1
|
Leela N, Prommana P, Kamchonwongpaisan S, Taechalertpaisarn T, Shaw PJ. Antimalarial target vulnerability of the putative Plasmodium falciparum methionine synthase. PeerJ 2024; 12:e16595. [PMID: 38239295 PMCID: PMC10795524 DOI: 10.7717/peerj.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024] Open
Abstract
Background Plasmodium falciparum possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in Plasmodium. However, its vulnerability as an antimalarial target has not been assessed. Methods We edited the PF3D7_1233700 and PF3D7_0417200 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) genes and obtained transgenic P. falciparum parasites expressing epitope-tagged target proteins under the control of the glmS ribozyme. Conditional loss-of-function mutants were obtained by treating transgenic parasites with glucosamine. Results DHFR-TS, but not MS mutants showed a significant proliferation defect over 96 h, suggesting that P. falciparum MS is not a vulnerable antimalarial target.
Collapse
Affiliation(s)
- Nirut Leela
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Bangkok, Thailand
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Tana Taechalertpaisarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Bangkok, Thailand
| | - Philip J. Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
2
|
Morgan AE, Salcedo-Sora JE, Mc Auley MT. A new mathematical model of folate homeostasis in E. coli highlights the potential importance of the folinic acid futile cycle in cell growth. Biosystems 2024; 235:105088. [PMID: 38000545 DOI: 10.1016/j.biosystems.2023.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Folate (vitamin B9) plays a central role in one-carbon metabolism in prokaryotes and eukaryotes. This pathway mediates the transfer of one-carbon units, playing a crucial role in nucleotide synthesis, methylation, and amino acid homeostasis. The folinic acid futile cycle adds a layer of intrigue to this pathway, due to its associations with metabolism, cell growth, and dormancy. It also introduces additional complexity to folate metabolism. A logical way to deal with such complexity is to examine it by using mathematical modelling. This work describes the construction and analysis of a model of folate metabolism, which includes the folinic acid futile cycle. This model was tested under three in silico growth conditions. Model simulations revealed: 1) the folate cycle behaved as a stable biochemical system in three growth states (slow, standard, and rapid); 2) the initial concentration of serine had the greatest impact on metabolite concentrations; 3) 5-formyltetrahydrofolate cyclo-ligase (5-FCL) activity had a significant impact on the levels of the 7 products that carry the one-carbon donated from folates, and the redox couple NADP/NADPH; this was particularly evident in the rapid growth state; 4) 5-FCL may be vital to the survival of the cells by maintaining low levels of homocysteine, as high levels can induce toxicity; and 5) the antifolate therapeutic trimethoprim had a greater impact on folate metabolism with higher nutrient availability. These results highlight the important role of 5-FCL in intracellular folate homeostasis and mass generation under different metabolic scenarios.
Collapse
Affiliation(s)
- Amy E Morgan
- School of Health & Sport Sciences, Hope Park, Liverpool Hope University, Liverpool, L16 9JD, UK.
| | - J Enrique Salcedo-Sora
- Liverpool Shared Research Facilities, GeneMill, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark T Mc Auley
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4NT, UK
| |
Collapse
|
3
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
4
|
Pandey SK, Anand U, Siddiqui WA, Tripathi R. Drug Development Strategies for Malaria: With the Hope for New Antimalarial Drug Discovery—An Update. Adv Med 2023; 2023:5060665. [PMID: 36960081 PMCID: PMC10030226 DOI: 10.1155/2023/5060665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Malaria continued to be a deadly situation for the people of tropical and subtropical countries. Although there has been a marked reduction in new cases as well as mortality and morbidity rates in the last two decades, the reporting of malaria caused 247 million cases and 619000 deaths worldwide in 2021, according to the WHO (2022). The development of drug resistance and declining efficacy against most of the antimalarial drugs/combination in current clinical practice is a big challenge for the scientific community, and in the absence of an effective vaccine, the problem becomes worse. Experts from various research organizations worldwide are continuously working hard to stop this disaster by employing several strategies for the development of new antimalarial drugs/combinations. The current review focuses on the history of antimalarial drug discovery and the advantages, loopholes, and opportunities associated with the common strategies being followed for antimalarial drug development.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- 1Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uttpal Anand
- 2Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Waseem A. Siddiqui
- 3Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Renu Tripathi
- 4Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
5
|
Somandi K, Seanego TD, Dlamini (née Molatsane) T, Maree M, de Koning CB, Vanichtanankul J, Rattanajak R, Saeyang T, Yuthavong Y, Kamchonwongpaisan S, Rousseau AL. Molecular Docking Studies, Synthesis and Biological Evaluation of Substituted Pyrimidine-2,4-diamines as Inhibitors of Plasmodium falciparum Dihydrofolate Reductase. ChemMedChem 2022; 17:e202200418. [PMID: 36193872 PMCID: PMC9827987 DOI: 10.1002/cmdc.202200418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Indexed: 01/14/2023]
Abstract
A series of 5-[(phenethylamino)methyl]pyrimidine-2,4-diamines were assessed in silico as potential inhibitors of Plasmodium falciparum dihydrofolate reductase (PfDHFR), synthesised and tested for inhibitory activity against PfDHFR in vitro. The compounds displayed promising inhibitory activity against both wild-type (Ki 1.3-243 nM) and quadruple mutant (Ki 13-208 nM) PfDHFR in the biochemical enzyme assay, but were less potent in the whole-cell P. falciparum assay (IC50 (TM4/8.2) 0.4-28 μM; IC50 (V1S) 3.7-54 μM). Further investigation into the pharmacokinetic properties of these compounds may guide the development of more potent analogues.
