1
|
González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024; 29:2214. [PMID: 38792079 PMCID: PMC11124245 DOI: 10.3390/molecules29102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.
Collapse
Affiliation(s)
- María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
2
|
de Albuquerque KCO, da Veiga ADSS, Silveira FT, Campos MB, da Costa APL, Brito AKM, Melo PRDS, Percario S, de Molfetta FA, Dolabela MF. Anti-leishmanial activity of Eleutherine plicata Herb. and predictions of isoeleutherin and its analogues. Front Chem 2024; 12:1341172. [PMID: 38510811 PMCID: PMC10950963 DOI: 10.3389/fchem.2024.1341172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: Leishmaniasis is caused by protozoa of the genus Leishmania, classified as tegumentary and visceral. The disease treatment is still a serious problem, due to the toxic effects of available drugs, the costly treatment and reports of parasitic resistance, making the search for therapeutic alternatives urgent. This study assessed the in vitro anti-leishmanial potential of the extract, fractions, and isoeleutherin from Eleutherine plicata, as well as the in silico interactions of isoeleutherin and its analogs with Trypanothione Reductase (TR), in addition to predicting pharmacokinetic parameters. Methods: From the ethanolic extract of E. plicata (EEEp) the dichloromethane fraction (FDEp) was obtained, and isoeleutherin isolated. All samples were tested against promastigotes, and parasite viability was evaluated. Isoeleutherin analogues were selected based on similarity in databases (ZINK and eMolecules) to verify the impact on structural change. Results and Discussion: The extract and its fractions were not active against the promastigote form (IC50 > 200 μg/mL), while isoeleutherin was active (IC50 = 25 μg/mL). All analogues have high intestinal absorption (HIA), cell permeability was moderate in Caco2 and low to moderate in MDCK. Structural changes interfered with plasma protein binding and blood-brain barrier permeability. Regarding metabolism, all molecules appear to be CYP3A4 metabolized and inhibited 2-3 CYPs. Molecular docking and molecular dynamics assessed the interactions between the most stable configurations of isoeleutherin, analogue compound 17, and quinacrine (control drug). Molecular dynamics simulations demonstrated stability and favorable interactions with TR. In summary, fractionation contributed to antileishmanial activity and isoleutherin seems to be promising. Structural alterations did not contribute to improve pharmacokinetic aspects and analogue 17 proved to be more promising than isoeleutherin, presenting better stabilization in TR.
Collapse
Affiliation(s)
| | | | | | | | - Ana Paula Lima da Costa
- Laboratory of Molecular Modeling, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | | | - Sandro Percario
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém, PA, Brazil
| | - Fábio Alberto de Molfetta
- Laboratory of Molecular Modeling, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Fâni Dolabela
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém, PA, Brazil
- Pharmaceutical Innovation Postgraduate Program, Federal University of Pará, Belém, PA, Brazil
- Faculty of Pharmacy, Federal University of Pará, Belém, PA, Brazil
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
3
|
Alves ETM, Pernichelle FG, Nascimento LA, Ferreira GM, Ferreira EI. Covalent Inhibitors for Neglected Diseases: An Exploration of Novel Therapeutic Options. Pharmaceuticals (Basel) 2023; 16:1028. [PMID: 37513939 PMCID: PMC10385647 DOI: 10.3390/ph16071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neglected diseases, primarily found in tropical regions of the world, present a significant challenge for impoverished populations. Currently, there are 20 diseases considered neglected, which greatly impact the health of affected populations and result in difficult-to-control social and economic consequences. Unfortunately, for the majority of these diseases, there are few or no drugs available for patient treatment, and the few drugs that do exist often lack adequate safety and efficacy. As a result, there is a pressing need to discover and design new drugs to address these neglected diseases. This requires the identification of different targets and interactions to be studied. In recent years, there has been a growing focus on studying enzyme covalent inhibitors as a potential treatment for neglected diseases. In this review, we will explore examples of how these inhibitors have been used to target Human African Trypanosomiasis, Chagas disease, and Malaria, highlighting some of the most promising results so far. Ultimately, this review aims to inspire medicinal chemists to pursue the development of new drug candidates for these neglected diseases, and to encourage greater investment in research in this area.
Collapse
Affiliation(s)
- Erick Tavares Marcelino Alves
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Filipe Gomes Pernichelle
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Lucas Adriano Nascimento
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| |
Collapse
|
4
|
Melfi F, Carradori S, Campestre C, Haloci E, Ammazzalorso A, Grande R, D'Agostino I. Emerging compounds and therapeutic strategies to treat infections from Trypanosoma brucei: an overhaul of the last 5-years patents. Expert Opin Ther Pat 2023; 33:247-263. [PMID: 36933190 DOI: 10.1080/13543776.2023.2193328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
INTRODUCTION Human African Trypanosomiasis is a neglected disease caused by infection from parasites belonging to the Trypanosoma brucei species. Only six drugs are currently available and employed depending on the stage of the infection: pentamidine, suramin, melarsoprol, eflornithine, nifurtimox, and fexinidazole. Joint research projects were launched in an attempt to find new therapeutic options for this severe and often lethal disease. AREAS COVERED After a brief description of the recent literature on the parasite and the disease, we searched for patents dealing with the proposal of new anti-trypanosomiasis agents and, following the PRISMA guidelines, we filtered the results to those published from 2018onwards returning suitable entries, which represent the contemporary landscape of compounds/strategies against Trypanosoma brucei. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION This review comprehensively covers and analyzes the most recent advances not only in the discovery of new inhibitors and their structure-activity relationships but also in the assessment of innovative biological targets opening new scenarios in the MedChem field. Lastly, also new vaccines and formulations recently patented were described. However, natural and synthetic compounds were analyzed in terms of inhibitory activity and selective toxicity against human cells.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Entela Haloci
- Department of Pharmacy, University of Medicine, Tirana, Albania
| | | | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Zaman N, Azam SS. Quantum Dynamics and Bi Metal Force Field Parameterization Yielding Significant Antileishmanial Targets. J Chem Inf Model 2023; 63:1371-1385. [PMID: 36730993 DOI: 10.1021/acs.jcim.2c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amid emerging drug resistance to metal inhibitors, high toxicity, and onerous drug delivery procedures, the computational design of alternate formulations encompassing functional metal-containing compounds greatly relies on large-scale atomistic simulations. Simulations particularly with Au(I), Ag, Bi(V), and Sb(V) pose a major challenge to elucidate their molecular mechanism due to the absence of force field parameters. This study thus quantum mechanically derives force field parameters of Bi(V) as an extension of the previous experimental study conducted on heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR')2]. We have modeled two organo-bismuth(V) carboxylates, which are optimized and parameterized along with the famous pentavalent antimonial drug: meglumine antimoniate using quantum mechanics original Seminarian methods with the SBKJC effective core potential (ECP) basis set. Furthermore, molecular dynamics (MD) simulations of bismuth- and antimony-containing compounds in complex with two enzymes, trypanothione synthetase-amidase (TSA) and trypanothione reductase, are performed to target the (T(SH)2) pathway at multiple points. MD simulations provide novel insights into the binding mechanism of TSA and highlight the role of a single residue Arg569 in modulating the ligand dynamics. Moreover, the presence of an ortho group in a ligand is emphasized to facilitate interactions between Arg569 and the active site residue Arg313 for higher inhibitory activity of TSA. This preliminary generation of parameters specific to bismuth validated by simulations in replica will become a preamble of future computational and experimental research work to open avenues for newer and suitable drug targets.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad45320, Pakistan
| |
Collapse
|
6
|
Henriquez-Figuereo A, Morán-Serradilla C, Angulo-Elizari E, Sanmartín C, Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur J Med Chem 2023; 246:115002. [PMID: 36493616 DOI: 10.1016/j.ejmech.2022.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) encompass a group of infectious diseases with a protozoan etiology, high incidence, and prevalence in developing countries. As a result, economic factors constitute one of the main obstacles to their management. Endemic countries have high levels of poverty, deprivation and marginalization which affect patients and limit their access to proper medical care. As a matter of fact, statistics remain uncollected in some affected areas due to non-reporting cases. World Health Organization and other organizations proposed a plan for the eradication and control of the vector, although many of these plans were halted by the COVID-19 pandemic. Despite of the available drugs to treat these pathologies, it exists a lack of effectiveness against several parasite strains. Treatment protocols for diseases such as American trypanosomiasis (Chagas disease), leishmaniasis, and human African trypanosomiasis (HAT) have not achieved the desired results. Unfortunately, these drugs present limitations such as side effects, toxicity, teratogenicity, renal, and hepatic impairment, as well as high costs that have hindered the control and eradication of these diseases. This review focuses on the analysis of a collection of scientific shreds of evidence with the aim of identifying novel chalcogen-derived molecules with biological activity against Chagas disease, leishmaniasis and HAT. Compounds illustrated in each figure share the distinction of containing at least one chalcogen element. Sulfur (S), selenium (Se), and tellurium (Te) have been grouped and analyzed in accordance with their design strategy, chemical synthesis process and biological activity. After an exhaustive revision of the related literature on S, Se, and Te compounds, 183 compounds presenting excellent biological performance were gathered against the different causative agents of CD, leishmaniasis and HAT.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
7
|
de Lucio H, Revuelto A, Carriles AA, de Castro S, García-González S, García-Soriano JC, Alcón-Calderón M, Sánchez-Murcia PA, Hermoso JA, Gago F, Camarasa MJ, Jiménez-Ruiz A, Velázquez S. Identification of 1,2,3-triazolium salt-based inhibitors of Leishmania infantum trypanothione disulfide reductase with enhanced antileishmanial potency in cellulo and increased selectivity. Eur J Med Chem 2022; 244:114878. [DOI: 10.1016/j.ejmech.2022.114878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022]
|
8
|
Lima ML, Abengózar MA, Torres-Santos EC, Borborema SET, Godzien J, López-Gonzálvez Á, Barbas C, Rivas L, Tempone AG. Energy metabolism as a target for cyclobenzaprine: A drug candidate against Visceral Leishmaniasis. Bioorg Chem 2022; 127:106009. [PMID: 35841672 DOI: 10.1016/j.bioorg.2022.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Leishmaniases have a broad spectrum of clinical manifestations, ranging from a cutaneous to a progressive and fatal visceral disease. Chemotherapy is nowadays the almost exclusive way to fight the disease but limited by its scarce therapeutic arsenal, on its own compromised by adverse side effects and clinical resistance. Cyclobenzaprine (CBP), an FDA-approved oral muscle relaxant drug has previously demonstrated in vitro and in vivo activity against Leishmania sp., but its targets were not fully unveiled. This study aimed to define the role of energy metabolism as a target for the leishmanicidal mechanisms of CBP. Methodology to assess CBP leishmanicidal mechanism variation of intracellular ATP levels using living Leishmania transfected with a cytoplasmic luciferase. Induction of plasma membrane permeability by assessing depolarization with DiSBAC(2)3 and entrance of the vital dye SYTOX® Green. Mitochondrial depolarization by rhodamine 123 accumulation. Mapping target site within the respiratory chain by oxygen consumption rate. Reactive oxygen species (ROS) production using MitoSOX. Morphological changes by transmission electron microscopy. CBP caused on L. infantum promastigotes a decrease of intracellular ATP levels, with irreversible depolarization of plasma membrane, the collapse of the mitochondrial electrochemical potential, mild uncoupling of the respiratory chain, and ROS production, with ensuing intracellular Ca2+ imbalance and DNA fragmentation. Electron microscopy supported autophagic features but not a massive plasma membrane disruption. The severe and irreversible mitochondrial damage induced by CBP endorsed the bioenergetics metabolism as a relevant target within the lethal programme induced by CBP in Leishmania. This, together with the mild-side effects of this oral drug, endorses CBP as an appealing novel candidate as a leishmanicidal drug under a drug repurposing strategy.
