1
|
Kalra J. Crosslink between mutations in mitochondrial genes and brain disorders: implications for mitochondrial-targeted therapeutic interventions. Neural Regen Res 2023. [PMID: 35799515 PMCID: PMC9241418 DOI: 10.4103/1673-5374.343884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
2
|
Maurya SK, Gupta S, Bakshi A, Kaur H, Jain A, Senapati S, Baghel MS. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J Neurosci Res 2022; 100:1845-1861. [PMID: 35856508 DOI: 10.1002/jnr.25110] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.
Collapse
Affiliation(s)
| | - Suchi Gupta
- Stem Cell Facility, All India Institute of Medical Sciences, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
3
|
Calderón Guzmán D, Osnaya Brizuela N, Ortiz Herrera M, Juárez Olguín H, Veloz Corona Q, Sanchez Reyes L, Valenzuela Peraza A, Barragán Mejía G. Oseltamivir induces favorable response on oxidative damage in the brain of rats treated with Bezafibrate. Int J Neurosci 2022; 132:574-581. [DOI: 10.1080/00207454.2020.1828882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neuroscience, National Institute of Pediatrics (NIP), Mexico City, Mexico
| | - Norma Osnaya Brizuela
- Laboratory of Neuroscience, National Institute of Pediatrics (NIP), Mexico City, Mexico
| | | | - Hugo Juárez Olguín
- Laboratory of Pharmacology, NIP and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Quetzalli Veloz Corona
- Laboratory of Pharmacology, NIP and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lulu Sanchez Reyes
- Laboratory of Pharmacology, NIP and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | | |
Collapse
|
4
|
Frambach SJ, de Haas R, Smeitink JA, Russel FG, Schirris TJ. Restoring cellular NAD(P)H levels by PPARα and LXRα stimulation to improve mitochondrial complex I deficiency. Life Sci 2022; 300:120571. [DOI: 10.1016/j.lfs.2022.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
5
|
Rosenkranz SC, Shaposhnykov AA, Träger S, Engler JB, Witte ME, Roth V, Vieira V, Paauw N, Bauer S, Schwencke-Westphal C, Schubert C, Bal LC, Schattling B, Pless O, van Horssen J, Freichel M, Friese MA. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. eLife 2021; 10:61798. [PMID: 33565962 PMCID: PMC7993994 DOI: 10.7554/elife.61798] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
While transcripts of neuronal mitochondrial genes are strongly suppressed in central nervous system inflammation, it is unknown whether this results in mitochondrial dysfunction and whether an increase of mitochondrial function can rescue neurodegeneration. Here, we show that predominantly genes of the electron transport chain are suppressed in inflamed mouse neurons, resulting in impaired mitochondrial complex IV activity. This was associated with post-translational inactivation of the transcriptional co-regulator proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). In mice, neuronal overexpression of Ppargc1a, which encodes for PGC-1α, led to increased numbers of mitochondria, complex IV activity, and maximum respiratory capacity. Moreover, Ppargc1a-overexpressing neurons showed a higher mitochondrial membrane potential that related to an improved calcium buffering capacity. Accordingly, neuronal deletion of Ppargc1a aggravated neurodegeneration during experimental autoimmune encephalomyelitis, while neuronal overexpression of Ppargc1a ameliorated it. Our study provides systemic insights into mitochondrial dysfunction in neurons during inflammation and commends elevation of mitochondrial activity as a promising neuroprotective strategy.
Collapse
Affiliation(s)
- Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Artem A Shaposhnykov
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Träger
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maarten E Witte
- Department of Pathology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Vanessa Roth
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nanne Paauw
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Celina Schwencke-Westphal
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Schubert
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Can Bal
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Schattling
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Pless
- Fraunhofer ITMP ScreeningPort, Hamburg, Germany
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Mitochondrial Diseases: Hope for the Future. Cell 2020; 181:168-188. [PMID: 32220313 DOI: 10.1016/j.cell.2020.02.051] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/15/2023]
Abstract
Mitochondrial diseases are clinically heterogeneous disorders caused by a wide spectrum of mutations in genes encoded by either the nuclear or the mitochondrial genome. Treatments for mitochondrial diseases are currently focused on symptomatic management rather than improving the biochemical defect caused by a particular mutation. This review focuses on the latest advances in the development of treatments for mitochondrial disease, both small molecules and gene therapies, as well as methods to prevent transmission of mitochondrial disease through the germline.
Collapse
|
7
|
Zhang L, Zhang Z, Khan A, Zheng H, Yuan C, Jiang H. Advances in drug therapy for mitochondrial diseases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:17. [PMID: 32055608 PMCID: PMC6995731 DOI: 10.21037/atm.2019.10.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022]
Abstract
Mitochondrial diseases are a group of clinically and genetically heterogeneous disorders driven by oxidative phosphorylation dysfunction of the mitochondrial respiratory chain which due to pathogenic mutations of mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). Recent progress in molecular genetics and biochemical methodologies has provided a better understanding of the etiology and pathogenesis of mitochondrial diseases, and this has expanded the clinical spectrum of this conditions. But the treatment of mitochondrial diseases is largely symptomatic and thus does not significantly change the course of the disease. Few clinical trials have led to the design of drugs aiming at enhancing mitochondrial function or reversing the consequences of mitochondrial dysfunction which are now used in the clinical treatment of mitochondrial diseases. Several other drugs are currently being evaluated for clinical management of patients with mitochondrial diseases. In this review, the current status of treatments for mitochondrial diseases is described systematically, and newer potential treatment strategies for mitochondrial diseases are also discussed.