Collapse
Affiliation(s)
- Khonzisizwe Somandi
- Molecular Sciences InstituteSchool of ChemistryUniversity of the WitwatersrandPrivate Bag 3, POWITS2050South Africa,WITS Research Institute for Malaria (WRIM)University of the Witwatersrand7 York RoadJohannesburg, Parktown2193South Africa
| | - Tswene D. Seanego
- Molecular Sciences InstituteSchool of ChemistryUniversity of the WitwatersrandPrivate Bag 3, POWITS2050South Africa,WITS Research Institute for Malaria (WRIM)University of the Witwatersrand7 York RoadJohannesburg, Parktown2193South Africa
| | - Tebogo Dlamini (née Molatsane)
- Molecular Sciences InstituteSchool of ChemistryUniversity of the WitwatersrandPrivate Bag 3, POWITS2050South Africa,WITS Research Institute for Malaria (WRIM)University of the Witwatersrand7 York RoadJohannesburg, Parktown2193South Africa
| | - Matthew Maree
- Molecular Sciences InstituteSchool of ChemistryUniversity of the WitwatersrandPrivate Bag 3, POWITS2050South Africa,WITS Research Institute for Malaria (WRIM)University of the Witwatersrand7 York RoadJohannesburg, Parktown2193South Africa
| | - Charles B. de Koning
- Molecular Sciences InstituteSchool of ChemistryUniversity of the WitwatersrandPrivate Bag 3, POWITS2050South Africa
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development AgencyThailand Science ParkPathumthani12120Thailand
| | - Roonglawan Rattanajak
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development AgencyThailand Science ParkPathumthani12120Thailand
| | - Thanaya Saeyang
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development AgencyThailand Science ParkPathumthani12120Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development AgencyThailand Science ParkPathumthani12120Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development AgencyThailand Science ParkPathumthani12120Thailand
| | - Amanda L. Rousseau
- Molecular Sciences InstituteSchool of ChemistryUniversity of the WitwatersrandPrivate Bag 3, POWITS2050South Africa,WITS Research Institute for Malaria (WRIM)University of the Witwatersrand7 York RoadJohannesburg, Parktown2193South Africa
| |
Collapse
|
6
|
Abdou MM, O'Neill PM, Amigues E, Matziari M. Structure-based bioisosteric design, synthesis and biological evaluation of novel pyrimidines as antiplasmodial antifolate agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Wittlin S, Mäser P. From Magic Bullet to Magic Bomb: Reductive Bioactivation of Antiparasitic Agents. ACS Infect Dis 2021; 7:2777-2786. [PMID: 34472830 DOI: 10.1021/acsinfecdis.1c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paul Ehrlich coined the term "magic bullet" to describe how a drug kills the parasite inside its human host without harming the host itself. Ehrlich concluded that the drug must have a greater affinity to the parasite than to human cells. Today, the specificity of drug action is understood in terms of the drug target. An ideal target is a protein that is essential for the proliferation of the pathogen but absent in human cells. Examples are the enzymes of folate synthesis or of the nonmevalonate pathway in the malaria parasites. However, there are other ways how a drug can kill selectively. Of particular relevance is the specific activation of a prodrug inside the pathogen but not in the host, as this is how the current frontrunners of parasite chemotherapy work. Artemisinins for malaria, fexinidazole for human African trypanosomiasis, benznidazole for Chagas' disease, metronidazole for intestinal protozoa: these molecules are "magic bombs" that are triggered selectively. They are prodrugs that need to be activated by chemical reduction, i.e., the acquisition of an electron, which occurs in the parasite. Such a mode of action is shared by the novel antimalarial peroxides arterolane and artefenomel, which are activated by reduction of the endoperoxide bond with ferrous heme as the likely electron donor, a metabolic end-product of Plasmodium falciparum. Here we provide an overview on the molecular basis of selectivity of antiparasitic drug action with particular reference to the ozonides, the new generation of antimalarial peroxides designed by Jonathan Vennerstrom.
Collapse
Affiliation(s)
- Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
8
|
Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim YM. Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol 2020; 46:665-688. [DOI: 10.1080/1040841x.2020.1822278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| |
Collapse
|
9
|
Matz JM, Watanabe M, Falade M, Tohge T, Hoefgen R, Matuschewski K. Plasmodium Para-Aminobenzoate Synthesis and Salvage Resolve Avoidance of Folate Competition and Adaptation to Host Diet. Cell Rep 2020; 26:356-363.e4. [PMID: 30625318 DOI: 10.1016/j.celrep.2018.12.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022] Open
Abstract
Folate metabolism is essential for DNA synthesis and a validated drug target in fast-growing cell populations, including tumors and malaria parasites. Genome data suggest that Plasmodium has retained its capacity to generate folates de novo. However, the metabolic plasticity of folate uptake and biosynthesis by the malaria parasite remains unresolved. Here, we demonstrate that Plasmodium uses an aminodeoxychorismate synthase and an aminodeoxychorismate lyase to promote the biogenesis of the central folate precursor para-aminobenzoate (pABA) in the cytoplasm. We show that the parasite depends on de novo folate synthesis only when dietary intake of pABA by the mammalian host is restricted and that only pABA, rather than fully formed folate, is taken up efficiently. This adaptation, which readily adjusts infection to highly variable pABA levels in the mammalian diet, is specific to blood stages and may have evolved to avoid folate competition between the parasite and its host.
