1
|
Nonnast E, Mira E, Mañes S. Biomechanical properties of laminins and their impact on cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189181. [PMID: 39299492 DOI: 10.1016/j.bbcan.2024.189181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Laminins (LMs) constitute a family of heterotrimeric glycoproteins essential for the formation of basement membranes (BM). They act as molecular bridges between cells and the extracellular matrix (ECM), thereby transmitting signals influencing cell behavior and tissue organization. In the realm of cancer pathobiology, LMs regulate key processes such as migration, differentiation, or fibrosis. This review critically examines the multifaceted impact of LMs on tumor progression, with a particular focus on the isoform-specific structure-function relationships, and how this structural diversity contributes to the biomechanical properties of BMs. LM interactions with integrin and non-integrin cell surface receptors, as well as with other ECM proteins, modify the response of cancer cells to the ECM stiffness, ultimately influencing the capacity of malignant cells to breach the BM, a limiting step in metastatic dissemination. Comprehension of the mechanisms underlying LM-driven tumor biomechanics holds potential for better understand cancer pathobiology and design new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elena Nonnast
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
2
|
Schoenenberger MS, Halfter W, Ferrand A, Halfter K, Tzankov A, Scholl HPN, Henrich PB, Monnier CA. The biophysical and compositional properties of human basement membranes. FEBS J 2024; 291:477-488. [PMID: 37984833 DOI: 10.1111/febs.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.
Collapse
Affiliation(s)
| | - Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum of the University of Basel, Switzerland
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany
| | - Alexandar Tzankov
- Histopathology and Autopsy, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Switzerland
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
| | | |
Collapse
|
3
|
Nayler S, Agarwal D, Curion F, Bowden R, Becker EBE. High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci Rep 2021; 11:12959. [PMID: 34155230 PMCID: PMC8217544 DOI: 10.1038/s41598-021-91846-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Current protocols for producing cerebellar neurons from human pluripotent stem cells (hPSCs) often rely on animal co-culture and mostly exist as monolayers, limiting their capability to recapitulate the complex processes in the developing cerebellum. Here, we employed a robust method, without the need for mouse co-culture to generate three-dimensional cerebellar organoids from hPSCs that display hallmarks of in vivo cerebellar development. Single-cell profiling followed by comparison to human and mouse cerebellar atlases revealed the presence and maturity of transcriptionally distinct populations encompassing major cerebellar cell types. Encapsulation with Matrigel aimed to provide more physiologically-relevant conditions through recapitulation of basement-membrane signalling, influenced both growth dynamics and cellular composition of the organoids, altering developmentally relevant gene expression programmes. We identified enrichment of cerebellar disease genes in distinct cell populations in the hPSC-derived cerebellar organoids. These findings ascertain xeno-free human cerebellar organoids as a unique model to gain insight into cerebellar development and its associated disorders.
Collapse
Affiliation(s)
- Samuel Nayler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| | - Devika Agarwal
- Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Fabiola Curion
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom.
| |
Collapse
|
4
|
Ma J, Ma C, Li J, Sun Y, Ye F, Liu K, Zhang H. Extracellular Matrix Proteins Involved in Alzheimer's Disease. Chemistry 2020; 26:12101-12110. [PMID: 32207199 DOI: 10.1002/chem.202000782] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2020] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and characterized by cognitive and memory impairments. Emerging evidence suggests that the extracellular matrix (ECM) in the brain plays an important role in the etiology of AD. It has been detected that the levels of ECM proteins have changed in the brains of AD patients and animal models. Some ECM components, for example, elastin and heparan sulfate proteoglycans, are considered to promote the upregulation of extracellular amyloid-beta (Aβ) proteins. In addition, collagen VI and laminin are shown to have interactions with Aβ peptides, which might lead to the clearance of those peptides. Thus, ECM proteins are involved in both amyloidosis and neuroprotection in the AD process. However, the molecular mechanism of neuronal ECM proteins on the pathophysiology of AD remains elusive. More investigation of ECM proteins with AD pathogenesis is needed, and this may lead to novel therapeutic strategies and biomarkers for AD.
Collapse
Affiliation(s)
- Jun Ma
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P.R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chao Ma
- School of Engineering and Applied Sciences & Department of Physics, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Yao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P.R. China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
5
|
Suter TACS, Jaworski A. Cell migration and axon guidance at the border between central and peripheral nervous system. Science 2020; 365:365/6456/eaaw8231. [PMID: 31467195 DOI: 10.1126/science.aaw8231] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
The central and peripheral nervous system (CNS and PNS, respectively) are composed of distinct neuronal and glial cell types with specialized functional properties. However, a small number of select cells traverse the CNS-PNS boundary and connect these two major subdivisions of the nervous system. This pattern of segregation and selective connectivity is established during embryonic development, when neurons and glia migrate to their destinations and axons project to their targets. Here, we provide an overview of the cellular and molecular mechanisms that control cell migration and axon guidance at the vertebrate CNS-PNS border. We highlight recent advances on how cell bodies and axons are instructed to either cross or respect this boundary, and present open questions concerning the development and plasticity of the CNS-PNS interface.
