1
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024. [PMID: 39219374 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Fan Y, Chen S, Chu C, Yin X, Jin J, Zhang L, Yan H, Cao Z, Liu R, Xin M, Li L, Yin C. TP63 truncating mutation causes increased cell apoptosis and premature ovarian insufficiency by enhanced transcriptional activation of CLCA2. J Ovarian Res 2024; 17:67. [PMID: 38528613 PMCID: PMC10962206 DOI: 10.1186/s13048-024-01396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a severe disorder leading to female infertility. Genetic mutations are important factors causing POI. TP63-truncating mutation has been reported to cause POI by increasing germ cell apoptosis, however what factors mediate this apoptosis remains unclear. METHODS Ninety-three patients with POI were recruited from Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Whole-exome sequencing (WES) was performed for each patient. Sanger sequencing was used to confirm potential causative genetic variants. A minigene assay was performed to determine splicing effects of TP63 variants. A TP63-truncating plasmid was constructed. Real-time quantitative PCR, western blot analyses, dual luciferase reporter assays, immunofluorescence staining, and cell apoptosis assays were used to study the underlying mechanism of a TP63-truncating mutation causing POI. RESULTS By WES of 93 sporadic patients with POI, we found a 14-bp deletion covering the splice site in the TP63 gene. A minigene assay demonstrated that the 14-bp deletion variant led to exon 13 skipping during TP63 mRNA splicing, resulting in the generation of a truncated TP63 protein (TP63-mut). Overexpression of TP63-mut accelerated cell apoptosis. Mechanistically, the TP63-mut protein could bind to the promoter region of CLCA2 and activate the transcription of CLCA2 several times compared to that of the TP63 wild-type protein. Silencing CLCA2 using a specific small interfering RNA (siRNA) or inhibiting the Ataxia Telangiectasia Mutated (ATM) pathway using the KU55933 inhibitor attenuated cell apoptosis caused by TP63-mut protein expression. CONCLUSION Our findings revealed a crucial role for CLCA2 in mediating apoptosis in POI pathogenesis, and suggested that CLCA2 is a potential therapeutic target for POI.
Collapse
Affiliation(s)
- Yali Fan
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Shuya Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Chunfang Chu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Xiaodan Yin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Jing Jin
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Lingyan Zhang
- Department of Gynaecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huihui Yan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Zheng Cao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China.
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China.
| |
Collapse
|
3
|
Dong R, Abazarikia A, Luan Y, Yu SY, Kim SY. Molecular Mechanisms Determining Mammalian Oocyte Quality with the Treatment of Cancer Therapy. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:97-119. [PMID: 39030356 DOI: 10.1007/978-3-031-55163-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cancer is a global public health issue and remains one of the leading causes of death in the United States (Siegel et al. CA Cancer J Clin. 72:7-33, 2022). It is estimated in the US in 2022, about 935,000 new cases of cancer will be diagnosed in women, and the probability of developing invasive cancer is 5.8% for females younger than 50 years old (Siegel et al. CA Cancer J Clin. 72:7-33, 2022). However, advances in screening programs, diagnostic methods, and therapeutic options have greatly increased the five-year survival rate in reproductive-age women with a variety of cancers. Given the clinical consequences of gonadotoxic cancer therapies, young, female cancer survivors may face compromised fertility, premature ovarian insufficiency, early-onset menopause, and endocrine dysregulation (Bedoschi et al. Future Oncol. 12:2333-44, 2016). Gonadotoxic side effects may include decreased oocyte quality within surviving follicles, loss of ovarian follicles, and impaired ovarian function. In reproductive-age women, oocyte quality is an important element for successful clinical pregnancies and healthy offspring as poor-quality oocytes may be a cause of infertility (McClam et al. Biol Reprod. 106:328-37, 2022; Marteil et al. Reprod Biol. 9:203-24, 2009; Krisher. J Anim Sci. 82: E14-E23, 2004). Thus, it is critical to determine the quantity and quality of surviving follicles in the ovary after cancer treatment and to assess oocyte quality within those surviving follicles as these are markers for determining the capacity for ovarian function restoration and future fertility, especially for young cancer survivors (Xu et al. Nat Med. 17:1562-3, 2011). The long-term effects of cancer therapeutics on oocyte quality are influenced by factors including, but not limited to, individual patient characteristics (e.g. age, health history, comorbidities, etc.), disease type, or treatment regimen (Marci et al. Reprod Biol Endocrinol. 16:1-112, 2018). These effects may translate clinically into an impaired production of viable oocytes and compromised fertility (Garutti et al. ESMO Open. 6:100276, 2021).
Collapse
Affiliation(s)
- Rosemary Dong
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- , Omaha, USA
| | - Amirhossein Abazarikia
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- , Omaha, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- , Omaha, USA
| | - Seok-Yeong Yu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- , Omaha, USA
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- , Omaha, USA.
| |
Collapse
|
4
|
Kashi O, Meirow D. Overactivation or Apoptosis: Which Mechanisms Affect Chemotherapy-Induced Ovarian Reserve Depletion? Int J Mol Sci 2023; 24:16291. [PMID: 38003481 PMCID: PMC10671775 DOI: 10.3390/ijms242216291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dormant primordial follicles (PMF), which constitute the ovarian reserve, are recruited continuously into the cohort of growing follicles in the ovary throughout female reproductive life. Gonadotoxic chemotherapy was shown to diminish the ovarian reserve pool, to destroy growing follicle population, and to cause premature ovarian insufficiency (POI). Three primary mechanisms have been proposed to account for this chemotherapy-induced PMF depletion: either indirectly via over-recruitment of PMF, by stromal damage, or through direct toxicity effects on PMF. Preventative pharmacological agents intervening in these ovotoxic mechanisms may be ideal candidates for fertility preservation (FP). This manuscript reviews the mechanisms that disrupt follicle dormancy causing depletion of the ovarian reserve. It describes the most widely studied experimental inhibitors that have been deployed in attempts to counteract these affects and prevent follicle depletion.
Collapse
Affiliation(s)
- Oren Kashi
- The Morris Kahn Fertility Preservation Center, Sheba Medical Center, Ramat Gan 5262000, Israel;
| | - Dror Meirow
- The Morris Kahn Fertility Preservation Center, Sheba Medical Center, Ramat Gan 5262000, Israel;
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Rizo JA, Davenport KM, Winuthayanon W, Spencer TE, Kelleher AM. Estrogen receptor alpha regulates uterine epithelial lineage specification and homeostasis. iScience 2023; 26:107568. [PMID: 37622003 PMCID: PMC10445454 DOI: 10.1016/j.isci.2023.107568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Postnatal development of the uterus involves specification of undifferentiated epithelium into uterine-type epithelium. That specification is regulated by stromal-epithelial interactions as well as intrinsic cell-specific transcription factors and gene regulatory networks. This study utilized mouse genetic models of Esr1 deletion, endometrial epithelial organoids (EEO), and organoid-stromal co-cultures to decipher the role of Esr1 in uterine epithelial development. Organoids derived from wild-type (WT) mice developed a normal single layer of columnar epithelium. In contrast, EEO from Esr1 null mice developed a multilayered stratified squamous type of epithelium with basal cells. Co-culturing Esr1 null epithelium with WT uterine stromal fibroblasts inhibited basal cell development. Of note, estrogen treatment of EEO-stromal co-cultures and Esr1 conditional knockout mice increased basal epithelial cell markers. Collectively, these findings suggest that Esr1 regulates uterine epithelium lineage plasticity and homeostasis and loss of ESR1 promotes altered luminal-to-basal differentiation driven by ESR1-mediated paracrine factors from the stroma.
Collapse
Affiliation(s)
- Jason A. Rizo
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Wipawee Winuthayanon
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| | - Andrew M. Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Gonfloni S, Jodice C, Gustavino B, Valentini E. DNA Damage Stress Response and Follicle Activation: Signaling Routes of Mammalian Ovarian Reserve. Int J Mol Sci 2022; 23:14379. [PMID: 36430860 PMCID: PMC9693393 DOI: 10.3390/ijms232214379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Chemotherapy regimens and radiotherapy are common strategies to fight cancer. In women, these therapies may cause side effects such as premature ovarian insufficiency (POI) and infertility. Clinical strategies to protect the ovarian reserve from the lethal effect of cancer therapies needs better understanding of the mechanisms underlying iatrogenic loss of follicle reserve. Recent reports demonstrate a critical role for p53 and CHK2 in the oocyte response to different DNA stressors, which are commonly used to treat cancer. Here we review the molecular mechanisms underlying the DNA damage stress response (DDR) and discuss crosstalk between DDR and signaling pathways implicated in primordial follicle activation.
Collapse
Affiliation(s)
- Stefania Gonfloni
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Carla Jodice
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Bianca Gustavino
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Elvia Valentini
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
- PhD Program in Cellular and Molecular Biology, 00133 Rome, Italy
| |
Collapse
|
7
|
p53 Controls Meiotic Prophase Progression and Crossover Formation. Int J Mol Sci 2022; 23:ijms23179818. [PMID: 36077210 PMCID: PMC9456223 DOI: 10.3390/ijms23179818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Meiosis initiates with the formation of double strand breaks (DSBs) throughout the genome. To avoid genomic instability, these DSBs need to be correctly repaired by homologous recombination. Surveillance mechanisms involving the DNA damage response (DDR) pathway ATM-CHK2-p53 can detect the persistence of unrepaired DBSs and activate the recombination-dependent arrest at the pachytene stage. However, a complete understanding of p53 functions under normal physiological conditions remains lacking. Here, we report a detailed analysis of the p53 role during meiotic prophase in mice spermatocytes. We show that the absence of p53 regulates prophase progression by slowing down the pachytene stage when the recombination-dependent arrest occurs. Furthermore, our results show that p53 is necessary for proper crossover (CO) formation and localization. Our study contributes to a deeper understanding of p53 roles during the meiotic prophase.