Collapse
Affiliation(s)
- Lufei Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoyong Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aisha Khan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hui Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Buonvicino D, Ranieri G, Pratesi S, Guasti D, Chiarugi A. Neuroimmunological characterization of a mouse model of primary progressive experimental autoimmune encephalomyelitis and effects of immunosuppressive or neuroprotective strategies on disease evolution. Exp Neurol 2019; 322:113065. [PMID: 31536728 DOI: 10.1016/j.expneurol.2019.113065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
Progressive multiple sclerosis (PMS) is a devastating disorder sustained by neuroimmune interactions still wait to be identified. Recently, immune-independent, neural bioenergetic derangements have been hypothesized as causative of neurodegeneration in PMS patients. To gather information on the immune and neurodegenerative components during PMS, in the present study we investigated the molecular and cellular events occurring in a Non-obese diabetic (NOD) mouse model of experimental autoimmune encephalomyelitis (EAE). In these mice, we also evaluated the effects of clinically-relevant immunosuppressive (dexamethasone) or bioenergetic drugs (bezafibrate and biotin) on functional, immune and neuropathological parameters. We found that immunized NOD mice progressively accumulated disability and severe neurodegeneration in the spinal cord. Unexpectedly, although CD4 and CD8 lymphocytes but not B or NK cells infiltrate the spinal cord linearly with time, their suppression by different dexamethasone treatment schedules did not affect disease progression. Also, the spreading of the autoimmune response towards additional immunogenic myelin antigen occurred neither in the periphery nor in the CNS of EAE mice. Conversely, we found that altered mitochondrial morphology, reduced contents of mtDNA and decreased transcript levels for respiratory complex subunits occurred at early disease stages and preceded axonal degeneration within spinal cord columns. However, the mitochondria boosting drugs, bezafibrate and biotin, were unable to reduce disability progression. Data suggest that EAE NOD mice recapitulate some features of PMS. Also, by showing that bezafibrate or biotin do not affect progression in NOD mice, our study suggests that this model can be harnessed to anticipate experimental information of relevance to innovative treatments of PMS.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Sara Pratesi
- Centre of Immunological Research DENOTHE, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Heaton R, Millichap L, Saleem F, Gannon J, Begum G, Hargreaves IP. Current biochemical treatments of mitochondrial respiratory chain disorders. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1638250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Robert Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Lauren Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Fatima Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jennifer Gannon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gemma Begum
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
10
|
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 2019; 25:816-824. [PMID: 30889315 PMCID: PMC6566063 DOI: 10.1111/cns.13116] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria not only supply the energy for cell function, but also take part in cell signaling. This review describes the dysfunctions of mitochondria in aging and neurodegenerative diseases, and the signaling pathways leading to mitochondrial biogenesis (including PGC‐1 family proteins, SIRT1, AMPK) and mitophagy (parkin‐Pink1 pathway). Understanding the regulation of these mitochondrial pathways may be beneficial in finding pharmacological approaches or lifestyle changes (caloric restrict or exercise) to modulate mitochondrial biogenesis and/or to activate mitophagy for the removal of damaged mitochondria, thus reducing the onset and/or severity of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Science, Soochow University, Suzhou, China.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erin Xu
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Fang Lin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Bezafibrate In Vivo Administration Prevents 3-Methylglutaric Acid-Induced Impairment of Redox Status, Mitochondrial Biogenesis, and Neural Injury in Brain of Developing Rats. Neurotox Res 2019; 35:809-822. [DOI: 10.1007/s12640-019-00019-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022]
|
12
|
Abstract
Mitochondrial diseases are a clinically and genetically heterogeneous group of disorders. The underlying dysfunction of the mitochondrial electron transport chain and oxidative phosphorylation is caused by variants of genes encoding mitochondrial proteins. Despite substantial advances in the understanding of the mechanism of these diseases, there are still no satisfactory therapies available. Therapeutic strategies include the use of antioxidants, inducers of mitochondrial biogenesis, enhancers of electron transfer chain function, energy buffers, amino acids restoring NO production, nucleotide bypass therapy, liver transplantation, and gene therapy. Although there are some promising projects underway, to date satisfactory therapies are missing.
Collapse
Affiliation(s)
- Florian B Lagler
- Institute for Inborn Errors of Metabolism and Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
13
|
Götz A, Lehti M, Donelan E, Striese C, Cucuruz S, Sachs S, Yi CX, Woods SC, Wright SD, Müller TD, Tschöp MH, Gao Y, Hofmann SM. Circulating HDL levels control hypothalamic astrogliosis via apoA-I. J Lipid Res 2018; 59:1649-1659. [PMID: 29991652 PMCID: PMC6121940 DOI: 10.1194/jlr.m085456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Meta-inflammation of hypothalamic areas governing energy homeostasis has recently emerged as a process of potential pathophysiological relevance for the development of obesity and its metabolic sequelae. The current model suggests that diet-induced neuronal injury triggers microgliosis and astrocytosis, conditions which ultimately may induce functional impairment of hypothalamic circuits governing feeding behavior, systemic metabolism, and body weight. Epidemiological data indicate that low circulating HDL levels, besides conveying cardiovascular risk, also correlate strongly with obesity. We simulated that condition by using a genetic loss of function mouse model (apoA-I-/-) with markedly reduced HDL levels to investigate whether HDL may directly modulate hypothalamic inflammation. Astrogliosis was significantly enhanced in the hypothalami of apoA-I-/- compared with apoA-I+/+ mice and was associated with compromised mitochondrial function. apoA-I-/- mice exhibited key components of metabolic disease, like increased fat mass, fasting glucose levels, hepatic triglyceride content, and hepatic glucose output compared with apoA-I+/+ controls. Administration of reconstituted HDL (CSL-111) normalized hypothalamic inflammation and mitochondrial function markers in apoA-I-/- mice. Treatment of primary astrocytes with apoA-I resulted in enhanced mitochondrial activity, implying that circulating HDL levels are likely important for astrocyte function. HDL-based therapies may consequently avert reactive gliosis in hypothalamic astrocytes by improving mitochondrial bioenergetics and thereby offering potential treatment and prevention for obesity and metabolic disease.