Collapse
Affiliation(s)
- Joachim Michael Matz
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany; Parasitology Unit, Max Planck Institute of Infection Biology, 10117 Berlin, Germany.
| | - Mutsumi Watanabe
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Nara Institute of Science and Technology, Graduate School of Biological Sciences, Plant Secondary Metabolism, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | | | - Takayuki Tohge
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Nara Institute of Science and Technology, Graduate School of Biological Sciences, Plant Secondary Metabolism, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany; Parasitology Unit, Max Planck Institute of Infection Biology, 10117 Berlin, Germany
| |
Collapse
|
10
|
Chitnumsub P, Jaruwat A, Talawanich Y, Noytanom K, Liwnaree B, Poen S, Yuthavong Y. The structure of Plasmodium falciparum hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase reveals the basis of sulfa resistance. FEBS J 2020; 287:3273-3297. [PMID: 31883412 DOI: 10.1111/febs.15196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 11/28/2022]
Abstract
The clinical efficacy of sulfa drugs as antimalarials has declined owing to the evolution of resistance in Plasmodium falciparum (Pf) malaria parasites. In order to understand the basis of this resistance and to design more effective antimalarials, we have solved 13 structures of the bifunctional enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK)-dihydropteroate synthase (DHPS) from wild-type (WT) P. falciparum and sulfa-resistant mutants, both as apoenzyme and as complexes with pteroate (PTA) and sulfa derivatives. The structures of these complexes show that PTA, which effectively inhibits both the WT and mutants, stays in active sites without steric constraint. In contrast, parts of the sulfa compounds situated outside of the substrate envelope are in the vicinity of the resistance mutations. Steric conflict between compound and mutant residue along with increased flexibility of loop D2 in the mutants can account for the reduced compound binding affinity to the mutants. Kinetic data show that the mutants have enhanced enzyme activity compared with the WT. These PfDHPS structural insights are critical for the design of novel, substrate envelope-compliant DHPS inhibitors that are less vulnerable to resistance mutations. DATABASES: The data reported in this paper have been deposited in the Protein Data Bank, www.wwpdb.org. PDB ID codes: 6JWQ for apoWT; 6JWR, 6JWS, and 6JWT for PTA complexes of WT, A437G (3D7), and V1/S; 6JWU, 6JWV, and 6JWW for STZ-DHP complexes of WT, 3D7, and V1/S; 6JWX, 6JWY, and 6JWZ for SDX-DHP complexes of WT, 3D7, and W2; 6KCK, 6KCL, and 6KCM for Pterin/pHBA complexes of WT, TN1, and W2.
Collapse
Affiliation(s)
- Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yuwadee Talawanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Krittikar Noytanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Benjamas Liwnaree
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sinothai Poen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
11
|
Valenciano AL, Fernández-Murga ML, Merino EF, Holderman NR, Butschek GJ, Shaffer KJ, Tyler PC, Cassera MB. Metabolic dependency of chorismate in Plasmodium falciparum suggests an alternative source for the ubiquinone biosynthesis precursor. Sci Rep 2019; 9:13936. [PMID: 31558748 PMCID: PMC6763611 DOI: 10.1038/s41598-019-50319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 01/17/2023] Open
Abstract
The shikimate pathway, a metabolic pathway absent in humans, is responsible for the production of chorismate, a branch point metabolite. In the malaria parasite, chorismate is postulated to be a direct precursor in the synthesis of p-aminobenzoic acid (folate biosynthesis), p-hydroxybenzoic acid (ubiquinone biosynthesis), menaquinone, and aromatic amino acids. While the potential value of the shikimate pathway as a drug target is debatable, the metabolic dependency of chorismate in P. falciparum remains unclear. Current evidence suggests that the main role of chorismate is folate biosynthesis despite ubiquinone biosynthesis being active and essential in the malaria parasite. Our goal in the present work was to expand our knowledge of the ubiquinone head group biosynthesis and its potential metabolic dependency on chorismate in P. falciparum. We systematically assessed the development of both asexual and sexual stages of P. falciparum in a defined medium in the absence of an exogenous supply of chorismate end-products and present biochemical evidence suggesting that the benzoquinone ring of ubiquinones in this parasite may be synthesized through a yet unidentified route.
Collapse
Affiliation(s)
- Ana Lisa Valenciano
- Department of Biochemistry & Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, 30602, United States
| | - Maria L Fernández-Murga
- Laboratory of Experimental Pathology, Health Research Institute Hospital La Fe, Valencia, 46026, Spain
| | - Emilio F Merino
- Department of Biochemistry & Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, 30602, United States
| | - Nicole R Holderman
- Department of Biochemistry & Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, 30602, United States
| | - Grant J Butschek
- Department of Biochemistry & Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, 30602, United States
| | - Karl J Shaffer
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Maria Belen Cassera
- Department of Biochemistry & Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, 30602, United States.
| |
Collapse
|
12
|
Djonlagic I, Aeschbach D, Harrison SL, Dean D, Yaffe K, Ancoli-Israel S, Stone K, Redline S. Associations between quantitative sleep EEG and subsequent cognitive decline in older women. J Sleep Res 2019; 28:e12666. [PMID: 29508460 PMCID: PMC7025429 DOI: 10.1111/jsr.12666] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/26/2017] [Accepted: 12/28/2017] [Indexed: 11/30/2022]
Abstract
The pathophysiological processes of Alzheimer's dementia predate its clinical manifestation. Sleep disturbances can accelerate the aging process and are common features of dementia. This study examined whether quantitative sleep electroencephalogram changes predate the clinical development of mild cognitive impairment and/or incident dementia. We collected data from a nested case-control sample of women (mean age 83 years) from the Sleep and Cognition Study, an ancillary study to the longitudinal Study of Osteoporotic Fractures, who were characterized as cognitively normal at the time of a baseline polysomnography study (Study of Osteoporotic Fractures visit 8) based on a Mini-Mental Status Exam (MMSE) score >24. Cases (n = 85) were women who developed new mild cognitive impairment or dementia by objective cognitive testing 5 years after polysomnography. Controls were women with no mild cognitive impairment/dementia (n = 85) at baseline or at follow-up. Differences in electroencephalogram absolute and relative power density were observed between the two groups. Specifically, higher electroencephalogram power values were found in the dementia/mild cognitive impairment group, for the alpha (p = .01) and theta bands (p = .04) in non-rapid eye movement sleep, as well as alpha (p = .04) and sigma (p = .04) bands in rapid eye movement sleep. In contrast, there were no group differences in traditional polysomnography measures of sleep architecture and sleep stage distribution, as well as sleep apnea and periodic limb movement indices. Our results provide evidence for quantitative electroencephalogram changes, which precede the clinical onset of cognitive decline and the diagnosis of dementia in elderly women, and support the application of quantitative sleep electroencephalogram analysis as a promising biomarker for imminent cognitive decline.