Collapse
Affiliation(s)
- Marta Lopes Lima
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil
| | - Maria A Abengózar
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | | | | | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain.
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.
| | - Andre Gustavo Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022; 117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomatids are mainly responsible for heterogeneous parasitic diseases: Leishmaniasis, Sleeping sickness, and Chagas disease and control of these diseases implicates serious challenges due to the emergence of drug resistance. Redox-active biomolecules are the endogenous substances in organisms, which play important role in the regulation of redox homeostasis. The redox-active substances like glutathione, trypanothione, cysteine, cysteine persulfides, etc., and other inorganic intermediates (hydrogen peroxide, nitric oxide) are very useful as defence mechanism. In the present review, the suitability of trypanothione and other essential thiol molecules of trypanosomatids as drug targets are described in Leishmania and Trypanosoma. We have explored the role of tryparedoxin, tryparedoxin peroxidase, ascorbate peroxidase, superoxide dismutase, and glutaredoxins in the anti-oxidant mechanism and drug resistance. Up-regulation of some proteins in trypanothione metabolism helps the parasites in survival against drug pressure (sodium stibogluconate, Amphotericin B, etc.) and oxidative stress. These molecules accept electrons from the reduced trypanothione and donate their electrons to other proteins, and these proteins reduce toxic molecules, neutralize reactive oxygen, or nitrogen species; and help parasites to cope with oxidative stress. Thus, a better understanding of the role of these molecules in drug resistance and redox homeostasis will help to target metabolic pathway proteins to combat Leishmaniasis and trypanosomiases.
Collapse
Affiliation(s)
- Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India; Department of Botany, Araria College, Purnea University, Purnia, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| |
Collapse
|
10
|
Carter NS, Kawasaki Y, Nahata SS, Elikaee S, Rajab S, Salam L, Alabdulal MY, Broessel KK, Foroghi F, Abbas A, Poormohamadian R, Roberts SC. Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Med Sci (Basel) 2022; 10:24. [PMID: 35645240 PMCID: PMC9149861 DOI: 10.3390/medsci10020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans and domestic animals worldwide. The need for new therapeutic strategies is urgent because no vaccine is available, and treatment options are limited due to a lack of specificity and the emergence of drug resistance. Polyamines are metabolites that play a central role in rapidly proliferating cells, and recent studies have highlighted their critical nature in Leishmania. Numerous studies using a variety of inhibitors as well as gene deletion mutants have elucidated the pathway and routes of transport, revealing unique aspects of polyamine metabolism in Leishmania parasites. These studies have also shed light on the significance of polyamines for parasite proliferation, infectivity, and host-parasite interactions. This comprehensive review article focuses on the main polyamine biosynthetic enzymes: ornithine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase, and it emphasizes recent discoveries that advance these enzymes as potential therapeutic targets against Leishmania parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sigrid C. Roberts
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR 97123, USA; (N.S.C.); (Y.K.); (S.S.N.); (S.E.); (S.R.); (L.S.); (M.Y.A.); (K.K.B.); (F.F.); (A.A.); (R.P.)
| |
Collapse
|
11
|
Lazarin-Bidóia D, Garcia FP, Ueda-Nakamura T, Silva SDO, Nakamura CV. Natural compounds based chemotherapeutic against Chagas disease and leishmaniasis: mitochondrion as a strategic target. Mem Inst Oswaldo Cruz 2022; 117:e220396. [PMID: 35352776 PMCID: PMC8970591 DOI: 10.1590/0074-02760220396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Over the past years, natural products have been explored in order to find biological active substances to treat various diseases. Regarding their potential action against parasites such as trypanosomatids, specially Trypanosoma cruzi and Leishmania spp., much advance has been achieved. Extracts and purified molecules of several species from genera Piper, Tanacetum, Porophyllum, and Copaifera have been widely investigated by our research group and exhibited interesting antitrypanosomal and antileishmanial activities. These natural compounds affected different structures in parasites, and we believe that the mitochondrion is a strategic target to induce parasite death. Considering that these trypanosomatids have a unique mitochondrion, this cellular target has been extensively studied aiming to find more selective drugs, since the current treatment of these neglected tropical diseases has some challenges such as high toxicity and prolonged treatment time. Here, we summarise some results obtained with natural products from our research group and we further highlighted some strategies that must be considered to finally develop an effective chemotherapeutic agent against these parasites.
Collapse
Affiliation(s)
- Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Francielle Pelegrin Garcia
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Tânia Ueda-Nakamura
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Sueli de Oliveira Silva
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Celso Vataru Nakamura
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| |
Collapse
|
12
|
Fall F, Mamede L, Schioppa L, Ledoux A, De Tullio P, Michels P, Frédérich M, Quetin-Leclercq J. Trypanosoma brucei: Metabolomics for analysis of cellular metabolism and drug discovery. Metabolomics 2022; 18:20. [PMID: 35305174 DOI: 10.1007/s11306-022-01880-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (also known as sleeping sickness), a disease causing serious neurological disorders and fatal if left untreated. Due to its lethal pathogenicity, a variety of treatments have been developed over the years, but which have some important limitations such as acute toxicity and parasite resistance. Metabolomics is an innovative tool used to better understand the parasite's cellular metabolism, and identify new potential targets, modes of action and resistance mechanisms. The metabolomic approach is mainly associated with robust analytical techniques, such as NMR and Mass Spectrometry. Applying these tools to the trypanosome parasite is, thus, useful for providing new insights into the sleeping sickness pathology and guidance towards innovative treatments. AIM OF REVIEW The present review aims to comprehensively describe the T. brucei biology and identify targets for new or commercialized antitrypanosomal drugs. Recent metabolomic applications to provide a deeper knowledge about the mechanisms of action of drugs or potential drugs against T. brucei are highlighted. Additionally, the advantages of metabolomics, alone or combined with other methods, are discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW Compared to other parasites, only few studies employing metabolomics have to date been reported on Trypanosoma brucei. Published metabolic studies, treatments and modes of action are discussed. The main interest is to evaluate the metabolomics contribution to the understanding of T. brucei's metabolism.