Collapse
Affiliation(s)
- Anna Götz
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Elizabeth Donelan
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Cynthia Striese
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sebastian Cucuruz
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stephan Sachs
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen C Woods
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Timo D Müller
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Matthias H Tschöp
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yuanqing Gao
- Nanjing Medical University, College of Pharmacy, Nanjing, China.
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilian Universität, Munich, Germany.
| |
Collapse
|
14
|
Emerging therapies for mitochondrial diseases. Essays Biochem 2018; 62:467-481. [PMID: 29980632 DOI: 10.1042/ebc20170114] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
Abstract
For the vast majority of patients with mitochondrial diseases, only supportive and symptomatic therapies are available. However, in the last decade, due to extraordinary advances in defining the causes and pathomechanisms of these diverse disorders, new therapies are being developed in the laboratory and are entering human clinical trials. In this review, we highlight the current use of dietary supplement and exercise therapies as well as emerging therapies that may be broadly applicable across multiple mitochondrial diseases or tailored for specific disorders. Examples of non-tailored therapeutic targets include: activation of mitochondrial biogenesis, regulation of mitophagy and mitochondrial dynamics, bypass of biochemical defects, mitochondrial replacement therapy, and hypoxia. In contrast, tailored therapies are: scavenging of toxic compounds, deoxynucleoside and deoxynucleotide treatments, cell replacement therapies, gene therapy, shifting mitochondrial DNA mutation heteroplasmy, and stabilization of mutant mitochondrial transfer RNAs.
Collapse
|
15
|
Ahuja AS. Understanding mitochondrial myopathies: a review. PeerJ 2018; 6:e4790. [PMID: 29844960 PMCID: PMC5967365 DOI: 10.7717/peerj.4790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA), or possibly in the nuclear DNA (nDNA). The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient's current abilities to move and function.
Collapse
Affiliation(s)
- Abhimanyu S Ahuja
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| |
Collapse
|
16
|
Schafer C, Moore V, Dasgupta N, Javadov S, James JF, Glukhov AI, Strauss AW, Khuchua Z. The Effects of PPAR Stimulation on Cardiac Metabolic Pathways in Barth Syndrome Mice. Front Pharmacol 2018; 9:318. [PMID: 29695963 PMCID: PMC5904206 DOI: 10.3389/fphar.2018.00318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Aim: Tafazzin knockdown (TazKD) in mice is widely used to create an experimental model of Barth syndrome (BTHS) that exhibits dilated cardiomyopathy and impaired exercise capacity. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that play essential roles as transcription factors in the regulation of carbohydrate, lipid, and protein metabolism. We hypothesized that the activation of PPAR signaling with PPAR agonist bezafibrate (BF) may ameliorate impaired cardiac and skeletal muscle function in TazKD mice. This study examined the effects of BF on cardiac function, exercise capacity, and metabolic status in the heart of TazKD mice. Additionally, we elucidated the impact of PPAR activation on molecular pathways in TazKD hearts. Methods: BF (0.05% w/w) was given to TazKD mice with rodent chow. Cardiac function in wild type-, TazKD-, and BF-treated TazKD mice was evaluated by echocardiography. Exercise capacity was evaluated by exercising mice on the treadmill until exhaustion. The impact of BF on metabolic pathways was evaluated by analyzing the total transcriptome of the heart by RNA sequencing. Results: The uptake of BF during a 4-month period at a clinically relevant dose effectively protected the cardiac left ventricular systolic function in TazKD mice. BF alone did not improve the exercise capacity however, in combination with everyday voluntary running on the running wheel BF significantly ameliorated the impaired exercise capacity in TazKD mice. Analysis of cardiac transcriptome revealed that BF upregulated PPAR downstream target genes involved in a wide spectrum of metabolic (energy and protein) pathways as well as chromatin modification and RNA processing. In addition, the Ostn gene, which encodes the metabolic hormone musclin, is highly induced in TazKD myocardium and human failing hearts, likely as a compensatory response to diminished bioenergetic homeostasis in cardiomyocytes. Conclusion: The PPAR agonist BF at a clinically relevant dose has the therapeutic potential to attenuate cardiac dysfunction, and possibly exercise intolerance in BTHS. The role of musclin in the failing heart should be further investigated.
Collapse
Affiliation(s)
- Caitlin Schafer
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Vicky Moore
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Nupur Dasgupta
- The Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jeanne F James
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.,Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander I Glukhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arnold W Strauss
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.,Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
17
|
Chen L, Cui Y, Jiang D, Ma C, Tse HF, Hwu WL, Lian Q. Management of Leigh syndrome: Current status and new insights. Clin Genet 2018; 93:1131-1140. [DOI: 10.1111/cge.13139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 01/11/2023]
Affiliation(s)
- L. Chen
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - Y. Cui
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - D. Jiang
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - C.Y. Ma
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - H.-F. Tse
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - W.-L. Hwu
- Department of Pediatrics and Medical Genetics; National Taiwan University Hospital; Taipei City Taiwan
| | - Q. Lian
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
- School of Biomedical Sciences; The University of Hong Kong; Hong Kong SAR P. R. China
| |
Collapse
|
18
|
The Bioinformatic Analysis of the Dysregulated Genes and MicroRNAs in Entorhinal Cortex, Hippocampus, and Blood for Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9084507. [PMID: 29359159 PMCID: PMC5735586 DOI: 10.1155/2017/9084507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023]
Abstract
Aim The incidence of Alzheimer's disease (AD) has been increasing in recent years, but there exists no cure and the pathological mechanisms are not fully understood. This study aimed to find out the pathogenesis of learning and memory impairment, new biomarkers, potential therapeutic targets, and drugs for AD. Methods We downloaded the microarray data of entorhinal cortex (EC) and hippocampus (HIP) of AD and controls from Gene Expression Omnibus (GEO) database, and then the differentially expressed genes (DEGs) in EC and HIP regions were analyzed for functional and pathway enrichment. Furthermore, we utilized the DEGs to construct coexpression networks to identify hub genes and discover the small molecules which were capable of reversing the gene expression profile of AD. Finally, we also analyzed microarray and RNA-seq dataset of blood samples to find the biomarkers related to gene expression in brain. Results We found some functional hub genes, such as ErbB2, ErbB4, OCT3, MIF, CDK13, and GPI. According to GO and KEGG pathway enrichment, several pathways were significantly dysregulated in EC and HIP. CTSD and VCAM1 were dysregulated significantly in blood, EC, and HIP, which were potential biomarkers for AD. Target genes of four microRNAs had similar GO_terms distribution with DEGs in EC and HIP. In addtion, small molecules were screened out for AD treatment. Conclusion These biological pathways and DEGs or hub genes will be useful to elucidate AD pathogenesis and identify novel biomarkers or drug targets for developing improved diagnostics and therapeutics against AD.