Collapse
Affiliation(s)
- Ina Djonlagic
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Aeschbach
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | | | - Dennis Dean
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Katie Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Zaitsev AV, Martinov MV, Vitvitsky VM, Ataullakhanov FI. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci Rep 2019; 9:7657. [PMID: 31113966 PMCID: PMC6529478 DOI: 10.1038/s41598-019-44009-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/30/2019] [Indexed: 11/27/2022] Open
Abstract
Folate metabolism in mammalian cells is essential for multiple vital processes, including purine and pyrimidine synthesis, histidine catabolism, methionine recycling, and utilization of formic acid. It remains unknown, however, whether these processes affect each other via folate metabolism or can function independently based on cellular needs. We addressed this question using a quantitative mathematical model of folate metabolism in rat liver cytoplasm. Variation in the rates of metabolic processes associated with folate metabolism (i.e., purine and pyrimidine synthesis, histidine catabolism, and influxes of formate and methionine) in the model revealed that folate metabolism is organized in a striking manner that enables activation or inhibition of each individual process independently of the metabolic fluxes in others. In mechanistic terms, this independence is based on the high activities of a group of enzymes involved in folate metabolism, which efficiently maintain close-to-equilibrium ratios between substrates and products of enzymatic reactions.
Collapse
Affiliation(s)
| | - Michael V Martinov
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor M Vitvitsky
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Fazoil I Ataullakhanov
- Department of Physics, Moscow State University, Moscow, 119991, Russia
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| |
Collapse
|
14
|
para-Aminobenzoate Synthesis versus Salvage in Malaria Parasites. Trends Parasitol 2019; 35:176-178. [PMID: 30709568 DOI: 10.1016/j.pt.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 11/20/2022]
Abstract
Enzymes of the folate de novo synthesis pathway in malaria parasites are proven antimalarial drug targets. A key precursor for folate synthesis is para-aminobenzoate (pABA). In a recent study [1] (Cell Rep. 2019;26:356-363 e4), the contributions of pABA synthesis versus salvage were re-evaluated in a rodent malaria model with knockout parasites grown in mice fed with various diets. The results imply that malaria parasites can either synthesize or salvage pABA to meet the demand for folates.
Collapse
|
15
|
Morgan J, Smith M, Mc Auley MT, Enrique Salcedo-Sora J. Disrupting folate metabolism reduces the capacity of bacteria in exponential growth to develop persisters to antibiotics. Microbiology (Reading) 2018; 164:1432-1445. [DOI: 10.1099/mic.0.000722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jasmine Morgan
- 1Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire, L39 4QP, UK
| | - Matthew Smith
- 2School of Health Sciences, Liverpool Hope University, Hope Park, L16 9JD, Liverpool, UK
| | - Mark T. Mc Auley
- 3Chemical Engineering Department, University of Chester, Thronton Science Park, CH2 4NU, Chester, UK
| | | |
Collapse
|
16
|
Layden AJ, Täse K, Finkelstein JL. Neglected tropical diseases and vitamin B12: a review of the current evidence. Trans R Soc Trop Med Hyg 2018; 112:423-435. [PMID: 30165408 DOI: 10.1093/trstmh/try078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/30/2018] [Indexed: 12/15/2022] Open
Abstract
Vitamin B12 deficiency is an urgent public health problem that disproportionately affects individuals in low- and middle-income settings, where the burden of neglected tropical diseases (NTDs) is also unacceptably high. Emerging evidence supports a potential role of micronutrients in modulating the risk and severity of NTDs. However, the role of vitamin B12 in NTD pathogenesis is unknown. This systematic review was conducted to evaluate the evidence on the role of vitamin B12 in the etiology of NTDs. Ten studies were included in this review: one study using an in vitro/animal model, eight observational human studies and one ancillary analysis conducted within an intervention trial. Most research to date has focused on vitamin B12 status and helminthic infections. One study examined the effects of vitamin B12 interventions in NTDs in animal and in vitro models. Few prospective studies have been conducted to date to examine the role of vitamin B12 in NTDs. The limited literature in this area constrains our ability to make specific recommendations. Larger prospective human studies are needed to elucidate the role of vitamin B12 in NTD risk and severity in order to inform interventions in at-risk populations.
Collapse
Affiliation(s)
| | - Kristos Täse
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY.,St. John's Research Institute, Bangalore, India
| |
Collapse
|
17
|
Wale N, Sim DG, Read AF. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc Biol Sci 2018; 284:rspb.2017.1067. [PMID: 28747479 PMCID: PMC5543226 DOI: 10.1098/rspb.2017.1067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Hosts are often infected with multiple strains of a single parasite species. Within-host competition between parasite strains can be intense and has implications for the evolution of traits that impact patient health, such as drug resistance and virulence. Yet the mechanistic basis of within-host competition is poorly understood. Here, we demonstrate that a parasite nutrient, para-aminobenzoic acid (pABA), mediates competition between a drug resistant and drug susceptible strain of the malaria parasite, Plasmodium chabaudi. We further show that increasing pABA supply to hosts infected with the resistant strain worsens disease and changes the relationship between parasite burden and pathology. Our experiments demonstrate that, even when there is profound top-down regulation (immunity), bottom-up regulation of pathogen populations can occur and that its importance may vary during an infection. The identification of resources that can be experimentally controlled opens up the opportunity to manipulate competitive interactions between parasites and hence their evolution.
