1
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases. Free Radic Biol Med 2024; 218:105-119. [PMID: 38565400 DOI: 10.1016/j.freeradbiomed.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
2
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Kaplánek R, Kejík Z, Hajduch J, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hosnedlová B, Hromádka R, Dytrych P, Novotný P, Abramenko N, Antonyová V, Hoskovec D, Babula P, Masařík M, Martásek P, Jakubek M. TET protein inhibitors: Potential and limitations. Biomed Pharmacother 2023; 166:115324. [PMID: 37598475 DOI: 10.1016/j.biopha.2023.115324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
Collapse
Affiliation(s)
- Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Novotný
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
4
|
Shukla P, Melkani GC. Mitochondrial epigenetic modifications and nuclear-mitochondrial communication: A new dimension towards understanding and attenuating the pathogenesis in women with PCOS. Rev Endocr Metab Disord 2023; 24:317-326. [PMID: 36705802 PMCID: PMC10150397 DOI: 10.1007/s11154-023-09789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Mitochondrial DNA (mtDNA) epigenetic modifications have recently gained attention in a plethora of complex diseases, including polycystic ovary syndrome (PCOS), a common cause of infertility in women of reproductive age. Herein we discussed mtDNA epigenetic modifications and their impact on nuclear-mitochondrial interactions in general and the latest advances indicating the role of mtDNA methylation in the pathophysiology of PCOS. We highlighted epigenetic changes in nuclear-related mitochondrial genes, including nuclear transcription factors that regulate mitochondrial function and may be involved in the development of PCOS or its related traits. Additionally, therapies targeting mitochondrial epigenetics, including time-restricted eating (TRE), which has been shown to have beneficial effects by improving mitochondrial function and may be mediated by epigenetic modifications, have also been discussed. As PCOS has become a major metabolic disorder and a risk factor for obesity, cardiometabolic disorders, and diabetes, lifestyle/behavior intervention using TRE that reinforces feeding-fasting rhythms without reducing caloric intake may be a promising therapeutic strategy for attenuating the pathogenesis. Furthermore, future perspectives in the area of mitochondrial epigenetics are described.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India.
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| |
Collapse
|
5
|
Antonyová V, Tatar A, Brogyányi T, Kejík Z, Kaplánek R, Vellieux F, Abramenko N, Sinica A, Hajduch J, Novotný P, Masters BS, Martásek P, Jakubek M. Targeting of the Mitochondrial TET1 Protein by Pyrrolo[3,2- b]pyrrole Chelators. Int J Mol Sci 2022; 23:ijms231810850. [PMID: 36142763 PMCID: PMC9505425 DOI: 10.3390/ijms231810850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Targeting of epigenetic mechanisms, such as the hydroxymethylation of DNA, has been intensively studied, with respect to the treatment of many serious pathologies, including oncological disorders. Recent studies demonstrated that promising therapeutic strategies could potentially be based on the inhibition of the TET1 protein (ten-eleven translocation methylcytosine dioxygenase 1) by specific iron chelators. Therefore, in the present work, we prepared a series of pyrrolopyrrole derivatives with hydrazide (1) or hydrazone (2–6) iron-binding groups. As a result, we determined that the basic pyrrolo[3,2-b]pyrrole derivative 1 was a strong inhibitor of the TET1 protein (IC50 = 1.33 μM), supported by microscale thermophoresis and molecular docking. Pyrrolo[3,2-b]pyrroles 2–6, bearing substituted 2-hydroxybenzylidene moieties, displayed no significant inhibitory activity. In addition, in vitro studies demonstrated that derivative 1 exhibits potent anticancer activity and an exclusive mitochondrial localization, confirmed by Pearson’s correlation coefficient of 0.92.
Collapse
Affiliation(s)
- Veronika Antonyová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
| | - Ameneh Tatar
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Tereza Brogyányi
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic
| | - Zdeněk Kejík
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Robert Kaplánek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
| | - Nikita Abramenko
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
| | - Alla Sinica
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Petr Novotný
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
| | - Bettie Sue Masters
- Duke University Medical Center, Department of Biochemistry, Durham, NC 27707, USA
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- Correspondence: (P.M.); (M.J.)
| | - Milan Jakubek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
- Correspondence: (P.M.); (M.J.)