Collapse
|
8
|
Pashaei M, Mashayekhi F, Zahiri Z, Salehi Z. miR-203a-3p, ABL1 and TP63 gene expression is altered in the endometrium of women with endometriosis. Gynecol Endocrinol 2022; 38:603-607. [PMID: 35587747 DOI: 10.1080/09513590.2022.2076830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Many genes and miRNAs have been shown to be associated with the pathogenesis of endometriosis. TP63 (p63) is implicated in lineage specification, proliferative potential, differentiation, cell death and survival. The ABL1 proto-oncogene encodes a cytoplasmic and nuclear protein tyrosine kinase implicated in cell differentiation, cell division, and cell adhesion. Moreover, hsa-miR-203a-3p was reported to play pivotal roles in tumor progression by targeting multiple genes, including ABL1 and TP63. The aim of this study was to investigate the expression of ABL1, TP63, and miR-203a-3p in endometriosis. METHODS This study included 30 women with endometriosis (stage III: n = 12 and stage IV: n = 18) and 30 age-matched controls. Total RNA extraction and cDNA synthesis were performed, and a quantitative polymerase chain reaction technique was used to determine the expression of miR-203a-3p, TP63, and ABL1. RESULTS TP63 and ABL1 were significantly overexpressed in stages III and IV endometriosis as compared to controls (p < .0001). Moreover, overexpression of ABL1 and TP63 was observed in stage IV compared to stage III (p = .0006 and p = .0002, respectively). Furthermore, significant increase miR-203a-3p expression has been seen in stage IV endometriosis compared to controls (p = .006). The expression of miR-203a-3p in stage III was not significant compared to stage IV and control (p = .33 and p = .43, respectively). CONCLUSION It is concluded that miR-203a-3p, ABL1 and TP63 gene expression is altered in the endometrium of patients with endometriosis. It is also suggested that miR-203a-3p, ABL1, and TP63 might be candidate factors for the pathogenesis of endometriosis and suggesting its therapeutic potential in endometriosis.
Collapse
Affiliation(s)
- Maryam Pashaei
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Ziba Zahiri
- Reproductive Health Research Centre, Department of Obstetrics & Gynaecology, Alzahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
9
|
Nouri N, Aghebati-Maleki L, Yousefi M. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of pre mature ovarian failure. J Reprod Immunol 2021; 147:103363. [PMID: 34450435 DOI: 10.1016/j.jri.2021.103363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Despite being rare, primary ovarian insufficiency (POI) is a significant cause of infertility and deficiency of ovarian hormone in women. Several health risks are also associated with POI, which include dry eye syndrome, reduced density of bones and enhanced fracture risks, troublesome menopausal symptoms, early development of cardiovascular disease, and psychological effects such as declined cognition, reduced perceived psychological support, anxiety, and depression. Replacing premenopausal levels of ovarian sex steroids through proper hormone replacement therapy could improve the quality of life for POI women and ameliorate related health risks. Herein, POI and its complications, in addition to hormone replacement therapies, which are safe and effective, are discussed. It is proposed that the use of HRT) Hormone replacement therapy (formulations which mimic normal production of ovarian hormones could reduce POI-associated morbidity rates if they are continued by the age 50, which is approximately the natural age of menopause. Particular populations of POI women are also addressed, which include those with enhanced risk of ovarian or breast cancer, those with Turner syndrome, those approaching natural menopause, and those who are breastfeeding. It is generally predicted that stem cell-based therapies would be both safe and effective. In fact, several types of cells have been described as safe, though their effectiveness and therapeutic application are yet to be defined. Several factors exist which could affect the results of treatment, such as cell handling, ex-vivo preparation strategies, variations in tissue of origin, potency, and immunocompatibility. Accordingly, cell types potentially effective in regenerative medicine could be recognized. Notably, products of MSCs from various sources of tissues show different levels of regenerative capabilities. The ultimate focus of the review is on adipose tissue-derive MCSs (ADMSCs), which possess exceptional features such as general availability, great ability to proliferate and differentiate, immunomodulatory capabilities, and low immunogenicity.
Collapse
Affiliation(s)
- Narges Nouri
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
10
|
The Role of Mutant p63 in Female Fertility. Int J Mol Sci 2021; 22:ijms22168968. [PMID: 34445673 PMCID: PMC8396438 DOI: 10.3390/ijms22168968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
The transcription factor p63, one of the p53 family members, plays an essential role in regulating maternal reproduction and genomic integrity as well as epidermal development. TP63 (human)/Trp63 (mouse) produces multiple isoforms: TAp63 and ΔNp63, which possess a different N-terminus depending on two different promoters, and p63a, p63b, p63g, p63δ, and p63ε as products of alternative splicing at the C-terminus. TAp63 expression turns on in the nuclei of primordial germ cells in females and is maintained mainly in the oocyte nuclei of immature follicles. It has been established that TAp63 is the genomic guardian in oocytes of the female ovaries and plays a central role in determining the oocyte fate upon oocyte damage. Lately, there is increasing evidence that TP63 mutations are connected with female infertility, including isolated premature ovarian insufficiency (POI) and syndromic POI. Here, we review the biological functions of p63 in females and discuss the consequences of p63 mutations, which result in infertility in human patients.
Collapse
|
11
|
Strojan Fležar M, Nedelko N, Poljak M, Oštrbenk Valenčak A, Gutnik H. Stratified Mucin-Producing Intraepithelial Lesion (SMILE) of the Uterine Cervix: High-Risk HPV Genotype Predominance and p40 Immunophenotype. Cells 2021; 10:cells10082039. [PMID: 34440808 PMCID: PMC8392541 DOI: 10.3390/cells10082039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Stratified mucin-producing intraepithelial lesion (SMILE) is a rare high-grade cervical precancerous lesion designated a variant of adenocarcinoma in situ (AIS) in the WHO classification. We aimed to determine HPV genotypes, immunohistochemical phenotype and mucin presence in SMILE. Between 2010 and 2018, SMILE was diagnosed in 34 out of 6958 (0.5%) cervical biopsies, in 23 patients. Twenty-six tissue samples from twenty-one patients were available for further analysis, including 13 with SMILE alone, 12 with SIL and/or AIS and one with HSIL, AIS and endocervical adenocarcinoma. HPV genotyping was performed using the Seegene Anyplex II HPV 28 assay. Of the 26 samples, a single HPV genotype was identified in the majority of cases (n = 22), including 12/13 SMILEs associated with SIL/AIS. All but one were high-risk HPV genotypes (23/24; 96.8%). We identified seven different HPV genotypes, the most common being HPV16 (n = 10; 43.5%), HPV18 (n = 8, 34.8%) and HPV 31 (n = 5, 21.7%). All SMILEs showed a strong positive reaction to p16, CK7, CK19 and high Ki67 expression comparable to adjacent HSIL and/or AIS if present. SMILE showed variable mucin presence and p40-positive squamous differentiation suggesting phenotypic diversity in cervical precancerous lesions infected by single HPV.
Collapse
Affiliation(s)
- Margareta Strojan Fležar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Correspondence: ; Tel.: +386-1-543-7105 or +386-31-583898
| | - Neža Nedelko
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (M.P.); (A.O.V.)
| | - Anja Oštrbenk Valenčak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (M.P.); (A.O.V.)
| | - Helena Gutnik
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
| |
Collapse
|
12
|
Wang X, Praça MSL, Wendel JRH, Emerson RE, DeMayo FJ, Lydon JP, Hawkins SM. Vaginal Squamous Cell Carcinoma Develops in Mice with Conditional Arid1a Loss and Gain of Oncogenic Kras Driven by Progesterone Receptor Cre. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1281-1291. [PMID: 33882289 DOI: 10.1016/j.ajpath.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022]
Abstract
Oncogenic KRAS mutations are a common finding in endometrial cancers. Recent sequencing studies indicate that loss-of-function mutations in the ARID1A gene are enriched in gynecologic malignant tumors. However, neither of these genetic insults alone are sufficient to develop gynecologic cancer. To determine the role of the combined effects of deletion of Arid1a and oncogenic Kras, Arid1aflox/flox mice were crossed with KrasLox-Stop-Lox-G12D/+ mice using progesterone receptor Cre (PgrCre/+). Histologic analysis and immunohistochemistry of survival studies were used to characterize the mutant mouse phenotype. Hormone dependence was evaluated by ovarian hormone depletion and estradiol replacement. Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice were euthanized early because of invasive vaginal squamous cell carcinoma. Younger mice had precancerous intraepithelial lesions. Immunohistochemistry supported the pathological diagnosis with abnormal expression and localization of cytokeratin 5, tumor protein P63, cyclin-dependent kinase inhibitor 2A, and Ki-67, the marker of proliferation. Ovarian hormone deletion in Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice resulted in atrophic vaginal epithelium without evidence of vaginal tumors. Estradiol replacement in ovarian hormone-depleted Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice resulted in lesions that resembled the squamous cell carcinoma in intact mice. Therefore, this mouse can be used to study the transition from benign precursor lesions into invasive vaginal human papillomavirus-independent squamous cell carcinoma, offering insights into progression and pathogenesis of this rare disease.