Collapse
Affiliation(s)
- Nina Wale
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Derek G Sim
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Gazanion E, Vergnes B. Protozoan Parasite Auxotrophies and Metabolic Dependencies. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:351-375. [PMID: 30535605 DOI: 10.1007/978-3-319-74932-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diseases caused by protozoan parasites have a major impact on world health. These early branching eukaryotes cause significant morbidity and mortality in humans and livestock. During evolution, protozoan parasites have evolved toward complex life cycles in multiple host organisms with different nutritional resources. The conservation of functional metabolic pathways required for these successive environments is therefore a prerequisite for parasitic lifestyle. Nevertheless, parasitism drives genome evolution toward gene loss and metabolic dependencies (including strict auxotrophy), especially for obligatory intracellular parasites. In this chapter, we will compare and contrast how protozoan parasites have perfected this metabolic adaptation by focusing on specific auxotrophic pathways and scavenging strategies used by clinically relevant apicomplexan and trypanosomatid parasites to access host's nutritional resources. We will further see how these metabolic dependencies have in turn been exploited for therapeutic purposes against these human pathogens.
Collapse
Affiliation(s)
- Elodie Gazanion
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Baptiste Vergnes
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
19
|
Schwertz G, Frei MS, Witschel MC, Rottmann M, Leartsakulpanich U, Chitnumsub P, Jaruwat A, Ittarat W, Schäfer A, Aponte RA, Trapp N, Mark K, Chaiyen P, Diederich F. Conformational Aspects in the Design of Inhibitors for Serine Hydroxymethyltransferase (SHMT): Biphenyl, Aryl Sulfonamide, and Aryl Sulfone Motifs. Chemistry 2017; 23:14345-14357. [DOI: 10.1002/chem.201703244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Geoffrey Schwertz
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Michelle S. Frei
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | | | - Matthias Rottmann
- Swiss Tropical and Public Health Institute (SwissTPHI); Socinstrasse 57 4051 Basel Switzerland
- Universität Basel; Petersplatz 1 4003 Basel Switzerland
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology; 113 Thailand Science Park, Phahonyothin Road Pathumthani 12120 Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology; 113 Thailand Science Park, Phahonyothin Road Pathumthani 12120 Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology; 113 Thailand Science Park, Phahonyothin Road Pathumthani 12120 Thailand
| | - Wanwipa Ittarat
- National Center for Genetic Engineering and Biotechnology; 113 Thailand Science Park, Phahonyothin Road Pathumthani 12120 Thailand
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute (SwissTPHI); Socinstrasse 57 4051 Basel Switzerland
- Universität Basel; Petersplatz 1 4003 Basel Switzerland
| | | | - Nils Trapp
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Kerstin Mark
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology; Faculty of Science Mahidol University; 272 Rama VI Road Bangkok 10400 Thailand
- Department of Biomolecular Science and Engineering; School of Biomolecular Science & Engineering; Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley; Rayong 21210 Thailand
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
20
|
Schwertz G, Witschel MC, Rottmann M, Bonnert R, Leartsakulpanich U, Chitnumsub P, Jaruwat A, Ittarat W, Schäfer A, Aponte RA, Charman SA, White KL, Kundu A, Sadhukhan S, Lloyd M, Freiberg GM, Srikumaran M, Siggel M, Zwyssig A, Chaiyen P, Diederich F. Antimalarial Inhibitors Targeting Serine Hydroxymethyltransferase (SHMT) with in Vivo Efficacy and Analysis of their Binding Mode Based on X-ray Cocrystal Structures. J Med Chem 2017; 60:4840-4860. [DOI: 10.1021/acs.jmedchem.7b00008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Geoffrey Schwertz
- Laboratorium für
Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | | | - Matthias Rottmann
- Swiss Tropical and Public Health Institute (SwissTPH), Socinstrasse
57, 4051 Basel, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Roger Bonnert
- Medicines for Malaria Venture, Route de Pré-Bois 20, CH-1215 Geneva, Switzerland
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Pathumthni 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Pathumthni 12120, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Pathumthni 12120, Thailand
| | - Wanwipa Ittarat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Pathumthni 12120, Thailand
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute (SwissTPH), Socinstrasse
57, 4051 Basel, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | | | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Abhijit Kundu
- TCG Lifesciences Private Limited, Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, West Bengal India
| | - Surajit Sadhukhan
- TCG Lifesciences Private Limited, Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, West Bengal India
| | - Mel Lloyd
- Covance Laboratories Ltd., Otley Road, Harrogate HG3 1PY, United Kingdom
| | - Gail M. Freiberg
- Molecular
Characterization, Department R4AE, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064-6217, United States
| | - Myron Srikumaran
- Molecular
Characterization, Department R4AE, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064-6217, United States
| | - Marc Siggel
- Laboratorium für
Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Adrian Zwyssig
- Laboratorium für
Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Pimchai Chaiyen
- Department of
Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - François Diederich
- Laboratorium für
Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Abrahamian M, Ah-Fong AMV, Davis C, Andreeva K, Judelson HS. Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis. PLoS Pathog 2016; 12:e1006097. [PMID: 27936244 PMCID: PMC5176271 DOI: 10.1371/journal.ppat.1006097] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
To help learn how phytopathogens feed from their hosts, genes for nutrient transporters from the hemibiotrophic potato and tomato pest Phytophthora infestans were annotated. This identified 453 genes from 19 families. Comparisons with a necrotrophic oomycete, Pythium ultimum var. ultimum, and a hemibiotrophic fungus, Magnaporthe oryzae, revealed diversity in the size of some families although a similar fraction of genes encoded transporters. RNA-seq of infected potato tubers, tomato leaves, and several artificial media revealed that 56 and 207 transporters from P. infestans were significantly up- or down-regulated, respectively, during early infection timepoints of leaves or tubers versus media. About 17 were up-regulated >4-fold in both leaves and tubers compared to media and expressed primarily in the biotrophic stage. The transcription pattern of many genes was host-organ specific. For example, the mRNA level of a nitrate transporter (NRT) was about 100-fold higher during mid-infection in leaves, which are nitrate-rich, than in tubers and three types of artificial media, which are nitrate-poor. The NRT gene is physically linked with genes encoding nitrate reductase (NR) and nitrite reductase (NiR), which mobilize nitrate into ammonium and amino acids. All three genes were coregulated. For example, the three genes were expressed primarily at mid-stage infection timepoints in both potato and tomato leaves, but showed little expression in potato tubers. Transformants down-regulated for all three genes were generated by DNA-directed RNAi, with silencing spreading from the NR target to the flanking NRT and NiR genes. The silenced strains were nonpathogenic on leaves but colonized tubers. We propose that the nitrate assimilation genes play roles both in obtaining nitrogen for amino acid biosynthesis and protecting P. infestans from natural or fertilization-induced nitrate and nitrite toxicity. Little is known of how plant pathogens adapt to different growth conditions and host tissues. To understand the interaction between the filamentous eukaryotic microbe Phytophthora infestans and its potato and tomato hosts, we mined the genome for genes encoding proteins involved in nutrient uptake and measured their expression in leaves, tubers, and three artificial media. We observed dynamic changes between the growth conditions, and identified transporters expressed mainly in the biotrophic stage, leaves, tubers, or artificial media. When we blocked the expression of a nitrate transporter and two other genes involved in assimilating nitrate, we observed that those genes were required for successful colonization of nitrate-rich leaves but not nitrate-poor tissues, and that nitrate had become toxic to the silenced strains. We therefore hypothesize that the nitrate assimilation pathway may help the pathogen use inorganic nitrogen for nutrition and/or detoxify nitrate when its levels may become damaging.