Collapse
|
19
|
West AP. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology 2017; 391:54-63. [DOI: 10.1016/j.tox.2017.07.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
|
20
|
El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab 2017; 122:1-9. [PMID: 28943110 PMCID: PMC5773113 DOI: 10.1016/j.ymgme.2017.09.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/10/2023]
Abstract
Mitochondrial diseases are a clinically and genetically heterogeneous group of disorders that result from dysfunction of the mitochondrial oxidative phosphorylation due to molecular defects in genes encoding mitochondrial proteins. Despite the advances in molecular and biochemical methodologies leading to better understanding of the etiology and mechanism of these diseases, there are still no satisfactory therapies available for mitochondrial disorders. Treatment for mitochondrial diseases remains largely symptomatic and does not significantly alter the course of the disease. Based on limited number of clinical trials, several agents aiming at enhancing mitochondrial function or treating the consequences of mitochondrial dysfunction have been used. Several agents are currently being evaluated for mitochondrial diseases. Therapeutic strategies for mitochondrial diseases include the use of agents enhancing electron transfer chain function (coenzyme Q10, idebenone, riboflavin, dichloroacetate, and thiamine), agents acting as energy buffer (creatine), antioxidants (vitamin C, vitamin E, lipoic acid, cysteine donors, and EPI-743), amino acids restoring nitric oxide production (arginine and citrulline), cardiolipin protector (elamipretide), agents enhancing mitochondrial biogenesis (bezafibrate, epicatechin, and RTA 408), nucleotide bypass therapy, liver transplantation, and gene therapy. Although, there is a lack of curative therapies for mitochondrial disorders at the current time, the increased number of clinical research evaluating agents that target different aspects of mitochondrial dysfunction is promising and is expected to generate more therapeutic options for these diseases in the future.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | | | - Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
21
|
Huang Y, Powers C, Moore V, Schafer C, Ren M, Phoon CKL, James JF, Glukhov AV, Javadov S, Vaz FM, Jefferies JL, Strauss AW, Khuchua Z. The PPAR pan-agonist bezafibrate ameliorates cardiomyopathy in a mouse model of Barth syndrome. Orphanet J Rare Dis 2017; 12:49. [PMID: 28279226 PMCID: PMC5345250 DOI: 10.1186/s13023-017-0605-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The PGC-1α/PPAR axis has been proposed as a potential therapeutic target for several metabolic disorders. The aim was to evaluate the efficacy of the pan-PPAR agonist, bezafibrate, in tafazzin knockdown mice (TazKD), a mouse model of Barth syndrome that exhibits age-dependent dilated cardiomyopathy with left ventricular (LV) dysfunction. RESULTS The effect of bezafibrate on cardiac function was evaluated by echocardiography in TazKD mice with or without beta-adrenergic stress. Adrenergic stress by chronic isoproterenol infusion exacerbates the cardiac phenotype in TazKD mice, significantly depressing LV systolic function by 4.5 months of age. Bezafibrate intake over 2 months substantially ameliorates the development of LV systolic dysfunction in isoproterenol-stressed TazKD mice. Without beta-adrenergic stress, TazKD mice develop dilated cardiomyopathy by 7 months of age. Prolonged treatment with suprapharmacological dose of bezafibrate (0.5% in rodent diet) over a 4-month period effectively prevented LV dilation in mice isoproterenol treatment. Bezafibrate increased mitochondrial biogenesis, however also promoted oxidative stress in cardiomyocytes. Surprisingly, improvement of systolic function in bezafibrate-treated mice was accompanied with simultaneous reduction of cardiolipin content and increase of monolysocardiolipin levels in cardiac muscle. CONCLUSIONS Thus, we demonstrate that bezafibrate has a potent therapeutic effect on preventing cardiac dysfunction in a mouse model of Barth syndrome with obvious implications for treating the human disease. Additional studies are needed to assess the potential benefits of PPAR agonists in humans with Barth syndrome.