Collapse
Affiliation(s)
- Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mariana S L Praça
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jillian R H Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert E Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Francesco J DeMayo
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
13
|
Chumduri C, Turco MY. Organoids of the female reproductive tract. J Mol Med (Berl) 2021; 99:531-553. [PMID: 33580825 PMCID: PMC8026429 DOI: 10.1007/s00109-020-02028-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Healthy functioning of the female reproductive tract (FRT) depends on balanced and dynamic regulation by hormones during the menstrual cycle, pregnancy and childbirth. The mucosal epithelial lining of different regions of the FRT-ovaries, fallopian tubes, uterus, cervix and vagina-facilitates the selective transport of gametes and successful transfer of the zygote to the uterus where it implants and pregnancy takes place. It also prevents pathogen entry. Recent developments in three-dimensional (3D) organoid systems from the FRT now provide crucial experimental models that recapitulate the cellular heterogeneity and physiological, anatomical and functional properties of the organ in vitro. In this review, we summarise the state of the art on organoids generated from different regions of the FRT. We discuss the potential applications of these powerful in vitro models to study normal physiology, fertility, infections, diseases, drug discovery and personalised medicine.
Collapse
Affiliation(s)
- Cindrilla Chumduri
- Department of Microbiology, University of Würzburg, Biocenter, Würzburg, Germany.
- Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Cambridge, UK.
| |
Collapse
|
14
|
SIX1 cooperates with RUNX1 and SMAD4 in cell fate commitment of Müllerian duct epithelium. Cell Death Differ 2020; 27:3307-3320. [PMID: 32572167 PMCID: PMC7852590 DOI: 10.1038/s41418-020-0579-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
During female mammal reproductive tract development, epithelial cells of the lower Müllerian duct are committed to become stratified squamous epithelium of the vagina and ectocervix, when the expression of ΔNp63 transcription factor is induced by mesenchymal cells. The absence of ΔNp63 expression leads to adenosis, the putative precursor of vaginal adenocarcinoma. Our previous studies with genetically engineered mouse models have established that fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK), bone morphogenetic protein (BMP)/SMAD, and activin A/runt-related transcription factor 1 (RUNX1) signaling pathways are independently required for ΔNp63 expression in Müllerian duct epithelium (MDE). Here, we report that sine oculis homeobox homolog 1 (SIX1) plays a critical role in the activation of ΔNp63 locus in MDE as a downstream transcription factor of mesenchymal signals. In the developing mouse reproductive tract, SIX1 expression was restricted to MDE within the future cervix and vagina. SIX1 expression was totally absent in SMAD4 null MDE and was reduced in RUNX1 null and FGFR2 null MDE, indicating that SIX1 is under the control of vaginal mesenchymal factors: BMP4, activin A and FGF7/10. Furthermore, Six1, Runx1, and Smad4 gene-dose-dependently activated ΔNp63 expression in MDE within the vaginal fornix. Using a mouse model of diethylstilbestrol (DES)-associated vaginal adenosis, we found DES action through epithelial estrogen receptor α (ESR1) inhibits activation of ΔNp63 locus in MDE by transcriptionally repressing SIX1 and RUNX1 in the vaginal fornix.
Collapse
|
15
|
McKinnon KE, Sensharma R, Williams C, Ravix J, Getsios S, Woodruff TK. Development of human ectocervical tissue models with physiologic endocrine and paracrine signaling†. Biol Reprod 2020; 103:497-507. [PMID: 32401296 DOI: 10.1093/biolre/ioaa068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
There is a shortage of research models that adequately represent the unique mucosal environment of human ectocervix, limiting development of new therapies for treating infertility, infection, or cancer. We developed three microphysiologic human ectocervix models to study hormone action during homeostasis. First, we reconstructed ectocervix using decellularized extracellular matrix scaffolds, which supported cell integration and could be clinically useful. Secondly, we generated organotypic systems consisting of ectocervical explants co-cultured with murine ovaries or cycling exogenous hormones, which mimicked human menstrual cycles. Finally, we engineered ectocervix tissue consisting of tissue-specific stromal-equivalents and fully-differentiated epithelium that mimicked in vivo physiology, including squamous maturation, hormone response, and mucin production, and remained viable for 28 days in vitro. The localization of differentiation-dependent mucins in native and engineered tissue was identified for the first time, which will allow increased efficiency in mucin targeting for drug delivery. In summary, we developed and characterized three microphysiologic human ectocervical tissue models that will be useful for a variety of research applications, including preventative and therapeutic treatments, drug and toxicology studies, and fundamental research on hormone action in a historically understudied tissue that is critical for women's health.
Collapse
Affiliation(s)
- Kelly E McKinnon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rhitwika Sensharma
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chloe Williams
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jovanka Ravix
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Spiro Getsios
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
16
|
Ali A, Syed SM, Jamaluddin MFB, Colino-Sanguino Y, Gallego-Ortega D, Tanwar PS. Cell Lineage Tracing Identifies Hormone-Regulated and Wnt-Responsive Vaginal Epithelial Stem Cells. Cell Rep 2020; 30:1463-1477.e7. [DOI: 10.1016/j.celrep.2020.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/01/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022] Open
|
17
|
Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. Reproductive tract biology: Of mice and men. Differentiation 2019; 110:49-63. [PMID: 31622789 PMCID: PMC7339118 DOI: 10.1016/j.diff.2019.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
The study of male and female reproductive tract development requires expertise in two separate disciplines, developmental biology and endocrinology. For ease of experimentation and economy, the mouse has been used extensively as a model for human development and pathogenesis, and for the most part similarities in developmental processes and hormone action provide ample justification for the relevance of mouse models for human reproductive tract development. Indeed, there are many examples describing the phenotype of human genetic disorders that have a reasonably comparable phenotype in mice, attesting to the congruence between mouse and human development. However, anatomic, developmental and endocrinologic differences exist between mice and humans that (1) must be appreciated and (2) considered with caution when extrapolating information between all animal models and humans. It is critical that the investigator be aware of both the similarities and differences in organogenesis and hormone action within male and female reproductive tracts so as to focus on those features of mouse models with clear relevance to human development/pathology. This review, written by a team with extensive expertise in the anatomy, developmental biology and endocrinology of both mouse and human urogenital tracts, focusses upon the significant human/mouse differences, and when appropriate voices a cautionary note regarding extrapolation of mouse models for understanding development of human male and female reproductive tracts.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA; George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA; Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA.
| | - Adriane Sinclair
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA
| | - Stanley J Robboy
- Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
18
|
Biscotti MA, Barucca M, Carducci F, Forconi M, Canapa A. The p53 gene family in vertebrates: Evolutionary considerations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:171-178. [PMID: 31046194 DOI: 10.1002/jez.b.22856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/07/2018] [Accepted: 04/01/2019] [Indexed: 01/20/2023]
Abstract
The origin of the p53 gene family predates multicellular life since TP53 members of this gene family have been found in unicellular eukaryotes. In invertebrates one or two genes attributable to a TP53-like or TP63/73-like gene are present. The radiation into three genes, TP53, TP63, and TP73, has been reported as a vertebrate invention. TP53 is considered the "guardian of the genome" given its role in protecting cells against the DNA damage and cellular stressors. TP63 and TP73 play a role in epithelial development and neurogenesis, respectively. The evolution of the p53 gene family has been the subject of considerable analyses even if several questions remain still open. In this study we addressed the evolutionary history of the p53 gene family in vertebrates performing an extended microsyntenic investigation coupled with a phylogenetic analysis, together with protein domain organization and structure assessment. On the basis of our results we discussed a possible evolutionary scenario according to which a TP53/63/73 ancestor form gave rise to the current TP53 and a TP63/73 form, which in turn independently duplicated into two genes in agnathe and gnathostome lineages.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
19
|
Luan Y, Edmonds ME, Woodruff TK, Kim SY. Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide. J Endocrinol 2019; 240:243-256. [PMID: 30530902 PMCID: PMC6540791 DOI: 10.1530/joe-18-0370] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022]
Abstract
Cancer therapy can cause off-target effects including ovarian damage, which may result in primary ovarian insufficiency in girls and premenopausal women. Loss of ovarian follicles within the ovarian reserve leads to ovarian endocrine dysfunction and impaired fertility. Cyclophosphamide (CPA), a commonly used chemotherapeutic and immunosuppressant agent, is a gonadotoxic agent that destroys ovarian cells by crosslinking DNA. To protect the ovary against CPA damage, we sought to precisely map the mechanism by which the ovarian reserve is depleted by CPA. We found that CPA specifically depletes primordial follicles without affecting primary and secondary follicles in three independent murine strains (CD-1, C57BL/6J and BALB/cJ) in vivo. We directly tested the effect of the active metabolite of CPA, 1 μM 4-hydroxyperoxycyclophophamide (4-HC), in vitro and confirmed the loss of primordial oocytes but no change in the number of primary and secondary follicles. We demonstrated that phospho-AKT (p-AKT) and cleaved PARP (cPARP) are present in primordial oocytes 3 days after CPA injection, consistent with the role of these markers as part of the apoptotic cascade. Interestingly, p-AKT positive primordial oocytes co-expressed cPARP. Treatment of animals with specific inhibitors of apoptotic pathway components, ETP46464 and CHK2, blocked 4-HC‒induced DNA damage in vitro. These data suggest that CPA targets primordial germ cells in the ovarian reserve by stimulating apoptosis pathways. Adjuvant therapies to protect primordial germ cells from the off-target effects of CPA may reduce the risk of POI.