Collapse
Affiliation(s)
- Fanta Fall
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Avenue E. Mounier B1 72.03, B-1200, Brussels, Belgium.
| | - Lucia Mamede
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research On Medicines (CIRM), University of Liège, Liège, Belgium
| | - Laura Schioppa
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Avenue E. Mounier B1 72.03, B-1200, Brussels, Belgium
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research On Medicines (CIRM), University of Liège, Liège, Belgium
| | - Pascal De Tullio
- Metabolomics Group, Center of Interdisciplinary Research On Medicines (CIRM), University of Liège, Liège, Belgium
| | - Paul Michels
- Centre for Immunity, Infection and Evolution (CIIE) and Centre for Translational and Chemical Biology (CTCB), School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research On Medicines (CIRM), University of Liège, Liège, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Avenue E. Mounier B1 72.03, B-1200, Brussels, Belgium
| |
Collapse
|
13
|
Pedra-Rezende Y, Bombaça ACS, Menna-Barreto/ RFS. Is the mitochondrion a promising drug target in trypanosomatids? Mem Inst Oswaldo Cruz 2022; 117:e210379. [PMID: 35195164 PMCID: PMC8862782 DOI: 10.1590/0074-02760210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
|
14
|
Balatti GE, Barletta GP, Parisi G, Tosatto SCE, Bellanda M, Fernandez-Alberti S. Intrinsically Disordered Region Modulates Ligand Binding in Glutaredoxin 1 from Trypanosoma Brucei. J Phys Chem B 2021; 125:13366-13375. [PMID: 34870419 DOI: 10.1021/acs.jpcb.1c07035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glutaredoxins are small proteins that share a common well-conserved thioredoxin-fold and participate in a wide variety of biological processes. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (Fe-S) metabolism. In the present work, we report different structural and dynamics aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei that differentiate it from other orthologues by the presence of a parasite-specific unstructured N-terminal extension whose role has not been fully elucidated yet. Previous nuclear magnetic resonance (NMR) studies revealed significant differences with respect to the mutant lacking the disordered tail. Herein, we have performed atomistic molecular dynamics simulations that, complementary to NMR studies, confirm the intrinsically disordered nature of the N-terminal extension. Moreover, we confirm the main role of these residues in modulating the conformational dynamics of the glutathione-binding pocket. We observe that the N-terminal extension modifies the ligand cavity stiffening it by specific interactions that ultimately modulate its intrinsic flexibility, which may modify its role in the storage and/or transfer of preformed iron-sulfur clusters. These unique structural and dynamics aspects of Trypanosoma brucei 1CGrx1 differentiate it from other orthologues and could have functional relevance. In this way, our results encourage the study of other similar protein folding families with intrinsically disordered regions whose functional roles are still unrevealed and the screening of potential 1CGrx1 inhibitors as antitrypanosomal drug candidates.
Collapse
Affiliation(s)
- Galo E Balatti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - G Patricio Barletta
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padua, Italy
| | | |
Collapse
|
15
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Sakyi PO, Amewu RK, Devine RNOA, Bienibuor AK, Miller WA, Kwofie SK. Unravelling the myth surrounding sterol biosynthesis as plausible target for drug design against leishmaniasis. J Parasit Dis 2021; 45:1152-1171. [PMID: 34790000 PMCID: PMC8556451 DOI: 10.1007/s12639-021-01390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality rate of leishmaniasis is increasing at an alarming rate and is currently second to malaria amongst the other neglected tropical diseases. Unfortunately, many governments and key stakeholders are not investing enough in the development of new therapeutic interventions. The available treatment options targeting different pathways of the parasite have seen inefficiencies, drug resistance, and toxic side effects coupled with longer treatment durations. Numerous studies to understand the biochemistry of leishmaniasis and its pathogenesis have identified druggable targets including ornithine decarboxylase, trypanothione reductase, and pteridine reductase, which are relevant for the survival and growth of the parasites. Another plausible target is the sterol biosynthetic pathway; however, this has not been fully investigated. Sterol biosynthesis is essential for the survival of the Leishmania species because its inhibition could lead to the death of the parasites. This review seeks to evaluate how critical the enzymes involved in sterol biosynthetic pathway are to the survival of the leishmania parasite. The review also highlights both synthetic and natural product compounds with their IC50 values against selected enzymes. Finally, recent advancements in drug design strategies targeting the sterol biosynthesis pathway of Leishmania are discussed.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Alfred K. Bienibuor
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
17
|
Revuelto A, López-Martín I, de Lucio H, García-Soriano JC, Zanda N, de Castro S, Gago F, Jiménez-Ruiz A, Velázquez S, Camarasa MJ. Small Molecule-Peptide Conjugates as Dimerization Inhibitors of Leishmania infantum Trypanothione Disulfide Reductase. Pharmaceuticals (Basel) 2021; 14:ph14070689. [PMID: 34358115 PMCID: PMC8308777 DOI: 10.3390/ph14070689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanothione disulfide reductase (TryR) is an essential homodimeric enzyme of trypanosomatid parasites that has been validated as a drug target to fight human infections. Using peptides and peptidomimetics, we previously obtained proof of concept that disrupting protein-protein interactions at the dimer interface of Leishmania infantum TryR (LiTryR) offered an innovative and so far unexploited opportunity for the development of novel antileishmanial agents. Now, we show that linking our previous peptide prototype TRL38 to selected hydrophobic moieties provides a novel series of small-molecule-peptide conjugates that behave as good inhibitors of both LiTryR activity and dimerization.
Collapse
Affiliation(s)
- Alejandro Revuelto
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Isabel López-Martín
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Juan Carlos García-Soriano
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Nicola Zanda
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Sonia de Castro
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Federico Gago
- Unidad Asociada al IQM-CSIC, Área de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain;
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Sonsoles Velázquez
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
- Correspondence: (S.V.); (M.-J.C.); Tel.: +34-912-587-458 (M.-J.C.)
| | - María-José Camarasa
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
- Correspondence: (S.V.); (M.-J.C.); Tel.: +34-912-587-458 (M.-J.C.)
| |
Collapse
|
18
|
Alice JI, Bellera CL, Benítez D, Comini MA, Duchowicz PR, Talevi A. Ensemble learning application to discover new trypanothione synthetase inhibitors. Mol Divers 2021; 25:1361-1373. [PMID: 34264440 DOI: 10.1007/s11030-021-10265-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
Trypanosomatid-caused diseases are among the neglected infectious diseases with the highest disease burden, affecting about 27 million people worldwide and, in particular, socio-economically vulnerable populations. Trypanothione synthetase (TryS) is considered one of the most attractive drug targets within the thiol-polyamine metabolism of typanosomatids, being unique, essential and druggable. Here, we have compiled a dataset of 401 T. brucei TryS inhibitors that includes compounds with inhibitory data reported in the literature, but also in-house acquired data. QSAR classifiers were derived and validated from such dataset, using publicly available and open-source software, thus assuring the portability of the obtained models. The performance and robustness of the resulting models were substantially improved through ensemble learning. The performance of the individual models and the model ensembles was further assessed through retrospective virtual screening campaigns. At last, as an application example, the chosen model-ensemble has been applied in a prospective virtual screening campaign on DrugBank 5.1.6 compound library. All the in-house scripts used in this study are available on request, whereas the dataset has been included as supplementary material.
Collapse
Affiliation(s)
- Juan I Alice
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Carolina L Bellera
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Pablo R Duchowicz
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina.
| |
Collapse
|
19
|
Morales JF, Chuguransky S, Alberca LN, Alice JI, Goicoechea S, Ruiz ME, Bellera CL, Talevi A. Positive Predictive Value Surfaces as a Complementary Tool to Assess the Performance of Virtual Screening Methods. Mini Rev Med Chem 2021; 20:1447-1460. [PMID: 32072906 DOI: 10.2174/1871525718666200219130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Since their introduction in the virtual screening field, Receiver Operating Characteristic (ROC) curve-derived metrics have been widely used for benchmarking of computational methods and algorithms intended for virtual screening applications. Whereas in classification problems, the ratio between sensitivity and specificity for a given score value is very informative, a practical concern in virtual screening campaigns is to predict the actual probability that a predicted hit will prove truly active when submitted to experimental testing (in other words, the Positive Predictive Value - PPV). Estimation of such probability is however, obstructed due to its dependency on the yield of actives of the screened library, which cannot be known a priori. OBJECTIVE To explore the use of PPV surfaces derived from simulated ranking experiments (retrospective virtual screening) as a complementary tool to ROC curves, for both benchmarking and optimization of score cutoff values. METHODS The utility of the proposed approach is assessed in retrospective virtual screening experiments with four datasets used to infer QSAR classifiers: inhibitors of Trypanosoma cruzi trypanothione synthetase; inhibitors of Trypanosoma brucei N-myristoyltransferase; inhibitors of GABA transaminase and anticonvulsant activity in the 6 Hz seizure model. RESULTS Besides illustrating the utility of PPV surfaces to compare the performance of machine learning models for virtual screening applications and to select an adequate score threshold, our results also suggest that ensemble learning provides models with better predictivity and more robust behavior. CONCLUSION PPV surfaces are valuable tools to assess virtual screening tools and choose score thresholds to be applied in prospective in silico screens. Ensemble learning approaches seem to consistently lead to improved predictivity and robustness.
Collapse
Affiliation(s)
- Juan F Morales
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Sara Chuguransky
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Lucas N Alberca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Juan I Alice
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Sofía Goicoechea
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - María E Ruiz
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Carolina L Bellera
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| |
Collapse
|
20
|
Gupta O, Pradhan T, Bhatia R, Monga V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur J Med Chem 2021; 223:113606. [PMID: 34171661 DOI: 10.1016/j.ejmech.2021.113606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
21
|
Revuelto A, de Lucio H, García-Soriano JC, Sánchez-Murcia PA, Gago F, Jiménez-Ruiz A, Camarasa MJ, Velázquez S. Efficient Dimerization Disruption of Leishmania infantum Trypanothione Reductase by Triazole-phenyl-thiazoles. J Med Chem 2021; 64:6137-6160. [PMID: 33945281 PMCID: PMC8480782 DOI: 10.1021/acs.jmedchem.1c00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/06/2023]
Abstract
Inhibition of Leishmania infantum trypanothione disulfide reductase (LiTryR) by disruption of its homodimeric interface has proved to be an alternative and unexploited strategy in the search for novel antileishmanial agents. Proof of concept was first obtained by peptides and peptidomimetics. Building on previously reported dimerization disruptors containing an imidazole-phenyl-thiazole scaffold, we now report a new 1,2,3-triazole-based chemotype that yields noncompetitive, slow-binding inhibitors of LiTryR. Several compounds bearing (poly)aromatic substituents dramatically improve the ability to disrupt LiTryR dimerization relative to reference imidazoles. Molecular modeling studies identified an almost unexplored hydrophobic region at the interfacial domain as the putative binding site for these compounds. A subsequent structure-based design led to a symmetrical triazole analogue that displayed even more potent inhibitory activity over LiTryR and enhanced leishmanicidal activity. Remarkably, several of these novel triazole-bearing compounds were able to kill both extracellular and intracellular parasites in cell cultures.