Collapse
Affiliation(s)
- Yan Huang
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Corey Powers
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Victoria Moore
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Caitlin Schafer
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Mindong Ren
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Jeanne F James
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Alexander V Glukhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Frédéric M Vaz
- Academic Medical Center, Department of Clinical Chemistry and Pediatrics, Laboratory of Genetic Metabolic Disease (F0-224), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - John L Jefferies
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Arnold W Strauss
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Zaza Khuchua
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA.
| |
Collapse
|
22
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
23
|
Wang J, Chen GJ. Mitochondria as a therapeutic target in Alzheimer's disease. Genes Dis 2016; 3:220-227. [PMID: 30258891 PMCID: PMC6150105 DOI: 10.1016/j.gendis.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/30/2016] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) remains the most common neurodegenerative disease characterized by β-amyloid protein (Aβ) deposition and memory loss. Studies have shown that mitochondrial dysfunction plays a crucial role in AD, which involves oxidative stress-induced respiratory chain dysfunction, loss of mitochondrial biogenesis, defects of mitochondrial dynamics and mtDNA mutations. Thus mitochondria might serve as drug therapy target for AD. In this article, we first briefly discussed mitochondrial theory in the development of AD, and then we summarized recent advances of mitochondrial abnormalities in AD pathology and introduced a series of drugs and techniques targeting mitochondria. We think that maintaining mitochondrial function may provide a new way of thinking in the treatment of AD.
Collapse
Affiliation(s)
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
24
|
Pinto M, Nissanka N, Peralta S, Brambilla R, Diaz F, Moraes CT. Pioglitazone ameliorates the phenotype of a novel Parkinson's disease mouse model by reducing neuroinflammation. Mol Neurodegener 2016; 11:25. [PMID: 27038906 PMCID: PMC4818913 DOI: 10.1186/s13024-016-0090-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. The cause of the motor symptoms is the loss of dopaminergic neurons in the substantia nigra with consequent depletion of dopamine in the striatum. Although the etiology of PD is unknown, mitochondrial dysfunctions, including cytochrome c oxidase (Complex IV) impairment in dopaminergic neurons, have been associated with the disease's pathophysiology. In order to analyze the role of Complex IV in PD, we knocked out Cox10 (essential for the maturation of COXI, a catalytic subunit of Complex IV) in dopaminergic neurons. We also tested whether the resulting phenotype was improved by stimulating the PPAR-γ pathway. RESULTS Cox10/DAT-cre mice showed decreased numbers of TH+ and DAT+ cells in the substantia nigra, early striatal dopamine depletion, motor defects reversible with L-DOPA treatment and hypersensitivity to L-DOPA with hyperkinetic behavior. We found that chronic pioglitazone (PPAR-γ agonist) treatment ameliorated the motor phenotype in Cox10/DAT-cre mice. Although neither mitochondrial function nor the number of dopaminergic neurons was improved, neuroinflammation in the midbrain and the striatum was decreased. CONCLUSIONS By triggering a mitochondrial Complex IV defect in dopaminergic neurons, we created a new mouse model resembling the late stages of PD with massive degeneration of dopaminergic neurons and striatal dopamine depletion. The motor phenotypes were improved by Pioglitazone treatment, suggesting that targetable secondary pathways can influence the development of certain forms of PD.
Collapse
Affiliation(s)
- Milena Pinto
- />Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136 USA
| | - Nadee Nissanka
- />Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Susana Peralta
- />Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136 USA
| | - Roberta Brambilla
- />Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- />The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Francisca Diaz
- />Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136 USA
| | - Carlos T. Moraes
- />Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136 USA
- />Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
25
|
Chandra A, Sharma A, Calingasan NY, White JM, Shurubor Y, Yang XW, Beal MF, Johri A. Enhanced mitochondrial biogenesis ameliorates disease phenotype in a full-length mouse model of Huntington's disease. Hum Mol Genet 2016; 25:2269-2282. [PMID: 27008868 DOI: 10.1093/hmg/ddw095] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/17/2016] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a devastating illness and at present there is no disease modifying therapy or cure for it; and management of the disease is limited to a few treatment options for amelioration of symptoms. Recently, we showed that the administration of bezafibrate, a pan-PPAR agonist, increases the expression of PGC-1α and mitochondrial biogenesis, and improves phenotype and survival in R6/2 transgenic mouse model of HD. Since the R6/2 mice represent a 'truncated' huntingtin (Htt) mouse model of HD, we tested the efficacy of bezafibrate in a 'full-length' Htt mouse model, the BACHD mice. Bezafibrate treatment restored the impaired PPARγ, PPARδ, PGC-1α signaling pathway, enhanced mitochondrial biogenesis and improved antioxidant defense in the striatum of BACHD mice. Untreated BACHD mice show robust and progressive motor deficits, as well as late-onset and selective neuropathology in the striatum, which was markedly ameliorated in the BACHD mice treated with bezafibrate. Our data demonstrate the efficacy of bezafibrate in ameliorating both neuropathological features and disease phenotype in BACHD mice, and taken together with our previous studies with the R6/2 mice, highlight the strong therapeutic potential of bezafibrate for treatment of HD.
Collapse
Affiliation(s)
- Abhishek Chandra
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Abhijeet Sharma
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Noel Y Calingasan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joshua M White
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yevgeniya Shurubor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior; Department of Psychiatry and Biobehavioral Sciences; and Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - M Flint Beal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ashu Johri
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
26
|
Rak M, Bénit P, Chrétien D, Bouchereau J, Schiff M, El-Khoury R, Tzagoloff A, Rustin P. Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond) 2016; 130:393-407. [PMID: 26846578 PMCID: PMC4948581 DOI: 10.1042/cs20150707] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.
Collapse
Affiliation(s)
- Malgorzata Rak
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Paule Bénit
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Dominique Chrétien
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Juliette Bouchereau
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Manuel Schiff
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Reference Center for Inherited Metabolic Diseases, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 Boulevard Sérurier, 75019 Paris, France
| | - Riyad El-Khoury
- American University of Beirut Medical Center, Department of Pathology and Laboratory Medicine, Cairo Street, Hamra, Beirut, Lebanon
| | - Alexander Tzagoloff
- Biological Sciences Department, Columbia University, New York, NY 10027, U.S.A
| | - Pierre Rustin
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
27
|
Abstract
In addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| | - Claude A Piantadosi
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| |
Collapse
|
28
|
Bénit P, Schiff M, Cwerman-Thibault H, Corral-Debrinski M, Rustin P. Drug development for mitochondrial disease: recent progress, current challenges, and future prospects. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1117972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Tischner C, Wenz T. Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders. Mitochondrion 2015; 24:32-49. [DOI: 10.1016/j.mito.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
|
30
|
Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease. Cell Biochem Biophys 2015; 70:707-19. [PMID: 24807843 DOI: 10.1007/s12013-014-0006-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neurodegeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. It can be suggested that autophagy dysfunction along with oxidative stress is considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.