Collapse
Affiliation(s)
- Yi Luan
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maxwell E Edmonds
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - So-Youn Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
20
|
Cunha GR, Robboy SJ, Kurita T, Isaacson D, Shen J, Cao M, Baskin LS. Development of the human female reproductive tract. Differentiation 2018; 103:46-65. [PMID: 30236463 PMCID: PMC6234064 DOI: 10.1016/j.diff.2018.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
Development of the human female reproductive tract is reviewed from the ambisexual stage to advanced development of the uterine tube, uterine corpus, uterine cervix and vagina at 22 weeks. Historically this topic has been under-represented in the literature, and for the most part is based upon hematoxylin and eosin stained sections. Recent immunohistochemical studies for PAX2 (reactive with Müllerian epithelium) and FOXA1 (reactive with urogenital sinus epithelium and its known pelvic derivatives) shed light on an age-old debate on the derivation of vaginal epithelium supporting the idea that human vaginal epithelium derives solely from urogenital sinus epithelium. Aside for the vagina, most of the female reproductive tract is derived from the Müllerian ducts, which fuse in the midline to form the uterovaginal canal, the precursor of uterine corpus and uterine cervix an important player in vaginal development as well. Epithelial and mesenchymal differentiation markers are described during human female reproductive tract development (keratins, homeobox proteins (HOXA11 and ISL1), steroid receptors (estrogen receptor alpha and progesterone receptor), transcription factors and signaling molecules (TP63 and RUNX1), which are expressed in a temporally and spatially dynamic fashion. The utility of xenografts and epithelial-mesenchymal tissue recombination studies are reviewed.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Stanley J Robboy
- Department of Pathology, Duke University Medical Center, DUMC 3712, Durham, NC 27710, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, College of Medicine, Comprehensive Cancer Center, Ohio State University, 812 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Dylan Isaacson
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Joel Shen
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Kim SY, Nair DM, Romero M, Serna VA, Koleske AJ, Woodruff TK, Kurita T. Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ 2018; 26:502-515. [PMID: 29988075 DOI: 10.1038/s41418-018-0151-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Platinum-based chemotherapies can result in ovarian insufficiency by reducing the ovarian reserve, a reduction believed to result from apoptosis of immature oocytes via activation/phosphorylation of TAp63α by multiple kinases including CHEK2, CK1, and ABL1. Here we demonstrate that cisplatin (CDDP) induces oocyte apoptosis through a novel pathway and that temporary repression of this pathway fully preserves ovarian function in vivo. Although ABL kinase inhibitors effectively block CDDP-induced apoptosis of oocytes, oocytic ABL1, and ABL2 are dispensable for damage-induced apoptosis. Instead, CDDP activates TAp63α through the ATR > CHEK1 pathway independent of TAp63α hyper-phosphorylation, whereas X-irradiation activates the ATM > CHEK2 > TAp63α-hyper-phosphorylation pathway. Furthermore, oocyte-specific deletion of Trp73 partially protects oocytes from CDDP but not from X-ray, highlighting the fundamental differences of two pathways. Nevertheless, temporary repression of DNA damage response by a kinase inhibitor that attenuates phosphorylation of ATM, ATR, CHEK1, and CHEK2 fully preserves fertility in female mice against CDDP as well as X-ray. Our current study establishes the molecular basis and feasibility of adjuvant therapies to protect ovarian function against two distinctive gonadotoxic therapeutics, CDDP, and ionizing radiation.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Devi M Nair
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Megan Romero
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vanida A Serna
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas. Nat Commun 2018; 9:1816. [PMID: 29739933 PMCID: PMC5940840 DOI: 10.1038/s41467-018-04128-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Adenomyoepithelioma of the breast is a rare tumor characterized by epithelial−myoepithelial differentiation, whose genetic underpinning is largely unknown. Here we show through whole-exome and targeted massively parallel sequencing analysis that whilst estrogen receptor (ER)-positive adenomyoepitheliomas display PIK3CA or AKT1 activating mutations, ER-negative adenomyoepitheliomas harbor highly recurrent codon Q61 HRAS hotspot mutations, which co-occur with PIK3CA or PIK3R1 mutations. In two- and three-dimensional cell culture models, forced expression of HRASQ61R in non-malignant ER-negative breast epithelial cells with or without a PIK3CAH1047R somatic knock-in results in transformation and the acquisition of the cardinal features of adenomyoepitheliomas, including the expression of myoepithelial markers, a reduction in E-cadherin expression, and an increase in AKT signaling. Our results demonstrate that adenomyoepitheliomas are genetically heterogeneous, and qualify mutations in HRAS, a gene whose mutations are vanishingly rare in common-type breast cancers, as likely drivers of ER-negative adenomyoepitheliomas. Adenomyoepithelioma is a rare tumor of the breast with an unknown genetic basis. Here the authors perform a genomic analysis of adenomyoepitheliomas revealing that their repertoire of somatic mutations vary according to the estrogen receptor (ER) status, and that ER-negative tumors harbor recurrent mutations in HRAS and PI3K pathway genes.
Collapse
|
23
|
Cunha GR, Kurita T, Cao M, Shen J, Cooke PS, Robboy SJ, Baskin LS. Tissue interactions and estrogenic response during human female fetal reproductive tract development. Differentiation 2018; 101:39-45. [PMID: 29684808 DOI: 10.1016/j.diff.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022]
Abstract
The role of tissue interactions was explored to determine whether epithelial differentiation within the developing human reproductive tract is induced and specified by mesenchyme in tissue recombinants composed of mouse vaginal mesenchyme + human uterine tubal epithelium (mVgM+hTubE). The tissue recombinants were grown in DES-treated ovariectomized athymic mice. After 2-4 weeks of in vivo growth, several vaginal specific features were expressed in the human tubal epithelium. The mesenchyme-induced effects included morphological change as well as expression of several immunohistochemical markers. Although the mesenchyme-induced shift in vaginal differentiation in the human tubal epithelium was not complete, the partial induction of vaginal markers in human tubal epithelium verifies the importance of mesenchymal-epithelial interactions in development of the human female reproductive tract. In a separate experiment, DES-induction of uterine epithelial progesterone receptor (PGR) and estrogen receptor 1 (ESR1) was explored in tissue recombinants composed of wild-type or Esr1KO mouse uterine mesenchyme + human fetal uterine epithelium (wt UtM+hUtE and Esr1KO UtM+hUtE). The rationale of this experiment was to determine whether DES-induction of PGR and ESR1 is mediated directly via epithelial ESR1 or indirectly (paracrine mechanism) via mesenchymal ESR1. DES-induction of uterine epithelial ESR1 and PGR in Esr1KO UtM+hUtE tissue recombinants (devoid of mesenchymal ESR1) formally eliminates the paracrine mechanism and demonstrates that DES induction of human uterine epithelial ESR1 and PGR is directly mediated via epithelial ESR1.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States.
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, College of Medicine, Comprehensive Cancer Center, Ohio State University, 812 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210, United States
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Joel Shen
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Paul S Cooke
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL 32610, United States
| | - Stanley J Robboy
- Department of Pathology, Duke University Medical Center, DUMC 3712, Durham, NC 27710, United States
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
24
|
Boughner JC, van Eede MC, Spring S, Yu LX, Rostampour N, Henkelman RM. P63 expression plays a role in developmental rate, embryo size, and local morphogenesis. Dev Dyn 2018; 247:779-787. [DOI: 10.1002/dvdy.24622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Julia C. Boughner
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | | | - Shoshana Spring
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Lisa X. Yu
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
25
|
p63 isoforms in triple-negative breast cancer: ΔNp63 associates with the basal phenotype whereas TAp63 associates with androgen receptor, lack of BRCA mutation, PTEN and improved survival. Virchows Arch 2018; 472:351-359. [PMID: 29484502 DOI: 10.1007/s00428-018-2324-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/02/2018] [Accepted: 02/15/2018] [Indexed: 12/16/2022]
Abstract
The TP63 gene encodes two major protein variants that differ in their N-terminal sequences and have opposing effects. In breast, ΔNp63 is expressed by immature stem/progenitor cells and mature myoepithelial/basal cells and is a characteristic feature of basal-like triple-negative breast cancers (TNBCs). The expression and potential role of TAp63 in the mammary gland and breast cancers is less clear, partly due to the lack of studies that employ p63 isoform-specific antibodies. We used immunohistochemistry with ΔNp63-specific or TAp63-specific monoclonal antibodies to investigate p63 isoforms in 236 TNBCs. TAp63, but not ΔNp63, was seen in tumour-associated lymphocytes and other stromal cells. Tumour cells showed nuclear staining for ΔNp63 in 17% of TNBCs compared to 7.3% that were positive for TAp63. Whilst most TAp63+ tumours also contained ΔNp63+ cells, the levels of the two isoforms were independent of each other. ΔNp63 associated with metaplastic and medullary cancers, and with a basal phenotype, whereas TAp63 associated with androgen receptor, BRCA1/2 wild-type status and PTEN positivity. Despite the proposed effects of p63 on proliferation, Ki67 did not correlate with either p63 isoform, nor did they associate with p53 mutation status. ΔNp63 showed no association with patient outcomes, whereas TAp63+ patients showed fewer recurrences and improved overall survival. These findings indicate that both major p63 protein isoforms are expressed in TNBCs with different tumour characteristics, indicating distinct functional activities of p63 variants in breast cancer. Analysis of individual p63 isoforms provides additional information into TNBC biology, with TAp63 expression indicating improved prognosis.