Collapse
Affiliation(s)
- Alejandro Revuelto
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Héctor de Lucio
- Departamento
de Biología de Sistemas, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | | | - Pedro A. Sánchez-Murcia
- Área
de Farmacología, Departamento de Ciencias Biomédicas,
Unidad Asociada al IQM-CSIC, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Federico Gago
- Área
de Farmacología, Departamento de Ciencias Biomédicas,
Unidad Asociada al IQM-CSIC, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Antonio Jiménez-Ruiz
- Departamento
de Biología de Sistemas, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - María-José Camarasa
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sonsoles Velázquez
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
22
|
Uth JF, Börgel F, Lehmkuhl K, Schepmann D, Kaiser M, Jabor VAP, Nonato MC, Krauth-Siegel RL, Schmidt TJ, Wünsch B. Synthesis and Biological Evaluation of Natural-Product-Inspired, Aminoalkyl-Substituted 1-Benzopyrans as Novel Antiplasmodial Agents. J Med Chem 2021; 64:6397-6409. [PMID: 33901399 DOI: 10.1021/acs.jmedchem.1c00483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, relationships between the structures of 1-aminoethyl-substituted chromenes and their antimalarial activities were thoroughly investigated. At first, the methyl moiety in the side chain was removed to eliminate chirality. The hydrogenation state of the benzopyran system, the position of the phenolic OH moiety, and the distance of the basic amino moiety toward both aromatic rings were varied systematically. 1-Benzopyran-5-ol 8b (IC50 = 10 nM), 1-benzopyran-7-ol 9c (IC50 = 38 nM), and the aminoalcohol 19c (IC50 = 17 nM) displayed antiplasmodial activity with IC50 values below 50 nM. To identify the mechanism of action, inhibition of three key enzymes by 9c was investigated. 9c was not able to reduce the number of Plasmodia in erythrocytes of mice. This low in vivo activity was explained by fast clearance from blood plasma combined with rapid biotransformation of 9c. Three main metabolites of 9c were identified by liquid chromatography-mass spectrometry (LC-MS) methods.
Collapse
Affiliation(s)
- Jan-Frederik Uth
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Frederik Börgel
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Kirstin Lehmkuhl
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstraße 57, CH-4002 Basel, Switzerland
| | - Valquiria A P Jabor
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - R Luise Krauth-Siegel
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Thomas J Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
23
|
Inacio JDF, Fonseca MS, Limaverde-Sousa G, Tomas AM, Castro H, Almeida-Amaral EE. Epigallocathechin- O-3-Gallate Inhibits Trypanothione Reductase of Leishmania infantum, Causing Alterations in Redox Balance and Leading to Parasite Death. Front Cell Infect Microbiol 2021; 11:640561. [PMID: 33842389 PMCID: PMC8027256 DOI: 10.3389/fcimb.2021.640561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Leishmania infantum is a protozoan parasite that causes a vector borne infectious disease in humans known as visceral leishmaniasis (VL). This pathology, also caused by L. donovani, presently impacts the health of 500,000 people worldwide, and is treated with outdated anti-parasitic drugs that suffer from poor treatment regimens, severe side effects, high cost and/or emergence of resistant parasites. In previous works we have disclosed the anti-Leishmania activity of (-)-Epigallocatechin 3-O-gallate (EGCG), a flavonoid compound present in green tea leaves. To date, the mechanism of action of EGCG against Leishmania remains unknown. This work aims to shed new light into the leishmanicidal mode of action of EGCG. Towards this goal, we first confirmed that EGCG inhibits L. infantum promastigote proliferation in a concentration-dependent manner. Second, we established that the leishmanicidal effect of EGCG was associated with i) mitochondria depolarization and ii) decreased concentration of intracellular ATP, and iii) increased concentration of intracellular H2O2. Third, we found that the leishmanicidal effect and the elevated H2O2 levels induced by of EGCG can be abolished by PEG-catalase, strongly suggesting that this flavonoid kills L. infantum promastigotes by disturbing their intracellular redox balance. Finally, we gathered in silico and in vitro evidence that EGCG binds to trypanothione reductase (TR), a central enzyme of the redox homeostasis of Leishmania, acting as a competitive inhibitor of its trypanothione substrate.
Collapse
Affiliation(s)
- Job D F Inacio
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Myslene S Fonseca
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Gabriel Limaverde-Sousa
- Laboratório de Esquistossomose Experimental, Instituto Osvaldo Cruz, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana M Tomas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Helena Castro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elmo E Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Coro-Bermello J, López-Rodríguez ER, Alfonso-Ramos JE, Alonso D, Ojeda-Carralero GM, Prado GA, Moreno-Castillo E. Identification of novel thiadiazin derivatives as potentially selective inhibitors towards trypanothione reductase from Trypanosoma cruzi by molecular docking using the numerical index poses ratio Pr and the binding mode analysis. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04375-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Chagas disease is a serious health problem in Central and South America for which effective treatment is not currently available. This illness is caused by the protozoa Trypanosoma cruzi, a species that relies on a thiol-based metabolism to regulate oxidative stress. Trypanothione reductase enzyme plays a central role in the metabolic pathway of the parasite. In this work, a virtual screening of a library of novel thiadiazine derivatives against trypanothione reductase using molecular docking was performed. Four different series of hybrid ligands having in the structure one or two peptoid moieties (series I and II) or the tetrazole ring (series III and IV) were considered. An ad hoc numerical index called poses ratio was introduced to interpret the results of the docking analysis and to establish relevant structure-interaction relationships. In addition, six binding modes were found for the ligands with the highest populated conformational clusters after applying contact-based analysis. The most regular and relevant were binding modes I and II, found mainly for ligands from series I. A subsequent molecular docking on human glutathione reductase enzyme allowed to assess the possible cytotoxicity of the ligands towards human cells. A selective binding profile was found for ligands with interactions in the Hydrophobic cleft, the spermidine and the Z subsites inside the active site of trypanothione reductase. At the end of the study, new thiadiazine-based compounds were identified as plausible candidates to selectively inhibit the parasitic enzyme.
Graphic abstract
Collapse
|
25
|
Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms 2021; 9:microorganisms9020267. [PMID: 33525448 PMCID: PMC7911663 DOI: 10.3390/microorganisms9020267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/03/2023] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania in rodent infectivity studies. Here, we review research on these natural products with a focus on their promise for the development of treatment strategies as well as unique structural and pharmacokinetic/pharmacodynamic features of the most promising agents.
Collapse
|
26
|
Piñeyro MD, Arias D, Parodi-Talice A, Guerrero S, Robello C. Trypanothione Metabolism as Drug Target for Trypanosomatids. Curr Pharm Des 2021; 27:1834-1846. [PMID: 33308115 DOI: 10.2174/1381612826666201211115329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Chagas Disease, African sleeping sickness, and leishmaniasis are neglected diseases caused by pathogenic trypanosomatid parasites, which have a considerable impact on morbidity and mortality in poor countries. The available drugs used as treatment have high toxicity, limited access, and can cause parasite drug resistance. Long-term treatments, added to their high toxicity, result in patients that give up therapy. Trypanosomatids presents a unique trypanothione based redox system, which is responsible for maintaining the redox balance. Therefore, inhibition of these essential and exclusive parasite's metabolic pathways, absent from the mammalian host, could lead to the development of more efficient and safe drugs. The system contains different redox cascades, where trypanothione and tryparedoxins play together a central role in transferring reduced power to different enzymes, such as 2-Cys peroxiredoxins, non-selenium glutathione peroxidases, ascorbate peroxidases, glutaredoxins and methionine sulfoxide reductases, through NADPH as a source of electrons. There is sufficient evidence that this complex system is essential for parasite survival and infection. In this review, we explore what is known in terms of essentiality, kinetic and structural data, and the development of inhibitors of enzymes from this trypanothione-based redox system. The recent advances and limitations in the development of lead inhibitory compounds targeting these enzymes have been discussed. The combination of molecular biology, bioinformatics, genomics, and structural biology is fundamental since the knowledge of unique features of the trypanothione-dependent system will provide tools for rational drug design in order to develop better treatments for these diseases.