| |
Collapse
|
6
|
Cao K, Feng Z, Gao F, Zang W, Liu J. Mitoepigenetics: An intriguing regulatory layer in aging and metabolic-related diseases. Free Radic Biol Med 2021; 177:337-346. [PMID: 34715295 DOI: 10.1016/j.freeradbiomed.2021.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
As a key organelle in eukaryotic cells, mitochondria play a central role in maintaining normal cellular functions. Mitochondrial dysfunction is reported to be closely related with aging and various diseases. Epigenetic modifications in nuclear genome provide a substantial layer for the modulation of nuclear-encoded gene expression. However, whether mitochondria could also be subjected to such similar epigenetic alterations and the involved mechanisms remain largely obscure and controversial. Recently, accumulating evidence has suggested that mitochondrial epigenetics, also known as mitoepigenetics may serve as an intriguing regulatory layer in mitochondrial DNA (mtDNA)-encoded gene expression. Given the potential regulatory role of mitoepigenetics, mitochondrial dysfunction derived from mitoepigenetics-induced abnormal gene expression could also be closely associated with aging and disease development. In this review, we summarized the recent advances in mitoepigenetics, with a special focus on mtDNA methylation in aging and metabolic-related diseases as well as the new methods and technologies for the study of mitoepigenetics. Uncovering the regulatory role of mitoepigenetics will help to understand the underlying mechanisms of mitochondrial dysfunction and provide novel strategies for delaying aging and preventing metabolic-related diseases.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
7
|
Mitochondrial DNA in innate immune responses against infectious diseases. Biochem Soc Trans 2021; 48:2823-2838. [PMID: 33155647 DOI: 10.1042/bst20200687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA (mtDNA) can initiate an innate immune response when mislocalized in a compartment other than the mitochondrial matrix. mtDNA plays significant roles in regulating mitochondrial dynamics as well as mitochondrial unfolded protein response (UPR). The mislocalized extra-mtDNA can elicit innate immune response via cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway, inducing the expression of the interferon-stimulated genes (ISGs). Also, cytosolic damaged mtDNA is cleared up by various pathways which are responsible for participating in the activation of inflammatory responses. Four pathways of extra-mitochondrial mtDNA clearance are highlighted in this review - the inflammasome activation mechanism, neutrophil extracellular traps formation, recognition by Toll-like receptor 9 and transfer of mtDNA between cells packaged into extracellular vesicles. Anomalies in these pathways are associated with various diseases. We posit our review in the present pandemic situation and discuss how mtDNA elicits innate immune responses against different viruses and bacteria. This review gives a comprehensive picture of the role of extra-mitochondrial mtDNA in infectious diseases and speculates that research towards its understanding would help establish its therapeutic potential.
Collapse
|
8
|
Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med 2021; 170:19-33. [PMID: 33307166 DOI: 10.1016/j.freeradbiomed.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
One-carbon metabolism provides the methyl groups for both DNA and histone tail methylation reactions, two of the main epigenetic processes that tightly regulate the chromatin structure and gene expression levels. Several enzymes involved in one-carbon metabolism, as well as several epigenetic enzymes, are regulated by intracellular metabolites and redox cofactors, but their expression levels are in turn regulated by epigenetic modifications, in such a way that metabolism and gene expression reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival, differentiation and response to environmental stimuli. Increasing evidence highlights the contribution of impaired one-carbon metabolism and epigenetic modifications in neurodegeneration. This article provides an overview of DNA and histone tail methylation changes in major neurodegenerative disorders, namely Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, discussing the contribution of oxidative stress and impaired one-carbon and redox metabolism to their onset and progression.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
9
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
10
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
11
|
Pérez-Muñoz AA, de Lourdes Muñoz M, García-Hernández N, Santander-Lucio H. A New Approach to Identify the Methylation Sites in the Control Region of Mitochondrial DNA. Curr Mol Med 2021; 21:151-164. [PMID: 32484108 DOI: 10.2174/1566524020666200528154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) methylation has the potential to be used as a biomarker of human development or disease. However, mtDNA methylation procedures are costly and time-consuming. Therefore, we developed a new approach based on an RT-PCR assay for the base site identification of methylated cytosine in the control region of mtDNA through a simple, fast, specific, and low-cost strategy. Total DNA was purified, and methylation was determined by RT-PCR bisulfite sequencing. This procedure included the DNA purification, bisulfite treatment and RT-PCR amplification of the control region divided into three subregions with specific primers. Sequences obtained with and without the bisulfite treatment were compared to identify the methylated cytosine dinucleotides. Furthermore, the efficiency of C to U conversion of cytosines was assessed by including a negative control. Interestingly, mtDNA methylation was observed mainly within non-Cphosphate- G (non-CpG) dinucleotides and mostly in the regions containing regulatory elements, such as OH or CSBI, CSBII, and CSBIII. This new approach will promote the generation of new information regarding mtDNA methylation patterns in samples from patients with different pathologies or that are exposed to a toxic environment in diverse human populations.