Collapse
|
26
|
Transcriptional regulation of P63 on the apoptosis of male germ cells and three stages of spermatogenesis in mice. Cell Death Dis 2018; 9:76. [PMID: 29362488 PMCID: PMC5833356 DOI: 10.1038/s41419-017-0046-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
Infertility affects 10-15% of couples worldwide, and male factors account for 50%. Spermatogenesis is precisely regulated by genetic factors, and the mutations of genes result in abnormal spermatogenesis and eventual male infertility. The aim of this study was to explore the role and transcriptional regulation of P63 in the apoptosis and mouse spermatogenesis. P63 protein was decreased in male germ cells of P63(+/-) mice compared with wild-type mice. There was no obvious difference in testis weight, sperm motility, and fecundity between P63(+/-) and wild-type mice. However, abnormal germ cells were frequently observed in P63(+/-) mice at 2 months old. Notably, apoptotic male germ cells and the percentage of abnormal sperm were significantly enhanced in P63(+/-) mice compared to wild-type mice. Spermatogonia, pachytene spermatocytes and round spermatids were isolated from P63(+/-) and wild-type mice using STA-PUT velocity sedimentation, and they were identified phenotypically with high purities. RNA sequencing demonstrated distinct transcription profiles in spermatogonia, pachytene spermatocytes, and round spermatids between P63(+/-) mice and wild-type mice. In total, there were 645 differentially expressed genes (DEGs) in spermatogonia, 106 DEGs in pachytene spermatocytes, and 1152 in round spermatids between P63(+/-) mice and wild-type mice. Real time PCR verified a number of DEGs identified by RNA sequencing. Gene ontology annotation and pathway analyzes further indicated that certain key genes, e.g., Ccnd2, Tgfa, Hes5, Insl3, Kit, Lef1, and Jun were involved in apoptosis, while Dazl, Kit, Pld6, Cdkn2d, Stra8, and Ubr2 were associated with regulating spermatogenesis. Collectively, these results implicate that P63 mediates the apoptosis of male germ cells and regulates three stages of spermatogenesis transcriptionally. This study could provide novel targets for the diagnosis and treatment of male infertility.
Collapse
|
27
|
Cunha GR, Kurita T, Cao M, Shen J, Robboy SJ, Baskin L. Response of xenografts of developing human female reproductive tracts to the synthetic estrogen, diethylstilbestrol. Differentiation 2017; 98:35-54. [PMID: 29102757 DOI: 10.1016/j.diff.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Human female fetal reproductive tracts 9.5-22 weeks of gestation were grown for 1 month in ovariectomized athymic adult female mouse hosts that were either untreated or treated continuously with diethylstilbestrol (DES) via subcutaneous pellet. Normal morphogenesis and normal patterns of differentiation marker expression (KRT6, KRT7, KRT8, KRT10, KRT14, KRT19, ESR1, PGR, TP63, RUNX1, ISL1, HOXA11 and α-ACT2) were observed in xenografts grown in untreated hosts and mimicked observations of previously reported (Cunha et al., 2017) non-grafted specimens of comparable age. DES elicited several notable morphological affects: (a) induction of endometrial/cervical glands, (b) increased plication (folding) of tubal epithelium, (c) stratified squamous maturation of vaginal epithelium and (d) vaginal adenosis. DES also induced ESR1 in epithelia of the uterine corpus, cervix and globally induced PGR in most cells of the developing human female reproductive tract. Keratin expression (KRT6, KRT7, KRT8, KRT14 and KRT19) was minimally affected by DES. Simple columnar adenotic epithelium was devoid of TP63 and RUNX1, while DES-induced mature vaginal epithelium was positive for both transcription factors. Another striking effect of DES was observed in grafts of human uterine tube, in which DES perturbed smooth muscle patterning. These results define for the first time IHC protein markers of DES action on the developing human reproductive tract, which provide bio-endpoints of estrogen-induced teratogenesis in the developing human female reproductive tract for future testing of estrogenic endocrine disruptors.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States.
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, College of Medicine, Comprehensive Cancer Center, 812 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210, United States
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Joel Shen
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Stanley J Robboy
- Departments of Pathology and Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, United States
| | - Laurence Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
28
|
Robboy SJ, Kurita T, Baskin L, Cunha GR. New insights into human female reproductive tract development. Differentiation 2017; 97:9-22. [PMID: 28918284 DOI: 10.1016/j.diff.2017.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023]
Abstract
We present a detailed review of the embryonic and fetal development of the human female reproductive tract utilizing specimens from the 5th through the 22nd gestational week. Hematoxylin and eosin (H&E) as well as immunohistochemical stains were used to study the development of the human uterine tube, endometrium, myometrium, uterine cervix and vagina. Our study revisits and updates the classical reports of Koff (1933) and Bulmer (1957) and presents new data on development of human vaginal epithelium. Koff proposed that the upper 4/5ths of the vagina is derived from Müllerian epithelium and the lower 1/5th derived from urogenital sinus epithelium, while Bulmer proposed that vaginal epithelium derives solely from urogenital sinus epithelium. These conclusions were based entirely upon H&E stained sections. A central player in human vaginal epithelial development is the solid vaginal plate, which arises from the uterovaginal canal (fused Müllerian ducts) cranially and squamous epithelium of urogenital sinus caudally. Since Müllerian and urogenital sinus epithelium cannot be unequivocally identified in H&E stained sections, we used immunostaining for PAX2 (reactive with Müllerian epithelium) and FOXA1 (reactive with urogenital sinus epithelium). By this technique, the PAX2/FOXA1 boundary was located at the extreme caudal aspect of the vaginal plate at 12 weeks. During the ensuing weeks, the PAX2/FOXA1 boundary progressively extended cranially such that by 21 weeks the entire vaginal epithelium was FOXA1-reactive and PAX2-negative. This observation supports Bulmer's proposal that human vaginal epithelium derives solely from urogenital sinus epithelium. Clearly, the development of the human vagina is far more complex than previously envisioned and appears to be distinctly different in many respects from mouse vaginal development.
Collapse
Affiliation(s)
- Stanley J Robboy
- Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC 27710, United States.
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, Ohio State University, 460 W. 12th Avenue, 812 Biomedical Research Tower, Columbus, OH 43210, United States
| | - Laurence Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
29
|
Molecular mechanisms of development of the human fetal female reproductive tract. Differentiation 2017; 97:54-72. [PMID: 29053991 DOI: 10.1016/j.diff.2017.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/30/2023]
Abstract
Human female reproductive tract development rests mostly upon hematoxilyn and eosin stained sections despite recent advances on molecular mechanisms in mouse studies. We report application of immunohistochemical methods to explore the ontogeny of epithelial and mesenchymal differentiation markers (keratins, homobox proteins, steroid receptors), transcription factors and signaling molecules (TP63 and RUNX1) during human female reproductive tract development. Keratins 6, 7, 8, 10, 14 and 19 (KRT6, KRT7, KRT8, KRT10, KRT14, KRT19) were expressed in a temporally and spatially dynamic fashion. The undifferentiated Müllerian duct and uterovaginal canal, lined by simple columnar epithelia, expressed KRT7, KRT8 and KRT19. Glandular derivatives of the Müllerian duct (uterine tube, uterine corpus and endocervix) maintained expression of these keratins, while tissues that undergo stratified squamous differentiation (exocervix and vagina) expressed KRT6, KRT14 and KRT10 during development in an age-dependent fashion. TP63 and RUNX1 were expressed prior to KRT14, as these two transcription factors are known to be upstream from KRT14 in developing Müllerian epithelium. In the vagina, KRT10, a marker of terminal differentiation, appeared after endogenous estrogens transformed the epithelium to a thick glycogenated squamous epithelium. Uroplakin, a protein unique to urothelium, was expressed only in the bladder, urethra and vaginal introitus, but not in the female reproductive tract itself. Mesenchymal differentiation was examined through immunostaining for HOXA11 (expressed in uterine mesenchyme) and ISL1 (expressed in vaginal mesenchyme). A detailed ontogeny of estrogen receptor alpha (ESR1), progesterone receptor (PGR) and the androgen receptor (AR) provides the mechanistic underpinning for the teratogenicity of estrogens, progestins and androgens on female reproductive tract development. Immunohistochemical analysis of differentiation markers and signaling molecules advance our understanding of normal development of the human female reproductive tract. These observations demonstrate remarkable similarities in mouse and human female reproductive tract development, but also highlight some key differences.
Collapse
|
30
|
The essential role of TAp73 in bortezomib-induced apoptosis in p53-deficient colorectal cancer cells. Sci Rep 2017; 7:5423. [PMID: 28710427 PMCID: PMC5511205 DOI: 10.1038/s41598-017-05813-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
Mutations in the tumor suppressor p53 are among the most highly occurring events in colorectal cancer (CRC). Such mutations have been shown to influence the sensitivity of cancer cells to chemotherapeutic agents. However their impact on the efficacy of the proteasomal inhibitor bortezomib remains controversial. We thus re-evaluated the toxicity of bortezomib in the CRC cell lines HCT116 wt (wild-type) and its p53-/- clone. Transient resistance to bortezomib treatment was observed in p53-null cells that was later accompanied by an increase in levels and nuclear translocation of TAp73, an isoform of the p53-homologue p73, as well as induction of apoptosis. Knockdown of p73 in p53-/- cells using CRISPR/Cas9 significantly prolonged the duration of resistance. Moreover, similar results were observed in HT-29 cells carrying mutated p53, but not human fibroblasts with expression of functional p53. Thus, our results clearly demonstrated that TAp73 served as a substitute for p53 in bortezomib-induced apoptosis in p53-deficient or mutated cells, implicating that TAp73 could be a potential therapeutic target for treatment of CRCs, in particular those lacking functional p53.