Collapse
Affiliation(s)
| | - Diego Arias
- Instituto de Agrobiotecnologia del Litoral y Facultad de Bioquimica y Ciencias Biologicas, CONICET-UNL, Santa F, Argentina
| | | | - Sergio Guerrero
- Instituto de Agrobiotecnologia del Litoral y Facultad de Bioquimica y Ciencias Biologicas, CONICET-UNL, Santa F, Argentina
| | - Carlos Robello
- Unidad de Biologia Molecular, Instituto Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
27
|
Joardar N, Guevara-Flores A, Martínez-González JDJ, Sinha Babu SP. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era. Int J Biol Macromol 2020; 165:249-267. [DOI: 10.1016/j.ijbiomac.2020.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
28
|
Testing the CRISPR-Cas9 and glmS ribozyme systems in Leishmania tarentolae. Mol Biochem Parasitol 2020; 241:111336. [PMID: 33166572 DOI: 10.1016/j.molbiopara.2020.111336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 02/03/2023]
Abstract
Leishmania parasites include important pathogens and model organisms and are even used for the production of recombinant proteins. However, functional genomics and the characterization of essential genes are often limited in Leishmania because of low-throughput technologies for gene disruption or tagging and the absence of components for RNA interference. Here, we tested the T7 RNA polymerase-dependent CRISPR-Cas9 system by Beneke et al. and the glmS ribozyme-based knock-down system in the model parasite Leishmania tarentolae. We successfully deleted two reference genes encoding the flagellar motility factor Pf16 and the salvage-pathway enzyme adenine phosphoribosyltransferase, resulting in immotile and drug-resistant parasites, respectively. In contrast, we were unable to disrupt the gene encoding the mitochondrial flavoprotein Erv. Cultivation of L. tarentolae in standard BHI medium resulted in a constitutive down-regulation of an episomal mCherry-glmS reporter by 40 to 60%. For inducible knock-downs, we evaluated the growth of L. tarentolae in alternative media and identified supplemented MEM, IMDM and McCoy's 5A medium as candidates. Cultivation in supplemented MEM allowed an inducible, glucosamine concentration-dependent down-regulation of the episomal mCherry-glmS reporter by more than 70%. However, chromosomal glmS-tagging of the genes encoding Pf16, adenine phosphoribosyltransferase or Erv did not reveal a knock-down phenotype. Our data demonstrate the suitability of the CRISPR-Cas9 system for the disruption and tagging of genes in L. tarentolae as well as the limitations of the glmS system, which was restricted to moderate efficiencies for episomal knock-downs and caused no detectable phenotype for chromosomal knock-downs.
Collapse
|
29
|
Saccoliti F, Di Santo R, Costi R. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism. ChemMedChem 2020; 15:2420-2435. [PMID: 32805075 DOI: 10.1002/cmdc.202000325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Indexed: 01/28/2023]
Abstract
Leishmania and Trypanosoma parasites are responsible for the challenging neglected tropical diseases leishmaniases, Chagas disease, and human African trypanosomiasis, which account for up to 40,000 deaths annually mainly in developing countries. Current chemotherapy relies on drugs with significant limitations in efficacy and safety, prompting the urgent need to explore innovative approaches to improve the drug discovery pipeline. The unique trypanothione-based redox pathway, which is absent in human hosts, is vital for all trypanosomatids and offers valuable opportunities to guide the rational development of specific, broad-spectrum and innovative anti-trypanosomatid agents. Major efforts focused on the key metabolic enzymes trypanothione synthetase-amidase and trypanothione reductase, whose inhibition should affect the entire pathway and, finally, parasite survival. Herein, we will report and comment on the most recent studies in the search for enzyme inhibitors, underlining the promising opportunities that have emerged so far to drive the exploration of future successful therapeutic approaches.
Collapse
Affiliation(s)
- Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163, Genova, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185, Roma, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
30
|
Aramin S, Fassler R, Chikne V, Goldenberg M, Arian T, Kolet Eliaz L, Rimon O, Ram O, Michaeli S, Reichmann D. TrypOx, a Novel Eukaryotic Homolog of the Redox-Regulated Chaperone Hsp33 in Trypanosoma brucei. Front Microbiol 2020; 11:1844. [PMID: 32849441 PMCID: PMC7423844 DOI: 10.3389/fmicb.2020.01844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 01/28/2023] Open
Abstract
ATP-independent chaperones are widespread across all domains of life and serve as the first line of defense during protein unfolding stresses. One of the known crucial chaperones for bacterial survival in a hostile environment (e.g., heat and oxidative stress) is the highly conserved, redox-regulated ATP-independent bacterial chaperone Hsp33. Using a bioinformatic analysis, we describe novel eukaryotic homologs of Hsp33 identified in eukaryotic pathogens belonging to the kinetoplastids, a family responsible for lethal human diseases such as Chagas disease as caused by Trypanosoma cruzi, African sleeping sickness caused by Trypanosoma brucei spp., and leishmaniasis pathologies delivered by various Leishmania species. During their pathogenic life cycle, kinetoplastids need to cope with elevated temperatures and oxidative stress, the same conditions which convert Hsp33 into a powerful chaperone in bacteria, thus preventing aggregation of a wide range of misfolded proteins. Here, we focused on a functional characterization of the Hsp33 homolog in one of the members of the kinetoplastid family, T. brucei, (Tb927.6.2630), which we have named TrypOx. RNAi silencing of TrypOx led to a significant decrease in the survival of T. brucei under mild oxidative stress conditions, implying a protective role of TrypOx during the Trypanosomes growth. We then adopted a proteomics-driven approach to investigate the role of TrypOx in defining the oxidative stress response. Depletion of TrypOx significantly altered the abundance of proteins mediating redox homeostasis, linking TrypOx with the antioxidant system. Using biochemical approaches, we identified the redox-switch domain of TrypOx, showing its modularity and oxidation-dependent structural plasticity. Kinetoplastid parasites such as T. brucei need to cope with high levels of oxidants produced by the innate immune system, such that parasite-specific antioxidant proteins like TrypOx - which are depleted in mammals - are highly promising candidates for drug targeting.
Collapse
Affiliation(s)
- Samar Aramin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Mor Goldenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Arian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kolet Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Oded Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Ram
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
31
|
Medeiros A, Benítez D, Korn RS, Ferreira VC, Barrera E, Carrión F, Pritsch O, Pantano S, Kunick C, de Oliveira CI, Orban OCF, Comini MA. Mechanistic and biological characterisation of novel N5-substituted paullones targeting the biosynthesis of trypanothione in Leishmania. J Enzyme Inhib Med Chem 2020; 35:1345-1358. [PMID: 32588679 PMCID: PMC7717452 DOI: 10.1080/14756366.2020.1780227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Trypanothione synthetase (TryS) produces N1,N8-bis(glutathionyl)spermidine (or trypanothione) at the expense of ATP. Trypanothione is a metabolite unique and essential for survival and drug-resistance of trypanosomatid parasites. In this study, we report the mechanistic and biological characterisation of optimised N5-substituted paullone analogues with anti-TryS activity. Several of the new derivatives retained submicromolar IC50 against leishmanial TryS. The binding mode to TryS of the most potent paullones has been revealed by means of kinetic, biophysical and molecular modelling approaches. A subset of analogues showed an improved potency (EC50 0.5–10 µM) and selectivity (20–35) against the clinically relevant stage of Leishmania braziliensis (mucocutaneous leishmaniasis) and L. infantum (visceral leishmaniasis). For a selected derivative, the mode of action involved intracellular depletion of trypanothione. Our findings shed light on the molecular interaction of TryS with rationally designed inhibitors and disclose a new set of compounds with on-target activity against different Leishmania species.
Collapse
Affiliation(s)
- Andrea Medeiros
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ricarda S Korn
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Exequiel Barrera
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Federico Carrión
- Protein Biophysics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Otto Pritsch
- Protein Biophysics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Oliver C F Orban
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
32
|
Turcano L, Battista T, De Haro ET, Missineo A, Alli C, Paonessa G, Colotti G, Harper S, Fiorillo A, Ilari A, Bresciani A. Spiro-containing derivatives show antiparasitic activity against Trypanosoma brucei through inhibition of the trypanothione reductase enzyme. PLoS Negl Trop Dis 2020; 14:e0008339. [PMID: 32437349 PMCID: PMC7269337 DOI: 10.1371/journal.pntd.0008339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/03/2020] [Accepted: 04/30/2020] [Indexed: 11/19/2022] Open
Abstract
Trypanothione reductase (TR) is a key enzyme that catalyzes the reduction of trypanothione, an antioxidant dithiol that protects Trypanosomatid parasites from oxidative stress induced by mammalian host defense systems. TR is considered an attractive target for the development of novel anti-parasitic agents as it is essential for parasite survival but has no close homologue in humans. We report here the identification of spiro-containing derivatives as inhibitors of TR from Trypanosoma brucei (TbTR), the parasite responsible for Human African Trypanosomiasis. The hit series, identified by high throughput screening, was shown to bind TbTR reversibly and to compete with the trypanothione (TS2) substrate. The prototype compound 1 from this series was also found to impede the growth of Trypanosoma brucei parasites in vitro. The X-ray crystal structure of TbTR in complex with compound 1 solved at 1.98 Å allowed the identification of the hydrophobic pocket where the inhibitor binds, placed close to the catalytic histidine (His 461’) and lined by Trp21, Val53, Ile106, Tyr110 and Met113. This new inhibitor is specific for TbTR and no activity was detected against the structurally similar human glutathione reductase (hGR). The central spiro scaffold is known to be suitable for brain active compounds in humans thus representing an attractive starting point for the future treatment of the central nervous system stage of T. brucei infections. Trypanosoma brucei is a parasite responsible for neglected pathologies such as human African trypanosomiasis, also known as sleeping sickness. This disease is endemic in sub-Saharan Africa, with 70 million people at risk of infection. Current treatments for this type of disease are limited by their toxicity, administration in endemic countries and treatment resistance. Therapies against infectious diseases typically rely on targeting one or more components of the parasite that are not present in humans to ensure the best possible therapeutic window. In this case we aimed at targeting the Trypanosoma brucei trypanothione reductase (TR), one enzyme that synthesize the reduced trypanothione a key molecule for preserving the parasite redox balance. This enzyme does not exist in humans that have glutathione instead of trypanothione. Past attempts to identify novel inhibitors of this target has failed to generate drug-like molecules. To overcome this limitation we employed a recent, higher quality, TR activity assay to test a collection of compounds previously reported to be active against these parasites. This approach led to the identification and validation of a new chemotype with a unique mode of inhibition of TR. This chemical series is a drug-like starting point, in fact its core (spiro) is present in drugs approved for human use.