Collapse
Affiliation(s)
- Ashael Alfredo Pérez-Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - Normand García-Hernández
- Unidad de Investigacion Medica en Genetica Humana, Unidad Medica de Alta Especialidad Hospital de Pediatria "Dr. Silvestre Frenk Freund", Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Heriberto Santander-Lucio
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| |
Collapse
|
12
|
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep 2020; 21:e49799. [PMID: 32202065 PMCID: PMC7132203 DOI: 10.15252/embr.201949799] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are cellular organelles that orchestrate a vast range of biological processes, from energy production and metabolism to cell death and inflammation. Despite this seemingly symbiotic relationship, mitochondria harbour within them a potent agonist of innate immunity: their own genome. Release of mitochondrial DNA into the cytoplasm and out into the extracellular milieu activates a plethora of different pattern recognition receptors and innate immune responses, including cGAS‐STING, TLR9 and inflammasome formation leading to, among others, robust type I interferon responses. In this Review, we discuss how mtDNA can be released from the mitochondria, the various inflammatory pathways triggered by mtDNA release and its myriad biological consequences for health and disease.
Collapse
Affiliation(s)
- Joel S Riley
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen Wg Tait
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Billard P, Poncet DA. Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. Int J Mol Sci 2019; 20:ijms20194959. [PMID: 31597307 PMCID: PMC6801922 DOI: 10.3390/ijms20194959] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022] Open
Abstract
Senescence is defined as a stress-induced durable cell cycle arrest. We herein revisit the origin of two of these stresses, namely mitochondrial metabolic compromise, associated with reactive oxygen species (ROS) production, and replicative senescence, activated by extreme telomere shortening. We discuss how replication stress-induced DNA damage of telomeric DNA (telDNA) and mitochondrial DNA (mtDNA) can be considered a common origin of senescence in vitro, with consequences on ageing in vivo. Unexpectedly, mtDNA and telDNA share common features indicative of a high degree of replicative stress, such as G-quadruplexes, D-loops, RNA:DNA heteroduplexes, epigenetic marks, or supercoiling. To avoid these stresses, both compartments use similar enzymatic strategies involving, for instance, endonucleases, topoisomerases, helicases, or primases. Surprisingly, many of these replication helpers are active at both telDNA and mtDNA (e.g., RNAse H1, FEN1, DNA2, RecQ helicases, Top2α, Top2β, TOP3A, DNMT1/3a/3b, SIRT1). In addition, specialized telomeric proteins, such as TERT (telomerase reverse transcriptase) and TERC (telomerase RNA component), or TIN2 (shelterin complex), shuttle from telomeres to mitochondria, and, by doing so, modulate mitochondrial metabolism and the production of ROS, in a feedback manner. Hence, mitochondria and telomeres use common weapons and cooperate to resist/prevent replication stresses, otherwise producing common consequences, namely senescence and ageing.
Collapse
Affiliation(s)
- Pauline Billard
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Institut de Biopathologie moléculaire, Centre de Bio-Pathologie Est, Groupement hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Delphine A Poncet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Institut de Biopathologie moléculaire, Centre de Bio-Pathologie Est, Groupement hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France.
| |
Collapse
|
14
|
Dou X, Boyd-Kirkup JD, McDermott J, Zhang X, Li F, Rong B, Zhang R, Miao B, Chen P, Cheng H, Xue J, Bennett D, Wong J, Lan F, Han JDJ. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res 2019; 29:1622-1634. [PMID: 31537639 PMCID: PMC6771398 DOI: 10.1101/gr.234021.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/23/2019] [Indexed: 01/19/2023]
Abstract
How individual genes are regulated from a mitochondrial polycistronic transcript to have variable expression remains an enigma. Here, through bisulfite sequencing and strand-specific mapping, we show mitochondrial genomes in humans and other animals are strongly biased to light (L)-strand non-CpG methylation with conserved peak loci preferentially located at gene-gene boundaries, which was also independently validated by MeDIP and FspEI digestion. Such mtDNA methylation patterns are conserved across different species and developmental stages but display dynamic local or global changes during development and aging. Knockout of DNMT3A alone perturbed mtDNA regional methylation patterns, but not global levels, and altered mitochondrial gene expression, copy number, and oxygen respiration. Overexpression of DNMT3A strongly increased mtDNA methylation and strand bias. Overall, methylation at gene bodies and boundaries was negatively associated with mitochondrial transcript abundance and also polycistronic transcript processing. Furthermore, HPLC-MS confirmed the methylation signals on mitochondria DNA. Together, these data provide high-resolution mtDNA methylation maps that revealed a strand-specific non-CpG methylation, its dynamic regulation, and its impact on the polycistronic mitochondrial transcript processing.