Collapse
Affiliation(s)
- Melania Abrahamian
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Audrey M. V. Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Carol Davis
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Kalina Andreeva
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rijpma SR, van der Velden M, Bilos A, Jansen RS, Mahakena S, Russel FGM, Sauerwein RW, van de Wetering K, Koenderink JB. MRP1 mediates folate transport and antifolate sensitivity in Plasmodium falciparum. FEBS Lett 2016; 590:482-92. [PMID: 26900081 DOI: 10.1002/1873-3468.12079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 11/05/2022]
Abstract
Multidrug resistance-associated proteins (MRP) of Plasmodium falciparum have been associated with altered drug sensitivity. Knowledge on MRP substrate specificity is indispensible for the characterization of resistance mechanisms and identifying its physiological roles. An untargeted metabolomics approach detected decreased folate concentrations in red blood cells infected with schizont stage parasites lacking expression of MRP1. Furthermore, a tenfold decrease in sensitivity toward the folate analog methotrexate was detected for parasites lacking MRP1. PfMRP1 is involved in the export of folate from parasites into red blood cells and is therefore a relevant factor for efficient malaria treatment through the folate pathway.
Collapse
Affiliation(s)
- Sanna R Rijpma
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten van der Velden
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Albert Bilos
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert S Jansen
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sunny Mahakena
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Koen van de Wetering
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Salcedo-Sora JE, Mc Auley MT. A mathematical model of microbial folate biosynthesis and utilisation: implications for antifolate development. MOLECULAR BIOSYSTEMS 2016; 12:923-33. [PMID: 26794619 DOI: 10.1039/c5mb00801h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The metabolic biochemistry of folate biosynthesis and utilisation has evolved into a complex network of reactions. Although this complexity represents challenges to the field of folate research it has also provided a renewed source for antimetabolite targets. A range of improved folate chemotherapy continues to be developed and applied particularly to cancer and chronic inflammatory diseases. However, new or better antifolates against infectious diseases remain much more elusive. In this paper we describe the assembly of a generic deterministic mathematical model of microbial folate metabolism. Our aim is to explore how a mathematical model could be used to explore the dynamics of this inherently complex set of biochemical reactions. Using the model it was found that: (1) a particular small set of folate intermediates are overrepresented, (2) inhibitory profiles can be quantified by the level of key folate products, (3) using the model to scan for the most effective combinatorial inhibitions of folate enzymes we identified specific targets which could complement current antifolates, and (4) the model substantiates the case for a substrate cycle in the folinic acid biosynthesis reaction. Our model is coded in the systems biology markup language and has been deposited in the BioModels Database (MODEL1511020000), this makes it accessible to the community as a whole.
Collapse
|
24
|
Lourens ACU, Gravestock D, van Zyl RL, Hoppe HC, Kolesnikova N, Taweechai S, Yuthavong Y, Kamchonwongpaisan S, Rousseau AL. Design, synthesis and biological evaluation of 6-aryl-1,6-dihydro-1,3,5-triazine-2,4-diamines as antiplasmodial antifolates. Org Biomol Chem 2016; 14:7899-911. [DOI: 10.1039/c6ob01350c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One-pot multistep synthesis of 1,6-dihydro-1,3,5-triazines displaying potent antiplasmodial activity in vitro.