Collapse
Affiliation(s)
- Lorenzo Turcano
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
| | - Theo Battista
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | | | - Antonino Missineo
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
| | - Cristina Alli
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
| | - Giacomo Paonessa
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
| | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR c/o Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | | | - Annarita Fiorillo
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Andrea Ilari
- Istituto di Biologia e Patologia Molecolari del CNR c/o Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
- * E-mail: (AI); (AB)
| | - Alberto Bresciani
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
- * E-mail: (AI); (AB)
| |
Collapse
|
33
|
Rawat M, Maupin-Furlow JA. Redox and Thiols in Archaea. Antioxidants (Basel) 2020; 9:antiox9050381. [PMID: 32380716 PMCID: PMC7278568 DOI: 10.3390/antiox9050381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol, ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying many niches, including those in extreme environments. Archaea are able to use many energy sources and have many unique metabolic reactions and as a result are major contributors to geochemical cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and their biochemistry in archaea.
Collapse
Affiliation(s)
- Mamta Rawat
- Biology Department, California State University, Fresno, CA 93740, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| |
Collapse
|
34
|
Pereira CA, Sayé M, Reigada C, Silber AM, Labadie GR, Miranda MR, Valera-Vera E. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 2020; 147:611-633. [PMID: 32046803 PMCID: PMC10317681 DOI: 10.1017/s0031182020000207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.
Collapse
Affiliation(s)
- Claudio A. Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps – LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guillermo R. Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana R. Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
35
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
36
|
Moshafi MH, Ghasemshirazi S, Abiri A. The art of suicidal molecular seduction for targeting drug resistance. Med Hypotheses 2020; 140:109676. [PMID: 32203818 DOI: 10.1016/j.mehy.2020.109676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
The development of drug resistance is one of the most significant challenges of the current century in the pharmaceutical industry. Superinfections, cancer chemoresistance, and resistance observed in many non-infectious diseases are nullifying the efforts and monetary supplies, put in the advent of new drug molecules. Millions of people die because of this drug resistance developed gradually through extensive use of the drugs. Inherently, some drugs are less prone to become ineffective by drug resistance than others. Covalent inhibitors bind to their targets via a biologically permanent bound with their cognate receptor and therefore display more potent inhibiting characteristics. Suicide inhibitors or mechanism-based inhibitors are one of the covalent inhibitors, which require a pre-activation step by their targeting enzyme. This step accrues their selectivity and specificity with respect to other covalent inhibitors. After that pre-activation step, they produce an analogue of the transition state of the catalytic enzyme, which is practically incapable of dissociating from the enzyme. Suicide inhibitors, due to their high intrinsic affinity toward the related enzyme, are resistant to many mechanisms involved in the development of drug resistance and can be regarded as one of the enemies of this scientific hurdle. These inhibitors compete even with monoclonal antibodies in terms of their cost-effectiveness and efficacy.
Collapse
Affiliation(s)
- Mohammad Hassan Moshafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Ghasemshirazi
- Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
37
|
Mosquillo MF, Smircich P, Ciganda M, Lima A, Gambino D, Garat B, Pérez-Díaz L. Comparative high-throughput analysis of the Trypanosoma cruzi response to organometallic compounds. Metallomics 2020; 12:813-828. [DOI: 10.1039/d0mt00030b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An in-depth, comparative look at the effects of two structurally related organometallic Pd and Pt compounds on the global gene expression pattern of T. cruzi epimastigotes. This parasite is the causative agent of Chagas disease.
Collapse
Affiliation(s)
- M. Florencia Mosquillo
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | | | - Analía Lima
- Instituto de Investigaciones Biológicas Clemente Estable
- Montevideo
- Uruguay
- Unidad de Bioquímica y Proteómica Analíticas
- Institut Pasteur de Montevideo
| | - Dinorah Gambino
- Área Química Inorgánica
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| |
Collapse
|
38
|
Talevi A, Carrillo C, Comini M. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr Med Chem 2019; 26:6614-6635. [PMID: 30259812 DOI: 10.2174/0929867325666180926151059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Chagas´ disease continues to be a challenging and neglected public health problem in many American countries. The etiologic agent, Trypanosoma cruzi, develops intracellularly in the mammalian host, which hinders treatment efficacy. Progress in the knowledge of parasite biology and host-pathogen interaction has not been paralleled by the development of novel, safe and effective therapeutic options. It is then urgent to seek for novel therapeutic candidates and to implement drug discovery strategies that may accelerate the discovery process. The most appealing targets for pharmacological intervention are those essential for the pathogen and, whenever possible, absent or significantly different from the host homolog. The thiol-polyamine metabolism of T. cruzi offers interesting candidates for a rational design of selective drugs. In this respect, here we critically review the state of the art of the thiolpolyamine metabolism of T. cruzi and the pharmacological potential of its components. On the other hand, drug repurposing emerged as a valid strategy to identify new biological activities for drugs in clinical use, while significantly shortening the long time and high cost associated with de novo drug discovery approaches. Thus, we also discuss the different drug repurposing strategies available with a special emphasis in their applications to the identification of drug candidates targeting essential components of the thiol-polyamine metabolism of T. cruzi.
Collapse
Affiliation(s)
- Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata, La Plata, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein) - CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Comini
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
39
|
Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs 2019; 18:E28. [PMID: 31905716 PMCID: PMC7024282 DOI: 10.3390/md18010028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds with antioxidant activity play remarkable roles in the prevention of reactive oxygen species (ROS) formation. ROS, which are formed by different pathways, have various pathological influences such as DNA damage, carcinogenesis, and cellular degeneration. Incremental demands have prompted the search for newer and alternative resources of natural bioactive compounds with antioxidant properties. The marine environment encompasses almost three-quarters of our planet and is home to many eukaryotic and prokaryotic microorganisms. Because of extreme physical and chemical conditions, the marine environment is a rich source of chemical and biological diversity, and marine microorganisms have high potential as a source of commercially interesting compounds with various pharmaceutical, nutraceutical, and cosmeceutical applications. Bacteria and microalgae are the most important producers of valuable molecules including antioxidant enzymes (such as superoxide dismutase and catalase) and antioxidant substances (such as carotenoids, exopolysaccharides, and bioactive peptides) with various valuable biological properties and applications. Here, we review the current knowledge of these bioactive compounds while highlighting their antioxidant properties, production yield, health-related benefits, and potential applications in various biological and industrial fields.
Collapse
Affiliation(s)
- Masoud Hamidi
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht P.O. Box 41446/66949, Iran;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115/111, Iran;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
40
|
Saavedra E, González-Chávez Z, Moreno-Sánchez R, Michels PA. Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling. Curr Med Chem 2019; 26:6652-6671. [DOI: 10.2174/0929867325666180917104242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022]
Abstract
In the search for therapeutic targets in the intermediary metabolism of trypanosomatids
the gene essentiality criterion as determined by using knock-out and knock-down genetic
strategies is commonly applied. As most of the evaluated enzymes/transporters have
turned out to be essential for parasite survival, additional criteria and approaches are clearly
required for suitable drug target prioritization. The fundamentals of Metabolic Control
Analysis (MCA; an approach in the study of control and regulation of metabolism) and kinetic
modeling of metabolic pathways (a bottom-up systems biology approach) allow quantification
of the degree of control that each enzyme exerts on the pathway flux (flux control coefficient)
and metabolic intermediate concentrations (concentration control coefficient). MCA
studies have demonstrated that metabolic pathways usually have two or three enzymes with
the highest control of flux; their inhibition has more negative effects on the pathway function
than inhibition of enzymes exerting low flux control. Therefore, the enzymes with the highest
pathway control are the most convenient targets for therapeutic intervention. In this review,
the fundamentals of MCA as well as experimental strategies to determine the flux control coefficients
and metabolic modeling are analyzed. MCA and kinetic modeling have been applied
to trypanothione metabolism in Trypanosoma cruzi and the model predictions subsequently
validated in vivo. The results showed that three out of ten enzyme reactions analyzed
in the T. cruzi anti-oxidant metabolism were the most controlling enzymes. Hence, MCA and
metabolic modeling allow a further step in target prioritization for drug development against
trypanosomatids and other parasites.
Collapse
Affiliation(s)
- Emma Saavedra
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Zabdi González-Chávez
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Rafael Moreno-Sánchez
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Paul A.M. Michels
- Centre for Immunity, Infection and Evolution (CIIE) and Centre for Translational and Chemical Biology (CTCB), School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
41
|
Marozienė A, Lesanavičius M, Davioud-Charvet E, Aliverti A, Grellier P, Šarlauskas J, Čėnas N. Antiplasmodial Activity of Nitroaromatic Compounds: Correlation with Their Reduction Potential and Inhibitory Action on Plasmodium falciparum Glutathione Reductase. Molecules 2019; 24:molecules24244509. [PMID: 31835450 PMCID: PMC6943496 DOI: 10.3390/molecules24244509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 02/02/2023] Open
Abstract
With the aim to clarify the mechanism(s) of action of nitroaromatic compounds against the malaria parasite Plasmodium falciparum, we examined the single-electron reduction by P. falciparum ferredoxin:NADP+ oxidoreductase (PfFNR) of a series of nitrofurans and nitrobenzenes (n = 23), and their ability to inhibit P. falciparum glutathione reductase (PfGR). The reactivity of nitroaromatics in PfFNR-catalyzed reactions increased with their single-electron reduction midpoint potential (E17). Nitroaromatic compounds acted as non- or uncompetitive inhibitors towards PfGR with respect to NADPH and glutathione substrates. Using multiparameter regression analysis, we found that the in vitro activity of these compounds against P. falciparum strain FcB1 increased with their E17 values, octanol/water distribution coefficients at pH 7.0 (log D), and their activity as PfGR inhibitors. Our data demonstrate that both factors, the ease of reductive activation and the inhibition of PfGR, are important in the antiplasmodial in vitro activity of nitroaromatics. To the best of our knowledge, this is the first quantitative demonstration of this kind of relationship. No correlation between antiplasmodial activity and ability to inhibit human erythrocyte GR was detected in tested nitroaromatics. Our data suggest that the efficacy of prooxidant antiparasitic agents may be achieved through their combined action, namely inhibition of antioxidant NADPH:disulfide reductases, and the rapid reduction by single-electron transferring dehydrogenases-electrontransferases.