Collapse
|
31
|
Tischner C, Hofer A, Wulff V, Stepek J, Dumitru I, Becker L, Haack T, Kremer L, Datta AN, Sperl W, Floss T, Wurst W, Chrzanowska-Lightowlers Z, De Angelis MH, Klopstock T, Prokisch H, Wenz T. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention. Hum Mol Genet 2015; 24:2247-66. [PMID: 25552653 PMCID: PMC4380071 DOI: 10.1093/hmg/ddu743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy.
Collapse
Affiliation(s)
- Christin Tischner
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Annette Hofer
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Veronika Wulff
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Joanna Stepek
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Iulia Dumitru
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Lore Becker
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich 80336, Germany, German Mouse Clinic, Institute of Experimental Genetics
| | - Tobias Haack
- Institute of Human Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany
| | - Laura Kremer
- Institute of Human Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany
| | - Alexandre N Datta
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel 4031, Switzerland
| | - Wolfgang Sperl
- German Network for Mitochondrial Disorders (mitoNET), Germany, Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Thomas Floss
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany, Technical University Munich, Helmholtz Zentrum München, Neuherberg 85764, Germany, DZNE-German Center for Neurodegenerative Diseases, Munich, Germany, Max Planck Institute of Psychiatry, Munich 80804, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Zofia Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Hrabe De Angelis
- German Mouse Clinic, Institute of Experimental Genetics, German Center for Vertigo and Balance Disorders, Munich, Germany, Center of Life and Food Sciences Weihenstephan, Technische Universitat München, Freising 85350, Germany, German Center for Diabetes Research (DZD), Neuherberg 85764, Germany and Technische Universität München, Freising-Weihenstephan 85354, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich 80336, Germany, German Mouse Clinic, Institute of Experimental Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany, DZNE-German Center for Neurodegenerative Diseases, Munich, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany
| | - Tina Wenz
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany, German Network for Mitochondrial Disorders (mitoNET), Germany,
| |
Collapse
|
32
|
Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:544-57. [PMID: 25766847 DOI: 10.1016/j.bbabio.2015.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 03/02/2015] [Indexed: 01/07/2023]
Abstract
Mitochondrial disorders are an important group of genetic conditions characterized by impaired oxidative phosphorylation. Mitochondrial disorders come with an impressive variability of symptoms, organ involvement, and clinical course, which considerably impact the quality of life and quite often shorten the lifespan expectancy. Although the last 20 years have witnessed an exponential increase in understanding the genetic and biochemical mechanisms leading to disease, this has not resulted in the development of effective therapeutic approaches, amenable of improving clinical course and outcome of these conditions to any significant extent. Therapeutic options for mitochondrial diseases still remain focused on supportive interventions aimed at relieving complications. However, new therapeutic strategies have recently been emerging, some of which have shown potential efficacy at the pre-clinical level. This review will present the state of the art on experimental therapy for mitochondrial disorders.
Collapse
Affiliation(s)
- Carlo Viscomi
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | | | - Massimo Zeviani
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| |
Collapse
|
33
|
Peralta S, Torraco A, Iommarini L, Diaz F. Mitochondrial Diseases Part III: Therapeutic interventions in mouse models of OXPHOS deficiencies. Mitochondrion 2015; 23:71-80. [PMID: 25638392 DOI: 10.1016/j.mito.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/19/2022]
Abstract
Mitochondrial defects are the cause of numerous disorders affecting the oxidative phosphorylation system (OXPHOS) in humans leading predominantly to neurological and muscular degeneration. The molecular origin, manifestations, and progression of mitochondrial diseases have a broad spectrum, which makes very challenging to find a globally effective therapy. The study of the molecular mechanisms underlying the mitochondrial dysfunction indicates that there is a wide range of pathways, enzymes and molecules that can be potentially targeted for therapeutic purposes. Therefore, focusing on the pathology of the disease is essential to design new treatments. In this review, we will summarize and discuss the different therapeutic interventions tested in some mouse models of mitochondrial diseases emphasizing the molecular mechanisms of action and their potential applications.
Collapse
Affiliation(s)
- Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Alessandra Torraco
- Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15 - 00146, Rome, Italy.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
34
|
Rai PK, Russell OM, Lightowlers RN, Turnbull DM. Potential compounds for the treatment of mitochondrial disease. Br Med Bull 2015; 116:5-18. [PMID: 26590387 DOI: 10.1093/bmb/ldv046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Mitochondrial diseases are a group of heterogeneous disorders for which no curative therapy is currently available. Several drugs are currently being pursued as candidates to correct the underlying biochemistry that causes mitochondrial dysfunction. SOURCES OF DATA A systematic review of pharmacological therapeutics tested using in vitro, in vivo models and clinical trials. Results presented from database searches undertaken to ascertain compounds currently being pioneered to treat mitochondrial disease. AREAS OF AGREEMENT Previous clinical research has been hindered by poorly designed trials that have shown some evidence in enhancing mitochondrial function but without significant results. AREAS OF CONTROVERSY Several compounds under investigation display poor pharmacokinetic profiles or numerous off target effects. GROWING POINTS Drug development teams should continue to screen existing and novel compound libraries for therapeutics that can enhance mitochondrial function. Therapies for mitochondrial disorders could hold potential cures for a myriad of other ailments associated with mitochondrial dysfunction such as neurodegenerative diseases.