Collapse
|
31
|
Melatonin and Fertoprotective Adjuvants: Prevention against Premature Ovarian Failure during Chemotherapy. Int J Mol Sci 2017; 18:ijms18061221. [PMID: 28590419 PMCID: PMC5486044 DOI: 10.3390/ijms18061221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022] Open
Abstract
Premature ovarian failure is one of the side effects of chemotherapy in pre-menopausal cancer patients. Preservation of fertility has become increasingly important in improving the quality of life of completely recovered cancer patients. Among the possible strategies for preserving fertility such as ovarian tissue cryopreservation, co-treatment with a pharmacological adjuvant is highly effective and poses less of a burden on the human body. Melatonin is generally produced in various tissues and acts as a universally acting antioxidant in cells. Melatonin is now more widely used in various biological processes including treating insomnia and an adjuvant during chemotherapy. In this review, we summarize the information indicating that melatonin may be useful for reducing and preventing premature ovarian failure in chemotherapy-treated female patients. We also mention that many adjuvants other than melatonin are developed and used to inhibit chemotherapy-induced infertility. This information will give us novel insights on the clinical use of melatonin and other agents as fertoprotective adjuvants for female cancer patients.
Collapse
|
32
|
Gonzalez G, Mehra S, Wang Y, Akiyama H, Behringer RR. Sox9 overexpression in uterine epithelia induces endometrial gland hyperplasia. Differentiation 2016; 92:204-215. [PMID: 27262401 PMCID: PMC5133190 DOI: 10.1016/j.diff.2016.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/22/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023]
Abstract
SOX9 is a high mobility group transcription factor that is required in many biological processes, including cartilage differentiation, endoderm progenitor maintenance, hair differentiation, and testis determination. SOX9 has also been linked to colorectal, prostate, and lung cancer. We found that SOX9 is expressed in the epithelium of the adult mouse and human uterus, predominantly marking the uterine glands. To determine if SOX9 plays a role in the development of endometrial cancer we overexpressed Sox9 in the uterine epithelium using a progesterone receptor-Cre mouse model. Sox9 overexpression in the uterine epithelium led to the formation of simple and complex cystic glandular structures in the endometrium of aged-females. Histological analysis revealed that these structures appeared morphologically similar to structures present in patients with endometrial hyperplastic lesions and endometrial polyps that are thought to be precursors of endometrial cancer. The molecular mechanisms that cause the glandular epithelium to become hyperplastic, leading to endometrial cancer are still poorly understood. These findings indicate that chronic overexpression of Sox9 in the uterine epithelium can induce the development of endometrial hyperplastic lesions. Thus, SOX9 expression may be a factor in the formation of endometrial cancer.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shyamin Mehra
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying Wang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Haruhiko Akiyama
- Department of Orthopedic Surgery, Gifu University, Gifu City 501-1194, Japan
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Rossi V, Lispi M, Longobardi S, Mattei M, Di Rella F, Salustri A, De Felici M, Klinger FG. LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse. Cell Death Differ 2016; 24:72-82. [PMID: 27689876 PMCID: PMC5260508 DOI: 10.1038/cdd.2016.97] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/09/2023] Open
Abstract
Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy.
Collapse
Affiliation(s)
- Valerio Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Monica Lispi
- Medical Affair Department Fertility TA, Merck-Serono SAS, Rome, Italy
| | | | - Maurizio Mattei
- STA, Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Di Rella
- UOC Oncologia Medica Senologica, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione G. Pascale, Naples, Italy
| | - Antonietta Salustri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesca G Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
34
|
Organista-Nava J, Gómez-Gómez Y, Ocadiz-Delgado R, García-Villa E, Bonilla-Delgado J, Lagunas-Martínez A, Tapia JSO, Lambert PF, García-Carrancá A, Gariglio P. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology 2016; 499:230-242. [PMID: 27693927 DOI: 10.1016/j.virol.2016.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 01/24/2023]
Abstract
Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E2) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México; Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Yazmín Gómez-Gómez
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México; Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Rodolfo Ocadiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - José Bonilla-Delgado
- Unidad de Investigación, Hospital Juárez de México, Ciudad de México 07760, México
| | - Alfredo Lagunas-Martínez
- División de Biología Molecular de Patógenos, CISEI, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Jesús Santa-Olalla Tapia
- Unidad de Diagnóstico y Medicina Molecular, "Dr. Ruy Pérez Tamayo", Hospital del Niño y el Adolescente Morelense, Cuernavaca, Morelos, México; Facultad de Medicina, Universidad Autonóma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM) and División de Investigación Básica, Instituto Nacional de Cancerología (INCan), Secretaría de Salud, Ciudad de México 14080, México.
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México.
| |
Collapse
|
35
|
Vasilaki E, Morikawa M, Koinuma D, Mizutani A, Hirano Y, Ehata S, Sundqvist A, Kawasaki N, Cedervall J, Olsson AK, Aburatani H, Moustakas A, Miyazono K, Heldin CH. Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program. Sci Signal 2016; 9:ra84. [PMID: 27555661 DOI: 10.1126/scisignal.aag3232] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin. In HaCaT keratinocytes, which have mutant p53 and ΔNp63, we found that mutant p53 antagonized ΔNp63 transcriptional activity but that activation of Ras or transforming growth factor-β (TGF-β) signaling pathways reduced the abundance of mutant p53 and strengthened target gene binding and activity of ΔNp63. Among the products of ΔNp63-induced genes was dual-specificity phosphatase 6 (DUSP6), which promoted the degradation of mutant p53, likely by dephosphorylating p53. Knocking down all forms of p63 or DUSP6 and DUSP7 (DUSP6/7) inhibited the basal or TGF-β-induced or epidermal growth factor (which activates Ras)-induced migration and invasion in cultures of p53-mutant breast cancer and squamous skin cancer cells. Alternatively, overexpressing ΔNp63 in the breast cancer cells increased their capacity to colonize various tissues upon intracardiac injection in mice, and this was inhibited by knocking down DUSP6/7 in these ΔNp63-overexpressing cells. High abundance of ΔNp63 in various tumors correlated with poor prognosis in patients, and this correlation was stronger in patients whose tumors also had a mutation in the gene encoding p53. Thus, oncogenic Ras and TGF-β signaling stimulate cancer progression through activation of the ΔNp63 transcriptional program.
Collapse
Affiliation(s)
- Eleftheria Vasilaki
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Masato Morikawa
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Anna Mizutani
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yudai Hirano
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Anders Sundqvist
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Natsumi Kawasaki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden. Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Kohei Miyazono
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden. Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
36
|
Kim SY, Lee JR. Fertility preservation option in young women with ovarian cancer. Future Oncol 2016; 12:1695-8. [PMID: 27193251 DOI: 10.2217/fon-2016-0181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- So-Youn Kim
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jung Ryeol Lee
- Department of Obstetrics & Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam City, Kyeonggi-do, Korea.,Department of Obstetrics & Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Terakawa J, Rocchi A, Serna VA, Bottinger EP, Graff JM, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol 2016; 30:783-95. [PMID: 27164167 DOI: 10.1210/me.2016-1027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate.
Collapse
Affiliation(s)
- Jumpei Terakawa
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Altea Rocchi
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Vanida A Serna
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Erwin P Bottinger
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jonathan M Graff
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Takeshi Kurita
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
38
|
Kim SY, Ebbert K, Cordeiro MH, Romero MM, Whelan KA, Suarez AA, Woodruff TK, Kurita T. Constitutive Activation of PI3K in Oocyte Induces Ovarian Granulosa Cell Tumors. Cancer Res 2016; 76:3851-61. [PMID: 27197196 DOI: 10.1158/0008-5472.can-15-3358] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/19/2016] [Indexed: 11/16/2022]
Abstract
Cell-cell interactions play crucial roles in the maintenance of tissue homeostasis, a loss of which often leads to varying diseases, including cancer. Here, we report that uncontrolled PI3K activity within oocytes irreversibly transforms granulosa cells (GC), causing GC tumors (GCT) through perturbed local cell communication. Previously, we reported reproductive phenotypes of transgenic mice, in which expression of constitutively active mutant PI3K was induced in primordial oocytes by Gdf9-iCre. The transgenic mice (Cre(+)) demonstrated severe ovarian phenotypes, including the overgrowth of excess ovarian follicles and anovulation. Surprisingly, the Cre(+) mice became cachectic by postnatal day 80 due to bilateral GCT. Although GCT cells proliferated independently of oocytes, local interactions with mutant PI3K-positive oocytes during early folliculogenesis were essential for the GC transformation. Growing GCT cells expressed high levels of inhibin βA and nuclear SMAD3, and the proliferation rate was positively correlated with a high activin A to inhibin A ratio. These results suggested that the tumor cells stimulated their growth through an activin A autocrine signaling pathway, a hypothesis confirmed by activin A secretion in cultured GCT cells, which proliferated in response. Although communication between the oocyte and surrounding somatic cells is critical for the normal development of ovarian follicles, perturbations in oocyte-GC communication during early folliculogenesis can induce GCT by activating an autocrine growth circuit program in GC. Cancer Res; 76(13); 3851-61. ©2016 AACR.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Katherine Ebbert
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Marilia H Cordeiro
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Megan M Romero
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kelly A Whelan
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Adrian A Suarez
- Department of Pathology, The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Takeshi Kurita
- Department of Molecular Virology, Immunology and Medical Genetics, The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio.