Collapse
Affiliation(s)
- Anna C. U. Lourens
- CSIR Biosciences
- 0001 Gauteng
- South Africa
- Pharmaceutical Chemistry
- School of Pharmacy
| | - David Gravestock
- CSIR Biosciences
- 0001 Gauteng
- South Africa
- Syngenta
- Jealott's Hill International Research Centre
| | - Robyn L. van Zyl
- Pharmacology Division
- Department of Pharmacy and Pharmacology
- WITS Research Institute for Malaria (WRIM)
- Faculty of Health Sciences
- University of the Witwatersrand
| | - Heinrich C. Hoppe
- CSIR Biosciences
- 0001 Gauteng
- South Africa
- Department of Biochemistry and Microbiology
- Rhodes University
| | | | - Supannee Taweechai
- BIOTEC
- National Science and Technology Development Agency
- Pathumthani 12120
- Thailand
| | - Yongyuth Yuthavong
- BIOTEC
- National Science and Technology Development Agency
- Pathumthani 12120
- Thailand
| | | | - Amanda L. Rousseau
- CSIR Biosciences
- 0001 Gauteng
- South Africa
- Molecular Sciences Institute
- School of Chemistry
| |
Collapse
|
25
|
Moya-Alvarez V, Cottrell G, Ouédraogo S, Accrombessi M, Massougbodgi A, Cot M. Does Iron Increase the Risk of Malaria in Pregnancy? Open Forum Infect Dis 2015; 2:ofv038. [PMID: 26380338 PMCID: PMC4567087 DOI: 10.1093/ofid/ofv038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/15/2015] [Indexed: 12/03/2022] Open
Abstract
Background. Pregnancy-associated malaria (PAM) remains a significant health concern in sub-Saharan Africa. Cross-sectional studies report that iron might be associated with increased malaria morbidity, raising fears that current iron supplementation policies will cause harm in the present context of increasing resistance against intermittent preventive treatment in pregnancy (IPTp). Therefore, it is necessary to assess the relation of iron levels with malaria risk during the entire pregnancy. Methods. To investigate the association of maternal iron levels on malaria risk in the context of an IPTp clinical trial, 1005 human immunodeficiency virus-negative, pregnant Beninese women were monitored throughout their pregnancy between January 2010 and May 2011. Multilevel models with random intercept at the individual levels and random slope for gestational age were used to analyze the factors associated with increased risk of a positive blood smear and increased Plasmodium falciparum density. Results. During the follow-up, 29% of the women had at least 1 episode of malaria. On average, women had 0.52 positive smears (95% confidence interval [CI], 0.44-0.60). High iron levels (measured by the log10 of ferritin corrected on inflammation) were significantly associated with increased risk of a positive blood smear (adjusted odds ratio = 1.75; 95% CI, 1.46-2.11; P < .001) and high P falciparum density (beta estimate = 0.22; 95% CI, 0.18-0.27; P < .001) during the follow-up period adjusted on pregnancy parameters, comorbidities, environmental and socioeconomic indicators, and IPTp regime. Furthermore, iron-deficient women were significantly less likely to have a positive blood smear and high P falciparum density (P < .001 in both cases). Conclusions. Iron levels were positively associated with increased PAM during pregnancy in the context of IPTp. Supplementary interventional studies are needed to determine the benefits and risks of differently dosed iron and folate supplements in malaria-endemic regions.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- MERIT- Mère et Enfant Face aux Infections Tropicales, Institut de Recherche pour le Développement, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Réseau Doctoral de l'Ecole des Hautes Etudes en Santé Publique, Rennes, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Gilles Cottrell
- MERIT- Mère et Enfant Face aux Infections Tropicales, Institut de Recherche pour le Développement, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Smaila Ouédraogo
- Université Paris Descartes, Sorbonne Paris Cité, France
- MERIT- Mère et Enfant Face aux Infections Tropicales, Institut de Recherche pour le Développement, Cotonou, Benin
- Unité de Formation et de Recherche en Sciences de la Santé, Université de Ouagadougou, Burkina Faso
- Public Health Department, Centre Hospitalier Universitaire Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Manfred Accrombessi
- Université Pierre et Marie Curie, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | | | - Michel Cot
- MERIT- Mère et Enfant Face aux Infections Tropicales, Institut de Recherche pour le Développement, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
26
|
Heinberg A, Kirkman L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann N Y Acad Sci 2015; 1342:10-8. [PMID: 25694157 DOI: 10.1111/nyas.12662] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drugs that target the folate-synthesis pathway have a long history of effectiveness against a variety of pathogens. As antimalarials, the antifolates were safe and well tolerated, but resistance emerged quickly and has persisted even with decreased drug pressure. The primary determinants of resistance in Plasmodium falciparum are well-described point mutations in the enzymes dihydropteroate synthase and dihydrofolate reductase targeted by the combination sulfadoxine-pyrimethamine. Recent work has highlighted the contributions of additional parasite adaptation to antifolate resistance. In fact, the evolution of antifolate-resistant parasites is multifaceted and complex. Gene amplification of the first enzyme in the parasite folate synthesis pathway, GTP-cyclohydrolase, is strongly associated with resistant parasites and potentially contributes to persistence of resistant parasites. Further understanding of how parasites adjust flux through the folate pathway is important to the further development of alternative agents targeting this crucial synthesis pathway.
Collapse
|
27
|
Functional characterization of the Pneumocystis jirovecii potential drug targets dhfs and abz2 involved in folate biosynthesis. Antimicrob Agents Chemother 2015; 59:2560-6. [PMID: 25691634 DOI: 10.1128/aac.05092-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/07/2015] [Indexed: 01/12/2023] Open
Abstract
Pneumocystis species are fungal parasites colonizing mammal lungs with strict host specificity. Pneumocystis jirovecii is the human-specific species and can turn into an opportunistic pathogen causing severe pneumonia in immunocompromised individuals. This disease is currently the second most frequent life-threatening invasive fungal infection worldwide. The most efficient drug, cotrimoxazole, presents serious side effects, and resistance to this drug is emerging. The search for new targets for the development of new drugs is thus of utmost importance. The recent release of the P. jirovecii genome sequence opens a new era for this task. It can now be carried out on the actual targets to be inhibited instead of on those of the relatively distant model Pneumocystis carinii, the species infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used for efficient therapeutic intervention, and (ii) it involves several enzymes that are essential for the pathogen and have no human counterparts. In this study, we report the identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces cerevisiae.
Collapse
|
28
|
Abstract
Malaria parasites have had profound effects on human populations for millennia, but other terrestrial vertebrates are impacted by malaria as well. Entire species of birds have been driven to extinction, and many others are threatened by population declines. Recent studies have shown that host-switching is quite common among malaria parasite lineages, and these switches often involve a significant shift in the environment in which the parasites find themselves, including nucleated vs non-nucleated red blood cells and red vs white blood cells. Therefore, it is important to understand how parasites adapt to these different host environments. The mitochondrial cytochrome b (cyt b) gene shows evidence of adaptive molecular evolution among malaria parasite groups, putatively because of its critical role in the electron transport chain (ETC) in cellular metabolism. Two hypotheses were addressed here: (1) mitochondrial components of the ETC (cyt b and cytochrome oxidase 1 [COI]) should show evidence of adaptive evolution (i.e., selection) and (2) selection should be evident in host switches. Overall we found a signature of constraint (e.g., purifying selection) across the four genes included here, but we also found evidence of positive selection associated with host switches in cyt b and, surprisingly, in (apicoplast) caseinolytic protease C. These results suggest that evidence of selection should be widespread across these parasite genomes.