Collapse
Affiliation(s)
- Tracey A C S Suter
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| | - Alexander Jaworski
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA. .,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| |
Collapse
|
6
|
von Wilmsdorff M, Manthey F, Bouvier ML, Staehlin O, Falkai P, Meisenzahl-Lechner E, Schmitt A, Gebicke-Haerter PJ. Effects of haloperidol and clozapine on synapse-related gene expression in specific brain regions of male rats. Eur Arch Psychiatry Clin Neurosci 2018; 268:555-563. [PMID: 29404686 DOI: 10.1007/s00406-018-0872-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/24/2018] [Indexed: 01/22/2023]
Abstract
We investigated the effects of clozapine and haloperidol, drugs that are widely used in the treatment of schizophrenia, on gene expression in six cortical and subcortical brain regions of adult rats. Drug treatments started at postnatal day 85 and continued over a 12-week period. Ten animals received haloperidol (1 mg/kg bodyweight) and ten received clozapine (20 mg/kg bodyweight) orally each day. Ten control rats received no drugs. The ten genes selected for this study did not belong to the dopaminergic or serotoninergic systems, which are typically targeted by the two substances, but coded for proteins of the cytoskeleton and proteins belonging to the synaptic transmitter release machinery. Quantitative real-time PCR was performed in the prelimbic cortex, cingulate gyrus (CG1) and caudate putamen and in the hippocampal cornu ammonis 1 (CA1), cornu ammonis 3 (CA3) and dentate gyrus. Results show distinct patterns of gene expression under the influence of the two drugs, but also distinct gene regulations dependent on the brain regions. Haloperidol-medicated animals showed statistically significant downregulation of SNAP-25 in CA3 (p = 0.0134) and upregulation of STX1A in CA1 (p = 0.0133) compared to controls. Clozapine-treated animals showed significant downregulation of SNAP-25 in CG1 (p = 0.0013). Our results clearly reveal that the drugs' effects are different between brain regions. These effects are possibly indirectly mediated through feedback mechanisms by proteins targeted by the drugs, but direct effects of haloperidol or clozapine on mechanisms of gene expression cannot be excluded.
Collapse
Affiliation(s)
- Martina von Wilmsdorff
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Fabian Manthey
- Department of Psychiatry and Psychotherapy, Alexianer Krefeld GmbH, Krefeld, Germany
| | - Marie-Luise Bouvier
- Laboratory of Brain Morphology, Department of Psychiatry and Psychotherapy, LVR Klinikum, Heinrich-Heine-University, Bergische Landstr.2, 40629, Düsseldorf, Germany.
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University (LMU) Munich, Munich, Germany
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University (LMU) Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter J Gebicke-Haerter
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Mak KM, Mei R. Basement Membrane Type IV Collagen and Laminin: An Overview of Their Biology and Value as Fibrosis Biomarkers of Liver Disease. Anat Rec (Hoboken) 2017; 300:1371-1390. [PMID: 28187500 DOI: 10.1002/ar.23567] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Basement membranes provide structural support to epithelium, endothelium, muscles, fat cells, Schwann cells, and axons. Basement membranes are multifunctional: they modulate cellular behavior, regulate organogenesis, promote tissue repair, form a barrier to filtration and tumor metastasis, bind growth factors, and mediate angiogenesis. All basement membranes contain type IV collagen (Col IV), laminin, nidogen, and perlecan. Col IV and laminin self-assemble into two independent supramolecular networks that are linked to nidogen and perlecan to form a morphological discernable basement membrane/basal lamina. The triple helical region, 7S domain and NCI domain of Col IV, laminin and laminin fragment P1 have been evaluated as noninvasive fibrosis biomarkers of alcoholic liver disease, viral hepatitis, and nonalcoholic fatty liver disease. Elevated serum Col IV and laminin are related to degrees of fibrosis and severity of hepatitis, and may reflect hepatic basement membrane metabolism. But the serum assays have not been linked to disclosing the anatomical sites and lobular distribution of perisinusoidal basement membrane formation in the liver. Hepatic sinusoids normally lack a basement membrane, although Col IV is a normal matrix component of the space of Disse. In liver disease, laminin deposits in the space of Disse and codistributes with Col IV, forming a perisinusoidal basement membrane. Concomitantly, the sinusoidal endothelium loses its fenestrae and is transformed into vascular type endothelium. These changes lead to capillarization of hepatic sinusoids, a significant pathology that impairs hepatic function. Accordingly, codistribution of Col IV and laminin serves as histochemical marker of perisinusoidal basement membrane formation in liver disease. Anat Rec, 300:1371-1390, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rena Mei
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
8
|