Collapse
Affiliation(s)
- Xiaoyang Dou
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jerome D Boyd-Kirkup
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoli Zhang
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Fang Li
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bowen Rong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bisi Miao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Peilin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Cheng
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianhuang Xue
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Abstract
Epigenetics can be explored at different levels and can be divided into two major areas: epigenetics of nuclear-encoded DNA and epigenetics of mitochondrial-encoded DNA. In epigenetics of nuclear-encoded DNA, the main roles are played by DNA methylation, changes in histone structure and several types of non-coding RNAs. Mitochondrial epigenetics seems to be similar in the aspect of DNA methylation and to some extent in the role of non-coding RNAs but differs significantly in changes in components coiling DNA. Nuclear DNA is coiled around histones, but mitochondrial DNA, together with associated proteins, is located in mitochondrial pseudocompartments called nucleoids. It has been shown that mitochondrial epigenetic mechanisms influence cell fate, transcription regulation, cell division, cell cycle, physiological homeostasis, bioenergetics and even pathologies, but not all of these mechanisms have been explored in stem cells. The main issue is that most of these mechanisms have only recently been discovered in mitochondria, while improvements in methodology, especially next-generation sequencing, have enabled in-depth studies. Because studies exploring mitochondria from other aspects show that mitochondria are crucial for the normal behavior of stem cells, it is suggested that precise mitochondrial epigenetics in stem cells should be studied more intensively.
Collapse
|
16
|
Nagalakshmi B., Sagarkar S, Sakharkar AJ. Epigenetic Mechanisms of Traumatic Brain Injuries. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:263-298. [DOI: 10.1016/bs.pmbts.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Ghosh S, Ranawat AS, Tolani P, Scaria V. Mitoepigenome KB a comprehensive resource for human mitochondrial epigenetic data. Mitochondrion 2017; 42:54-58. [PMID: 29129553 DOI: 10.1016/j.mito.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 09/21/2017] [Accepted: 11/02/2017] [Indexed: 01/31/2023]
Abstract
Epigenetic modifications in the mitochondrial genome has been an emerging area of interest in the recent years in the field of mitochondrial biology. The renewed interest in the area has been largely fueled by a number of reports in the recent years suggesting the presence of epigenetic modifications in human mitochondrial genome and their associations with exposure to environmental factors and human diseases and or traits. Nevertheless there has been no systematic effort to curate, organize this information to enable cross-comparison between studies and datasets. We compiled 62 datasets from 9 studies on the epigenetic modifications in human mitochondrial genome to create a comprehensive catalog. This catalog is available as a user friendly interface - mitoepigenomeKB, where the data could be searched, browsed or visualized. The resource is available at URL: http://clingen.igib.res.in/mitoepigenome/. We hope mitoepigenomeKB would emerge as a central resource for datasets on epigenetic modifications in human mitochondria and would serve as the starting point to understanding the biology of human mitochondrial epigenome.
Collapse
Affiliation(s)
- Sourav Ghosh
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India; Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi 110 025, India
| | - Anop Singh Ranawat
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
| | - Priya Tolani
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India; Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi 110 025, India.