Collapse
|
29
|
Plasmodium berghei glycine cleavage system T-protein is non-essential for parasite survival in vertebrate and invertebrate hosts. Mol Biochem Parasitol 2014; 197:50-5. [PMID: 25454081 DOI: 10.1016/j.molbiopara.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/21/2022]
Abstract
T-protein, an aminomethyltransferase, represents one of the four components of glycine cleavage system (GCS) and catalyzes the transfer of methylene group from H-protein intermediate to tetrahydrofolate (THF) forming N(5), N(10)-methylene THF (CH2-THF) with the release of ammonia. The malaria parasite genome encodes T-, H- and L-proteins, but not P-protein which is a glycine decarboxylase generating the aminomethylene group. A putative GCS has been considered to be functional in the parasite mitochondrion despite the absence of a detectable P-protein homologue. In the present study, the mitochondrial localization of T-protein in the malaria parasite was confirmed by immunofluorescence and its essentiality in the entire parasite life cycle was studied by targeting the T-protein locus in Plasmodium berghei (Pb). PbT knock out parasites did not show any growth defect in asexual, sexual and liver stages indicating that the T-protein is dispensable for parasite survival in vertebrate and invertebrate hosts. The absence of P-protein homologue and the non-essentiality of T protein suggest the possible redundancy of GCS activity in the malaria parasite. Nevertheless, the H- and L-proteins of GCS could be essential for malaria parasite because of their involvement in α-ketoacid dehydrogenase reactions.
Collapse
|
30
|
Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I. Malar J 2014; 13:150. [PMID: 24745605 PMCID: PMC4005822 DOI: 10.1186/1475-2875-13-150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022] Open
Abstract
Background Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. Methods Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. Results Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. Conclusions Functional assays for P. falciparum GCH1 based on enzymatic activity and genetic complementation were successfully developed. The assays in combination with a homology model characterized the enzymatic activity of P. falciparum GCH1 and the importance of its key amino acid residues. The potential to use the assay for inhibitor screening was validated by 8-oxo-GTP, a known GTP analogue inhibitor.
Collapse
|
31
|
Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol 2014; 30:170-5. [PMID: 24636355 PMCID: PMC3989997 DOI: 10.1016/j.pt.2014.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The hypothesis offers a framework to explain the atypical features of parasite metabolism. Aerobic glycolysis is hypothesised to meet the biosynthetic demands of rapid proliferation. Differentiation may be epigenetically regulated in response to nutrient-linked metabolism.
We hypothesise that intraerythrocytic malaria parasite metabolism is not merely fulfilling the need for ATP generation, but is evolved to support rapid proliferation, similar to that seen in other rapidly proliferating cells such as cancer cells. Deregulated glycolytic activity coupled with impaired mitochondrial metabolism is a metabolic strategy to generate glycolytic intermediates essential for rapid biomass generation for schizogony. Further, we discuss the possibility that Plasmodium metabolism is not only a functional consequence of the ‘hard-wired’ genome and argue that metabolism may also have a causal role in triggering the cascade of events that leads to developmental stage transitions. This hypothesis offers a framework to rationalise the observations of aerobic glycolysis, atypical mitochondrial metabolism, and metabolic switching in nonproliferating stages.
Collapse
Affiliation(s)
| | - Eva Caamano-Gutierrez
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK
| | - Stephen A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Giancarlo A Biagini
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
32
|
Completing the folate biosynthesis pathway in Plasmodium falciparum: p-aminobenzoate is produced by a highly divergent promiscuous aminodeoxychorismate lyase. Biochem J 2013; 455:149-55. [DOI: 10.1042/bj20130896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We identified the aminodeoxychorismate lyase from Plasmodium falciparum. This enzyme participates in the biosynthesis of folate and could be a new target for antimalarial therapy. The enzyme has little similarity to its bacterial counterparts and shows a minor D-amino acid transaminase activity.
Collapse
|
33
|
Cross PJ, Pietersma AL, Allison TM, Wilson-Coutts SM, Cochrane FC, Parker EJ. Neisseria meningitidis expresses a single 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase that is inhibited primarily by phenylalanine. Protein Sci 2013; 22:1087-99. [PMID: 23754471 DOI: 10.1002/pro.2293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/26/2013] [Accepted: 05/28/2013] [Indexed: 11/12/2022]
Abstract
Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l-Trp, l-Phe, and l-Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention. As the entry point, feedback inhibition of DAH7PS by pathway end products is a key mechanism for the control of pathway flux. The structure of the single DAH7PS expressed by N. meningitidis was determined at 2.0 Å resolution. In contrast to the other DAH7PS enzymes, which are inhibited only by a single aromatic amino acid, the N. meningitidis DAH7PS was inhibited by all three aromatic amino acids, showing greatest sensitivity to l-Phe. An N. meningitidis enzyme variant, in which a single Ser residue at the bottom of the inhibitor-binding cavity was substituted to Gly, altered inhibitor specificity from l-Phe to l-Tyr. Comparison of the crystal structures of both unbound and Tyr-bound forms and the small angle X-ray scattering profiles reveal that N. meningtidis DAH7PS undergoes no significant conformational change on inhibitor binding. These observations are consistent with an allosteric response arising from changes in protein motion rather than conformation, and suggest ligands that modulate protein dynamics may be effective inhibitors of this enzyme.
Collapse
Affiliation(s)
- Penelope J Cross
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|