Collapse
Affiliation(s)
- P K Rai
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - O M Russell
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - R N Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - D M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
35
|
Komen JC, Thorburn DR. Turn up the power - pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol 2014; 171:1818-36. [PMID: 24102298 DOI: 10.1111/bph.12413] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 01/05/2023] Open
Abstract
The oxidative phosphorylation (OXPHOS) system in mitochondria is responsible for the generation of the majority of cellular energy in the form of ATP. Patients with genetic OXPHOS disorders form the largest group of inborn errors of metabolism. Unfortunately, there is still a lack of efficient therapies for these disorders other than management of symptoms. Developing therapies has been complicated because, although the total group of OXPHOS patients is relatively large, there is enormous clinical and genetic heterogeneity within this patient population. Thus there has been a lot of interest in generating relevant mouse models for the different kinds of OXPHOS disorders. The most common treatment strategies tested in these mouse models have aimed to up-regulate mitochondrial biogenesis, in order to increase the residual OXPHOS activity present in affected animals and thereby to ameliorate the energy deficiency. Drugs such as bezafibrate, resveratrol and AICAR target the master regulator of mitochondrial biogenesis PGC-1α either directly or indirectly to manipulate mitochondrial metabolism. This review will summarize the outcome of preclinical treatment trials with these drugs in mouse models of OXPHOS disorders and discuss similar treatments in a number of mouse models of common diseases in which pathology is closely linked to mitochondrial dysfunction. In the majority of these studies the pharmacological activation of the PGC-1α axis shows true potential as therapy; however, other effects besides mitochondrial biogenesis may be contributing to this as well.
Collapse
Affiliation(s)
- J C Komen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | | |
Collapse
|
36
|
Morató L, Bertini E, Verrigni D, Ardissone A, Ruiz M, Ferrer I, Uziel G, Pujol A. Mitochondrial dysfunction in central nervous system white matter disorders. Glia 2014; 62:1878-94. [DOI: 10.1002/glia.22670] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Laia Morató
- Neurometabolic Diseases Laboratory; Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet de Llobregat Barcelona Spain
- Center for Biomedical Research on Rare Diseases (CIBERER); ISCIII Spain
| | - Enrico Bertini
- Unit for Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital; IRCCS Rome Italy
| | - Daniela Verrigni
- Unit for Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital; IRCCS Rome Italy
| | - Anna Ardissone
- Department of Child Neurology The Foundation “Carlo Besta” Neurological Institute (IRCCS); Milan Italy
| | - Montse Ruiz
- Neurometabolic Diseases Laboratory; Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet de Llobregat Barcelona Spain
- Center for Biomedical Research on Rare Diseases (CIBERER); ISCIII Spain
| | - Isidre Ferrer
- Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat; Barcelona Spain
- Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED); ISCIII Spain
| | - Graziella Uziel
- Department of Child Neurology The Foundation “Carlo Besta” Neurological Institute (IRCCS); Milan Italy
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory; Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet de Llobregat Barcelona Spain
- Center for Biomedical Research on Rare Diseases (CIBERER); ISCIII Spain
- Catalan Institution of Research and Advanced Studies (ICREA); Barcelona Spain
| |
Collapse
|
37
|
Vartiainen S, Chen S, George J, Tuomela T, Luoto KR, O'Dell KMC, Jacobs HT. Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease. Dis Model Mech 2014; 7:635-48. [PMID: 24812436 PMCID: PMC4036471 DOI: 10.1242/dmm.016527] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A point mutation in the Drosophila gene that codes for the major adult isoform of adenine nuclear translocase (ANT) represents a model for human diseases that are associated with ANT insufficiency [stress-sensitive B1 (sesB1)]. We characterized the organismal, bioenergetic and molecular phenotype of sesB1 flies then tested strategies to compensate the mutant phenotype. In addition to developmental delay and mechanical-stress-induced seizures, sesB1 flies have an impaired response to sound, defective male courtship, female sterility and curtailed lifespan. These phenotypes, excluding the latter two, are shared with the mitoribosomal protein S12 mutant, tko25t. Mitochondria from sesB1 adults showed a decreased respiratory control ratio and downregulation of cytochrome oxidase. sesB1 adults exhibited ATP depletion, lactate accumulation and changes in gene expression that were consistent with a metabolic shift towards glycolysis, characterized by activation of lactate dehydrogenase and anaplerotic pathways. Females also showed downregulation of many genes that are required for oogenesis, and their eggs, although fertilized, failed to develop to the larval stages. The sesB1 phenotypes of developmental delay and mechanical-stress-induced seizures were alleviated by an altered mitochondrial DNA background. Female sterility was substantially rescued by somatic expression of alternative oxidase (AOX) from the sea squirt Ciona intestinalis, whereas AOX did not alleviate developmental delay. Our findings illustrate the potential of different therapeutic strategies for ANT-linked diseases, based on alleviating metabolic stress.
