We therefore hypothesized that the m.7505A > G variant altered both structure and function of tRNASer(UCN). We demonstrated that the m.7505A > G variant perturbed the conformation and stability of tRNASer(UCN), as indicated by an increased melting temperature and electrophoretic mobility of the mutated tRNA compared with the wild type molecule. Using the cybrids constructed by transferring mitochondria from the Chinese family into mitochondrial DNA (mtDNA)-less cells, we demonstrated the m.7505A > G variant led to significantly decreased steady-state levels of tRNASer(UCN) in the mutant cybrids, as compared with those of control cybrids. The aberrant tRNASer(UCN) metabolism resulted in the variable decreases in mtDNA-encoded polypeptides in the mutant cybrids. Furthermore, we demonstrated that the m.7505A > G variant decreased the activities of mitochondrial respiratory complexes I, III and IV, markedly diminished mitochondrial ATP levels and membrane potential, and increased the production of reactive oxygen species in the mutant cybrids. These results demonstrated that the m.7505A > G variant affected both structure and function of tRNASer(UCN) and consequently altered mitochondrial function. Our findings highlighted critical insights into the pathophysiology of maternally inherited deafness, which is manifested by the aberrant tRNA metabolism.
Collapse
Affiliation(s)
- Ling Xue
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Yaru Chen
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China; Institute of Genetics, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310058, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Juan Yao
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Huimin Huang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Min Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Shixin Ye
- Laboratory of Computational and Quantitative Biology, Université Pierre-et-Marie-Curie, CNRS, Paris, France
| | - Meng Wang
- Institute of Genetics, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310058, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China; Institute of Genetics, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310058, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China; Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, China; Joint Institute of Genetics and Genomic Medicine, University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
48
|
Cui Y, He DJ. Mitochondrial tRNAIle A4317G mutation may be associated with hearing impairment in a Han Chinese family. Mol Med Rep 2018; 18:5159-5165. [PMID: 30272361 DOI: 10.3892/mmr.2018.9519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/31/2018] [Indexed: 11/05/2022] Open
Abstract
Mutations in the mitochondrial genome have been identified to be associated with hearing loss. The aim of the present study was to investigate the role of mitochondrial DNA (mtDNA) variants in a Chinese family with hearing loss. Polymerase chain reaction (PCR)‑Sanger sequencing was used to screen the mtDNA variants and nuclear genes [gap junction protein β2 (GJB2) and transfer (t)RNA 5‑methylaminomethyle‑2‑thiouridylate methyltransferase (TRMU)]; in addition, the mtDNA copy number was determined by quantitative PCR. The present study characterized the molecular features of a Chinese family with maternally‑inherited hearing loss and identified mtDNA A1555G and tRNAIle A4317G mutations. The A4317G mutation was localized at the TΨC arm of tRNAIle (position 59) and created a novel base‑pairing (G59‑C54), which may alter the secondary structure of the tRNA. In addition, patients carrying the A4317G mutation exhibited a lower mtDNA copy number compared with the controls, suggesting that this mutation may cause mitochondrial dysfunction that is responsible for the deafness. However, no functional variants in the GJB2 and TRMU genes were detected. mtDNA A1555G and A4317G mutations may contribute to the clinical manifestation of hearing loss in this family.
Collapse
Affiliation(s)
- Yong Cui
- Department of Otolaryngology, The PLA 254 Hospital, Tianjin 300142, P.R. China
| | - Duan-Jun He
- Department of Otolaryngology, The PLA 254 Hospital, Tianjin 300142, P.R. China
| |
Collapse
|
49
|
Moassass F, Al-Halabi B, Nweder MS, Al-Achkar W. Investigation of the mtDNA mutations in Syrian families with non-syndromic sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2018; 113:110-114. [PMID: 30173967 DOI: 10.1016/j.ijporl.2018.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Hearing loss is a common sensory disorder, and at least 50% of cases are due to a genetic etiology. Several mitochondrial DNA mutations (mtDNA) have been reported to be associated with nonsyndromic hearing loss (NSHL) in different population. However, There is no previous available data about the frequency of mtDNA mutations as etiology for deafness in Syrian. The aim of present study is to investigate the incidence of common mt DNA mutations in our families with congenital hearing loss and not related to the ototoxicity or aminoglycosides. METHODS A total of 50 deaf families were enrolled in the present study. Direct sequencing and PCR-RFLP methods were employed to detect seven mt DNA mutations, including A1555G, A3243G, C1494T, G3316A, T7510C, A7445G, and 7472insC. RESULTS Our results revealed a high prevalence of mt DNA mutation (10%) in deaf families (5/50). In surprising, the unexpected mutations were observed. The G3316A mutation was found in 2 families as homoplasmic genotype. Also, we found the homoplasmic and heteroplasmic genotype for the C1494T mutation in two families. In one family the heteroplasmic genotype for T7510C mutation was observed; this family harbor 35delG mutation in GJB2 gene. None of the common mtDNA mutations (A1555G, A3243G) and other mutations (A7445G, 7472insC) were detected here. CONCLUSION Our findings indicate to significant contribution of the mt DNA mutations in our families with NSHL. The presented data is the first report about mt DNA and it will improve the genetic counseling of hearing impaired in Syrian families.
Collapse
Affiliation(s)
- Faten Moassass
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Bassel Al-Halabi
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Mohamad Sayah Nweder
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Walid Al-Achkar
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria.
| |
Collapse
|
50
|
Establishment of a Gene Detection System for Hotspot Mutations of Hearing Loss. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6828306. [PMID: 29707576 PMCID: PMC5863321 DOI: 10.1155/2018/6828306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/24/2018] [Indexed: 12/02/2022]
Abstract
Hearing loss is an etiologically heterogeneous trait with a high incidence in China. Though conventional newborn hearing screening program has been widely adopted, gene detection can significantly improve the means of early discovering genetic risk factors. Thus, simple and efficient methods with higher sensitivity and lower cost for detecting hotspot mutations of hearing loss are urgently requested. Here we established a mutation detection system based on multiple fluorescent probe technique, which can detect and genotype nine hotspot mutations of four prominent hearing loss-related genes in two reactions on a four-channel real-time PCR instrument, including GJB2 (rs750188782, rs80338943, rs1110333204, and rs80338939), GJB3 (rs74315319), SLC26A4 (rs111033313 and rs121908362), and mtDNA 12S rRNA (rs267606617 and rs267606619). This system is with high sensitivity that enables detecting as low as 10 DNA copies samples per reaction. A comparison study in 268 clinical samples showed that the detection system had 100% concordance to Sanger sequencing. Besides, blood and saliva samples can be directly detected without DNA extraction process, which greatly simplifies the manipulation. The new system with high sensitivity, accuracy, and specimen type compatibility can be expectedly a reliable tool in clinical application.
Collapse
|