| |
Collapse
|
39
|
Prevention of chemotherapy-induced ovarian damage. Fertil Steril 2016; 105:20-9. [DOI: 10.1016/j.fertnstert.2015.11.043] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
|
40
|
Kim SY, Ebbert K, Cordeiro MH, Romero M, Zhu J, Serna VA, Whelan KA, Woodruff TK, Kurita T. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology 2015; 156:1464-76. [PMID: 25594701 PMCID: PMC4399322 DOI: 10.1210/en.2014-1926] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we explored the effects of oocytic phosphoinositide 3-kinase (PI3K) activation on folliculogensis by generating transgenic mice, in which the oocyte-specific Cre-recombinase induces the expression of constitutively active mutant PI3K during the formation of primordial follicles. The ovaries of neonatal transgenic (Cre+) mice showed significantly reduced apoptosis in follicles, which resulted in an excess number of follicles per ovary. Thus, the elevation of phosphatidylinositol (3,4,5)-trisphosphate levels within oocytes promotes the survival of follicles during neonatal development. Despite the increase in AKT phosphorylation, primordial follicles in neonatal Cre+ mice remained dormant demonstrating a nuclear accumulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These primordial follicles containing a high level of nuclear PTEN persisted in postpubertal females, suggesting that PTEN is the dominant factor in the maintenance of female reproductive lifespan through the regulation of primordial follicle recruitment. Although the oocytic PI3K activity and PTEN levels were elevated, the activation of primordial follicles and the subsequent accumulation of antral follicles with developmentally competent oocytes progressed normally in prepubertal Cre+ mice. However, mature Cre+ female mice were anovulatory. Because postnatal day 50 Cre+ mice released cumulus-oocyte complexes with developmentally competent oocytes in response to super-ovulation treatment, the anovulatory phenotype was not due to follicular defects but rather endocrine abnormalities, which were likely caused by the excess number of overgrown follicles. Our current study has elucidated the critical role of oocytic PI3K activity in follicular function, as well as the presence of a PTEN-mediated mechanism in the prevention of immature follicle activation.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine (S.K., K.E., M.H.C., M.R., J.Z., K.A.W., T.K.W.), Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Department of Molecular and Cellular Biochemistry (V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vigezzi L, Bosquiazzo VL, Kass L, Ramos JG, Muñoz-de-Toro M, Luque EH. Developmental exposure to bisphenol A alters the differentiation and functional response of the adult rat uterus to estrogen treatment. Reprod Toxicol 2015; 52:83-92. [PMID: 25666754 DOI: 10.1016/j.reprotox.2015.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
We assessed the long-term effect of perinatal exposure to bisphenol A (BPA) on the rat uterus and the uterine response to estrogen (E2) replacement therapy. BPA (0.5 or 50μg/kg/day) was administered in the drinking water from gestational day 9 until weaning. We studied the uterus of female offspring on postnatal day (PND) 90 and 360, and the uterine E2 response on PND460 (PND460-E2). On PND90, BPA-exposed rats showed altered glandular proliferation and α-actin expression. On PND360, BPA exposure increased the incidence of abnormalities in the luminal and glandular epithelium. On PND460-E2, the multiplicity of glands with squamous metaplasia increased in BPA50 while the incidence of glands with daughter glands increased in BPA0.5. The expression of steroid receptors, p63 and IGF-I was modified in BPA-exposed rats on PND460-E2. The long-lasting effects of perinatal exposure to BPA included induction of abnormalities in uterine tissue and altered response to E2 replacement therapy.
Collapse
Affiliation(s)
- Lucía Vigezzi
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
42
|
The Developmental Origin of Cervical and Vaginal Epithelium and Their Clinical Consequences. J Low Genit Tract Dis 2014; 18:358-60. [DOI: 10.1097/lgt.0000000000000023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Vandormael-Pournin S, Guigon CJ, Ishaq M, Coudouel N, Avé P, Huerre M, Magre S, Cohen-Tannoudji J, Cohen-Tannoudji M. Oocyte-specific inactivation of Omcg1 leads to DNA damage and c-Abl/TAp63-dependent oocyte death associated with dramatic remodeling of ovarian somatic cells. Cell Death Differ 2014; 22:108-17. [PMID: 25168238 DOI: 10.1038/cdd.2014.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 11/09/2022] Open
Abstract
Aberrant loss of oocytes following cancer treatments or genetic mutations leads to premature ovarian insufficiency (POI) associated with endocrine-related disorders in 1% of women. Therefore, understanding the mechanisms governing oocyte death is crucial for the preservation of female fertility. Here, we report the striking reproductive features of a novel mouse model of POI obtained through oocyte-specific inactivation (ocKO) of Omcg1/Zfp830 encoding a nuclear zinc finger protein involved in pre-mRNA processing. Genetic ablation of OMCG1 in early growing oocytes leads to reduced transcription, accumulation of DNA double-strand breaks and subsequent c-Abl/TAp63-dependent oocyte death, thus uncovering the key role of OMCG1 for oocyte genomic integrity. All adult Omcg1(ocKO) females displayed complete elimination of early growing oocytes and sterility. Unexpectedly, mutant females exhibited a normal onset of puberty and sexual receptivity. Detailed studies of Omcg1(ocKO) ovaries revealed that the ovarian somatic compartment underwent a dramatic structural and functional remodeling. This allowed the cooperation between oocyte-depleted follicles and interstitial tissue to produce estradiol. Moreover, despite early folliculogenesis arrest, mutant mice exhibited sexual cyclicity as shown by cyclical changes in estrogen secretion, vaginal epithelium cytology and genital tract weight. Collectively, our findings demonstrate the key role of Omcg1 for oocyte survival and highlight the contribution of p63 pathway in damaged oocyte elimination in adulthood. Moreover, our findings challenge the prevailing view that sexual cyclicity is tightly dependent upon the pace of folliculogenesis and luteal differentiation.
Collapse
Affiliation(s)
- S Vandormael-Pournin
- 1] Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France [2] CNRS URA 2578, Paris F-75015, France
| | - C J Guigon
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - M Ishaq
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - N Coudouel
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - P Avé
- Institut Pasteur, Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Paris F-75015, France
| | - M Huerre
- Institut Pasteur, Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Paris F-75015, France
| | - S Magre
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - J Cohen-Tannoudji
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - M Cohen-Tannoudji
- 1] Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France [2] CNRS URA 2578, Paris F-75015, France
| |
Collapse
|
44
|
Assefnia S, Kang K, Groeneveld S, Yamaji D, Dabydeen S, Alamri A, Liu X, Hennighausen L, Furth PA. Trp63 is regulated by STAT5 in mammary tissue and subject to differentiation in cancer. Endocr Relat Cancer 2014; 21:443-57. [PMID: 24692510 PMCID: PMC4073690 DOI: 10.1530/erc-14-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Transformation-related protein 63 (Trp63), the predominant member of the Trp53 family, contributes to epithelial differentiation and is expressed in breast neoplasia. Trp63 features two distinct promoters yielding specific mRNAs encoding two major TRP63 isoforms, a transactivating transcription factor and a dominant negative isoform. Specific TRP63 isoforms are linked to cell cycle arrest, apoptosis, survival, and epithelial mesenchymal transition (EMT). Although TRP63 overexpression in cultured cells is used to elucidate functions, little is known about Trp63 regulation in normal and cancerous mammary tissues. This study used ChIP-seq to interrogate transcription factor binding and histone modifications of the Trp63 locus in mammary tissue and RNA-seq and immunohistochemistry to gauge gene expression. H3K4me2 and H3K4me3 marks coincided only with the proximal promoter, supporting RNA-seq data showing the predominance of the dominant negative isoform. STAT5 bound specifically to the Trp63 proximal promoter and Trp63 mRNA levels were elevated upon deleting Stat5 from mammary tissue, suggesting its role as a negative regulator. The dominant negative TRP63 isoform was localized to nuclei of basal mammary epithelial cells throughout reproductive cycles and retained in a majority of the triple-negative cancers generated from loss of full-length Brca1. Increased expression of dominant negative isoforms was correlated with developmental windows of increased progesterone receptor binding to the proximal Trp63 promoter and decreased expression during lactation was correlated with STAT5 binding to the same region. TRP63 is present in the majority of triple-negative cancers resulting from loss of Brca1 but diminished in less differentiated cancer subtypes and in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Shahin Assefnia
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Keunsoo Kang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
- Department of Microbiology, Dankook University, Cheonan 330-714, Republic of Korea
| | - Svenja Groeneveld
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department Pharmazie, Ludwig-Maximilians-Universität München, Germany
| | - Daisuke Yamaji
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
| | - Sarah Dabydeen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Ahmad Alamri
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- College of Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
| | - Priscilla A. Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Corresponding author: Priscilla A. Furth, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Research Bldg., Room 520A, Washington, DC 20057 USA
| |
Collapse
|
45
|
Roness H, Kalich-Philosoph L, Meirow D. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents. Hum Reprod Update 2014; 20:759-74. [PMID: 24833728 DOI: 10.1093/humupd/dmu019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Current options for female fertility preservation in the face of cytotoxic treatments include embryo, oocyte and ovarian tissue cryopreservation. However these methods are limited by the patient age, status or available timeframe before treatment and they necessitate invasive procedures. Agents which can prevent or attenuate the ovotoxic effects of treatment would provide significant advantages over the existing fertility preservation techniques, and would allow patients to retain their natural fertility without the necessity for costly, invasive and risky procedures. Recent studies have contributed to our understanding of the mechanisms involved in cytotoxicity-induced ovarian follicle loss and highlight a number of agents that may be able to prevent or reduce this loss. METHODS This paper reviews the relevant literature (research articles published in English up to December 2013) on the mechanisms of cytotoxic-induced ovarian damage and the implications for fertility preservation. We present a comprehensive discussion of the potential agents that have been shown to preserve the ovarian follicle reserve in the face of cytotoxic treatments, including an analysis of their respective advantages and risks, and mechanisms of action. RESULTS Multiple molecular pathways are involved in the cellular response to cytotoxic treatments, and specific cellular reactions depend on variables including the drug class and dose, cell type, and cell stage. A number of agents acting on different elements of these pathways have demonstrated potential for preventing or reducing ovarian follicle loss, although in most cases, the studies are still very preliminary. CONCLUSIONS Advances in our understanding of the mechanisms and pathways involved in both cytotoxic ovarian damage and follicle growth and development have opened up new directions for fertility preservation. In order to bring these agents from the lab to the clinic, it will be vital to accurately evaluate the efficacy of each agent and additionally to demonstrate that co-treatment with these agents will not interfere with the anti-cancer activity of the chemotherapy drugs, or produce genetically comprised embryos.