Collapse
Affiliation(s)
- Suvi Vartiainen
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Shanjun Chen
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Jack George
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Tea Tuomela
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Kaisa R Luoto
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Kevin M C O'Dell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland. Research Program of Molecular Neurology, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
38
|
Procaccio V, Bris C, Chao de la Barca J, Oca F, Chevrollier A, Amati-Bonneau P, Bonneau D, Reynier P. Perspectives of drug-based neuroprotection targeting mitochondria. Rev Neurol (Paris) 2014; 170:390-400. [DOI: 10.1016/j.neurol.2014.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 01/20/2023]
|
39
|
Avula S, Parikh S, Demarest S, Kurz J, Gropman A. Treatment of mitochondrial disorders. Curr Treat Options Neurol 2014; 16:292. [PMID: 24700433 DOI: 10.1007/s11940-014-0292-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT While numerous treatments for mitochondrial disorders have been suggested, relatively few have undergone controlled clinical trials. Treatment of these disorders is challenging, as only symptomatic therapy is available. In this review we will focus on newer drugs and treatment trials in mitochondrial diseases, with a special focus on medications to avoid in treating epilepsy and ICU patient with mitochondrial disease, which has not been included in such a review. Readers are also referred to the opinion statement in A Modern Approach to the Treatment of Mitochondrial Disease published in Current Treatment Options in Neurology 2009. Many of the supplements used for treatment were reviewed in the previous abstract, and dosing guidelines were provided. The focus of this review is on items not previously covered in depth, and our discussion includes more recently studied compounds as well as any relevant updates on older compounds . We review a variety of vitamins and xenobiotics, including dichloroacetate (DCA), arginine, coenzyme Q10, idebenone, EPI-743, and exercise training. Treatment of epilepsy, which is a common feature in many mitochondrial phenotypes, warrants special consideration due to the added toxicity of certain medications, and we provide a discussion of these unique treatment challenges. Interesting, however, with only a few exceptions, the treatment strategies for epilepsy in mitochondrial cytopathies are the same as for epilepsy without mitochondrial dysfunction. We also discuss intensive care management, building upon similar reviews, adding new dimensions, and demonstrating the complexity of overall care of these patients.
Collapse
Affiliation(s)
- Sreenivas Avula
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
40
|
Hofer A, Noe N, Tischner C, Kladt N, Lellek V, Schauß A, Wenz T. Defining the action spectrum of potential PGC-1α activators on a mitochondrial and cellular level in vivo. Hum Mol Genet 2013; 23:2400-15. [PMID: 24334768 DOI: 10.1093/hmg/ddt631] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Previous studies have demonstrated a therapeutic benefit of pharmaceutical PGC-1α activation in cellular and murine model of disorders linked to mitochondrial dysfunction. While in some cases, this effect seems to be clearly associated with boosting of mitochondrial function, additional alterations as well as tissue- and cell-type-specific effects might play an important role. We initiated a comprehensive analysis of the effects of potential PGC-1α-activating drugs and pharmaceutically targeted the PPAR (bezafibrate, rosiglitazone), AMPK (AICAR, metformin) and Sirt1 (resveratrol) pathways in HeLa cells, neuronal cells and PGC-1α-deficient MEFs to get insight into cell type specificity and PGC-1α dependence of their working action. We used bezafibrate as a model drug to assess the effect on a tissue-specific level in a murine model. Not all analyzed drugs activate the PGC pathway or alter mitochondrial protein levels. However, they all affect supramolecular assembly of OXPHOS complexes and OXPHOS protein stability. In addition, a clear drug- and cell-type-specific influence on several cellular stress pathways as well as on post-translational modifications could be demonstrated, which might be relevant to fully understand the action of the analyzed drugs in the disease state. Importantly, the effect on the activation of mitochondrial biogenesis and stress response program upon drug treatment is PGC-1α dependent in MEFs demonstrating not only the pleiotropic effects of this molecule but points also to the working mechanism of the analyzed drugs. The definition of the action spectrum of the different drugs forms the basis for a defect-specific compensation strategy and a future personalized therapeutic approach.
Collapse
Affiliation(s)
- Annette Hofer
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Lombès A, Auré K, Bellanné-Chantelot C, Gilleron M, Jardel C. Unsolved issues related to human mitochondrial diseases. Biochimie 2013; 100:171-6. [PMID: 23973280 DOI: 10.1016/j.biochi.2013.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/10/2013] [Indexed: 12/21/2022]
Abstract
Human mitochondrial diseases, defined as the diseases due to a mitochondrial oxidative phosphorylation defect, represent a large group of very diverse diseases with respect to phenotype and genetic causes. They present with many unsolved issues, the comprehensive analysis of which is beyond the scope of this review. We here essentially focus on the mechanisms underlying the diversity of targeted tissues, which is an important component of the large panel of these diseases phenotypic expression. The reproducibility of genotype/phenotype expression, the presence of modifying factors, and the potential causes for the restricted pattern of tissular expression are reviewed. Special emphasis is made on heteroplasmy, a specific feature of mitochondrial diseases, defined as the coexistence within the cell of mutant and wild type mitochondrial DNA molecules. Its existence permits unequal segregation during mitoses of the mitochondrial DNA populations and consequently heterogeneous tissue distribution of the mutation load. The observed tissue distributions of recurrent human mitochondrial DNA deleterious mutations are diverse but reproducible for a given mutation demonstrating that the segregation is not a random process. Its extent and mechanisms remain essentially unknown despite recent advances obtained in animal models.
Collapse
Affiliation(s)
- Anne Lombès
- Inserm Institut Cochin U1016, CNRS UMR 8104, 24 rue du Fb St Jacques, Paris F-75014, France; Université Paris-Descartes-Paris5, Paris F-75014, France; AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris F-75651, France.
| | - Karine Auré
- Inserm Institut Cochin U1016, CNRS UMR 8104, 24 rue du Fb St Jacques, Paris F-75014, France; AP-HP, Hôpital Ambroise Paré, Service d'explorations fonctionnelles, Boulogne-Billancourt F-92100, France; Université Versailles-Saint-Quentin en Yvelines, Faculté de Médecine, F-78180, France.
| | - Christine Bellanné-Chantelot
- AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris F-75651, France.
| | - Mylène Gilleron
- Inserm Institut Cochin U1016, CNRS UMR 8104, 24 rue du Fb St Jacques, Paris F-75014, France; AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris F-75651, France.
| | - Claude Jardel
- Inserm Institut Cochin U1016, CNRS UMR 8104, 24 rue du Fb St Jacques, Paris F-75014, France; AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris F-75651, France.
| |
Collapse
|