Collapse
Affiliation(s)
- Audronė Marozienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Bioorganic and Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials, 25 rue Becquerel, F-67087 Strasbourg, France;
| | - Alessandro Aliverti
- Department of Biosciences, Universita degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy;
| | - Philippe Grellier
- MCAM, UMR7245, Museum National d’Histoire Naturelle, CNRS, 61 rue Buffon, F-75231 Paris CEDEX 05, France;
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
- Correspondence: ; Tel.: +370-5-223-4392
| |
Collapse
|
42
|
Lenz M, Krauth-Siegel RL, Schmidt TJ. Natural Sesquiterpene Lactones of the 4,15- iso-Atriplicolide Type are Inhibitors of Trypanothione Reductase. Molecules 2019; 24:molecules24203737. [PMID: 31623252 PMCID: PMC6832266 DOI: 10.3390/molecules24203737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022] Open
Abstract
In the course of our investigations on the antitrypanosomal potential of sesquiterpene lactones (STL), we have recently reported on the exceptionally strong activity of 4,15-iso-Atriplicolide tiglate, which demonstrated an IC50 value of 15 nM against Trypanosoma brucei rhodesiense, the etiologic agent responsible for East African human trypanosomiasis (HAT). Since STLs are known to often interact with their biological targets (e.g., in anti-inflammatory and anti-tumor activity) by means of the covalent modification of biological nucleophiles—most prominently free cysteine thiol groups in proteins—it was a straightforward assumption that such compounds might interfere with the trypanothione-associated detoxification system of trypanosomes. This system heavily relies on thiol groups in the form of the dithiol trypanothione (T(SH)2) and in the active centers of enzymes involved in trypanothione metabolism and homeostasis. Indeed, we found in the present study that 4,15-iso-atriplicolide tiglate, as well as its structural homologues, the corresponding methacrylate and isobutyrate, are inhibitors of trypanothione reductase (TR), the enzyme serving the parasites to keep T(SH)2 in the dithiol state. The TR inhibitory activity was demonstrated to be time-dependent and irreversible. Quite interestingly, of the several further STLs with different core structures that were also tested, none inhibited TR at a significant level. Thus, the TR inhibitory effect by the 4,15-iso-atriplicolide esters appears to be specific for this particular type of furanoheliangolide-type STL. Some structure–activity relationships can already be deduced on the basis of the data reported here, which may serve as the starting point for searching further, possibly more potent, TR inhibitors.
Collapse
Affiliation(s)
- Mairin Lenz
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, PharmaCampus Corrensstraße 48, D-48149, Münster, Germany.
| | - R Luise Krauth-Siegel
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.
| | - Thomas J Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, PharmaCampus Corrensstraße 48, D-48149, Münster, Germany.
| |
Collapse
|
43
|
Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med 2019; 140:14-27. [PMID: 31201851 PMCID: PMC7041647 DOI: 10.1016/j.freeradbiomed.2019.05.035] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
The sulfur biochemistry of the thiol group endows cysteines with a number of highly specialized and unique features that enable them to serve a variety of different functions in the cell. Typically highly conserved in proteins, cysteines are predominantly found in functionally or structurally crucial regions, where they act as stabilizing, catalytic, metal-binding and/or redox-regulatory entities. As highly abundant low molecular weight thiols, cysteine thiols and their oxidized disulfide counterparts are carefully balanced to maintain redox homeostasis in various cellular compartments, protect organisms from oxidative and xenobiotic stressors and partake actively in redox-regulatory and signaling processes. In this review, we will discuss the role of protein thiols as scavengers of hydrogen peroxide in antioxidant enzymes, use thiol peroxidases to exemplify how protein thiols contribute to redox signaling, provide an overview over the diverse set of low molecular weight thiol-based redox systems found in biology, and illustrate how thiol-based redox systems have evolved not only to protect against but to take full advantage of a world full of molecular oxygen.
Collapse
Affiliation(s)
- Kathrin Ulrich
- Department of Molecular, Cellular, and Developmental Biology, University of Michgan, Ann Arbor, MI, 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michgan, Ann Arbor, MI, 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
44
|
De Gasparo R, Halgas O, Harangozo D, Kaiser M, Pai EF, Krauth‐Siegel RL, Diederich F. Targeting a Large Active Site: Structure‐Based Design of Nanomolar Inhibitors of
Trypanosoma brucei
Trypanothione Reductase. Chemistry 2019; 25:11416-11421. [DOI: 10.1002/chem.201901664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Raoul De Gasparo
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Ondrej Halgas
- Departments of Biochemistry and Medical BiophysicsUniversity of Toronto Medical Sciences Building, 5318, 1 King's College Circle Toronto ON M5S 1A8 Canada
- The Campbell Family Institute for Cancer ResearchUniversity Health Network 101 College Street Toronto ON M5G 1L7 Canada
| | - Dora Harangozo
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute Socinstrasse 57 4002 Basel Switzerland
- University of Basel Petersplatz 1 4003 Basel Switzerland
| | - Emil F. Pai
- Departments of Biochemistry and Medical BiophysicsUniversity of Toronto Medical Sciences Building, 5318, 1 King's College Circle Toronto ON M5S 1A8 Canada
- The Campbell Family Institute for Cancer ResearchUniversity Health Network 101 College Street Toronto ON M5G 1L7 Canada
| | - R. Luise Krauth‐Siegel
- Biochemie-Zentrum Heidelberg (BZH)Universität Heidelberg Im Neuenheimer Feld 328 69120 Heidelberg Germany
| | - François Diederich
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
45
|
Castellano I, Seebeck FP. On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. Nat Prod Rep 2019; 35:1241-1250. [PMID: 30052250 DOI: 10.1039/c8np00045j] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: up to 2018 Ovothiols are sulfur-containing natural products biosynthesized by marine invertebrates, microalgae, and bacteria. These compounds are characterized by unique chemical properties suggestive of numerous cellular functions. For example, ovothiols may be cytoprotectants against oxidative stress, serve as building blocks of more complex structures and may act as molecular messengers for inter- and intracellular signaling. Detailed understanding of ovothiol physiological role in marine organisms may unearth novel concepts in cellular redox biochemistry and highlight the therapeutic potential of this antioxidant. The recent discovery of ovothiol biosynthetic genes has paved the way for a systematic investigation of ovothiol-modulated cellular processes. In this highlight we review the early research on ovothiol and we discuss key questions that may now be addressed using genome-based approaches. This highlight article provides an overview of recent progress towards elucidating the biosynthesis, function and potential application of ovothiols.
Collapse
Affiliation(s)
- Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy.
| | | |
Collapse
|
46
|
Revuelto A, Ruiz-Santaquiteria M, de Lucio H, Gamo A, Carriles AA, Gutiérrez KJ, Sánchez-Murcia PA, Hermoso JA, Gago F, Camarasa MJ, Jiménez-Ruiz A, Velázquez S. Pyrrolopyrimidine vs Imidazole-Phenyl-Thiazole Scaffolds in Nonpeptidic Dimerization Inhibitors of Leishmania infantum Trypanothione Reductase. ACS Infect Dis 2019; 5:873-891. [PMID: 30983322 DOI: 10.1021/acsinfecdis.8b00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Disruption of protein-protein interactions of essential oligomeric enzymes by small molecules represents a significant challenge. We recently reported some linear and cyclic peptides derived from an α-helical region present in the homodimeric interface of Leishmania infantum trypanothione reductase ( Li-TryR) that showed potent effects on both dimerization and redox activity of this essential enzyme. Here, we describe our first steps toward the design of nonpeptidic small-molecule Li-TryR dimerization disruptors using a proteomimetic approach. The pyrrolopyrimidine and the 5-6-5 imidazole-phenyl-thiazole α-helix-mimetic scaffolds were suitably decorated with substituents that could mimic three key residues (K, Q, and I) of the linear peptide prototype (PKIIQSVGIS-Nle-K-Nle). Extensive optimization of previously described synthetic methodologies was required. A library of 15 compounds bearing different hydrophobic alkyl and aromatic substituents was synthesized. The imidazole-phenyl-thiazole-based analogues outperformed the pyrrolopyrimidine-based derivatives in both inhibiting the enzyme and killing extracellular and intracellular parasites in cell culture. The most active imidazole-phenyl-thiazole compounds 3e and 3f inhibit Li-TryR and prevent growth of the parasites at low micromolar concentrations similar to those required by the peptide prototype. The intrinsic fluorescence of these compounds inside the parasites visually demonstrates their good permeability in comparison with previous peptide-based Li-TryR dimerization disruptors.