Collapse
Affiliation(s)
- Hadassa Roness
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Lital Kalich-Philosoph
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel The Safdie Institute for AIDS and Immunology Research, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Ramat-Gan 52900, Israel
| | - Dror Meirow
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
46
|
Warner SMB, Hackett TL, Shaheen F, Hallstrand TS, Kicic A, Stick SM, Knight DA. Transcription factor p63 regulates key genes and wound repair in human airway epithelial basal cells. Am J Respir Cell Mol Biol 2014; 49:978-88. [PMID: 23837456 DOI: 10.1165/rcmb.2012-0447oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The airway epithelium in asthma displays altered repair and incomplete barrier formation. Basal cells are the progenitor cells of the airway epithelium, and can repopulate other cell types after injury. We previously reported increased numbers of basal cells expressing the transcription factor p63 in the airway epithelium of patients with asthma. Here we sought to determine the molecular consequences of p63 expression in basal human airway epithelial cells during wound repair. Because at least six isoforms of p63 exist (N-terminally truncated [ΔN] versus transcriptional activation promoter variants and α, β, or γ 3' splice variants), the expression of all isoforms was investigated in primary human airway epithelial cells (pHAECs). We modulated p63 expression, using small interfering RNA (siRNA) and adenoviral constructs to determine the effects of p63 on 21 candidate target genes by RT-PCR, and on repair using a scratch wound assay. We found that basal pHAECs from asthmatic and nonasthmatic donors predominantly expressed the N-terminally truncated p63α variant (ΔNp63α) isoform, with no disease-specific differences in expression. The knockdown of ΔNp63, using specific siRNA, decreased the expression of 11 out of 21 genes associated with epithelial repair and differentiation, including β-catenin, epidermal growth factor receptor, and Jagged1. The loss of ΔNp63 significantly inhibited wound closure (which was associated with the decreased expression of β-catenin and Jagged1), reduced epithelial proliferation as measured by Ki-67 staining, and increased E-cadherin expression, potentially preventing cytokinesis. In conclusion, ΔNp63α is the major isoform expressed in basal pHAECs, and is essential for epithelial wound repair. The role of ΔNp63α in epithelial barrier integrity requires further study to understand its role in health and disease.
Collapse
Affiliation(s)
- Stephanie M B Warner
- 1 University of British Columbia James Hogg Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Chun EK, Jee BC, Kim JY, Kim SH, Moon SY. Effect of Imatinib Coadministration on in Vitro Oocyte Acquisition and Subsequent Embryo Development in Cyclophosphamide-Treated Mice. Reprod Sci 2014; 21:906-914. [PMID: 24401474 DOI: 10.1177/1933719113518986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study aimed to investigate the effect of imatinib coadministration on in vitro oocyte acquisition and subsequent embryo development in cyclophosphamide (Cp)-treated mice. Female BDF1 mice were injected with 5 IU equine chorionic gonadotropin (eCG) followed by 5 IU human chorionic gonadotropin 48 hours later and then oocytes were retrieved 14 hours later. Twenty-four hours prior to eCG administration, 25, 50, or 75 mg/kg Cp with or without 7.5 mg/kg imatinib was injected. In the 25 and 50 mg/kg Cp groups, imatinib coadministration significantly enhanced the percentage of mature oocytes (+16.4% and +10.4%) and significantly decreased the percentage of dead oocytes (-25.9% and -15.3%). Imatinib coadministration significantly enhanced the fertilization rate (FR) in the 50 mg/kg Cp group (+12.2%). Intraoocyte spindle integrity was significantly affected by Cp and was rescued by imatinib coadministration. Coadministration of imatinib prior to ovarian stimulation has the benefit of enhancing oocyte maturity and the in vitro FR in Cp-treated mice .
Collapse
Affiliation(s)
- Eun Kyung Chun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Yeong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seok Hyun Kim
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Shin Yong Moon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
48
|
Laronda MM, Burdette JE, Kim J, Woodruff TK. Recreating the female reproductive tract in vitro using iPSC technology in a linked microfluidics environment. Stem Cell Res Ther 2013; 4 Suppl 1:S13. [PMID: 24565375 PMCID: PMC4029530 DOI: 10.1186/scrt374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The female reproductive tract produces hormones for reproductive function and cardiovascular, bone and sexual health; the tract supplies a finite number of gametes, and it supports fetal development. Diseases that affect each of the female reproductive tract organs, along with treatments that have direct, deleterious effects on the reproductive tract (for example, chemotherapeutics), are understudied due to the lack of model systems that phenocopy in vivo function. This review describes a path toward developing female reproductive tract mimics. The models use isolated primary support cells cultured onto a biological scaffold and within a microfluidic system to create a niche and support the desired differentiation of epithelia, germ and somatic cells from patient-derived induced pluripotent stem cells. Improving our fund of knowledge about reproductive tract biology and creating reproductive organs for patients who have lost gonadal, uterine or vaginal/ cervical function is a major step forward in women's health and an important advancement in personalized medicine.
Collapse
|
49
|
Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Müllerian duct epithelium. Dev Biol 2013; 381:5-16. [PMID: 23830984 DOI: 10.1016/j.ydbio.2013.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/21/2022]
Abstract
Women exposed to diethylstilbestrol (DES) in utero frequently develop vaginal adenosis, from which clear cell adenocarcinoma can arise. Despite decades of extensive investigation, the molecular pathogenesis of DES-associated vaginal adenosis remains elusive. Here we report that DES induces vaginal adenosis by inhibiting the BMP4/Activin A-regulated vaginal cell fate decision through a downregulation of RUNX1. BMP4 and Activin A produced by vaginal mesenchyme synergistically activated the expression of ΔNp63, thus deciding vaginal epithelial cell fate in the Müllerian duct epithelial cells (MDECs) via direct binding of SMADs on the highly conserved 5' sequence of ΔNp63. Therefore, mice in which Smad4 was deleted in MDECs failed to express ΔNp63 in vaginal epithelium and developed adenosis. This SMAD-dependent ΔNp63 activation required RUNX1, a binding partner of SMADs. Conditional deletion of Runx1 in the MDECs induced adenosis in the cranial portion of vagina, which mimicked the effect of developmental DES-exposure. Furthermore, neonatal DES exposure downregulated RUNX1 in the fornix of the vagina, where DES-associated adenosis is frequently found. This observation strongly suggests that the downregulation of RUNX1 is the cause of vaginal adenosis. However, once cell fate was determined, the BMP/Activin-SMAD/RUNX1 signaling pathway became dispensable for the maintenance of ΔNp63 expression in vaginal epithelium. Instead, the activity of the ΔNp63 locus in vaginal epithelium was maintained by a ΔNp63-dependent mechanism. This is the first demonstration of a molecular mechanism through which developmental chemical exposure causes precancerous lesions by altering cell fate.
Collapse
|
50
|
Katori Y, Hayashi S, Takanashi Y, Kim JH, Abe S, Murakami G, Kawase T. Heterogeneity of glandular cells in the human salivary glands: an immunohistochemical study using elderly adult and fetal specimens. Anat Cell Biol 2013; 46:101-12. [PMID: 23869257 PMCID: PMC3713274 DOI: 10.5115/acb.2013.46.2.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 11/27/2022] Open
Abstract
Using immunohistochemical staining for alpha-smooth muscle actin (α-SMA), glial fibrillary acidic protein (GFAP), S100 protein (S100), p63, cytokeratin 14 (CK14), and cytokeratin 19 (CK19), we studied acinar and myoepithelial cells of major and minor salivary glands obtained from 14 donated cadavers (78-92 years old) and 5 donated fetuses (aborted at 15-16 weeks of gestation). CK and p63 expression was investigated only in the adult specimens. SMA was detected in all adult glands as well as in fetal sublingual and pharyngeal glands. GFAP expression was seen in a limited number of cells in adult glands, but was highly expressed in fetal pharyngeal glands. S100-positive myoepithelial-like cells were present in adult minor glands as well as in fetal sublingual and pharyngeal glands. Expression of p63 was evident in the ducts of adult glands. CK14 immunoreactivity was observed in a limited number of glandular cells in adults, in contrast to consistent expression of CK19. In both adults and fetuses, a mosaic expression pattern was usually evident for each of the examined proteins. A difference in immunoreactivity for the nerve markers GFAP and S100 was observed between the major and minor glands. Thus, in the present histologic study, we distinguished between the specific gland types on the basis of their immunohistochemical staining. A mosaic expression pattern suggested that the immunoreactivity against nerve protein markers in myoepithelial cells could not be due to the persistence of neural crest remnants or the physiological status of the gland, such as age-related degeneration.
Collapse
Affiliation(s)
- Yukio Katori
- Division of Otorhinolaryngology, Sendai Municipal Hospital, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|