| |
Collapse
|
18
|
Mechta M, Ingerslev LR, Fabre O, Picard M, Barrès R. Evidence Suggesting Absence of Mitochondrial DNA Methylation. Front Genet 2017; 8:166. [PMID: 29163634 PMCID: PMC5671948 DOI: 10.3389/fgene.2017.00166] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/16/2017] [Indexed: 11/28/2022] Open
Abstract
Methylation of nuclear genes encoding mitochondrial proteins participates in the regulation of mitochondria function. The existence of cytosine methylation in the mitochondrial genome is debated. To investigate whether mitochondrial DNA (mtDNA) is methylated, we used both targeted- and whole mitochondrial genome bisulfite sequencing in cell lines and muscle tissue from mouse and human origin. While unconverted cytosines were detected in some portion of the mitochondrial genome, their abundance was inversely associated to the sequencing depth, indicating that sequencing analysis can bias the estimation of mtDNA methylation levels. In intact mtDNA, few cytosines remained 100% unconverted. However, removal of supercoiled structures of mtDNA with the restriction enzyme BamHI prior to bisulfite sequencing decreased cytosine unconversion rate to <1.5% at all the investigated regions: D-loop, tRNA-F+12S, 16S, ND5 and CYTB, suggesting that mtDNA supercoiled structure blocks the access to bisulfite conversion. Here, we identified an artifact of mtDNA bisulfite sequencing that can lead to an overestimation of mtDNA methylation levels. Our study supports that cytosine methylation is virtually absent in mtDNA.
Collapse
Affiliation(s)
- Mie Mechta
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Picard
- Department of Psychiatry and Neurology, Division of Behavioral Medicine, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, United States
| | - Romain Barrès
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Kang X, Hu L, Shen P, Li R, Liu D. SMRT Sequencing Revealed Mitogenome Characteristics and Mitogenome-Wide DNA Modification Pattern in Ophiocordyceps sinensis. Front Microbiol 2017; 8:1422. [PMID: 28798740 PMCID: PMC5529405 DOI: 10.3389/fmicb.2017.01422] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/13/2017] [Indexed: 11/24/2022] Open
Abstract
Single molecule, real-time (SMRT) sequencing was used to characterize mitochondrial (mt) genome of Ophiocordyceps sinensis and to analyze the mt genome-wide pattern of epigenetic DNA modification. The complete mt genome of O. sinensis, with a size of 157,539 bp, is the fourth largest Ascomycota mt genome sequenced to date. It contained 14 conserved protein-coding genes (PCGs), 1 intronic protein rps3, 27 tRNAs and 2 rRNA subunits, which are common characteristics of the known mt genomes in Hypocreales. A phylogenetic tree inferred from 14 PCGs in Pezizomycotina fungi supports O. sinensis as most closely related to Hirsutella rhossiliensis in Ophiocordycipitaceae. A total of 36 sequence sites in rps3 were under positive selection, with dN/dS >1 in the 20 compared fungi. Among them, 16 sites were statistically significant. In addition, the mt genome-wide base modification pattern of O. sinensis was determined in this study, especially DNA methylation. The methylations were located in coding and uncoding regions of mt PCGs in O. sinensis, and might be closely related to the expression of PCGs or the binding affinity of transcription factor A to mtDNA. Consequently, these methylations may affect the enzymatic activity of oxidative phosphorylation and then the mt respiratory rate; or they may influence mt biogenesis. Therefore, methylations in the mitogenome of O. sinensis might be a genetic feature to adapt to the cold and low PO2 environment at high altitude, where O. sinensis is endemic. This is the first report on epigenetic modifications in a fungal mt genome.
Collapse
Affiliation(s)
- Xincong Kang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural UniversityChangsha, China
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Liqin Hu
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Pengyuan Shen
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Rui Li
- Nextomics BiosciencesWuhan, China
| | - Dongbo Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural UniversityChangsha, China
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional IngredientsChangsha, China
| |
Collapse
|
20
|
Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17:363-375. [PMID: 28393922 DOI: 10.1038/nri.2017.21] [Citation(s) in RCA: 670] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial DNA (mtDNA) - which is well known for its role in oxidative phosphorylation and maternally inherited mitochondrial diseases - is increasingly recognized as an agonist of the innate immune system that influences antimicrobial responses and inflammatory pathology. On entering the cytoplasm, extracellular space or circulation, mtDNA can engage multiple pattern-recognition receptors in cell-type- and context-dependent manners to trigger pro-inflammatory and type I interferon responses. Here, we review the expanding research field of mtDNA in innate immune responses to highlight new mechanistic insights and discuss the physiological and pathological relevance of this exciting area of mitochondrial biology.