Halfter W, Oertle P, Monnier CA, Camenzind L, Reyes-Lua M, Hu H, Candiello J, Labilloy A, Balasubramani M, Henrich PB, Plodinec M. New concepts in basement membrane biology. FEBS J 2015; 282:4466-79. [PMID: 26299746 DOI: 10.1111/febs.13495] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/13/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022]
Abstract
Basement membranes (BMs) are thin sheets of extracellular matrix that outline epithelia, muscle fibers, blood vessels and peripheral nerves. The current view of BM structure and functions is based mainly on transmission electron microscopy imaging, in vitro protein binding assays, and phenotype analysis of human patients, mutant mice and invertebrata. Recently, MS-based protein analysis, biomechanical testing and cell adhesion assays with in vivo derived BMs have led to new and unexpected insights. Proteomic analysis combined with ultrastructural studies showed that many BMs undergo compositional and structural changes with advancing age. Atomic force microscopy measurements in combination with phenotype analysis have revealed an altered mechanical stiffness that correlates with specific BM pathologies in mutant mice and human patients. Atomic force microscopy-based height measurements strongly suggest that BMs are more than two-fold thicker than previously estimated, providing greater freedom for modelling the large protein polymers within BMs. In addition, data gathered using BMs extracted from mutant mice showed that laminin has a crucial role in BM stability. Finally, recent evidence demonstrate that BMs are bi-functionally organized, leading to the proposition that BM-sidedness contributes to the alternating epithelial and stromal tissue arrangements that are found in all metazoan species. We propose that BMs are ancient structures with tissue-organizing functions and were essential in the evolution of metazoan species.
Collapse
Affiliation(s)
- Willi Halfter
- Department of Ophthalmology, University Hospital Basel, Switzerland
| | - Philipp Oertle
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Christophe A Monnier
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Leon Camenzind
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Magaly Reyes-Lua
- Department of Ophthalmology, University Hospital Basel, Switzerland
| | - Huaiyu Hu
- Department of Neurobiology and Physiology, Upstate University Hospital, SUNY University, Syracuse, NY, USA
| | | | | | | | | | - Marija Plodinec
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland.,Department of Pathology, University Hospital Basel, Switzerland
| |
Collapse
|
9
|
Nelson DA, Larsen M. Heterotypic control of basement membrane dynamics during branching morphogenesis. Dev Biol 2015; 401:103-9. [PMID: 25527075 PMCID: PMC4465071 DOI: 10.1016/j.ydbio.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Abstract
Many mammalian organs undergo branching morphogenesis to create highly arborized structures with maximized surface area for specialized organ function. Cooperative cell-cell and cell-matrix adhesions that sculpt the emerging tissue architecture are guided by dynamic basement membranes. Properties of the basement membrane are reciprocally controlled by the interacting epithelial and mesenchymal cell populations. Here we discuss how basement membrane remodeling is required for branching morphogenesis to regulate cell-matrix and cell-cell adhesions that are required for cell patterning during morphogenesis and how basement membrane impacts morphogenesis by stimulation of cell patterning, force generation, and mechanotransduction. We suggest that in addition to creating mature epithelial architecture, remodeling of the epithelial basement membrane during branching morphogenesis is also essential to promote maturation of the stromal mesenchyme to create mature organ structure. Recapitulation of developmental cell-matrix and cell-cell interactions are of critical importance in tissue engineering and regeneration strategies that seek to restore organ function.
Collapse
Affiliation(s)
- Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, 1400 Washington Ave, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, 1400 Washington Ave, Albany, NY 12222, USA.
| |
Collapse
|
10
|
Morrissey MA, Sherwood DR. An active role for basement membrane assembly and modification in tissue sculpting. J Cell Sci 2015; 128:1661-8. [PMID: 25717004 DOI: 10.1242/jcs.168021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Basement membranes are a dense, sheet-like form of extracellular matrix (ECM) that underlie epithelia and endothelia, and surround muscle, fat and Schwann cells. Basement membranes separate tissues and protect them from mechanical stress. Although traditionally thought of as a static support structure, a growing body of evidence suggests that dynamic basement membrane deposition and modification instructs coordinated cellular behaviors and acts mechanically to sculpt tissues. In this Commentary, we highlight recent studies that support the idea that far from being a passive matrix, basement membranes play formative roles in shaping tissues.
Collapse
Affiliation(s)
- Meghan A Morrissey
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| |
Collapse
|