Collapse
Affiliation(s)
| | | | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | - Ana Gamo
- Instituto de Química Médica (IQM-CSIC), Madrid E-28006, Spain
| | - Alejandra A. Carriles
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry “Rocasolano” (IQFR-CSIC), Madrid E-28006, Spain
| | - Kilian Jesús Gutiérrez
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | - Pedro A. Sánchez-Murcia
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Madrid E-28805, Spain
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry “Rocasolano” (IQFR-CSIC), Madrid E-28006, Spain
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Madrid E-28805, Spain
| | | | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | | |
Collapse
|
47
|
Pomel S, Mao W, Ha-Duong T, Cavé C, Loiseau PM. GDP-Mannose Pyrophosphorylase: A Biologically Validated Target for Drug Development Against Leishmaniasis. Front Cell Infect Microbiol 2019; 9:186. [PMID: 31214516 PMCID: PMC6554559 DOI: 10.3389/fcimb.2019.00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 01/02/2023] Open
Abstract
Leishmaniases are neglected tropical diseases that threaten about 350 million people in 98 countries around the world. In order to find new antileishmanial drugs, an original approach consists in reducing the pathogenic effect of the parasite by impairing the glycoconjugate biosynthesis, necessary for parasite recognition and internalization by the macrophage. Some proteins appear to be critical in this way, and one of them, the GDP-Mannose Pyrophosphorylase (GDP-MP), is an attractive target for the design of specific inhibitors as it is essential for Leishmania survival and it presents significant differences with the host counterpart. Two GDP-MP inhibitors, compounds A and B, have been identified in two distinct studies by high throughput screening and by a rational approach based on molecular modeling, respectively. Compound B was found to be the most promising as it exhibited specific competitive inhibition of leishmanial GDP-MP and antileishmanial activities at the micromolar range with interesting selectivity indexes, as opposed to compound A. Therefore, compound B can be used as a pharmacological tool for the development of new specific antileishmanial drugs.
Collapse
Affiliation(s)
- Sébastien Pomel
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Wei Mao
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tâp Ha-Duong
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Cavé
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe M Loiseau
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
48
|
Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity. Redox Biol 2019; 26:101231. [PMID: 31203195 PMCID: PMC6581782 DOI: 10.1016/j.redox.2019.101231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022] Open
Abstract
Trypanothione (T(SH)2) is the main antioxidant metabolite for peroxide reduction in Trypanosoma cruzi; therefore, its metabolism has attracted attention for therapeutic intervention against Chagas disease. To validate drug targets within the T(SH)2 metabolism, the strategies and methods of Metabolic Control Analysis and kinetic modeling of the metabolic pathway were used here, to identify the steps that mainly control the pathway fluxes and which could be appropriate sites for therapeutic intervention. For that purpose, gamma-glutamylcysteine synthetase (γECS), trypanothione synthetase (TryS), trypanothione reductase (TryR) and the tryparedoxin cytosolic isoform 1 (TXN1) were separately overexpressed to different levels in T. cruzi epimastigotes and their degrees of control on the pathway flux as well as their effect on drug resistance and infectivity determined. Both experimental in vivo as well as in silico analyses indicated that γECS and TryS control T(SH)2 synthesis by 60–74% and 15–31%, respectively. γECS overexpression prompted up to a 3.5-fold increase in T(SH)2 concentration, whereas TryS overexpression did not render an increase in T(SH)2 levels as a consequence of high T(SH)2 degradation. The peroxide reduction flux was controlled for 64–73% by TXN1, 17–20% by TXNPx and 11–16% by TryR. TXN1 and TryR overexpression increased H2O2 resistance, whereas TXN1 overexpression increased resistance to the benznidazole plus buthionine sulfoximine combination. γECS overexpression led to an increase in infectivity capacity whereas that of TXN increased trypomastigote bursting. The present data suggested that inhibition of high controlling enzymes such as γECS and TXN1 in the T(SH)2 antioxidant pathway may compromise the parasite's viability and infectivity. The trypanothione synthesis flux is primarily but not exclusively controlled by γECS. Tryparedoxin exerts high control on the peroxide reduction flux. Kinetic metabolic modeling may reliably predict the in vivo pathway behavior. TXN1 overexpression provides benznidazole resistance. γECS and TXN contribute to parasite infectivity.
Collapse
|
49
|
Wagner A, Le TA, Brennich M, Klein P, Bader N, Diehl E, Paszek D, Weickhmann AK, Dirdjaja N, Krauth-Siegel RL, Engels B, Opatz T, Schindelin H, Hellmich UA. Inhibitor-induzierte Dimerisierung einer essentiellen Oxidoreduktase aus afrikanischen Trypanosomen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Annika Wagner
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Johann-Joachim-Becherweg 31 55128 Mainz Deutschland
- Biomolekulares Magnetresonanz Zentrum (BMRZ); Goethe-Universität Frankfurt; Max-von-Laue Str. 9 60438 Frankfurt/M Deutschland
| | - Thien Anh Le
- Institut für Physikalische und Theoretische Chemie; Julius-Maximilians-Universität Würzburg; Emil-Fischer-Straße 42 97074 Würzburg Deutschland
| | - Martha Brennich
- Synchrotron Crystallography Team; EMBL Grenoble Outstation; 71 Avenue des Martyrs 38042 Grenoble Frankreich
| | - Philipp Klein
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Nicole Bader
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin; Julius-Maximilians-Universität Würzburg; Josef-Schneider-Straße 2, Haus D15 97080 Würzburg Deutschland
| | - Erika Diehl
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Johann-Joachim-Becherweg 31 55128 Mainz Deutschland
- Biomolekulares Magnetresonanz Zentrum (BMRZ); Goethe-Universität Frankfurt; Max-von-Laue Str. 9 60438 Frankfurt/M Deutschland
| | - Daniel Paszek
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Johann-Joachim-Becherweg 31 55128 Mainz Deutschland
| | - A. Katharina Weickhmann
- Biomolekulares Magnetresonanz Zentrum (BMRZ); Goethe-Universität Frankfurt; Max-von-Laue Str. 9 60438 Frankfurt/M Deutschland
| | - Natalie Dirdjaja
- Biochemistry Center (BZH); Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 328 69120 Heidelberg Deutschland
| | - R. Luise Krauth-Siegel
- Biochemistry Center (BZH); Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 328 69120 Heidelberg Deutschland
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie; Julius-Maximilians-Universität Würzburg; Emil-Fischer-Straße 42 97074 Würzburg Deutschland
| | - Till Opatz
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Hermann Schindelin
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin; Julius-Maximilians-Universität Würzburg; Josef-Schneider-Straße 2, Haus D15 97080 Würzburg Deutschland
| | - Ute A. Hellmich
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Johann-Joachim-Becherweg 31 55128 Mainz Deutschland
- Biomolekulares Magnetresonanz Zentrum (BMRZ); Goethe-Universität Frankfurt; Max-von-Laue Str. 9 60438 Frankfurt/M Deutschland
| |
Collapse
|
50
|
Wagner A, Le TA, Brennich M, Klein P, Bader N, Diehl E, Paszek D, Weickhmann AK, Dirdjaja N, Krauth-Siegel RL, Engels B, Opatz T, Schindelin H, Hellmich UA. Inhibitor-Induced Dimerization of an Essential Oxidoreductase from African Trypanosomes. Angew Chem Int Ed Engl 2019; 58:3640-3644. [DOI: 10.1002/anie.201810470] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/05/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Annika Wagner
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Johann-Joachim-Becherweg 31 55128 Mainz Germany
- Biomolekulares Magnetresonanz Zentrum (BMRZ); Goethe-Universität Frankfurt; Max-von-Laue Str. 9 60438 Frankfurt/M Germany
| | - Thien Anh Le
- Institute of Physical and Theoretical Chemistry; Julius-Maximilians-University Würzburg; Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Martha Brennich
- Synchrotron Crystallography Team; EMBL Grenoble Outstation; 71 Avenue des Martyrs 38042 Grenoble France
| | - Philipp Klein
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Nicole Bader
- Rudolf Virchow Center for Experimental Biomedicine; Julius-Maximilians-University Würzburg; Josef-Schneider-Straße 2, Haus D15 97080 Würzburg Germany
| | - Erika Diehl
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Johann-Joachim-Becherweg 31 55128 Mainz Germany
- Biomolekulares Magnetresonanz Zentrum (BMRZ); Goethe-Universität Frankfurt; Max-von-Laue Str. 9 60438 Frankfurt/M Germany
| | - Daniel Paszek
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Johann-Joachim-Becherweg 31 55128 Mainz Germany
| | - A. Katharina Weickhmann
- Biomolekulares Magnetresonanz Zentrum (BMRZ); Goethe-Universität Frankfurt; Max-von-Laue Str. 9 60438 Frankfurt/M Germany
| | - Natalie Dirdjaja
- Biochemistry Center (BZH); Ruprecht-Karls-University Heidelberg; Im Neuenheimer Feld 328 69120 Heidelberg Germany
| | - R. Luise Krauth-Siegel
- Biochemistry Center (BZH); Ruprecht-Karls-University Heidelberg; Im Neuenheimer Feld 328 69120 Heidelberg Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry; Julius-Maximilians-University Würzburg; Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Till Opatz
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine; Julius-Maximilians-University Würzburg; Josef-Schneider-Straße 2, Haus D15 97080 Würzburg Germany
| | - Ute A. Hellmich
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Johann-Joachim-Becherweg 31 55128 Mainz Germany
- Biomolekulares Magnetresonanz Zentrum (BMRZ); Goethe-Universität Frankfurt; Max-von-Laue Str. 9 60438 Frankfurt/M Germany
| |
Collapse
|