Collapse
|
21
|
Bhat S, Kabekkodu SP, Varghese VK, Chakrabarty S, Mallya SP, Rotti H, Pandey D, Kushtagi P, Satyamoorthy K. Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumour Biol 2017; 39:1010428317694573. [PMID: 28351298 DOI: 10.1177/1010428317694573] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Multicomponent molecular modifications such as DNA methylation may offer sensitive and specific cervical intraepithelial neoplasia and cervical cancer biomarkers. In this study, we tested cervical tissues at various stages of tumor progression for 5-methylcytosine and 5-hydroxymethylcytosine levels and also DNA promoter methylation profile of a panel of genes for its diagnostic potential. In total, 5-methylcytosine, 5-hydroxymethylcytosine, and promoter methylation of 33 genes were evaluated by reversed-phase high-performance liquid chromatography, enzyme-linked immunosorbent assay based technique, and bisulfate-based next generation sequencing. The 5-methylcytosine and 5-hydroxymethylcytosine contents were significantly reduced in squamous cell carcinoma and receiver operating characteristic curve analysis showed a significant difference in (1) 5-methylcytosine between normal and squamous cell carcinoma tissues (area under the curve = 0.946) and (2) 5-hydroxymethylcytosine levels among normal, squamous intraepithelial lesions and squamous cell carcinoma. Analyses of our next generation sequencing results and data from five independent published studies consisting of 191 normal, 10 low-grade squamous intraepithelial lesions, 21 high-grade squamous intraepithelial lesions, and 335 malignant tissues identified a panel of nine genes ( ARHGAP6, DAPK1, HAND2, NKX2-2, NNAT, PCDH10, PROX1, PITX2, and RAB6C) which could effectively discriminate among the various groups with sensitivity and specificity of 80%-100% (p < 0.05). Furthermore, 12 gene promoters (ARHGAP6, HAND2, LHX9, HEY2, NKX2-2, PCDH10, PITX2, PROX1, TBX3, IKBKG, RAB6C, and DAPK1) were also methylated in one or more of the cervical cancer cell lines tested. The global and gene-specific methylation of the panel of genes identified in our study may serve as useful biomarkers for the early detection and clinical management of cervical cancer.
Collapse
Affiliation(s)
- Samatha Bhat
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Shama Prasada Kabekkodu
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Vinay Koshy Varghese
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sanjiban Chakrabarty
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sandeep P Mallya
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Harish Rotti
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Deeksha Pandey
- 2 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pralhad Kushtagi
- 3 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Kapaettu Satyamoorthy
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| |
Collapse
|
22
|
Armstrong DA, Green BB, Blair BA, Guerin DJ, Litzky JF, Chavan NR, Pearson KJ, Marsit CJ. Maternal smoking during pregnancy is associated with mitochondrial DNA methylation. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw020. [PMID: 28979800 PMCID: PMC5624552 DOI: 10.1093/eep/dvw020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maternal smoking during pregnancy (MSDP) has detrimental effects on fetal development and on the health of the offspring into adulthood. Energy homeostasis through ATP production via the mitochondria (mt) plays a key role during pregnancy. This study aimed to determine if MSDP resulted in differences in DNA methylation to the placental mitochondrial chromosome at the transcription and replication control region, the D-Loop, and if these differences were also present in an alternate neonatal tissue (foreskin) in an independent birth cohort. We investigated mtDNA methylation by bisulfite-pyrosequencing in two sections of the D-Loop control region and in long interspersed nuclear element-1 (LINE-1) genomic sequences in placenta from 96 mother-newborn pairs that were enrolled in a Rhode Island birth cohort along with foreskin samples from 62 infants from a Kentucky birth cohort. In both placenta and foreskin, mtDNA methylation in the light chain D-Loop region 1 was positively associated with MSDP in placenta (difference+2.73%) (P=0.001) and foreskin (difference+1.22%) (P=0.08). Additionally, in foreskin, a second segment of the D-Loop-heavy chain region 1 showed a small but significant change in methylation with MSDP (+0.4%, P=0.04). No methylation changes were noted in either tissue at the LINE-1 repetitive element. We identified a similar pattern of epigenetic effect to mitochondria arising in cells from different primordial lineages and in different populations, associated with MSDP. These robust and consistent results build evidence that MSDP may impact mt D-Loop methylation, as one mechanism through which this exposure affects newborn health.
Collapse
Affiliation(s)
- David A. Armstrong
- Department of Pharmacology and Toxicology
- Department of Pulmonary Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | | | | | | | - Niraj R. Chavan
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine
| | - Kevin J. Pearson
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Carmen J. Marsit
- Department of Pharmacology and Toxicology
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- *Correspondence address. Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA; Tel: +404-712-8912; Fax: 404-727-8744; E-mail: Marsit:
| |
Collapse
|